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Abstract 

Molecular dynamics (MD) and volume of fluid (VOF) are powerful methods for 

the simulation of dynamic wetting at the nanoscale and macroscale, respectively, but 

the massive computational cost of MD and the sensitivity and uncertainty of boundary 

conditions in VOF limit their applications to other scales. In this work, we propose a 

multiscale simulation method by enhancing VOF simulations using self-consistent 

boundary conditions derived from MD. Specifically, the boundary conditions include a 

particular slip model based on the molecular kinetic theory for the three-phase contact 

line to account for the interfacial molecular physics, the classical Navier slip model for 

the remaining part of the liquid-solid interface, and a new source term supplemented to 

the momentum equation in VOF to replace the convectional dynamic contact angle 

model. Each slip model has been calibrated by the MD simulations. The simulation 
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results demonstrate that with these new boundary conditions, the enhanced VOF 

simulations can provide consistent predictions with full MD simulations for the 

dynamic wetting of nanodroplets on both smooth and pillared surfaces, and its 

performance is better than those with other VOF models, especially for the pinning-

depinning phenomenon. This multiscale simulation strategy is also proved to be capable 

of simulating dynamic wetting above the nanoscale, where the pure MD simulations 

are inaccessible due to the computational cost. 

1. Introduction 

When a droplet touches a solid substrate, it spreads spontaneously from an initial 

contact angle of 180° to its equilibrium value (𝜃𝑒). While the Young’s equation [1] is 

generally recognized to describe the force balance at the equilibrium state of a wetted 

droplet, the prediction and modelling of a dynamic wetting process, which involves 

moving contact line and varying dynamic contact angle (𝜃𝑑), has still been controversial 

so far [2-4]. Dynamic wetting is ubiquitous in nature and of key importance in a variety 

of engineering applications. For instance, it is foundation of several industrial processes 

ranging from coatings [5] and pesticide spraying [6] at large scales, to microfluidic 

actuation [7] and nanoprinting [8] at micro and nano scales. Dynamic wetting is also 

crucial for droplet splashing [9], nucleate boiling [10], gyratory rebounding [11] and 

other droplet behaviours, which are all areas of increased research activity in recent 

years. 

In terms of modelling dynamic wetting at the macroscale, various interfacial 

capturing/tracking techniques, including level-set [12], volume of fluid [13], and front 

tracking [14], have been developed and validated. In this work, we employ the volume 

of fluid (VOF) method as the continuum solver in view of its efficiency and extensive 
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use for the simulation of droplet dynamics [15-18]. It is well-known that the solution 

of the Navier-Stokes equations with no-slip boundary condition applied to the dynamic 

wetting problem brings a non-integrable stress singularity arising in the vicinity of the 

three-phase contact line [19]. Many theories have been proposed [20] to eliminate the 

stress singularity, such as the diffusive interface model [21], precursor film theory [22], 

surface tension gradient [23], and velocity slip models. In addition, a variety of dynamic 

contact angle (DCA) models have been developed based on the hydrodynamics, 

molecular kinetics, or empirical formulae to account for the variation of contact angle 

in the dynamic wetting process [24]. Note that velocity slip models and DCA models 

are usually used together, referred to as the boundary conditions in VOF [20]. It is 

difficult to evaluate which kind of boundary conditions are the best in VOF simulations 

of dynamic wetting at the macroscale, as various velocity slip and DCA models seem 

to be capable of giving satisfactory predictions [25], as long as the stress singularity at 

the contact line is circumvented. The reason for this is that the ratio of the contact line 

region (called “CL region” in this work) to the whole macro droplet is so small that the 

arising behaviours at the contact line is insignificant for the droplet dynamics as a whole. 

However, if the droplet size is down to sub-micro and nano scales, the role of boundary 

conditions becomes crucial for accurate predictions [26]. 

Molecular dynamics (MD) has been proved to be a power tool for probing the 

microscopic properties of wetting at the nanoscale. The implementation of MD is very 

simple, i.e., it solves Newton’s equations of motion for each particle, and averages the 

properties of particles to obtain the macroscopic quantities of a system [27]. By 

performing MD simulations, researchers have found the underlying mechanism of 

forces at the contact line [28-30] and developed slip models for the continuum flow 
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simulations [31-34]. However, the application of MD to macro droplets is strictly 

limited by its expensive computational cost, despite the rapid developments of 

hardware during the past two decades. Considering the computational efficiency, a 

continuum simulation approach corroborated by appropriate microscopic models is a 

better choice when simulating droplets above the nanoscale. Nevertheless, the VOF 

method with standard boundary conditions developed for macroscale flows may be 

problematic for applications at the nano and sub-micron scales [35], where the 

particular contact line effects that relate to the interfacial molecular physics become 

dominant. Therefore, more suitable boundary conditions are highly required for the 

VOF methods to simulate the dynamic wetting of droplets with considerable small sizes. 

Recently, some efforts have been put into the development of multiscale simulation 

methodology for the dynamic wetting problems [36], which is commonly carried out 

by means of domain decomposing [37] or hierarchical simulating [38]. Among them, 

we proposed a sequential multiscale strategy [26], i.e., the VOF simulations are 

performed with the boundary conditions resolved by MD. Specifically, the boundary 

conditions include the MKT slip for the three-phase contact line and the classical Navier 

slip for the remaining part of the liquid-solid interface, as well as the MKT DCA model 

that accounts for the contact angle changes. Our results demonstrated that capturing the 

particular slip behaviour at the contact line is crucial for the accurate prediction of 

dynamic wetting of nanodroplets. However, it should be noted that most of the DCA 

models, including the well-known Kistler’s model [39], Shikhmurzaev’s model [40], 

Kalliadasis’s model [41], and the MKT DCA model, assume a relationship between the 

DCA and contact line velocity, while the contact line velocity is also an unknown 

quantity, which needs to be determined on-the-fly. Since the MKT slip model and the 
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MKT DCA model adopted in our previous work to calculate the contact line velocity 

and the instant DCA intrinsically come from one formula but just in different forms, 

they are actually implemented twice in one calculation step, which is still theoretically 

elusive and might result in accumulations of numerical errors. 

