
This is a repository copy of Deep graph reinforcement learning based intelligent traffic
routing control for software-defined wireless sensor networks.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/183658/

Version: Published Version

Article:

Huang, R., Guan, W., Zhai, G. et al. (2 more authors) (2022) Deep graph reinforcement
learning based intelligent traffic routing control for software-defined wireless sensor
networks. Applied Sciences, 12 (4). 1951.

https://doi.org/10.3390/app12041951

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

���������
�������

Citation: Huang, R.; Guan, W.; Zhai,

G.; He, J.; Chu, X. Deep Graph

Reinforcement Learning Based

Intelligent Traffic Routing Control for

Software-Defined Wireless Sensor

Networks. Appl. Sci. 2022, 12, 1951.

https://doi.org/10.3390/app12041951

Academic Editors: Alvaro Araujo

Pinto and Hacene Fouchal

Received: 24 December 2021

Accepted: 9 February 2022

Published: 13 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Deep Graph Reinforcement Learning Based Intelligent
Traffic Routing Control for Software-Defined Wireless
Sensor Networks

Ru Huang 1,* , Wenfan Guan 1, Guangtao Zhai 2 , Jianhua He 3 and Xiaoli Chu 4

1 School of Information Science & Engineering, East China University of Science and Technology,

Shanghai 200237, China; Y30190690@mail.ecust.edu.cn
2 Institute of Image Communication and Information Processing, Shanghai Jiao Tong University,

Shanghai 200240, China; zhaiguangtao@sjtu.edu.cn
3 School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK;

j.he@essex.ac.uk
4 Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield S1 3JD, UK;

x.chu@sheffield.ac.uk

* Correspondence: huangrabbit@ecust.edu.cn

Abstract: Software-defined wireless sensor networks (SDWSN), where the data and control planes

are decoupled, are more suited to handling big sensor data and effectively monitoring dynamic

environments and events. To overcome the limitations of using static routing tables under high traffic

intensity, such as network congestion, high packet loss rate, low throughput, etc., it is critical to

design intelligent traffic routing control for the SDWSNs. In this paper we propose a deep graph

reinforcement learning (DGRL) model-based intelligent traffic control scheme for SDWSNs, which

combines graph convolution with deterministic policy gradient. The model fits well for the task of

intelligent routing control for the SDWSN, as the process of data forwarding can be regarded as the

sampling of continuous action space and the traffic data has strong graph features. The intelligent

control policies are made by the SDWSN controller and implemented at the sensor nodes to optimize

the data forwarding process. Simulation experiments performed on the Omnet++ platform show

that, compared with the existing traffic routing algorithms for SDWSNs, the proposed intelligent

routing control method can effectively reduce packet transmission delay, increase packet delivery

ratio, and reduce the probability of network congestion.

Keywords: software-defined wireless sensor network; intelligent routing control; deep reinforcement

learning; graph convolutional network

1. Introduction

With major technological advances in communication, computing, and sensing, sensor
networks play important roles for modern society. Sensor nodes help in collecting data
from environment or devices, which can be used to monitor environments, develop and
implement intelligent control systems, such as smart cities, smart factories, and intelligent
surveillance systems. For example, there are about 70 million surveillance cameras in
the U.S.. While the fast-growing number of sensors provide the data needed for big data
analytics and intelligence, the massive data traffic also presents a big challenge for data
transport and networking, e.g., increased network congestion and poor network quality of
services. One of the promising networking approaches to tackle these challenges is software-
defined networking (SDN) [1]. In the SDN paradigm, the control plane is decoupled from
the data plane to provide flexible traffic control and simplify the network operation and
management. An investigation of the SDN technology for the Internet of Things (IoT) was
reported in [2,3].

Appl. Sci. 2022, 12, 1951. https://doi.org/10.3390/app12041951 https://www.mdpi.com/journal/applsci

Appl. Sci. 2022, 12, 1951 2 of 21

Intelligent traffic routing control for the SDWSN controllers is critical and very chal-
lenging as it needs to be effective, adaptive, and reliable. Several researches discuss the
routing control for SDWSN, such as SDN-WISE [4] and IT-SDN [5]. The performance of
SDN-WISE is evaluated by considering six nodes in a linear topology and only one node
generates a data packet at a certain time. The size of the network in IT-SDN is larger, and
every node transmits one packet per minute. The controllers of these approaches determine
the path from one node to another only using the Dijkstra algorithm. The Dijkstra algo-
rithm is effective when the topology becomes small and the network is under light traffic.
However, it will lead to network abnormalities such as slow response speed in the case of
heavy traffic [6]. For example, in Figure 1, the Dijkstra algorithm will select node 5 as a relay
node of multiple nodes. Node 5 needs to undertake the task of transmitting data packets
to the sink node for multiple nodes. Congestion will occur on node 5 in the case of heavy
traffic. The packet loss rate and delay of the network will then rise sharply. The routing
architecture proposed by Shanmugapriya and Shivakumar [7] combines context-aware
and policy-based routing modules. The controller chooses the finest next hop depending
on the context information such as CPU load, service information, and power levels. In
literature [8], the authors introduced reinforcement learning into SDWSN by designing a
quadruple reward function and combining Q-learning algorithm. In fact, the Q-learning
algorithm is suitable for discrete and low dimensional action space. When there are many
states, the Q table will be very large, and the search and storage will consume a lot of
memory.

Figure 1. Simplified data forwarding path for mesh-structured sensor networks.

In view of the research gaps, we propose in this paper a deep graph reinforcement
learning (DGRL) model-based intelligent traffic control scheme for SDWSNs, which com-
bines graph convolution and deterministic policy gradient. Reinforcement learning is a
category of machine learning technology in which agents learn and make decisions by
interacting with the environment according to the current state [9]. Compared with deep
learning, reinforcement learning has better real-time performance. In the general rein-
forcement learning (RL) algorithm, the quality of the action is determined by the reward
value after the policy is implemented. As time goes by, the agent will be able to make the
best reward decision based on experience. The model fits well for the task of intelligent
routing control for the SDWSN, as the process of data forwarding can be regarded as the
sampling of continuous action space and the traffic data has strong graph features. In
the application scenario of SDWSN data forwarding and traffic control we studied in this
paper, the controller learns the policy of data packets forwarding according to the current
operating conditions. Next, it makes corresponding routing policy, changes the routing
paths, and generates optimal forwarding policy through real-time iterations. The intelligent
control policies are then implemented at the sensor nodes to optimize the data forwarding
process. The main contributions of the paper can be summarized as follows:

Appl. Sci. 2022, 12, 1951 3 of 21

• We proposed a deep graph reinforcement learning (DGRL)-based framework for
intelligent traffic control in SDWSN systems. By learning and optimizing the data
forwarding policy, the SDN controller can provide adaptive and effective routing
control for dynamic traffic patterns and network topologies.

• We designed an actor–critic network architecture for the DRGL model, which takes
into account both graph convolutional networks and deterministic policy gradient.
Reward functions for the reinforcement learning and training method were developed
for the DRGL model.

• Compared with traditional routing protocols, the proposed DGRL traffic control mecha-
nism can effectively reduce the probability of network congestion, especially in the case of
high concurrent traffic intensity. Simulation experiments based on the Omnet++ platform
show that, compared with existing traffic routing algorithms for SDWSNs, the proposed in-
telligent routing control method can effectively reduce packet transmission delay, increase
PDR (Packet Delivery Ratio), and reduce the probability of network congestion.

