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Symmetry-reduced Dynamic Mode Decomposition
of Near-wall Turbulence

E. Marensi, G. Yalnız, B. Hof and N. B. Budanur†

IST Austria, Am Campus 1, 3400 Klosterneuburg Austria

(Preprint 22 January 2021)

Data-driven dimensionality reduction methods such as proper orthogonal decomposition

(POD) and dynamic mode decomposition (DMD) have proven to be useful for exploring

complex phenomena within fluid dynamics and beyond. A well-known challenge for these

techniques is posed by the continuous symmetries, e.g. translations and rotations, of the

system under consideration as drifts in the data dominate the modal expansions without

providing an insight into the dynamics of the problem. In the present study, we address

this issue for the pressure-driven flow in a rectangular channel by formulating a continuous

symmetry reduction method that eliminates the translations simultaneously in the streamwise

and spanwise directions. As an application, we consider turbulence in a minimal flow unit

at a Reynolds number (based on the centerline velocity and half-channel height) Re = 2000

and compute the symmetry-reduced dynamic mode decomposition (SRDMD) of sliding data

windows of varying durations. SRDMD of channel flow reveals episodes of turbulent time

evolution that can be approximated by a low-dimensional linear expansion.

1. Introduction

Turbulence is a strongly nonlinear phenomenon exhibiting chaotic spatio-temporal behaviour

at many scales. Despite its complexity, a certain degree of coherence is observed and has

been studied for many years with the goal of describing dynamics of turbulent flows in

terms of few coherent structures (Jiménez 2018a). In the context of wall-bounded flows, a

considerable amount of research (see e.g. Hamilton et al. 1995; Waleffe 1997; Jiménez &

Pinelli 1999; Schoppa & Hussain 2002) is devoted to understanding the turbulence-sustaining

mechanisms in terms of quasi-streamwise vortices and streaks. The former term refers to

coherent regions of vortically moving fluid transverse to the flow direction and the latter

describes an elongated high- or low-speed modulation of the base flow. Despite the abundant

numerical and experimental evidence supporting the importance of streaks in wall turbulence

and the intuitive physical picture provided by their interactions with vortices, the definition

of a streak is based on experimental observations and, thus, inherently subjective (Jiménez

2018b). Consequently, one does not know how much is lost by neglecting the rest of the

fluctuations in turbulent flow.

A complementary, yet mathematically exact, approach to low-dimensionality in turbulence

is provided by the so-termed (Waleffe 2001) exact coherent structures (ECS), which are

unstable time-invariant (self-sustaining) solutions of the Navier–Stokes equations such

as equilibria, travelling waves and periodic orbits. These correspond to compact low-

dimensional objects in the infinite-dimensional state space of all possible flow fields and

influence the dynamics in their vicinity via their stable and unstable manifolds (Gibson et al.

2008; van Veen & Kawahara 2011; Budanur et al. 2017, 2019; Budanur & Hof 2017, 2018;

Suri et al. 2017). In other words, together with their stable and unstable manifolds, ECS

provide the intrinsic coordinates that can transiently approximate turbulence. Despite the

relevance of ECS being fully established for transitional and low-Reynolds-number turbulent
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flows (see extensive reviews by Kerswell 2005; Eckhardt et al. 2008; Kawahara et al. 2012),

a main challenge of the past twenty years has been to find more and more complex solutions

that can capture the flow dynamics at higher Reynolds numbers and in larger domains.