To develop more self-consistent boundary conditions for the dynamic wetting 

simulations, the changes of DCA must be uncoupled from the slip models. In this work, 

we replace the MKT DCA model by including an additional source term into the VOF 

momentum equation, inspired by the recent work of Boelens and de Pablo [42]. The 

MKT slip model used in our previous work [26] is still kept to account for the particular 

slip behaviour at the CL region. We will demonstrate that this new strategy has the best 

performance among these methods in predicting the dynamic wetting process of 

nanodroplets, on both smooth and pillared surfaces. 

The remainder of this paper is structured as follows. The simulation methodology 

and the corresponding theories are introduced in Section 2, including the standard VOF 

method, the self-consistent boundary conditions proposed in this work, the modelling 

and settings of MD simulations, and the implementation of the multiscale simulation 

methodology. Simulation results are presented in Section 3, including the MD-derived 

boundary conditions, the performance of the multiscale method in simulating dynamic 

wetting of nanodroplets, and the feasibility of extending this method to larger scales. 

Conclusions are provided in Section 4. Note that the standard VOF method in this paper 

refers to the VOF method with standard boundary conditions, i.e., with the Navier slip 

model for the whole liquid-solid interface and the DCA models for the variation of 

contact angle. 
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2. Theory and methodology 

2.1 Volume of fluid method 

2.1.1 The standard VOF method. 

In this paper, all VOF simulations are performed using the modified OpenFOAM 

code [43]. The VOF method was first implemented in OpenFOAM as the interFoam 

solver [44], whose accuracy and efficiency have been assessed by Deshpande et al. for 

a variety of benchmark cases [45]. Numerous researchers have integrated new modules 

into the OpenFOAM code, benefiting from its open source nature, to simulate 

increasingly complex multiphase flows. In the present work, we develop new models 

and modify the original interFoam solver to make it efficient and accurate for the 

simulation of dynamic wetting at considerably small scales. 

 With the VOF method, the interface is captured by advecting a scalar function, α, 
which represents the volume fraction of one phase with respect to the total volume of 

fluid enclosed in one computational cell [13]. We assume that a computational cell fully 

occupied by the liquid or the gas phase has α = 1 or α = 0, respectively, and thus for 

a cell belonging to the interface there is 0 < α < 1. Accordingly, a transport equation 

for α [Eq. (1)] needs to be solved with the governing equations for the incompressible 

two-phase flows (continuity equation [Eq. (2)] and momentum equation [Eq. (3)]), that 

is,  𝜕𝛼𝜕𝑡 + 𝛻 ∙ (𝛼�⃗⃗� ) + 𝛻 ∙ (𝛼(1 − 𝛼)�⃗⃗� 𝑐) = 0, (1) 

𝛻 ∙ �⃗⃗� = 0, (2) 𝜕(𝜌�⃗⃗� )𝜕𝑡 + 𝛻 ∙ (𝜌�⃗⃗� �⃗⃗� ) = −𝛻𝑝 + 𝛻 ∙ (𝜇𝛻�⃗⃗� ) + 𝛾𝑘𝛻𝛼, (3) 

where 𝑡 is the time, �⃗⃗�  is the velocity vector, 𝜌 is the density, 𝑝 is the pressure, 𝜇 
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is the viscosity, and �⃗⃗� 𝑐 is a “compressive”, artificial velocity that is added to mitigate 

the smearing of the interface stemming from the presence of the divergence term, 𝛻 ∙(𝛼�⃗⃗� ), as the volume fraction is a steep function at the interface. The model is completed 

by defining the generic material property, 𝜒, as a linear combination of the volume 

fraction, i.e. 𝜒 = 𝛼𝜒𝑙 + (1 − 𝛼)𝜒𝑔, where the subscripts 𝑙 and 𝑔 stand for “liquid” 

and “gas”, respectively.  

The classical Navier slip model, namely,  

�⃗⃗� 𝑠 = 𝑙𝑠 𝜕�⃗⃗� 𝜕𝑦 |𝑦=0, (4) 

is commonly used as the boundary condition for the velocity field �⃗⃗�  to represent the 

slip behaviour at the solid-liquid interface, where 𝑙𝑠 is the slip length. The last term on 

the right-hand side of Eq. (3) is the surface tension force defined by the continuum 

surface force (CSF) model [46]. That is, it is the product of the surface tension 

coefficient (𝛾), the gradient of the volume fraction (𝛻𝛼), and the curvature of interface 

(𝑘). Note that the curvature of the interface is determined by the divergence of the unit 

normal vector of the interface (�⃗� ), i.e.,  𝑘 = −𝛻 ∙ �⃗� , (5) 

with the positive direction of �⃗�  pointing from the lower volume fraction side to the 

larger one. This unit normal vector is approximated as  

 �⃗� = 𝛻𝛼|𝛻𝛼| , (6) 

except at the computational cells that are next to the boundary walls and located in 

correspondence of the CL region (called “CL cells” in this work), where it is determined 

by the contact angle via �⃗� = �⃗� 𝑤cos𝜃𝑑 + �⃗� 𝑡sin𝜃𝑑 , (7) 
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where �⃗� 𝑤  is the unit normal vector of the boundary wall, �⃗� 𝑡  is the unit vector 

tangential to the boundary wall and perpendicular to the contact line, and 𝜃𝑑 is the 

dynamic contact angle (DCA), as shown in Fig. (1). In this way, DCA virtually behaves 

as a geometric boundary condition, which determines the curvature of the interface (𝑘) 

at the three-phase CL region and affects the dynamic wetting process accordingly. The 

correct value of DCA at each instant of time can be obtained by a DCA model, which 

prescribes the DCA as a function of time or the contact line velocity. Another more 

straightforward method that has similar effects as using DCA models is to explicitly 

include a force term into the momentum equation at the boundary cells [42,47,48]. This 

will be discussed in detail in Section 2.1.3. 