The rest of the paper is organized as follows. Section 2 summarizes the related literature
in the research direction. Section 3 describes the system structure of the proposed deep
reinforcement learning model DGRL in detail. We also discuss the specific training method
and updating process when the simulation network is running. Section 4 shows detailed
experimental results and presents performance evaluation. Section 5 presents discussion and
challenges associated with DGRL. Section 6 concludes the paper and discusses future work.

2. Related Works

Several researches use traditional methods for intelligent routing control. Litera-
ture [10] introduces a node mobility prediction scheme to enhance the network throughput.
The controller predicts node mobility through machine learning and sends optimal route in-
formation to the data plane in preparation for upcoming link failures. In the literature [11],
a control mechanism based on context-driven is introduced in the scenario of SDN. It
contributes to improving the autonomous capability of the network. In the literature [12], a
hybrid network search path scheme is designed for intelligent traffic forwarding. Dijkstra
and K path forwarding algorithm are used under different network loads. Literature [13]
introduces a probabilistic-based QoS routing mechanism for SDN to reduce bandwidth
blocking. Bayes’ theorem and the Bayesian network model are used to determine the link
probability and select the route.

Artificial neural network extracts features data by imitating the way that neurons
processes the input information. It is the main means of intelligent information processing
nowadays. With the increase of GPU computing power, end-to-end models based on deep
learning have become state-of-the-art in the fields of computer vision, natural language
processing, and reinforcement learning [14].

The application of deep learning and reinforcement learning to network traffic control
and routing forwarding is a relatively new application scenario which has received a lot of
attention in recent years. Tang et al. [15] introduce the deep convolutional neural network
into the Wireless Mesh Network (WMN). The traffic pattern of sensor network is sent to
the deep neural network in the form of multi-channel tensor for training, and the optimal
routing strategy is obtained. In the literature [16], the author tries to replace the original
routing strategy by training multiple restricted Boltzmann machines. Correspondingly, this
can effectively reduce the data transmission delay and improve the overall transmission
efficiency. However, this method is only suitable for small sensor networks. Once the
number of nodes increases, the number of neural networks to be trained will also increase
exponentially. In our previous work [17], we study the combination of deep learning
and WSN with super nodes. Through link reliability prediction, the routing decision
algorithm is introduced to reduce the overall transmission delay and effectively improve
the network life. Literature [18] combines convolutional neural network with restricted
Boltzmann machines to calculate routing for software-defined routers in wireless mesh
sensor networks. Literature [19] uses the three-dimensional tensor formed by the time

Appl. Sci. 2022, 12, 1951 4 of 21

series traffic patterns of nodes in the network for training. It also explores the influence of
the deep model and the shallow model on the training effect. Deep learning is also used
in scenarios such as intelligent channel allocation and traffic prediction [18,20]. Due to
the characteristics of data transmission policy for software-defined sensor network, offline
algorithms such as deep learning cannot match the dynamic characteristics of network
data forwarding.

In [21,22], conversion of traditional routing rules into computational paradigms is in-
vestigated based on deep learning and reinforcement learning respectively. Younus et al. [8]
introduce reinforcement learning into the software-defined wireless sensor network. By
designing a quadruple reward function and combining with the Q-Learning algorithm [23],
it effectively improves the energy efficiency of the SDWSN and prolongs the lifetime of
network nodes. Some routing planning algorithms are proposed based on Q-Learning,
such as the QELAR model proposed by Hu et al. [24], the SDWSN model proposed
by Huang et al. [25], and the DACR routing algorithm proposed by Razzaque et al. [26].
These models are designed to improve the energy efficiency of nodes and the quality of
service (QoS) of WSN. Deterministic policy gradient (DPG) [27] applies to routing policy in
continuous action space, while Q-Learning applies to finite state space in specific scenarios.
Deep deterministic policy gradient (DDPG) [28] and deep Q network (DQN) [29] are the
products of the combination of deep learning and reinforcement learning, which effec-
tively improves the feature expression ability and decision-making ability of reinforcement
learning. Liu et al. [30] simultaneously introduced DQN and DDPG into routing policy,
which greatly improves the throughput of the network and made the network load more
balanced. Their experimental results show that DDPG has a better decision-making effect
than DQN in continuous state space. Yu et al. [31] generated a routing policy by using
DDPG to predict node connection weights. The network transmission delay is therefore
reduced. Abbasloo et al. [32] proposed the Orca model, which effectively solves the conges-
tion control requirements of the TCP protocol of the transport layer. By integrating the deep
policy gradient algorithm, they introduced the congestion window and the network data
forwarding pacing rate. Due to the black box characteristics of deep reinforcement learning,
Meng et al. [33] proposed the Metis framework. By introducing two different interpretation
methods based on decision trees and hypergraphs, the DNN policy is transformed into an
interpretable rule-based controller. To a certain extent, it demonstrates the feasibility of
using deep reinforcement learning for network traffic control.

We compare the literatures using reinforcement learning mentioned above and sum-
marize them in Table 1.

Table 1. Summary of reinforcement learning structures employed for routing control.

Reference Metrics
Experimental

Platform
Drawbacks

Chen et al. [22]
Reward, file

transmission time,
utilization rate

Simulations:Mininet Fixed traffic patterns

Younus et al. [8] Lifetime
Real-tested:

Raspberry Pi 3
Limited metrics

Hu et al. [24]
Energy consumption,

delivery rate
Simulations:NS2 Limited scenarios

Huang et al. [25] Energy consumption Simulations:NS3 Lack metrics

Razzaque et al. [26]
Delay, delivery ratio,
energy consumption,

overhead,lifetime
Simulations:NS2 Limited scenarios

Liu et al. [30]
Flow completion
time,throughput,

link load
Simulations:OMNet++ Very light traffic

Appl. Sci. 2022, 12, 1951 5 of 21

Table 1. Cont.

Reference Metrics
Experimental

Platform
Drawbacks

Yu et al. [31] Delay, throughput Simulations:OMNet++ Limited scenarios

Abbasloo et al. [32] Throughput Real-world scenarios
Limited metrics,
heavyweight to

deploy

Meng et al. [33] Criticality of path
Own testbed
Simulations

Lack comparisons
and metrics

3. System Design

In this section we describe the design of DGRL, a distributed traffic control algorithm
model based on deep graph reinforcement learning. The model DGRL uses an experience
pool for playback training. Each node in the model can optimize its own transmission path
through online training and make the best next-hop policy. It is a lightweight and real-time
routing control algorithm for data forwarding.

3.1. Problem Statement and Notations

A SDN-based WSN is represented by a topology adjacency matrix A. We assume
that the controller can receive timely updates of the network state S (e.g., channel delay,
loss rate, and buffer occupancy of nodes). The controller generates a policy µ for the
nodes to forward packets. The policy determines routing paths based on the network state:
at = µ(St|θµ). The reward for taking action at in state St can be represent by Rµ(at, St).
The performance of policy µ will be measured by function Q(µ). The problem is defined
as follows. Given A, S, find a policy to determine the path for forwarding packets. Our
goal is to find the optimal behavior policy µ, which is to maximize the function Q(µ):
µ = argmaxµQ(µ).

Table 2 summarizes the important notations used in DGRL.

Table 2. Terms and notations used in DGRL.