The current availability of large data sets, both from experiments and simulations, and

ongoing developments of data-driven modelling tools offer new avenues for tackling the

problem of identifying low-dimensional behaviour underlying complex fluid flows. Indeed,

high-dimensional data can be fed into data-driven decomposition techniques to gain useful

information about the underlying physical processes (Rowley & Dawson 2017). Amongst

these methods, dynamic mode decomposition (DMD) (Schmid & Sesterhenn 2008; Schmid

2010) has been successfully applied to many complex fluid systems (for a comprehensive

list see Rowley & Dawson 2017, table 3) with the aim of extracting dynamically important

flow features from time-resolved data. DMD generates a hierarchy of flow fields (DMD

modes) and the associated eigenvalues (DMD eigenvalues) that can be used to approximate

the input data by a linear expansion. Finding a linear modal expansion to describe strongly

nonlinear chaotic fluid dynamics might at first sound like a hopeless endeavour. However,

such an approximation can be found for a finite time, similar, in spirit, to using a nonlinear

invariant solution and its stable/unstable manifolds to approximate turbulent time evolution

in its neighbourhood. One way of rationalizing this is through the interpretation of DMD

modes as the eigenmodes of the best-fit linear system for the given data set (Kutz et al.

2016). Another reasoning follows from the correspondence between DMD and Koopman

mode decomposition (Rowley et al. 2009), which, under certain assumptions, states that

DMD can be interpreted as a finite-dimensional approximation to the spectrum of the linear

Koopman operator (Koopman 1931; Mezić 2005) that acts on the observables associated

with the dynamical system under consideration.

In this paper, we present a dynamic mode decomposition of the near-wall turbulence

in the direct numerical simulation (DNS) of channel flow. The key technical advancement

here is the preprocessing of data by symmetry reduction to eliminate the degeneracies

due to streamwise and spanwise translations, which resolves the well-known shortcomings

(Kutz et al. 2016; Sesterhenn & Shahirpour 2019) of DMD in systems with continuous

symmetries. In such systems, the drifts in the continuous symmetry directions artificially

increase the dimensionality of embeddings that can reliably capture the dynamics (Rowley

& Marsden 2000; Mendible et al. 2020). Furthermore, in spatiotemporal systems with a

continuous flux, such as the channel flow considered here, the drifting motion completely

dominates the DMD spectra, obscuring the physically-important dynamics of the system

under study. Through examples in the following, we demonstrate that the symmetry-reduced

dynamic mode decomposition (SRDMD) of the channel flow resolves the aforementioned

issues and reveals episodes of turbulence that can be reliably described by a low-dimensional

linear expansion. The paper is organised as follows. In §2 and §3 we introduce channel flow

with its symmetries and formulate a symmetry reduction method for this configuration. The

DMD algorithm is summarised in §4 and then applied to the symmetry-reduced DNS data

in §5. The necessity of symmetry reduction is demonstrated in §6 and concluding remarks

are drawn in §7.

2. Channel flow, symmetries, and the numerical setup

We consider the pressure-driven fluid flow between two parallel plates in a computational

domain (𝑥, 𝑦, 𝑧) ∈ [0, 𝐿𝑥) × [−ℎ, ℎ] × [0, 𝐿𝑧), where 𝑥, 𝑦, 𝑧 are the streamwise, wall-

normal and spanwise directions, respectively. We take the base-fluctuation decomposition

𝒖𝑡𝑜𝑡 = 𝑼 + 𝒖 where 𝑼 = 𝑈𝑐 (1 − 𝑦2)�̂� is the parabolic laminar flow and 𝑈𝑐 is the centerline

velocity. The fluctuating velocity field 𝒖 = 𝑢�̂� + 𝑣 �̂� + 𝑤𝒛 has zero net flux and satisfies
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the incompressibility condition ∇ · 𝒖 = 0. The boundary conditions are no slip on the

walls, i.e. 𝒖(𝑥, 𝑦 = ±ℎ, 𝑧) = 0, and periodic in the extended directions, i.e. 𝒖(𝑥, 𝑦, 𝑧) =