 

Fig. 1. Schematic of the unit vector and contact angle at the three-phase contact line. 

2.1.2 Velocity slip boundary condition based on molecular kinetic theory. 

 It has been recognized that for an accurate simulation of dynamic wetting, not only 

the velocity slip behaviour for the common solid-liquid interface, as described by the 

Navier slip condition, plays a crucial role, but also the particular slip effect in the 

vicinity of the three-phase contact line is of vital importance [33]. As reported by our 

previous work [26], without considering the specific slip behaviour at the three-phase 

contact line, the model would fail on quantifying the speed of the dynamic wetting, 

unless an artificial large slip length is used in the Navier slip model. However, it should 
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be emphasized that the slip length is not an artificial parameter, but is related to the 

surface chemistry and solid-liquid interactions [49], whose value can be determined by 

MD simulations [50]. As a consequence, we follow our previous work [26] to account 

for the particular slip behaviour at the CL region by referring to the molecular kinetic 

theory (MKT) [51,52]. 

The principal hypothesis of the MKT model is that the dynamics of the three-phase 

contact line is determined by the statistical kinetics of molecular events occurring at the 

CL region. Two quantities, 𝐾+ and 𝐾−, are used to define the frequency of molecular 

displacements induced by thermal motions in the forward and backward directions at 

the CL region, respectively. When the droplet is at equilibrium, these two frequencies 

are approximately identical, that is, 

𝐾+ = 𝐾− = 𝐾0 = (𝑘𝐵𝑇ℎ ) exp (− ∆𝐺∗𝑁𝑘𝐵𝑇) , (8) 

where 𝑘𝐵  is the Boltzmann constant, ℎ  is the Planck constant, 𝑇  is the absolute 

temperature, 𝑁 is the Avogadro number, and ∆𝐺∗ is the molar activation free energy 

of wetting. In this case, the contact line is stationary. However, once the instantaneous 

DCA (𝜃𝑑) deviates from its equilibrium value (𝜃𝑒), a localized shear stress, which is 

referred to the uncompensated or unbalanced Young’s stress, would be generated at the 

three-phase region, that is,  𝑤 = 𝛾(cos𝜃𝑒 − cos𝜃𝑑). (9) 

This uncompensated stress alters the activation energy barrier of molecular 

displacements in two directions, and changes the displacement frequencies as follows,  

𝐾± = (𝑘𝐵𝑇ℎ ) exp (− ∆𝐺∗𝑁𝑘𝐵𝑇 ± 𝑤2𝑛𝑘𝐵𝑇) , (10) 

which results in the movement of the contact line with a velocity of  
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𝑈𝐶𝐿 = 𝜆(𝐾+ − 𝐾−).  (11) 

Defining two dimensionless constants 𝐵 = (2𝑛𝑘𝐵𝑇)/𝛾  and 𝐶 = (2𝜇𝑙𝜆𝐾0)/𝛾 , Eq. 

(11) can be written as  

𝑈𝐶𝐿 = 𝐶𝛾𝜇𝑙 sinh (cos𝜃𝑒 − cos𝜃𝑑)𝐵 , (12) 

where 𝛾 is the surface tension coefficient, 𝑛 is the number of adsorption sites per unit 

area on the solid surface, 𝜆 is the characteristic length of molecular displacement, and 𝜇𝑙 is the dynamic viscosity of the liquid. Equation (12) will be employed as the velocity 

slip boundary condition at the three-phase CL region in VOF, with the values of 𝐵 and 𝐶 determined by our MD simulations presented below. 

2.1.3 Replacing the DCA model by a source term in the momentum equation. 

Alternatively, Equation (12) can be reformulated in terms of the dependence of 

DCA on the contact line velocity, namely, 

𝜃𝑑 = arccos (cos𝜃𝑒 − 𝐵arcsinh𝐶𝑎𝐶 ) , (13) 

where 𝐶𝑎 = (𝜇𝑙𝑈𝐶𝐿)/𝛾 is the capillary number. In our previous work [26], we directly 

implemented Eq. (12) (the MKT slip model) and Eq. (13) (the MKT DCA model) as 

the boundary conditions for the slip velocity and the contact angle, respectively. To 

avoid the intertwining of the calculations of the contact line velocity and DCA, and to 

improve the self-consistency of boundary conditions as explained in Section 1, in this 

paper, we dismiss the DCA model and employ an alternative way to account for the 

changes of DCA during dynamic wetting. 

 According to the MKT theory, the driving force for the movement of contact line 

is the uncompensated Young’s stress, which is composed of the dynamic effect 𝑓𝑑 =𝛾𝑐𝑜𝑠𝜃𝑑  and the equilibrium effect 𝑓𝑒 = 𝛾𝑐𝑜𝑠𝜃𝑒. As shown in Fig. 2, in the previous 
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method, these two effects are incorporated into the MKT DCA model, which is used as 

a boundary condition to modify the interfacial curvature (𝑘) at the boundary cells and 

hence the source term 𝛾𝑘𝛻𝛼 in the momentum equation. Conversely, if the interfacial 

curvature (𝑘) is not corrected by the DCA model, but is directly determined by the 

instant flow field, the resulting source term 𝛾𝑘𝛻𝛼  accounts for dynamic effects 

without considering the equilibrium effect. Therefore, a promising way to replace the 

DCA model is to retain the original source term for the dynamic effect and adding a 

new source term to account for the equilibrium effect in the momentum equation. Note 

that the additional source term is only accounted for the CL cells. At the liquid-gas 

interfacial cells away from the solid wall, only the original source term 𝛾𝑘𝛻𝛼 is used 

to describe the surface tension exerted on the liquid-gas interface. 