Symbol Description

N The number of nodes in the network
A The adjacency matrix of the network
X The feature matrix of all nodes
l One-hot coding of current node
d One-hot coding of target node
F The number of features of nodes
µ The output action decision vector of the Actor model
J The number of packets that received by its destination node

Tsj The time when packet j sent by its source node

Trj The time when packet j received by its destination node

Prni The number of packets received at node ni as a destination
Pdni The number of packets dropped at node ni

βi
The ratio of the number of packets forwarded by node ni to

the total number of packets forwarded in the network

β The average of βi

3.2. System Framework of DGRL

The system block diagram of the controller is shown in Figure 2. The Environment
represents the network to which the controller is connected. The controller captures the
current network status from the environment and uses the Online Policy in the Actor
neural network to make policy. The previous state, action made by the controller, reward
value of the environment feedback, and the latest observed SDN state form a four-tuple

Appl. Sci. 2022, 12, 1951 6 of 21

record (LastState, Action, Reward, NewState). The four-tuple is stored in the experience
pool for training multiple neural network models. One is the Online Q in Critic NN, and
the other is the decision network Online Policy in Actor NN. The Online Policy is used to
make decisions µ based on the state of the current environment: state→ action, while the
Online Q is used to fit the reward of the environment for the controller’s decision: (state,
action)→ reward. Both the Online Policy and the Online Q have exactly the same target
network as their structure, named Target Policy and Target Q, respectively. The purpose is
to use soft updates to assist the training process to achieve convergence and avoid large
gradient fluctuations during training.

In general, the Actor NN and Critic NN both contain two parts, namely online network
and target network. Online Policy outputs real-time actions for the Actor NN to use in
real time. The Target Policy is used to update the Critic NN. The output of Online Q and
Target Q are both the value of one state, while the input is different. Online Q takes the
actual actions taken by the Actor NN and the current state as input. Target Q uses the
output of Target policy. Details about the feedforward processes for the Actor NN and the
Critic NN can be found in Section 3.3.

Figure 2. System block diagram of SDN controller using reinforcement learning.

The structure diagram of the Actor neural network and Critic neural network is shown
in Figure 3. Actor neural network is at the top of the figure, and Critic neural network is at
the bottom of the figure. The blue rectangles in Figure 3 represent tensor transformation
operations, the golden circles represent neurons, and the gray circles represent tensors.
The Actor model contains four inputs, topological adjacency matrix A of the network,
current features X of all nodes, one-hot code l of the node where the data packet is currently
located, and one-hot code d of the destination node. The state of the current node and
the state of neighbors must be considered when transmitting data packets. Actor uses
graph convolutional neural network to extract and aggregate the state features of the
current node and all its neighbors. Since it is highly correlated with data forwarding, the
destination node is necessary to be considered after extracting the network state. Therefore,
we flatten the output of the GCN layers and concatenate the result with l, d. The vector
state represents the state features of the network environment, which is given by

state = [Flatten(GCN(A, GCN(A, X)) ‖ d ‖ l] (1)

where GCN represents the graph convolution operation, ‖means concatenate. The detailed
calculation of GCN will be given in the next subsection.

The output µ of the Actor model is generated by Hadamard product operation which
consists of the result of fully connected layers and an inner product operation. The activa-

Appl. Sci. 2022, 12, 1951 7 of 21

tion function of this layer is Softmax, and the output is the next hop policy µ of the current
data packet.

 ! "#×#

$! "#×%

1
0

&
0

0
0

&
1

' ! "#×() ! "#×(
0
1

&
0

* ! "#×(
+ ! "#×(

,-./2*3

 4' ! R#×(

5

* = +6s7

Figure 3. Model Structure of the Actor neural network and the Critic neural network.

The Critic model contains five inputs. In addition to the four input parameters for the
Actor model, it also includes the next hop action a obtained by the Actor model. The Critic
model also contains the GCN layers for extracting the characteristics of the controller and
its neighbor nodes, but the weights of the GCN layers are not trainable. Its weights are
completely copied from the corresponding GCN layers of the Actor model. The purpose
is to ensure that the state features of all nodes extracted by the two model are completely
consistent. The Critic model contains a connected layer. The outermost layer uses a single
neuron to fit the feedback value Q of the action policy adopted by the model.

3.3. Feedforward Processes for Actor and Critic Models

3.3.1. Feedforward Calculation of Actor Neural Network

First, we give the feedforward process of the graph convolutional layer. We use Ai,j

and X to denote the topological adjacency matrix of the sensor network and the state of
network observed by the controller, respectively. The number of nodes and the number
of features are denoted by N and F, respectively. Apparently, we have Ai,j ∈ RN×N and

X ∈ RN×F. We define an adjacency matrix with self-loop Âi,j = IN + Ai,j , where IN is the

unit matrix of order N. Thus, the degree matrix Di,j ∈ RN×N is

Di,j =

{

∑j Âi,j i f i = j

0 else
(2)

In the process of graph convolution calculation, nodes with too many neighbor nodes
will have a large gap with other nodes when aggregating features. To avoid this problem,

we define the standardized adjacency matrix as Ãi,j = D−1/2
i,j Ãi,jD

−1/2
i,j . After two graph

convolutional layers, the output tensor H is obtained by

H = ReLU(Ãi,j(ReLU(Ãi,jXW
(0)
g + b

(0)
g))W

(1)
g + b

(1)
g) (3)

where W
(0)
g ∈ RF×C, b

(0)
g ∈ RC×1, W

(1)
g ∈ RC×Z, b

(1)
g ∈ RZ×1 are the weights that need to

be trained in the Actor model. C and Z are the characteristic dimensions of the output after
graph convolution.

In addition to the adjacency matrix Ai,j and the state matrix X, the Actor model also

includes the position vector l ∈ RN×1 of the current node and the vector d ∈ RN×1 of the
target node. Both vectors are composed of one-hot codes, which represents the unique ID
of nodes.

The state vector of the current environment S can be obtained by

S = Concatenate(Flatten(H), l, d) (4)

Appl. Sci. 2022, 12, 1951 8 of 21

In (4), the dimension of S is N × Z + 2N.
The state vector S will be used as the input of the fully connected neural network in

the Actor model, and finally the corresponding action vector µ ∈ RN×1 is obtained at the
output of the Actor. This vector determines the next hop after the current node receives the
data packet. Since the network topology is not fully connected in most cases, it is necessary
to use the mask vector to filter the action vector output by the Actor fully connected layer.
The vector mask represents the adjacency information of the node where the packet is
located. It can be calculated by

mask = AT
i,jl (5)

where AT
i,j is the transpose of the adjacency matrix. Specifically, the purpose of setting

the mask vector is to limit the decision space and avoid forwarding data packets to non-
neighbor nodes.

The final output of the Actor model can be obtained by

µ = so f tmax(mask
⊙

(WaS + ba)) (6)

where
⊙

represents the Hadamard product, and Wa,ba are the weights of the fully con-
nected layer.

3.3.2. Feedforward Calculation of Critic Neural Network

It has been mentioned in the last section that the weights of the GCN layers in the Critic
model are completely replicated from the Actor network. The feedforward calculation
process and results of the GCN layers are completely consistent with that in the Actor
model, and this section will not repeat it again. After obtaining the output µ of the Actor
model, we define a = µ + Nt, where Nt is a random disturbance term. Next, we can obtain
the output y of the Critic model by the following equation:

y = Linear(W
(1)
C ReLU(W

(0)
c [S ‖ a] + b

(0)
c) + b

(1)
c)) (7)

where ‖ represents a concatenate operation, S is the tensor output by GCN, W
(i)
c , b

(i)
c are

the weights of the i-th fully connected layer.