𝒖(𝑥 + 𝐿𝑥 , 𝑦, 𝑧) = 𝒖(𝑥, 𝑦, 𝑧+ 𝐿𝑧). We present our results to follow in the nondimensional units

where ℎ = 𝑈𝑐 = 1 and define the Reynolds number Re ≔
𝑈𝑐ℎ
𝜈

. Pressure-driven channel flow

is equivariant under the translations

𝑔(𝛿𝑥, 𝛿𝑧) [𝑢, 𝑣, 𝑤] (𝑥, 𝑦, 𝑧) = [𝑢, 𝑣, 𝑤] (𝑥 − 𝛿𝑥, 𝑦, 𝑧 − 𝛿𝑧) , (2.1)

where 𝛿𝑥 ∈ [0, 𝐿𝑥) and 𝛿𝑧 ∈ [0, 𝐿𝑧), and the reflections

𝜎𝑦 [𝑢, 𝑣, 𝑤] (𝑥, 𝑦, 𝑧) = [𝑢,−𝑣, 𝑤] (𝑥,−𝑦, 𝑧) , (2.2)

𝜎𝑧 [𝑢, 𝑣, 𝑤] (𝑥, 𝑦, 𝑧) = [𝑢, 𝑣,−𝑤] (𝑥, 𝑦,−𝑧) . (2.3)

In our applications, we consider turbulent channel flow at Reynolds number 𝑅𝑒 = 2000 in

a minimal flow unit (Jiménez & Moin 1991) of dimensions 𝐿𝑧 = 2𝜋/5 and 𝐿𝑥 = 2𝜋/2.2.

We restrict our attention to turbulence near one wall by imposing 𝜎𝑦-invariance (symmetry

with respect to midplane) on the velocity fields. We note that imposing this symmetry does

not alter the wall friction, nor does it restrict the continuous symmetries of the channel flow.

Direct numerical simulations are carried out using the Channelflow2.0 solver (Gibson

et al. 2020) with grid resolution 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 = 64 × 97 × 48 which ensures a drop of at

least 4 orders of magnitude in the spectra. The time step is dynamically adjusted so that the

Courant–Friedrichs–Lewy number (CFL) satisfies 0.15 6 CFL < 0.3. The friction Reynolds

number is 𝑅𝑒𝜏 ≈ 100 and the minimal channel dimensions, expressed in wall units (Pope

2000), are 𝐿+
𝑥 ≈ 280 and 𝐿+

𝑧 ≈ 120.

3. Continuous symmetry reduction

The equivariance of channel flow under the translations (2.1) implies that if 𝒖(𝑡) is a solution,

so is 𝑔(𝛿𝑥, 𝛿𝑧)𝒖(𝑡). In other words, each solution has infinitely many symmetry copies that

can be obtained by translations in the streamwise and spanwise directions. Sirovich (1987a)

showed that if such symmetry copies are included in the data set, its proper orthogonal

decomposition (POD) results in POD modes that align with Fourier modes in the symmetry

directions and thus carry no information about the physics of the system. As a remedy,

Rowley & Marsden (2000) suggested reducing the symmetry degree of freedom prior to

POD of the data obtained from a system with translation symmetry. Their method relied on

an experimentally-chosen template to which the simulation data is matched. As noted by the

authors themselves, such a symmetry reduction method has a finite domain of applicability,

the boundary of which is set by the singularity of the so-called reconstruction equation.

In the following, we take a similar approach and formulate a symmetry reduction method

for preprocessing channel flow data prior to its DMD. Differently from Rowley & Marsden

(2000), our method yields a symmetry reduction for all dynamics of interest.

Budanur et al. (2015b) showed that a polar coordinate transformation in the Fourier-space

of a spatially extended system can be interpreted as a slice, that is, a codimension-1 manifold

in the state space of the system where each set of translation-equivalent states is represented

by its unique intersection with this manifold. On applications to the Kuramoto–Sivashinsky

system, Budanur et al. (2015b) demonstrated that such a first Fourier mode slice can be used

to reduce the translation symmetry of the flow for all dynamics of interest. Later, the method

was successfully adapted to two-dimensional Kolmogorov (Farazmand 2016; Hiruta & Toh