 

Fig. 2. Considering the effect of the uncompensated Young’s stress in the VOF method: (a) using 

the MKT DCA model as a boundary condition; (b) keeping the original source term for the dynamic 

effect and modelling the equilibrium effect using a new source term in the momentum equation. 

 The modelling approach of the equilibrium effect (𝑓𝑒) is analogous to that of the 

CSF model. We refer the readers to the recent paper published by Boelens and de Pablo 

[42] for a detailed theoretical derivation, while here we provide a brief account of its 
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implementation in the interFoam solver. To this end, we note that 𝑓 𝑒 is a line force 

exerted on the three-phase contact line, namely, 𝑓 𝑒(𝑥 𝐿) = 𝛾𝑐𝑜𝑠𝜃𝑒�⃗� 𝑡(𝑥 𝐿), (14) 

where 𝑥 𝐿 is position vector of the point forming the contact line. Since the contact line 

is not tracked explicitly in VOF methods and its exact location is unknown, we need to 

convert 𝑓 𝑒 to an equivalent surface force, 𝑓 𝑒𝐴, exerted on the diffuse interface, that is, limℎ→0 ∬𝑓 𝑒𝐴(𝑟 ) 𝑑𝑟 𝐴 = ∫𝑓 𝑒(𝑥 𝐿)𝑑𝐿𝐿 , (15) 

where 𝑟  is the position vector of the points located in the solid wall plane lying inside 

the diffuse CL region, and ℎ is the width (or thickness) of this region. On the other 

hand, through adopting the delta function, 𝛿(𝑟 − 𝑥 𝐿) , the integral of 𝑓 𝑒  over the 

contact line can be converted to a surface integral over the diffuse CL region, as 

indicated below, ∫ 𝑓 𝑒(𝑥 𝐿)𝑑𝐿 = ∬𝑓 𝑒(𝑟 ) ∙ 𝛿(𝑟 − 𝑥 𝐿) 𝑑𝑟 ,𝐴𝐿 (16) 

where the delta function is defined as  

{𝛿(𝑟 − 𝑥 𝐿) = 0, (𝑟 ≠ 𝑥 𝐿)∬𝛿(𝑟 − 𝑥 𝐿) 𝑑𝑟 = 1𝐴 . (17) 

Comparing Eqs. (15) and (16), the surface force 𝑓 𝑒𝐴 can be identified as  limℎ→0𝑓 𝑒𝐴(𝑟 ) = 𝛾𝑐𝑜𝑠𝜃𝑒�⃗� 𝑡(𝑟 ) ∙ 𝛿(𝑟 − 𝑥 𝐿). (18)  

Supposing the liquid-gas interface is sharp (instead of diffuse), the liquid volume 

fraction (α) field can be expressed using a discontinuous function as follows, 

limℎ→0α(𝑟 ) = {1  (𝑟 < 𝑥 𝐿)0.5 (𝑟 = 𝑥 𝐿)0  (𝑟 > 𝑥 𝐿) , (19) 

and thus the gradient of α along the plane of the boundary wall is  
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limℎ→0 ∇𝑡𝛼(𝑟 ) = (1 − 0)�⃗� 𝑡(𝑟 ) ∙ 𝛿(𝑟 − 𝑥 𝐿). (20) 

Comparing Eqs. (18) and (20), the delta function is to be substituted by the two-

dimensional gradient of α, namely,  𝑓 𝑒𝐴 = 𝛾𝑐𝑜𝑠𝜃𝑒𝛻𝑡𝛼, (21) 

where ∇𝑡𝛼 can be easily computed through the interFoam solver, implemented as  ∇𝑡𝛼 = ∇α − (∇α ∙ �⃗� 𝑤)�⃗� 𝑤. (22) 

The last step is to convert 𝑓 𝑒𝐴 to an equivalent body force 𝑓 𝑒𝑉 exerted on the CL cells, 

so that it can be incorporated into the momentum equation as a source term, that is,  𝑓 𝑒𝑉∆𝑉𝐶𝐿 = 𝑓 𝑒𝐴∆𝐴𝐶𝐿 , (23) 

where ∆𝑉𝐶𝐿 is the volume of a CL cell, and ∆𝐴𝐶𝐿 is the area of its face that belongs 

to the boundary wall. Note that ∆𝐴𝐶𝐿  and ∆𝑉𝐶𝐿  are mesh properties that can be 

directly accessed in the interFoam solver. Consequently, the momentum equation is 

modified to  𝜕(𝜌�⃗⃗� )𝜕𝑡 + 𝛻 ∙ (𝜌�⃗⃗� �⃗⃗� ) = −𝛻𝑝 + 𝛻 ∙ (𝜇𝛻�⃗⃗� ) + 𝛾𝑘𝛻𝛼 − 𝛽𝛾𝑐𝑜𝑠𝜃𝑒∇𝑡𝛼, (24) 

with the prefactor  𝛽 = 𝑠 ∙ 𝑔(𝛼) ∙ (∆𝐴𝐶𝐿/∆𝑉𝐶𝐿), (25) 

in which the coefficient 𝑠 is an on-off switch to localize the new source term activated 

only at the CL cells, that is, 𝑠 = 1 for CL cells and 𝑠 = 0 for the other ones. The 

modification function 𝑔(𝛼) is necessary when the grid resolution is low, and this is 

further discussed in the Supplementary Material [53]. 

As the last two terms on the right-hand side of Eq. (24) represent the dynamic and 

equilibrium effect of the uncompensated Young’s stress, it is expected that the contact 

angle of droplet automatically changes in the process of dynamic wetting, relying on 

the induced flow field rather than the prescribed function of any DCA models. 
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Accordingly, the present method is uncoupled with the velocity slip model for the three-

phase contact line, and this is the key advantage in comparison with our previous 

method for dynamic wetting [26]. 