3.4. Design of DGRL Training Method, Controller Node Features and Reward Function

3.4.1. The Training Method of DGRL

The model proposed in this paper is based on the deterministic policy gradient and
this framework is based on Q-value. The Critic neural network of DGRL is used for Q-Value
fitting. The quality of the policy can be expressed by the expected value according to the
following equation:

Q(St, at) = E

[

∑
K

γkR(St+k, at+k)

]

(8)

where Rt = R(St, at) is the feedback value of the environment, and γ is the time series
decrement factor.

Taking t = 2 as an example, the iterative formula of Q(S2, a2) can be obtained by
approximating Equation (8) as follows:

Q(S2, a2) = E
[

R2 + γR3 + · · ·+ γn−2Rn

]

= E[R2] + E
[

γR3 + · · ·+ γn−2Rn

]

≈ R2 + E
[

γR3 + · · ·+ γn−2Rn

]

≈ R2 + γQ(S3, a3)

(9)

Appl. Sci. 2022, 12, 1951 9 of 21

Inductive Equation (9) can get the iterative formula as shown in (10):

Q(St, at) = E[Rt + γQ(St+1, at+1)]

≈ Rt + γQ(St+1, at+1)
(10)

Define yt = Rt + γQ∗(St+1, a∗t+1), where a∗t+1 is the output of the Target Policy and
Q∗(St+1, a∗t+1) is the output of the Target Q. Then the loss function of the Online Q can be
defined as follows:

L(θQ) =
1

N ∑
t

(Q(St, at)− yt)
2

=
1

N ∑
t

(Q(St, at)− (Rt + γQ∗(St+1, at+1)))
2

(11)

where θQ is all the weights that need to be trained in the Online Q model, Q(St, at) is the
output of the Online Q model, and n is the batch size. At this point, replay can be done by
sampling the four tuples (Last State, Action, Reward, New State) in the experience pool
of DGRL model. The error back-propagation algorithm can be used to train the Online Q
network and update all its internal weights θQ.

All weights of the Online Policy are represented by θµ. Its update is slightly different
from the Critic network because Online Policy does not have explicit label data. However,
through the deterministic gradient policy, it can be known that a good policy will get a
larger Q value. Given the gradient of the loss function for Critic network and the output
policy µ(St) of the Online Policy, the weight gradient update of the Q value can be obtained
as follows:

∇θµ L =
1

n ∑
t

∇aQ(St, at | θQ)∇θµ µ(St | θµ) (12)

Where at = µ(St | θµ) + Nt, Nt is an Ornstein–Uhlenbeck stochastic process with 0 mean
characteristics [34]. It enables the agent to explore beyond the learned policy, and avoids
the network from falling into a local optimal policy.

The initial weights of the Target Q model and the Target Policy model θQ∗ , θµ∗ are
completely copied from the respective corresponding models: θQ∗ ← θQ; θµ∗ ← θµ. After
the weights of the Critic and Actor models have been updated through training, the Target
model uses a soft update to update the weights, as shown in Equation (13). A soft update
is used to assist the training process to reach the convergence state.

θQ∗ = τθQ + (1− τ)θQ∗

θµ∗ = τθµ + (1− τ)θµ∗
(13)

3.4.2. Design of Node Characteristics and Reward Function

In the process of deep reinforcement learning, the controller needs to observe the state
of the system to obtain the feedback after executing the forwarding policy. In this paper,
the state matrix Xt ∈ RN×F is composed of four features of all nodes, which are: number of
connections per node, average transmission delay of the channel (link quality), packet loss
rate of nodes, and occupancy of node buffer.

The designed objective function can guide the controller to forward the data packet
towards a high benefit goal. High benefit is defined as: shorter forwarding time, shorter
forwarding path, lower buffer occupation. In this paper, the reward function is as follows:

R(t) =
1

delaypre × distance× bu f f er + 1
(14)

where delaypre represents the time taken by the data packet from the previous node to the
current node and distance ∈ [0, 1] represents the relative distance of the data packet to its

Appl. Sci. 2022, 12, 1951 10 of 21

destination node. The relative distance is calculated by the ratio of the total hops of the
shortest path from the packet to its destination to the total number of nodes (in a weighted
network, the sum of the shortest path weights and the weights of all edges is calculated).
bu f f er ∈ (0, 1] represents the occupancy of the node buffer after receiving the data packet.
The buffer of each node stores the data packets to be sent, and the occupation of buffer
determines the packet loss and congestion of the network. The reason for using these three
items is to avoid the larger order of magnitude factor from occupying a dominant position
in the optimization process. Therefore, the three objectives will be optimized at the same
time. The design of R(t) ensures that R(t) ∈ [0, 1], which is equivalent to a standardized
operation and beneficial to the training of deep neural network. It is important to note that
when the data packet has reached the destination node, distance = 0, R(t) = 1; when the
data packet is discarded because the buffer queue is full or TTL (Time to Live) arrives, set
R(t) = 0.

3.5. Traffic Control Based on Deep Graph Reinforcement Learning

The traffic control model based on deep graph reinforcement learning includes two
phases. One is the data collection stage when the simulation network is running, and the
other is the training stage. When the network is running, each node following the policy
forwarded by the controller determines the next hop according to the current state of the
WSN. After the forwarding task is performed, the next hop node will integrate the real-time
state and reward value into a four-tuple record (LastState, Action, Reward, NewState),
and store it in the experience pool for training. For a detailed process description, see
Algorithms 1 and 2.

Algorithm 1 Running phase

Input: batch size,θµ∗

Load the weights: θµ∗ for target Actor model

1: Generating data packet p, using θµ∗ and stochastic OU process to determine its
next hop a, and recording it together with the current network state. p :=
{destination, location, state, a, data}

2: while Length(Experience Replay) < batch size do
3: if packet p received then
4: if p has arrived at its destination then
5: done=True
6: else
7: done=False
8: end if
9: observe the network to get the new state, calculate the reward r for p→ a and

append experience replay list with {p→ state, p→ a, r, newstate, done}
10: p→ state := newstate; p→ location := location
11: if not done then
12: use θµ∗ to determine its next hop a
13: p→ a := a
14: send data packet p
15: end if
16: end if
17: end while

It should be noted in the Running Phase that θµ∗ is obtained by the shortest path
method if the deep reinforcement learning neural network model has not yet started
training. After collecting enough data, the Training Phase will start. The weights of all
the deep graph neural networks in the model will be updated by experience playback and
gradient descent. After the training, each node will use the updated weights to choose a
better next hop for the packets in the Running Phase.

Appl. Sci. 2022, 12, 1951 11 of 21

Algorithm 2 Training phase

Input: Adjacency matrix A of the SDN, Experience Replay, τ
1: if Training phase is running for the 1st time then
2: randomly initialize Actor model θµ and Critic model θQ, with target Critic model

θQ∗ := θQ and target Actor model θµ∗ := θµ

3: else
4: load weights θQ∗ and θµ∗ from the disk, with θQ :=θQ∗ and θµ := θµ∗

5: end if
6: for each {state, a, r, newstate} in Experience Replay do

7: a′ = θµ∗(state)
8: y = r + γθQ∗(newstate, a′)
9: L(θQ) = (y− θQ(state, a))2

10: Use L(θQ) to update the weights of θQ using gradient descent
11: Use −∇aL(θQ)∇θµ µ(state|θµ)to update the weights of θµ

12: update target model θQ∗ and θµ∗ :

θQ∗ := τθQ + (1− τ)θQ∗

θµ∗ := τθµ + (1− τ)θµ∗

13: end for
14: save weights θQ∗ , θµ∗ on the disk respectively.