2017) and three-dimensional pipe (Willis et al. 2016; Budanur & Hof 2017, 2018) flows;

see Budanur et al. (2015a) for a pedagogical introduction. In the following, we present a

straightforward adaptation of this method to channel flow. We begin by defining the slice
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templates

�̂�′
𝑥 ≔ 𝑓 (𝑦) cos(2𝜋𝑥/𝐿𝑥)�̂� and �̂�′

𝑧 ≔ 𝑓 (𝑦) cos(2𝜋𝑧/𝐿𝑧)�̂� , (3.1)

where 𝑓 (𝑦) is a to-be-specified function of the wall-normal coordinate only. Let 𝒖 be a

solution of channel flow and the set M𝑥
𝒖

= {𝑔(𝛿𝑥, 0)𝒖 | 𝛿𝑥 ∈ [0, 𝐿𝑥)} be formed by 𝒖

and its streamwise-translation copies. The key idea behind the first Fourier mode slice is the

observation that any non-zero projection ofM𝑥
𝒖

onto the plane spanned by �̂�′
𝑥 and its quarter-

domain shift 𝑔(𝐿𝑥/4, 0)�̂�
′
𝑥 = 𝑓 (𝑦) sin(2𝜋𝑥/𝐿𝑥)x̂ is of circular shape. Thus, a transformation

that fixes the polar angle 𝜙𝑥 ≔ arg(〈𝒖, �̂�′
𝑥〉 + 𝑖〈𝒖, 𝑔(𝐿𝑥/4, 0)�̂�

′
𝑥〉) where 〈 , 〉 denotes

𝐿2 inner product, can be used to reduce the translation symmetry. Following analogous

observations, we define 𝜙𝑧 ≔ arg(〈𝒖, �̂�′
𝑧〉 + 𝑖〈𝒖, 𝑔(0, 𝐿𝑧/4)�̂�

′
𝑧〉) and the symmetry-reducing

transformations

𝑆𝑥 (𝒖) ≔ 𝑔
(

−(𝜙𝑥/2𝜋)𝐿𝑥 , 0
)

𝒖 and 𝑆𝑧 (𝒖) ≔ 𝑔
(

0,−(𝜙𝑧/2𝜋)𝐿𝑧

)

𝒖 . (3.2)

Noting that the slice templates �̂�′
𝑥 (𝑥, 𝑦) and �̂�′

𝑧 (𝑦, 𝑧) in (3.1) do not depend on the 𝑧 and 𝑥

coordinates respectively and the translations in 𝑥 and 𝑧 directions commute, we reduce the

streamwise and spanwise translations simultaneously by simply applying the transformations

(3.2) consecutively as �̂� = 𝑆(𝒖) = 𝑆𝑧 (𝑆𝑥 (𝒖)) .
Until now, we left the wall-normal dependence of the template functions (3.1) unspecified.

To clarify this final point, we shall first give a geometric interpretation of our symmetry

reduction. Since the symmetry reduction eliminates two continuous translation degrees of

freedom, the symmetry-reduced velocity fields �̂�(𝑡) are confined to a submanifold in the state

space with two dimensions less than that accommodating the original velocity fields 𝒖(𝑡).
This information, however, is not lost and can be recovered as long as one keeps track of the

slice phases 𝜙𝑥 (𝑡) and 𝜙𝑧 (𝑡). Rowley & Marsden (2000) showed that these phases can also

be obtained by integrating the reconstruction equations

¤̂𝜙𝑥 (𝑡) =

(

2𝜋

𝐿𝑥

)

〈

𝜕𝑥 �̂�
′
𝑥 , 𝜕𝑡𝒖 |𝒖=�̂� (𝑡)

〉

〈

𝜕𝑥 �̂�
′
𝑥 , 𝜕𝑥 �̂�(𝑡)

〉 and ¤̂𝜙𝑧 (𝑡) =

(

2𝜋

𝐿𝑧

)

〈

𝜕𝑧 �̂�
′
𝑧 , 𝜕𝑡𝒖 |𝒖=�̂� (𝑡)