2.2 Molecular dynamics 

We build two MD systems to simulate the dynamic wetting of water droplets and 

the Couette flow of water. The former is to provide a benchmark result at the nanoscale 

for the evaluation of different VOF models and to determine the values of the 

parameters B and C in the MKT slip model, while the latter is to determine the value of 

the slip length in the Navier slip model. All the MD simulations are performed using 

the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [54], and 

the results are visualized by the Open Visualization Tool (OVITO) [55]. 

In the dynamic wetting cases, four nanodroplets of different sizes with the initial 

radius (𝑟0) of 25.6 Å, 39.1 Å, 55.8 Å, and 72.5 Å, consisting of 2342, 8337, 24233, and 

53152 water molecules, respectively, have been considered. The solid surfaces are 

composed of copper-like atoms, which are FCC structured with the lattice constant 𝐿𝑐= 

3.615 Å. Two different surface morphology are simulated, as shown in Fig. 3 (a) and 

(b), with one molecularly smooth and another decorated with concentric annular pillars, 

whose thickness, spacing and height are 3𝐿𝑐 , 3𝐿𝑐  and 𝐿𝑐 , respectively. Each 

nanodroplet first experiences sufficient relaxation using the Nosé-Hoover thermostat at 

300 K to make its potential energy reach a stable minimum [56]. Subsequently, the 

droplet is placed right above the solid surface in such a way that the distance between 

the closest oxygen and the solid atom is 2 Å. Each case is run in the microcanonical 

ensemble for 1.05 million steps, with a computational time step of 0.002 ps. 
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In the Couette flow cases, 6402 water molecules are confined between two parallel 

horizontal solid plates at a distance of 120 Å, as shown in Fig. 3(c). The upper plate 

keeps moving at a constant velocity and the bottom one remains stationary. Periodic 

boundary conditions are assumed for the directions parallel to the two plates. After the 

system reaches a steady state, the streamwise velocities are measured in layers 

distributed along the direction normal to the solid surface, and then the slip length can 

be determined straightforwardly according to the Navier slip model. 

 

Fig. 3. Snapshots of the initial MD system in different cases. The white, red and blue particles 

represent oxygen, hydrogen, and solid atoms, respectively. (a) The smooth surface case from the 

front view. (b) The pillared surface case from the perspective view, and an enlarged view of one 

eighth of the pillared surface. Note that the substrate (dark blue) and pillars (light blue) consist of 

the same type of atoms, and the different colouring is just used for a clear distinction. (c) The Couette 

flow case from the perspective view. 

Water molecules in all cases are simulated using the TIP4P/2005 model, which is 
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an acknowledged rigid planar model consisting of one Lennard-Jones center (the 

oxygen atom) and three point charges (two hydrogen atoms and one virtual M point) 

[57]. The interaction between any two water molecules i and j is represented by a van 

der Waals term and a Coulomb term, namely,  

𝑈𝑖𝑗 = 4𝜖𝑂 [(𝜎𝑂𝑟𝑖𝑗)12 − (𝜎𝑂𝑟𝑖𝑗)6] + 14𝜋𝜀0 ∑𝑞𝑎𝑞𝑏𝑟𝑎𝑏𝑎,𝑏 , (26) 

where 𝑟𝑖𝑗 is the distance between the Lennard-Jones centers, and a and b stand for the 

charged sites. Other parameters appearing in Eq. (26), including the Lennard-Jones 

parameters of oxygen, the charges of hydrogen and the massless site M, and the 

permittivity of vacuum, are listed in Table 1. The SHAKE algorithm [58] is applied to 

ensure that the oxygen-hydrogen bond length is 0.9572 Å and the H-O-H bond angle is 

fixed as 104.52° . The interactions between two solid atoms are described using a 

Lennard-Jones potential with the parameters 𝜖𝑠=0.4093 eV and 𝜎𝑠=2.338 Å [59]. The 

interactions between water molecules and solid atoms are also described by the 

Lennard-Jones potential, and the parameters are determined by the Lorentz-Berthelot 

mixing rule, i.e., 𝜎𝑠,𝑂 = (𝜎𝑠 + 𝜎𝑜)/2  and  𝜖𝑠,𝑂 = 𝑘𝜖√𝜖𝑠𝜖𝑜 , where 𝑘𝜖  is a scaling 

parameter to tune the interaction strength. We set 𝑘𝜖=0.33 and 0.25 in this work to 

simulate two kinds of surfaces, corresponding to the static contact angle of 34.5° and 

66.0°, respectively. 

Table 1. Parameters of the TIP4P/2005 model [57] 

 𝜖𝑂 (eV) 𝜎𝑂 (Å) 𝑞𝑂(e) 𝑞𝐻(e) 𝑞𝑀(e) 𝜀0(F/m) 

8.0312×10-3 3.1589 0 0.5564 -1.1128 8.8542×10-12 

2.3 Multiscale simulation methodology 

In summary, the multiscale simulation methodology in this work is implemented as 
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follows: 

(1) The MKT slip and the Navier slip models are implemented into the VOF method as 

the boundary conditions for the CL regions and for the remaining part of the solid-

liquid interface, respectively, as shown in Fig. (4). 

(2) Molecular dynamics simulations are performed to determine the parameters (B and 

C) in the MKT slip model and the slip length in the Navier slip model. 

(3) A new source term, 𝛽𝛾𝑐𝑜𝑠𝜃𝑒𝛻𝑡𝛼, is added to the momentum equation in VOF and 

activated at the CL cells. Together with the surface tension force term, 𝛾𝑘𝛻𝛼, the 

change of DCA is automatically considered. 

 

Fig. 4. Schematic of the multiscale simulation method. The region between two semicircles 

represents the liquid-gas interface captured by the VOF method. 