The weights of Policy network θµ updated in the Training Phase will be stored and
used for the packet forwarding in the Running Phase. At the same time, weights of Target
Q model θQ∗ and weights of Target Policy model θµ∗ will be stored and used as the initial
value for the next training phase.

After many iterations of data collection and training, the controller will become smart
enough to make the best next hop policy for all packets passing through the node at
the packet-level. The policy considers the transmission delay, buffer occupancy, and the
distance from the destination node at the same time. The data forwarding and traffic
control policy based on deep graph reinforcement learning mentioned in this paper can be
trained online by combining two phases, and the Online Policy deep neural network used
for decision-making can be updated in real time.

4. Evaluation

In this section, we focus on evaluating our approach’s performance in different traffic
intensity and comparing it with some related algorithms. We first describe our simulation
parameters, simulation environment, and evaluation metrics. Then, we train the model
and evaluate its performance based on a series of experiments.

4.1. Simulation Environment

4.1.1. Operation Platform

The simulation part is completed by OMNET++4.6.0, and the deep learning model
of DGRL is built by TENSORFLOW 1.14.0 with the following experimental environ-
ment:Intel(R) Core(TM) i5-8300H, 16G RAM, NVIDIA GeForce GTX 2060.

4.1.2. Parameter Setting

Table 3 shows the parameter settings of network. We perform an evaluation of some
hyperparameters of the DGRL implentation to optimize the performance of the agent,
specifically for our problem environment. Particulary, we consider the following three
hyperparameters: the ratio of soft replacement TAU, learning rate for the Actor model a_lr
and learning rate for critic model c_lr. Figure 4 presents the results of this evaluation. The
settings for these three hyperparameters and some others can be found in Table 4. Table 5
gives the details of the Actor model and the Critic model.

Appl. Sci. 2022, 12, 1951 12 of 21

Table 3. Parameters of WSN.

Parameters Setting

Number of nodes 14
Channel rate 8 kbps

Average channel delay 58.0014521 ms
Average packet length 1026.28 bit

Buffer length 24, 28, 32, 36, 40, 44, 48

Table 4. Hyperparamaters of reinforcement learning.

Parameters Setting

Soft replacement TAU = 0.1
Reward discount gamma = 0.95

Learning rate for the Actor model a_lr = 0.0001
Learning rate for the Critic model c_lr = 0.001

Initial random exploration rate Initial_epsilon = 1.0
Final random exploration rate Final_epsilin = 0.01

Table 5. Details of model struct.

Model Name Layer Name
Parameter Details

Hidden Units Activation Trainable Weights

Actor model

GCN1 256 ReLU

10,774
GCN2 8 ReLU

Denses1 64 ReLU
Denses2 N Linear
Output 1 Softmax

Critic model

GCN1 256 ReLU

10,113
GCN2 8 ReLU

Dense layer 64 ReLU
Output 1 Linear

* N is the number of nodes in WSN.

0 50 100 150 200

Episode

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

R
e

w
a

rd

(b)

a_lr=0.01

a_lr=0.001

a_lr=0.0001

a_lr=0.00001

0 50 100 150 200

Episode

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

R
e

w
a

rd

(c)

c_lr=0.01

c_lr=0.001

c_lr=0.0001

c_lr=0.00001

0 50 100 150 200

Episode

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

R
e

w
a

rd

(a)

TAU=0.01

TAU=0.05

TAU=0.1

TAU=0.5

Figure 4. Hyperparameter evaluation in DGRL. (a) TAU. (b) a_lr. (c) c_lr.

4.1.3. Protocol Architecture

The protocol architecture of DGRL is shown in Figure 5. Network logics are dictated
by controller and wise-visor. The adaption layer between the wise-visor and nodes is
responsible for formatting messages received from nodes in such a way that they can be
handled by the wise-visor, and vice versa. On top of the mac layer, the forwarding (FWD)
layer handles incoming packets as specified in the flow table. The FWD layer updates
the flow table according to the configurations sent by the control plane. The In-Network

Appl. Sci. 2022, 12, 1951 13 of 21

Packet Processing (INPP) layer runs on top of the forwarding layer and it is responsible for
operations like data aggregation or other in-network processing. Topology discovery (TD)
layer uses beacon packets to help nodes discover their interconnected nodes. This part of
the protocol structure is set according to the literature [4].

Figure 5. Protocol architecture of DGRL.

4.2. Compared Algorithm Models

1. Open Shortest Path First (OSPF): According to the directed graph of the network
topology, the algorithm generates a shortest path tree as a static routing table. Nodes
will forward packets based on the flow table generated by this static routing table.

2. Deep Reinforcement Learning-Optimized Routing (DRL-OR) [35]: The model contains
two fully connected layers and uses the traffic features of nodes to represent the
network state. The dimension of state is 182. Its Actor and Critical models are
two-layer perceptron structures, and the dimensions of perceptron are [91,42].

3. Deep Reinforcement Learning-Full Connect (DGRL-FC): All GCN layers of the pro-
posed DGRL model are removed, and only the perceptron layers of each model are
retained. The other neural network parameters are completely consistent with DGRL.

4.3. Performance Evaluation Metrics

In the process of experiment, the related metrics are obtained by OMNeT++ including
packet loss rate, average delay, and total number of packets forwarded. The notations
involved in the following calculation formulas are explained in Table 1.

4.3.1. Average Network Delay

Delay refers to the average transmission time of all packets reaching the destina-
tion nodes.

Delay =
∑

J−1
j=0

(

Trj − Tsj

)

∑
N−1
i=0 Prni

(15)

4.3.2. PDR

PDR represents the ratio between packets received by the destination nodes and
packets sent by the source nodes. This metric reflects the adaptability of solution under
different traffic intensity.

PDR =
∑

N−1
i=0 Prni

∑
N−1
i=0 (Prni

+ Pdni
)

(16)

Appl. Sci. 2022, 12, 1951 14 of 21

4.3.3. Dispersion of Routing Load

Dispersion of routing load indicates the evenness of load distribution in a network. A
large dispersion indicates that the load in the network is not balanced. A relatively single
and fixed route will produce this result, which will lead to congestion at nodes and even
network crash.

Dispersion =
∑

N
i=0

(

βi − β
)2

N
(17)

4.4. Training DGRL

For training purpose, we built six traffic intensity models ranging from 20% to 125%.
The traffic intensity is reflected as the time interval between packet generation. Figure 6
shows the traffic model when the traffic intensity is 125%. Figure 6a shows the time interval
distribution of data packets, and Figure 6b shows the number of data packets sent.

Figure 6. Traffic model under 125% traffic intensity. (a) Time interval of packet transmission.

(b) Number of data packets sent.

The shortest path algorithm Dijkstra is used to generate the initial packet transmission
path, as well as the relevant environment data, including channel delay, packet loss rate of
nodes, the occupancy of buffers, and the generated rewards value.

After the pre-training, the model is used to predict the transmission direction in the
simulation environment. We will collect the environment data and the corresponding
reward value and store them in the experience pool. The weights of all the neural networks
in the model will be updated by experience playback and gradient descent. The loop will
be repeated 200 times, each of which comprises 100 steps.