〉

〈

𝜕𝑧 �̂�
′
𝑧 , 𝜕𝑧 �̂�(𝑡)

〉 . (3.3)

Note that the phase velocities (3.3) diverge if the denominators of the reconstruction equations

vanish, at which point our symmetry reduction method would suffer a discontinuity. With

this in mind, we determine 𝑓 (𝑦) in (3.1) such that the denominators of the reconstruction

equations (3.3) never vanish. After some experimentation, we set 𝑓 (𝑦) = 2.5𝑇2 − 1.25𝑇4 −
1.25𝑇6, where 𝑇𝑖 are the Chebyshev polynomials of the first kind. Fig. 1 shows the time

series of phase velocities (3.3) for the turbulent channel flow states sampled using a time

step 𝛿𝑡 = 0.1. The insets illustrate that apparent spikes in the time-series can be resolved by

a higher temporal resolution. Supplementary Movie 1 shows a segment from this simulation

where the original flow states are shown next to their symmetry-reduced counterparts.

4. Symmetry-reduced dynamic mode decomposition

Let 𝜉 (𝑡) be the 𝑛-dimensional symmetry-reduced state vector corresponding to the fluid state

at time 𝑡, Φ𝑡 (𝜉) be the finite-time flow induced by the DNS and symmetry reduction, and 𝜉𝑘
(𝑘 = 0, . . . , 𝑚) be snapshots of states that are separated in time by 𝛿𝑡, i.e. 𝜉𝑘+1 = Φ

𝛿𝑡 (𝜉𝑘 ).
Defining the 𝑛×𝑚 (𝑛 ≫ 𝑚) data matricesΞ ≔ [𝜉0, 𝜉1, . . . , 𝜉𝑚−1] andΞ′

≔ [𝜉1, 𝜉2, . . . , 𝜉𝑚],
we consider the linear approximation Ξ

′ ≈ 𝐴Ξ, where 𝐴 is an 𝑛 × 𝑛 matrix. The best fit (in

𝐿2 sense) to this approximation is given by 𝐴 = Ξ
′
Ξ
†, where † denotes the Moore–Penrose

pseudoinverse. We adopt the standard DMD algorithm (Tu et al. 2014; Kutz et al. 2016), which

approximates eigenvalues and eigenvectors of 𝐴 without explicitly computing it as follows.

LetΞ ≈ 𝑈Σ𝑉∗ denote the rank-𝑟 (𝑟 < 𝑚) singular value decomposition (SVD) approximation
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Figure 1: Time series of the slice phase velocities (finite-difference approximations to 3.3)
for turbulent channel flow states sampled with time step 𝛿𝑡 = 0.1. Insets: zoom-ins
to intervals with fast phase oscillations using 𝛿𝑡 = 0.01.

of Ξ, where𝑈 ∈ C𝑛×𝑟 , Σ ∈ C𝑟×𝑟 , 𝑉 ∈ C𝑚×𝑟 and ∗ indicates the Hermitian transpose. Noting

that the columns of 𝑈 are the POD modes, we can rewrite the best-fit linear operator and

its 𝑟 × 𝑟 projection onto the POD space as 𝐴 = Ξ
′𝑉Σ−1𝑈∗ and �̃� = 𝑈∗𝐴𝑈 = 𝑈∗

Ξ
′𝑉Σ−1,

respectively. Finally, we compute eigenvalues Λ 𝑗 and eigenvectors �̃� 𝑗 of �̃�, from which we

obtain the SRDMD modes as 𝜓 𝑗 = Ξ
′𝑉Σ−1�̃� 𝑗 . Defining 𝜆 𝑗 ≔ log(Λ 𝑗)/𝛿𝑡, we can now write

the SRDMD-approximation of the time-evolution as

𝜉 (𝑡) =

𝑁𝑑−1
∑︁

𝑗=0

𝑐 𝑗𝜓 𝑗𝑒
𝜆 𝑗 𝑡 ≈ 𝜉 (𝑡) , (4.1)

where 𝑐 𝑗 are the SRDMD coefficients and 𝑁𝑑 6 𝑟 is the number of SRDMD modes used

to reconstruct the velocity field. Following Page & Kerswell (2019), we set the coefficients