3. Results 

3.1 Molecular dynamics derived boundary conditions for VOF. 

 We first determine the constants in the MKT model and the slip length in the 

Navier slip model through MD simulations of dynamic wetting and Couette flow, 

respectively. For each dynamic wetting case, we divide the whole simulation domain 

into two-dimensional bins and determine the density distribution of a droplet by 
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counting the number of water molecules contained in each bin. The liquid-gas interface 

is defined by the locations of bins where the density is half the value inside the droplet 

[60]. Fig. 5(a) shows the temporal evolution of the liquid-gas interface for the droplet 

with an initial radius of 55.8 Å. By making a linear fit through the points of the liquid-

gas interface in the range of 6 ~ 15 Å above the solid surface, i.e., the line denoted as 

Line (1) shown in Fig. 5(b), we determine the DCA corresponding to each instant of 

time. When the wetting process is sufficiently developed, the equilibrium contact angle 

on different surfaces can be measured. Our MD results predict 𝜃𝑒 = 34.5°  for 𝑘𝜖=0.33 and 𝜃𝑒 = 66.0° for 𝑘𝜖=0.28. 

As shown in Fig. 5(b), to avoid an overestimation of the base radius (𝑟𝑏 ), we 

evaluate it through the distance from the droplet center to the intersection of Line (2) 

instead of Line (1) with the solid surfaces, where Line (2) is defined as a vertical line 

that intersects with Line (1) at the distance of 4 Å above the solid surface. Figure 5(c) 

presents the temporal evolution of the base radius during wetting. Note that the radius 

and time are normalized as 𝑟∗ = 𝑟𝑏/𝑟0 and 𝑡∗ = 𝑡/√𝜌𝑙𝑟03/𝛾, respectively. We fit 𝑟∗ 

as a ratio of polynomial functions of 𝑡∗, namely,  𝑟𝑓𝑖𝑡∗ = ∑ 𝑎𝑘(𝑡∗)𝑘𝑘𝑚𝑎𝑥𝑘=01 + ∑ 𝑏𝑘(𝑡∗)𝑘𝑘𝑚𝑎𝑥𝑘=1 , (27) 

where 𝑎𝑘 and 𝑏𝑘 are free parameters to be adjusted, and 𝑘𝑚𝑎𝑥 is the order of the 

best polynomial that minimizes the error but still gives 𝑟𝑓𝑖𝑡∗  as a concave increasing 

function [61], and then the Capillary number can be calculated via  𝐶𝑎 = 𝜇𝑙𝑈𝐶𝐿𝛾 = 𝜇𝑙√𝛾𝜌𝑙𝑟0 𝑑𝑟𝑓𝑖𝑡∗𝑑𝑡∗ . (28) 

Finally, the values of parameter B and C in the MKT slip model are determined by 

fitting the MD results of 𝜃𝑒, 𝜃𝑑 and 𝐶𝑎 to Eq. (13), as shown in Fig. 5(d). 
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Fig. 5. (a) Temporal evolution of the liquid-gas interface during the wetting process of a droplet 

(𝑟0=55.8 Å) on the solid surface (𝑘𝜖=0.33). (b) Schematic of evaluating the DCA and base radius of 

a wetting droplet (t=700 ps). (c) Temporal evolution of the normalized base radius of the droplet 

(𝑟0=55.8 Å) and its fitting curve. (d) Extrapolation of the constant B and C in the MKT slip model 

by fitting MD results to Eq. (13). 

For the Couette flow cases, we divide the computational domain between two plates 

into 30 layers, and calculate the average velocity of water molecules in each layer. The 

slip length (𝑙𝑠) can be determined by solving Eq. (4) with MD data, and the results give 𝑙𝑠=3.30 Å for 𝑘𝜖=0.33 and 𝑙𝑠=4.35 Å for 𝑘𝜖=0.28. 

3.2 Multiscale simulation of dynamic wetting of nanodroplets. 

We first compare the results obtained by different VOF models with those obtained 

by full MD simulations to evaluate the performance of the multiscale method in the 

simulation of dynamic wetting at the nanoscale. To this end, five distinct VOF solvers 
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are implemented with identical initial flow fields but under different boundary 

conditions for the velocity slip and contact angle, as presented in Table 2. Specifically, 

Solver 1 denotes the native interFoam solver in OpenFOAM, without any velocity slip 

model and with a constant (static) contact angle; Solver 2 corresponds to the standard 

VOF method, with the Navier slip model for the whole liquid-solid interface and a DCA 

model for the variation of contact angle, and specifically, we use the MKT DCA model 

for comparison with Solver 3; Solver 3 is identical to the one employed in our previous 

work [26], where the MKT slip model is used for the CL region and the Navier slip 

model is used for the remaining liquid-solid interface, and the MKT DCA model is used 

for the variation of contact angle; Solver 4 is identical to the one employed in reference 

[42], with the Navier slip model for the whole liquid-solid interface and a modified 

source term added in the momentum equation; Solver 5 is the newest one proposed in 

this work, where the velocity slip model is the same as in Solver 3, while a modified 

source term analogous to Solver 4 is added in the momentum equation to replace the 

DCA model. 

Table 2. Boundary conditions of different VOF solvers evaluated in this paper. The acronyms LS 

and CL denote the liquid-solid interface (except for the CL region) and CL region, respectively. 