Figure 7 shows the loss and reward during the training process. The loss curve shows
a downward trend on the whole. However, the loss often increases throughout the training.
This can be explained by the difference between reinforcement learning and supervised
learning based on fixed data sets. The training data of reinforcement learning come from the
experience pool, and the data in the experience pool are collected from the environment, so
they are in constant change. The loss curve fluctuates when encountering a new state space
that leads to better reward. In the beginning, the reward is lower because the controller
does not have enough knowledge about the network and explores the environment. After
some training episodes, the reward increases rapidly. It reflects that routing policies made
by the controller are able to guide packets forwarding to obtain better returns.

Appl. Sci. 2022, 12, 1951 15 of 21

Figure 7. Total loss and reward trend on model training process (a) loss. (b) reward.

4.5. Evaluation Results

Figure 8 reflects the performance of DGRL and the three comparison algorithms under
different traffic intensity. The numbers on the x-axis are the number of traffic intensity,
while the numbers on the y-axis are the number of PDR, transmission delay, and load
dispersion, respectively.

Figure 8a describes the packet delivery rate. For limited buffer, the increase of traffic
intensity is prone to packet loss, which reduces the delivery rate and makes the network
difficult to operate properly. Reinforcement learning helps DGRL select better routes and
increase packet arrival through environmental data. As you can see from Figure 8a, DGRL
has a better delivery rate than other algorithms. Under the traffic intensity 125%, the PDR
of DGRL is 5.1% higher than OSPF on average. The performance of DRL-OR is close to
OSPF. From traffic intensity 75%, the PDR of DGRL-FC is less than 50%, while we notice
that the PDR of others can be maintained above 50%.

20 40 60 80 100 120 140

Traffic Intensity(%)

30

40

50

60

70

80

90

100

P
D

R
(%

)

(a)

DGRL

DGRL-FC

DRL-OR

OSPF

20 40 60 80 100 120 140

Traffic Intensity(%)

6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

7.8

D
e
la

y
(s

)

(b)

DGRL

DGRL-FC

DRL-OR

OSPF

20 40 60 80 100 120 140

Traffic Intensity(%)

0.04

0.045

0.05

0.055

0.06

0.065

D
is

p
e
rs

io
n

(c)

DGRL

DGRL-FC

DRL-OR

OSPF

Figure 8. Comparisons between DGRL and other algorithms when traffic intensity changes from 20%

to 125%. (a) PDR. (b) Delay. (c) Dispersion.

Figure 8b shows the average transmission delay for four different algorithms. Each
port of each node has a buffer of length 32. If the channel is free, the packets will be sent
out immediately. Otherwise, they will be stored in the buffer and queue for being sent
out. In this experiment, the transmission delay of data packets mainly comes from the
time they queue for forwarding in the node buffer. Under low traffic intensity, the average
delay of each algorithm is similar. That is because the buffers are still free, and the waiting
time required for forwarding is also short. When the traffic intensity increases, the buffer
occupancy rises and even the buffers are filled up. In this case, more time will be spent
through this node and even packet loss will occur. OSPF considers only the shortest path,
so the forwarding path is fixed. Based on the smallest number of hops, the forwarding is
efficient at low traffic intensity. Under the traffic intensity 20%, it has the best performance

Appl. Sci. 2022, 12, 1951 16 of 21

compared with other algorithms. From traffic intensity 100%, its delay turns out to be
the worst. DGRL-FC is similar to DGRL in that it considers the features of nodes, but it
lacks consideration of the relationship between nodes and its neighbors. In the case of high
traffic intensity, the optimization effect is poor. DRL-OR takes the traffic characteristics into
consideration, alleviates congestion, and reduces delay to a certain extent. However, its
delay is higher than others when the traffic intensity is low. Different from other algorithms,
DGRL considers multiple factors in routing decisions, including hops and buffer occupancy.
It is able to adjust the forwarding route flexibly. Under low traffic intensity, it forwards
packets according to the hops. When the traffic intensity increases, buffer occupancy will
play a more critical role in routing decisions.

Figure 8c shows the dispersion of network load. In this experiment, the source and
destination nodes of data packets are both random. Therefore, the difference of network load
dispersion comes from routing. It is apparent that the network using DGRL has the smallest
dispersion, while the network using OSPF has the largest dispersion. For example, under the
traffic intensity 125%, the dispersion of load in network using DGRL is 0.051, whereas those of
OSPF, DRL-OC, and DGRL-FC are 0.062, 0.060, and 0.058, respectively. These results confirm
DGRL’s effectiveness in adjusting network load. The reasons behind lower dispersion are
as follows. DGRL is an algorithm with memory. It will learn from the experience. Suppose
that in a state s, the action a forwards the packet to a next hop whose buffer occupancy is
high. The reward of this action will be low. When it is in the state s again, it remembers
that a′ contributes to a higher reward than a. Therefore, it avoids forwarding packets to high
occupancy nodes. In the model using OSPF, some nodes are on the shortest path of multiple
source-destination nodes pairs. These nodes will bear more forwarding than edge nodes. The
situation is more serious with the increase of traffic intensity.

In our experiments, the new received packets will be dropped when the buffer is full.
PDR is the most direct index to reflect packet loss. We designed a new experiment to verify
the relationship between PDR and buffer size. The traffic intensity is fixed at 50% and the
buffer size ranges from 24 to 48. Figure 9 shows the PDR curves of each model. As we can
see from the figure, buffer size has little effect on DGRL. When the buffer size is 32, as set in
the previous experiments, the PDR of DGRL is 77.9%. When the buffer size is reduced to 28
and 24, the PDR decreased by 0.7% and 1.4%, respectively. When the buffer size increases
to 48, the increase of PDR is little. This can be understood as DGRL has a better utilization
rate for the network buffers. A buffer of size 32 already meets the requirements of DGRL.
The PDR of the other three models are closely related to buffer size. As buffer size decreases
from 32 to 24, the PDR of OSPF decreases by 4.2%, DRL-OR by 4.4%, and DRL-FC by 7.1%.
Increasing buffer size to 48 gives a improvement, ranging from 3.9% to 11% for the three
models. It is obviously due to the increase in buffer size, which reduces packet loss caused
by full buffer.

20 24 28 32 36 40 44 48

Buffer Size

45

50

55

60

65

70

75

80

85

P
D

R
(%

)

DGRL

DGRL-FC

DRL-OR

OSPF

Figure 9. Comparison between DGRL and other algorithms when buffer size changes from 24 to 48.

Appl. Sci. 2022, 12, 1951 17 of 21

Figure 10 shows the experiment about reward, which aims to reflect the influence of
different parameters in the reward on the training model. In this experiment, the traffic
intensity is fixed at 50%. In addition to the trained DGRL model, there are three other
variants of DGRL. The reward function of DGRL-I considers delaypre and bu f f er. DGRL-
II considers bu f f er and hop. DGRL-III considers delaypre and hop. It is clear that the
performance of DGRL is better than the other three models. Figure 10a shows that the
missing parameter bu f f er has the greatest impact on the PDR. It results in a 23.6% drop
in PDR than DGRL. Compared with DGRL, DGRL-I and DGRL-II also have a similar
decrease in PDR. Figure 10b shows that the loss of all the three parameters each lead to
an increase in mean transmission delay. Figure 10c shows that the impact of bu f f er and
delaypre on Dispersion is greater than that of hop. In conclusion, all the three parameters
are indispensable to reward.