𝑐 𝑗 as those that minimise the cost function J (𝑐0, 𝑐1, . . . , 𝑐𝑁𝑑−1) =
∑𝑚−1

𝑘=0 ‖𝜉 (𝑡𝑘 ) − 𝜉 (𝑡𝑘 )‖
2 ,

where | | . . . | | indicates the 𝐿2 norm.

We compute the SVD of Ξ using the method of snapshots (Sirovich 1987b) and follow

Holmes et al. (1996); Sirovich (1989) to truncate it such that a sufficiently large fraction 𝑐𝜎
of the total energy is captured and no neglected mode contains, on average, more than a small

fraction 𝑐𝜒 of the energy contained in the first mode. Namely

𝑟−1
∑︁

𝑖=0

𝜎2
𝑖 > 𝑐𝜎

𝑚−1
∑︁

𝑖=0

𝜎2
𝑖 and

1

𝑚 − 𝑟

𝑚−1
∑︁

𝑖=𝑟

𝜎2
𝑖 < 𝑐𝜒 𝜎

2
0 , (4.2)

where 𝜎𝑖 are the singular values. For all of our results to follow, we set 𝑐𝜎 = 99.99% and

𝑐𝜒 = 0.1% which we determined by ensuring that higher-rank truncations do not alter the

leading SRDMD eigenvalues in the first two digits.

5. Locally-linear approximations by SRDMD

In the following, we demonstrate that the near-wall turbulence in channel flow can be

transiently approximated by a linear modal expansion. To this end, we consider a turbulent

channel flow simulation spanning a time interval 𝑡 ∈ [0, 2000] and compute SRDMD of

the data sampled at 𝛿𝑡 = 1 over sliding time windows of length 𝑇𝑤 ≔ 𝑚 𝛿𝑡 = 30, 60, and

100. In order to compare different episodes and window lengths, we construct SRDMD

approximations (4.1) with 𝑁𝑑 = 10 (or 9, depending on the number of complex conjugate

eigenvalues in the dominant part of the SRDMD spectra). We identify the dominant SRDMD

modes by ordering them according to their normalised spectra (Tu et al. 2014) in descending
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Figure 2: SRDMD in the time window 𝑡 ∈ [1280, 1340). (a) Normalised SRDMD spectrum
where 𝑓 𝑗 = |Im𝜆 𝑗 |/2𝜋. The coloured symbols correspond to the modes that are
included in the sum (4.1), while the black symbols are the first three discarded
modes. (b–d) Three-dimensional visualizations of the SRDMD modes 𝜓0 (b),
Re𝜓1 (c) and Im𝜓1 (d).

|Λ 𝑗 |
𝑚𝑐2

𝑗 ‖𝜓 𝑗 ‖
2 and keeping the leading 𝑁𝑑 . Note that ordering the SRDMD modes in this

way amplifies (penalizes) those that grow (decay) by multiplying them with their respective

eigenvalue raised to 𝑚. As an example, fig. 2(a) shows the normalised SRDMD spectrum

of a symmetry-reduced channel flow data window (𝑇𝑤 = 60), where the coloured crosses

correspond to the dominant part of the spectrum and the black ones show the first three

discarded modes. To illustrate the flow structures captured by SRDMD, fig. 2(b–d) shows

three-dimensional visualizations of 𝜓0, Re𝜓1 and Im𝜓1, respectively. In fig. 2(b–d) and the

rest of the flow visualizations of this paper, the red/blue isosurfaces show 𝑢 = 0.5 max/min 𝑢

and the green/purple isosurfaces show 𝜔𝑥 = 0.5 max/min𝜔𝑥 , where 𝜔𝑥 is the streamwise

vorticity.