No. Velocity slip (LS) Velocity slip (CL) Contact angle Note 

Solver 1 No slip Constant value Native interFoam [44] 

Solver 2 Navier slip model MKT DCA model Standard method 

Solver 3 Navier slip model MKT slip model MKT DCA model Zhang et. al. [26] 

Solver 4 Navier slip model Modified source term Boelens et. al. [42] 

Solver 5 Navier slip model MKT slip model Modified source term Present method 

In this section, we use the droplet with an initial radius of 55.8 Å for presentations, 

and the normalized base radius as well as the instant DCA measured by density contours 

are used to quantify the dynamic wetting process. The simulation results of MD and 
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different VOF solvers on the molecular smooth surfaces are shown in Fig. 6. It can be 

inferred from Fig. 6 that both the base radius and DCA converge to their equilibrium 

values after a sufficiently long time, indicating that all five solvers can predict the 

correct equilibrium state of a wetted droplet. However, the dynamic wetting processes 

predicted by different solvers have obvious distinctions, especially for the early wetting 

stage (0 < 𝑡∗ < 10). Compared to the benchmark results obtained by MD, the native 

interFoam solver (Solver 1) significantly underpredicts the temporal evolution of the 

wetting process. The introduction of the Navier slip and DCA models (Solver 2) 

enhances the wetting rate to some extent, but it is still far slower than the benchmark 

results, unless an artificial large slip length is employed in the Navier slip model, as 

reported in our previous work [26]. The temporal evolution of the normalized base 

radius and DCA predicted by Solver 4 are quite close to those obtained by Solver 2, 

confirming that the modified source term derived from the uncompensated Young’s 

stress is qualified to replace the MKT DCA model. However, the performance of Solver 

4 at the early stage of dynamic wetting is not further improved, suggesting that the 

single Navier slip boundary condition for the whole liquid-solid surface is not accurate 

enough, as the slip mechanism at the three-phase CL region is essentially different and 

needs to be considered separately. With the MKT slip model plugged into the VOF 

method for the CL region, both Solver 3 and Solver 5 show good performances 

throughout the dynamic wetting process. Considering the advantages of replacing DCA 

models by modifying the momentum equation (cf. the discussion presented in Section 

2.1.3), Solver 5, i.e., the one proposed in this work, is considered as the best choice for 

the simulation of nanodroplets wetting on smooth surfaces among the five 

implementations. 
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Fig. 6. Temporal evolution of the normalized base radius and DCA of the droplet (𝑟0 =55.8 Å) 

wetting on the smooth surfaces: (a) normalized base radius, 𝑘𝜖 =0.33; (b) DCA, 𝑘𝜖 =0.33; (c) 

normalized base radius, 𝑘𝜖=0.28; (d) DCA, 𝑘𝜖=0.28. 

We further evaluate the performance of five solvers on the rough surfaces, which 

are decorated with concentric annular pillars. Figure 7 shows the snapshots of the last 

time step simulated by five solvers that the droplet (𝑟0=55.8 Å) wets on the pillared 

surface (𝑘𝜖=0.33). For the sake of comparison, each snapshot comprises the MD result 

on the left-hand side while the corresponding VOF result is depicted on the right-hand 

side. It is interesting to see that the droplet morphologies, including the base radius and 

contact angle obtained by Solvers 1, 2, and 4 are completely different from MD, while 

Solver 3 seems to give a better prediction and Solver 5 gives the best result. 
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Fig. 7. Cross-sectional snapshots of droplet morphologies when the droplet (𝑟0=55.8 Å) wets the 

pillared surface (𝑘𝜖 =0.33) at 𝑡∗ =40.34. The left side of each subfigure shows the MD result in 

comparison to the right-side results obtained by different VOF solvers. 

The emergence of the pinning-depinning phenomenon on heterogeneous surfaces 

should be the main cause for the large difference in the simulation performance between 

five solvers. This phenomenon can be indicated by the step-like temporal variations for 

both the base radius and contact angle of the droplet predicted by MD, as shown by the 

black curves in Fig. 8. The molecular origin of this phenomenon lies in the competition 

of pinning force and depinning force, which are essentially the intermolecular forces 

exerted on the water molecules in the vicinity of contact line by the solid molecules in 

pillars and other water molecules in the remaining portion of the droplet, respectively 

[62]. Considering the contact line advances near the outermost edge of a pillar, it is 

pinned due to the balance of pinning force and depinning force: as the depinning force 

increases due to the accumulation of water molecules at the CL region, the pinning 

force can increase instantaneously by adapting the solid-liquid intermolecular distance, 
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which is contributed by the bending deformation of pillar structures [62]. The contact 

line will keep on pinning until the depinning force exceeds the maximum pinning force 

[63]. Obviously, since the pinning-depinning phenomenon is essentially caused by the 

intermolecular interactions, MD is able to reproduce it, while its accurate simulation 

via a VOF model without considering the interfacial molecular physics will be quite 

more challenging. 

As shown in Fig. 8, the dynamic wetting process predicted by Solvers 1, 2, and 4 

are much slower than the MD results, indicating that the particular slip mechanism at 

the CL region is indispensable for the prompt depinning of contact line from the pillar 

edge. On the contrary, if the MKT slip model is supplemented at the contact line, e.g. 

Solver 3 and Solver 5, the wetting rate is largely enhanced. The reason for this is that 

the MKT slip model is derived based on the molecular dynamics, which predicts a non-

constant slip velocity for the contact line depending on the molecular movements at the 

CL region. As the water molecules accumulate in the vicinity of contact line, which is 

jointly caused by the drive of uncompensated Young’s stress and the pinning of contact 

line, the DCA keeps increasing to make the predicted slip velocity increase as well (cf. 

Eq. (12)). Consequently, the slip velocity could reach the critical value to get over the 

maximum pinning force that the pillar molecules can provide, allowing for the prompt 

depinning of contact line. Compared with the MD results, Solver 5 has a better 

performance than Solver 3, which should attribute to the dismissal of MKT DCA model 

that avoids the increasing numerical errors due to the intertwine between it and the 

MKT slip model, as explained in Section 2.1.3. Overall, the deviations between the 

dynamic wetting characteristics predicted by Solver 5 and the MD results are within an 

acceptable level, considering that MD inevitably has statistical noise. 
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Fig. 8. Temporal evolution of the normalized base radius and DCA of the droplet (𝑟0 =55.8 Å) 

wetting on the pillared surface: (a) normalized base radius, 𝑘𝜖 =0.33; (b) DCA, 𝑘𝜖 =0.33; (c) 

normalized base radius, 𝑘𝜖=0.28; (d) DCA, 𝑘𝜖=0.28. 