(a)

50

55

60

65

70

75

80

85

90

P
D

R
(%

)

DGRL

(b)

6

6.5

7

7.5

8

8.5

D
e
la

y
(s

)
DGRL

(c)

0.04

0.042

0.044

0.046

0.048

0.05

0.052

0.054

0.056

0.058

0.06

D
is

p
e
rs

io
n

DGRL

Figure 10. Comparison between DGRL and its variants under traffic intensity 50%. (a) PDR. (b) Delay.

(c) Dispersion.

5. Discussion

DGRL significantly improves the performance of WSN. However, there are also some
challenges that need to be addressed further.

The computational complexity of DGRL is mainly due to the computation of graph
convolution and reinforcement learning. The structure of DGRL’s neurons network includes
four GCN layers and three full connected layers. The complexity of matrix operations to
get the features of the next layer can be regarded as the computational complexity of neural
networks. The complexity of a single-layer neural network can be expressed as O(|V|FF′),
where |V| represents the number of nodes in the network topology, F represents the feature
dimension of the node, and F′ represents the embedding dimension. Meanwhile, the
computational complexity of the Dijkstra algorithm used in OSPF is only O(|V|2).

In order to avoid congestion, DGRL will choose a path in which there are more hops
but lower buffer occupancy. This policy will lead to more times of packet forwarding,
resulting in an increase in the overall network load. However, the load pressure of nodes in
the central position and nodes with relatively large degree can be relieved. As shown in the
Figure 11a, under the same traffic intensity 50%, the total times of forwarding of DGRL are
higher than OSPF. We selected several key nodes to count the number of packets forwarded
by them, as shown in Figure 11b. It can be seen that compared with other algorithms, the
key nodes in DGRL forward the least number of packets. Considering that in wireless
sensor networks, the main energy consumption of nodes comes from the sending and
receiving operations, reducing the forwarding times of key nodes in the network can
prolong the network life cycle.

Appl. Sci. 2022, 12, 1951 18 of 21

(a)
2500

2600

2700

2800

2900

3000

T
o
ta

l
ti
m

e
s
 o

f
fo

rw
a
rd

in
g

DGRL

OSPF

DGRL-FC

DRL-OR

(b)

1 5 6 8

Node ID

300

350

400

450

500

550

T
im

e
s
 o

f
fo

rw
a
rd

in
g

DGRL

OSPF

DGRL-FC

DRL-OR

Figure 11. Comparison between DGRL and other algorithms in times of packet forwarding under

traffic intensity 50%. (a) The total times of packet forwarding in the network. (b) The times of packet

forwarding on key nodes.

To verify the generalization of our proposed model, we perform training and eval-
uation on two other network topologies. Figure 12 shows a visualization of our original
network topology and the other network topologies. The number of nodes increases to 17
and 24, respectively. Figure 13 shows the trends of reward value during the two training
processes. As can be seen, rewards experience a rapid increase and gradually tend to a
stable state. Table 6 compares the performance of DGRL and OSPF under fixed traffic
intensity 50%. It can be concluded from the analysis that the proposed algorithm achieves
great improvement compared with OSPF in various metrics.

Table 6. Performance comparison between DGRL and OSPF under traffic intensisty 50%.

Topology Method PDR(%) Delay (s) Dispersion

GBN topology
DGRL 73.11 6.97 0.049
OSPF 66.92 7.18 0.058

GEANT2 topology
DGRL 68.65 7.26 0.051
OSPF 62.82 7.41 0.062

Figure 12. Test network topologies. (a) NSFNet topology. (b) GBN topology. (c) GEANT2 topology.

Appl. Sci. 2022, 12, 1951 19 of 21

Figure 13. Performance of the learning agent on various network topologies in terms of average

reward, which show the convergence of DGRL. (a) GBN topology. (b) GEANT2 topology.

6. Conclusions

In the framework of software-defined sensor networks, we propose a network routing
control method (DGRL) based on graph convolution network and DDPG. The new solution
extracts the characteristics of sensor networks through graph convolution network, and
controls packets forwarding on a control plane through reinforcement learning. It improves
the data delivery rate and reduces delay and the forwarding pressure caused by multi-
hop transmission of data packets in the network. In the simulation experiment, DGRL is
compared with DGRL-FC, DRL-OR, and OSPF. The results show that the DGRL method
can effectively optimize the related metrics of network and make full use of the network
resources. In future studies we will improve the training of the deep learning DGRL model
and investigate the performance of DGRL with more network scenarios.

Author Contributions: Conceptualization, R.H. and W.G.; methodology, R.H. and W.G.; software,

R.H. and W.G.; validation, R.H. and W.G.; formal analysis, R.H. and W.G.; investigation, R.H. and

W.G.; resources, R.H. and W.G.; data curation, R.H. and W.G.; writing—original draft preparation,

R.H.; writing—review and editing, R.H., G.Z., J.H. and X.C.; visualization, R.H. and W.G.; supervision,

G.Z., J.H. and X.C. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by National Natural Science Foundation of China under

Grant 61673178 and 61922063; in part by Natural Science Foundation of Shanghai under Grant

20ZR1413800; in part by European Union’s Horizon 2020 research and innovation programme under

the Marie Skodowska-Curie grant agreement No 824019 and 101022280.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the anonymous reviewers for their valuable

comments and suggestions that help improve the quality of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kibria, M.G.; Nguyen, K.; Villardi, G.P.; Zhao, O.; Ishizu, K.; Kojima, F. Big data analytics, machine learning, and artificial

intelligence in next-generation wireless networks. IEEE Access 2018, 6, 32328–332338. [CrossRef]

2. Qin, Z.; Denker, G.; Giannelli, C.; Bellavista, P.; Venkatasubramanian, N. A software defined networking architecture for the

internet-of-things. In Proceedings of the 2014 IEEE network operations and management symposium (NOMS), Krakow, Poland,

5–9 May 2014; pp. 1–9.

3. Kalkan, K.; Zeadally, S. Securing internet of things with software defined networking. IEEE Commun. Mag. 2017, 56, 186–192.

[CrossRef]

Appl. Sci. 2022, 12, 1951 20 of 21

4. Galluccio, L.; Milardo, S.; Morabito, G.; Palazzo, S. Sdn-wise: Design, prototyping and experimentation of a stateful sdn solution

for wireless sensor networks. In Proceedings of the 2015 IEEE Conference on Computer Communications (INFOCOM), Hong

Kong, China, 26 April–1 May 2015; pp. 513–521.

5. Margi, C.B.; Alves, R.C.; Segura, G.A.N.; Oliveira, D.A. Software-defined wireless sensor networks approach: Southbound

protocol and its performance evaluation. Open J. Internet Things (OJIOT) 2018, 4, 99–108.

6. Guo, Y.; Wang, Z.; Yin, X.; Shi, X.; Wu, J. Traffic engineering in sdn/ospf hybrid network. In Proceedings of the 2014 IEEE 22nd

International Conference on Network Protocols, Raleigh, NC, USA, 21–24 October 2014; pp. 563–568.

7. Shanmugapriya, S.; Shivakumar, M. Context based route model for policy based routing in wsn using sdn approach. In

Proceedings of the BGSIT National Conference on Emerging Trends in Electronics and Communication, Karnataka, India, 5

May 2015.

8. Younus, M.U.; Khan, M.K.; Anjum, M.R.; Afridi, S.; Arain, Z.A.; Jamali, A.A. Optimizing the lifetime of software defined wireless

sensor network via reinforcement learning. IEEE Access 2020, 9, 259–272. [CrossRef]

9. Mousavi, S.S.; Schukat, M.; Howley, E. Deep reinforcement learning: An overview. In Proceedings of the SAI Intelligent Systems

Conference, London, UK, 21–22 September 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 426–440.