We evaluate the accuracy of SRDMD by measuring the residual

R(𝑡) =
1

𝑚

𝑚−1
∑︁

𝑘=0

‖𝜉 (𝑡 + 𝑘 𝛿𝑡) − 𝜉 (𝑡 + 𝑘 𝛿𝑡)‖

‖𝜉 (𝑡 + 𝑘 𝛿𝑡)‖
, (5.1)

which is the mean relative error of the SRDMD approximation (4.1) to the time window

[𝑡, 𝑡 + 𝑇𝑤 ). Fig. 3 shows the residuals (5.1) of our SRDMD approximations with 𝑁𝑑 6 10

to the sliding windows of the turbulent channel flow data. Low-error episodes are detected

along the turbulent trajectory and appear to be clustered around certain time instants, for

example around 𝑡 ≈ 250, 950 and 1250 (see fig. 3), thus signalling portions of the turbulent

evolution that can be well captured by a reduced linear expansion. As expected, the dips in

the R(𝑡) curve are most marked for the shortest window length 𝑇𝑤 = 30, although they are

still distinguishable for longer time windows, e.g. 𝑇𝑤 = 60 or 100.

In the remainder of this section, we focus on the SRDMD approximations at 𝑇𝑤 = 60, and

illustrate the different dynamical behaviours captured by SRDMD via state space projections

onto the dominant SRDMD modes. Fig. 4(a–c) show spiral-in (a) and out (b) dynamics as

well as a nearly-periodic trajectory (c), along with their respective SRDMD approximations.

We detected this nearly-periodic episode utilizing the periodicity indicator (Page & Kerswell

2020) 𝜀(𝑛) ≔ 1

𝑛𝜔2
𝑓

∑𝑛
𝑗=1 |Im𝜆 𝑗 − 𝑗𝜔 𝑓 |

2, where 𝜔 𝑓 (𝑛) ≔
2

𝑛(𝑛+1)

∑𝑛
𝑗 Im𝜆 𝑗 and the sums are

carried over the 𝑛 SRDMD eigenvalues with Re𝜆 𝑗 < 𝜇𝑚𝑎𝑥 and 0 < Im𝜆1 < . . . < Im𝜆𝑛−1 <

Im𝜆𝑛. For an exactly periodic signal, 𝜀(𝑛) = 0 and its value below a threshold 𝜀𝑡ℎ indicates

approximate periodicity (Page & Kerswell 2020). The episode illustrated as a projection onto

the plane spanned by the lowest-frequency SRDMD mode in fig. 4(c) was detected using

𝑛 = 4, 𝜇𝑚𝑎𝑥
= 0.05 and 𝜀𝑡ℎ = 10−3.
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Figure 3: SRDMD residuals (5.1) for 𝑇𝑤 = 30, 60, and 100.
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Figure 4: State-space projections corresponding to the time windows: (a) 𝑡 ∈ [265, 325), (b)
𝑡 ∈ [1280, 1340) and (c) 𝑡 ∈ [1295, 1355). The arrows indicate the direction of
time. The projections are centred at the nearly neutral real mode 𝜓0. The (𝑝1, 𝑝2)
planes correspond to those spanned by the leading (a, b) and lowest-frequency (c)
complex conjugate SRDMD modes.

For the spiral-out event starting at 𝑡 = 1280 (fig. 4(b)), we compare the evolution of the

flow structures reconstructed using SRDMD to those of the original turbulent dynamics,

see fig. 5 and Supplementary Movie 2. The SRDMD spectrum and the first two SRDMD

eigenvectors were displayed in fig. 2. As shown in fig. 5, SRDMD can capture the evolution

of streaks and rolls, visualised as isosurfaces of streamwise velocity and streamwise vorticity,

respectively, with only 10 modes. In particular, it can capture the initial growth of the rolls

which then break up into smaller structures and appear to decay towards the end of the time

window while the streaks start meandering.