As a further demonstration, in Fig. 9 we compare the cross-sectional snapshots of 

a nanodroplet (𝑟0=55.8 Å) spreading on the pillared surface (𝑘𝜖=0.33) at several typical 

instants of time obtained by Solver 5 with those by MD. It can be seen that the overall 

droplet properties (e.g., radius, height and curvature) obtained by two methods are quite 

similar. For this case, the computational cost for the MD-VOF multiscale simulation is 

around eight times less than that for the full MD simulation. With the increase of droplet 

size, using this kind of multiscale simulation strategy could save more computational 

resources. 
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Fig. 9. Comparisons of the cross-sectional snapshots obtained by MD (the left side in each subfigure) 

and by the multiscale Solver 5 (the right side), at four distinct instants during the droplet (𝑟0=55.8 

Å) wetting on the pillared surface (𝑘𝜖=0.33). 

3.3 Extension of the multiscale simulation method to larger scales.  

We have shown that the multiscale method gives good performance on the 

simulations of dynamic wetting at the nanoscale. To extend its applicability to the larger 

scales, two critical issues remain to be addressed. One is whether the parameters in 

VOF boundary conditions obtained by the MD simulations using a certain initial radius 

of droplet are applicable to simulating droplets of other sizes. To this end, we perform 

MD simulations of dynamic wetting of droplets with four different initial radii on the 

smooth surface (𝑘𝜖 =0.33). As shown in Fig. 10, the temporal evolutions of the 

normalized base radius and DCA both nearly collapse onto one single curve, indicating 

that they are independent of the droplet size, if the small changes of contact angle due 

to the effect of line tension is ignored [28]. Therefore, as long as the properties of the 

droplets and the surfaces are unchanged, the MKT slip boundary condition applied to 

other cases with different scales can be directly derived with the determined values of 
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𝜃𝑒 , 𝜃𝑑 , and 𝑟𝑓𝑖𝑡∗  , as presented in Section 3.1, without resorting to the additional 

expensive MD simulations. 

 

Fig. 10. Temporal evolutions of the (a) normalized base radius and (b) DCA of droplets wetting on 

the smooth surface (𝑘𝜖=0.33). The droplets are of four different initial radii. 

 Another issue is whether the dynamic wetting process predicted by the proposed 

multiscale method is consistent with those by other VOF methods, for instance, the 

standard VOF method implemented with the Navier slip and DCA models (Solver 2). 

To this end, we simulate the wetting process of droplets with initial radii from 55.8 Å 

to 55.8 µm using Solver 2 and Solver 5. To compare the results obtained by these two 

solvers, we define a relative error, namely, 

δ = |𝑡2,𝑥∗ − 𝑡5,𝑥∗ |𝑡2,𝑥∗ , (29) 

where 𝑡𝑁,𝑥∗  is the normalized time at which the base radius of droplet simulated by 

Solver N reaches 𝑥  percent of its maximum value. Specifically, we set 𝑥  to 50%, 

85%, and 98% to characterize the difference of the wetting rate at different wetting 

stages predicted by Solver 2 and 5. As shown in Fig. 11, this difference at the nanoscale 

is prominent. On the contrary, the difference above the micrometer scale is down to less 

than 10%, indicating that our multiscale method is compatible with the standard VOF 

method at the macroscales, as the effect of the particular slip at the CL region becomes 
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less important. Note that if the droplet size falls in between nanometer and micrometer, 

this difference is still notable. Therefore, the present multiscale method essentially 

provides an efficient approach to simulate the dynamic wetting at such scales, at which 

MD is limited by the massive computational cost and the standard VOF method is 

limited by the computational accuracy. 

 

Fig. 11. The relative error of droplet wetting rate simulated by the standard VOF method and present 

multiscale method. 

4. Conclusions 

In this paper, we propose a multiscale simulation method for the dynamic wetting 

problem, based on the recent work of Zhang et. al. (2017) [26] and Boelens et. al. (2019) 

[42]. Specifically, the volume of fluid (VOF) simulations are enhanced by using the 

self-consistent boundary conditions derived from molecular dynamics (MD). Different 

from the standard VOF boundary conditions that employ the Navier slip model for the 

whole liquid-solid interface and the dynamic contact angle (DCA) models for the 

variation of contact angle, we include a slip model based on the molecular kinetic theory 

(MKT) for the three-phase contact line region to account for the particular interfacial 

molecular physics, as well as the classical Navier slip model for the remaining part of 

the liquid-solid interface. Besides, a newly-modelled source term that accounts for the 
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equilibrium effect of the uncompensated Young’s stress is supplemented to the 

momentum equation in VOF to replace the convectional MKT DCA model. The 

simulation results demonstrate that with these self-consistent boundary conditions, the 

enhanced VOF simulations can provide consistent predictions with full MD simulations 

for the dynamic wetting of nanodroplets on both smooth and pillared surfaces. 

Compared with the standard VOF method and the method of Boelens and de Pablo [42], 

the multiscale method introduced in this work has significantly better computational 

accuracy in the prediction of the dynamic wetting of droplets with considerable small 

sizes, especially on the pillared surfaces where the pinning-depinning phenomenon 

emerges. Compared with our previous multiscale approach [26], the present method 

replaces the MKT DCA model by an equivalent source term in the VOF momentum 

equation, so that the variation of DCA is uncoupled with the calculation of contact line 

velocity, which is performed by the MKT slip model, to avoid the accumulation of 

numerical errors. At last, we demonstrate the flexibilities and possibilities of applying 

this multiscale approach to analogous dynamic wetting problems at larger scales. 

Considering that the MD is limited by the massive computational cost above the 

nanoscale, and the standard VOF method is limited by the sensitivity and uncertainty 

of boundary conditions below the microscale, the present multiscale method provides 

an efficient and accurate simulation approach for the dynamic wetting at the 

intermediate scales. 
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