10. Bao, K.; Matyjas, J.D.; Hu, F.; Kumar, S. Intelligent software-defined mesh networks with link-failure adaptive traffic balancing.

IEEE Trans. Cogn. Commun. Netw. 2018, 4, 266–276. [CrossRef]

11. Huang, R.; Chu, X.; Zhang, J.; Hu, Y.H. Energy-efficient monitoring in software defined wireless sensor networks using

reinforcement learning: A prototype. Int. J. Distrib. Sens. Netw. 2015, 11, 360428. [CrossRef]

12. Bi, Y.; Han, G.; Lin, C.; Peng, Y.; Pu, H.; Jia, Y. Intelligent quality of service aware traffic forwarding for software-defined

networking/open shortest path first hybrid industrial internet. IEEE Trans. Ind. Inform. 2019, 16, 1395–1405. [CrossRef]

13. Al-Jawad, A.; Trestian, R.; Shah, P.; Gemikonakli, O. Baprobsdn: A probabilistic-based qos routing mechanism for software

defined networks. In Proceedings of the 2015 1st IEEE Conference on Network Softwarization (NetSoft), London, UK, 13–17

April 2015; pp. 1–5.

14. Shrestha, A.; Mahmood, A. Review of deep learning algorithms and architectures. IEEE Access 2019, 7, 53040–53065. [CrossRef]

15. Tang, F.; Mao, B.; Fadlullah, Z.M.; Kato, N.; Akashi, O.; Inoue, T.; Mizutani, K. On removing routing protocol from future wireless

networks: A real-time deep learning approach for intelligent traffic control. IEEE Wirel. Commun. 2017, 25, 154–160. [CrossRef]

16. Mao, B.; Fadlullah, Z.M.; Tang, F.; Kato, N.; Akashi, O.; Inoue, T.; Mizutani, K. Routing or computing? the paradigm shift towards

intelligent computer network packet transmission based on deep learning. IEEE Trans. Comput. 2017, 66, 1946–1960. [CrossRef]

17. Huang, R.; Ma, L.; Zhai, G.; He, J.; Chu, X.; Yan, H. Resilient routing mechanism for wireless sensor networks with deep learning

link reliability prediction. IEEE Access 2020, 8, 64857–64872. [CrossRef]

18. Tang, F.; Fadlullah, Z.M.; Mao, B.; Kato, N. An intelligent traffic load prediction-based adaptive channel assignment algorithm in

sdn-iot: A deep learning approach. IEEE Internet Things J. 2018, 5, 5141–5154. [CrossRef]

19. Tang, F.; Mao, B.; Fadlullah, Z.M.; Liu, J.; Kato, N. St-delta: A novel spatial-temporal value network aided deep learning based

intelligent network traffic control system. IEEE Trans. Sustain. Comput. 2019, 5, 568–580. [CrossRef]

20. Sanagavarapu, S.; Sridhar, S. Sdpredictnet-a topology based sdn neural routing framework with traffic prediction analysis. In

Proceedings of the 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV,

USA, 27–30 January 2021; pp. 0264–0272.

21. Mao, B.; Tang, F.; Fadlullah, Z.M.; Kato, N.; Akashi, O.; Inoue, T.; Mizutani, K. A novel non-supervised deep-learning-based

network traffic control method for software defined wireless networks. IEEE Wirel. Commun. 2018, 25, 74–81. [CrossRef]

22. Chen, Y.-R.; Rezapour, A.; Tzeng, W.-G.; Tsai, S.-C. Rl-routing: An sdn routing algorithm based on deep reinforcement learning.

IEEE Trans. Netw. Sci. Eng. 2020, 7, 3185–3199. [CrossRef]

23. Watkins, C.J.; Dayan, P. Q-learning. Mach. Learn. 1992, 8, 279–292. [CrossRef]

24. Hu, T.; Fei, Y. Qelar: A machine-learning-based adaptive routing protocol for energy-efficient and lifetime-extended underwater

sensor networks. IEEE Trans. Mob. Comput. 2010, 9, 796–809.

25. Huang, R.; Chu, X.; Zhang, J.; Hu, Y.H.; Yan, H. A machine-learning-enabled context-driven control mechanism for software-

defined smart home networks. Sens. Mater. 2019, 31, 2103–2129. [CrossRef]

26. Razzaque, M.A.; Ahmed, M.H.U.; Hong, C.S.; Lee, S. Qos-aware distributed adaptive cooperative routing in wireless sensor

networks. Ad Hoc Netw. 2014, 19, 28–42. [CrossRef]

27. Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.; Riedmiller, M. Deterministic policy gradient algorithms. In International

Conference on Machine Learning; PMLR: Beijing, China, 22–24 June 2014; pp. 387–395.

28. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep

reinforcement learning. arXiv 2015, arXiv:1509.02971.

29. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;

Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]

30. Liu, W.-X. Intelligent routing based on deep reinforcement learning in software-defined data-center networks. In Proceedings of

the 2019 IEEE Symposium on Computers and Communications (ISCC), Barcelona, Spain, 29 June–3 July 2019; pp. 1–6.

31. Yu, C.; Lan, J.; Guo, Z.; Hu, Y. Drom: Optimizing the routing in software-defined networks with deep reinforcement learning.

IEEE Access 2018, 6, 64533–64539. [CrossRef]

Appl. Sci. 2022, 12, 1951 21 of 21

32. Abbasloo, S.; Yen, C.-Y.; Chao, H.J. Classic meets modern: A pragmatic learning-based congestion control for the internet.

In Proceedings of the Annual conference of the ACM Special Interest Group on Data Communication on the Applications,

Technologies, Architectures, and Protocols for Computer Communication, New York, NY, USA, 10–14 August 2020; pp. 632–647.

33. Meng, Z.; Wang, M.; Bai, J.; Xu, M.; Mao, H.; Hu, H. Interpreting deep learning-based networking systems. In Proceedings of the

Annual conference of the ACM Special Interest Group on Data Communication on the Applications, Technologies, Architectures,

and Protocols for Computer Communication, New York, NY, USA, 10–14 August 2020; pp. 154–171.

34. Uhlenbeck, G.E.; Ornstein, L.S. On the theory of the brownian motion. Phys. Rev. 1930, 36, 823. [CrossRef]

35. Stampa, G.; Arias, M.; Sánchez-Charles, D.; Muntés-Mulero, V.; Cabellos, A. A deep-reinforcement learning approach for

software-defined networking routing optimization. arXiv 2017, arXiv:1709.07080.

	Introduction
	Related Works
	System Design
	Problem Statement and Notations
	System Framework of DGRL
	Feedforward Processes for Actor and Critic Models
	Feedforward Calculation of Actor Neural Network
	Feedforward Calculation of Critic Neural Network

	Design of DGRL Training Method, Controller Node Features and Reward Function
	The Training Method of DGRL
	Design of Node Characteristics and Reward Function

	Traffic Control Based on Deep Graph Reinforcement Learning

	Evaluation
	Simulation Environment
	Operation Platform
	Parameter Setting
	Protocol Architecture

	Compared Algorithm Models
	Performance Evaluation Metrics
	Average Network Delay
	PDR
	Dispersion of Routing Load

	Training DGRL
	Evaluation Results

	Discussion
	Conclusions
	References