6. Necessity of symmetry reduction

In the previous section we demonstrated different dynamical regimes, such as spiral-in, spiral-

out and nearly-periodic episodes that can be captured by SRDMD. We shall now show that a

similar analysis without symmetry reduction yields DMD modes and associated eigenvalues

that are completely dominated by the streamwise drifts. To this end, we compute here the

standard DMD (without symmetry reduction) of the time window 𝑡𝑠 = [1280, 1340), where

a spiralling-out behaviour was detected by the SRDMD. In contrast to the SRDMD spectrum

(cf. fig. 2(a)), without symmetry reduction the spectrum shows a concentration of modes

around the drift frequency 𝑓𝑑 = 𝑈𝑏/𝐿𝑥 ≈ 0.23, where 𝑈𝑏 = 2/3 is the bulk velocity. Due to

the fast advection in the streamwise direction, projections (not shown) onto one of these “drift

modes” result in trajectories that show up as approximately circular dynamics. Furthermore,
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Figure 5: Three-dimensional visualizations of symmetry-reduced flow states and their
SRDMD approximations for the time window 𝑡 ∈ [1280, 1340).
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Figure 6: Standard DMD in the time window 𝑡𝑠 ∈ [1280, 1340) (to be compared with
fig. 2). (a) Normalised DMD spectrum and three-dimensional visualisations of
the eigenvectors 𝜓0 (b), Re𝜓1 (c) and Im𝜓1 (d).

without symmetry reduction a temporal resolution 𝛿𝑡 = 0.1, ten times finer than that used in

the symmetry-reduced case, was needed due to the clear separation between the time scales

of the coherent structures and the advective units. While we can resolve the dynamics of

coherent structures with a time step of 𝛿𝑡 = 1, the temporal resolution is completely lost if

we do not eliminate the continuous symmetries. Finally, in contrast to the complex structures

shown by SRDMD (cf. fig. 2(b–d)), the eigenvectors obtained from the standard DMD either

just show elongated structures (fig. 6(b)), or align with the first streamwise Fourier mode

(fig. 6(c, d)) as signified by the fact that Im𝜓1 (fig. 6(d)) is virtually the same as Re𝜓1

(fig. 6(c)) up to a quarter-domain shift in the 𝑥 direction. This is further supported by the

closeness of the associated temporal frequency 𝑓1 = 0.21 to the drift frequency 𝑓𝑑 = 0.23.

7. Conclusion and outlook

We have shown that low-dimensional behaviour in near-wall turbulence can be uncovered by

the SRDMD of DNS data. As illustrated by our examples, SRDMD yields modal expansions

that can transiently approximate turbulence, similar, in spirit, to the dynamics of a low-
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Re flow in the vicinity of an ECS. In analogy to ECS, the episodes that we illustrated in

§5 can be thought as those in the neighbourhoods of pseudoequilibria (fig. 4 (a, b)) and

pseudoperiodic (fig. 4 (c)) solutions represented by SRDMD. A future research direction

that we plan to explore is to use a finite set of pseudoinvariant solutions as bases of a coarse-

grained turbulence model. Higher-dimensional pseudoinvariant solutions with multiple time

scales, such as pseudoinvariant 2-tori, can be included in such a study by generalizing the

periodicity indicator function of Page & Kerswell (2020) to higher dimensions. We, therefore,

believe that the present study is a significant step towards extending deterministic approaches

to turbulence towards high-Re flows with multiple time scales.

The symmetry reduction method presented here is easily applicable to other flows

in rectangular domains, e.g. plane Couette or asymptotic boundary layer flows. While

continuous symmetry reduction is a necessary preprocessing step for POD or DMD in

these systems, we believe that nearly every dynamical study of such flows can benefit from

eliminating the redundant data due to the symmetries. Thus, we recommend our symmetry

reduction method for deterministic studies of fluid flows in channel geometries.

Supplementary data. Supplementary movies are available at [URL will be inserted by the publisher.]
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