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Abstract

Molecular dynamics (MD) and volume of fluid (VOF) are powerful methods for
the simulation of dynamic wetting at the nanoscale and macroscale, respectively, but
the massive computational cost of MD and the sensitivity and uncertainty of boundary
conditions in VOF limit their applications to other scales. In this work, we propose a
multiscale simulation method by enhancing VOF simulations using self-consistent
boundary conditions derived from MD. Specifically, the boundary conditions include a
particular slip model based on the molecular kinetic theory for the three-phase contact
line to account for the interfacial molecular physics, the classical Navier slip model for
the remaining part of the liquid-solid interface, and a new source term supplemented to
the momentum equation in VOF to replace the convectional dynamic contact angle

model. Each slip model has been calibrated by the MD simulations. The simulation

* Corresponding author: jun.zhang@buaa.edu.cn
1



results demonstrate that with these new boundary conditions, the enhanced VOF
simulations can provide consistent predictions with full MD simulations for the
dynamic wetting of nanodroplets on both smooth and pillared surfaces, and its
performance is better than those with other VOF models, especially for the pinning-
depinning phenomenon. This multiscale simulation strategy is also proved to be capable
of simulating dynamic wetting above the nanoscale, where the pure MD simulations
are inaccessible due to the computational cost.
1. Introduction

When a droplet touches a solid substrate, it spreads spontaneously from an initial
contact angle of 180° to its equilibrium value (6,). While the Young’s equation [1] is
generally recognized to describe the force balance at the equilibrium state of a wetted
droplet, the prediction and modelling of a dynamic wetting process, which involves
moving contact line and varying dynamic contact angle (8,), has still been controversial
so far [2-4]. Dynamic wetting is ubiquitous in nature and of key importance in a variety
of engineering applications. For instance, it is foundation of several industrial processes
ranging from coatings [5] and pesticide spraying [6] at large scales, to microfluidic
actuation [7] and nanoprinting [8] at micro and nano scales. Dynamic wetting is also
crucial for droplet splashing [9], nucleate boiling [10], gyratory rebounding [11] and
other droplet behaviours, which are all areas of increased research activity in recent
years.

In terms of modelling dynamic wetting at the macroscale, various interfacial
capturing/tracking techniques, including level-set [12], volume of fluid [13], and front
tracking [14], have been developed and validated. In this work, we employ the volume

of fluid (VOF) method as the continuum solver in view of its efficiency and extensive
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use for the simulation of droplet dynamics [15-18]. It is well-known that the solution
of the Navier-Stokes equations with no-slip boundary condition applied to the dynamic
wetting problem brings a non-integrable stress singularity arising in the vicinity of the
three-phase contact line [19]. Many theories have been proposed [20] to eliminate the
stress singularity, such as the diffusive interface model [21], precursor film theory [22],
surface tension gradient [23], and velocity slip models. In addition, a variety of dynamic
contact angle (DCA) models have been developed based on the hydrodynamics,
molecular kinetics, or empirical formulae to account for the variation of contact angle
in the dynamic wetting process [24]. Note that velocity slip models and DCA models
are usually used together, referred to as the boundary conditions in VOF [20]. It is
difficult to evaluate which kind of boundary conditions are the best in VOF simulations
of dynamic wetting at the macroscale, as various velocity slip and DCA models seem
to be capable of giving satisfactory predictions [25], as long as the stress singularity at
the contact line is circumvented. The reason for this is that the ratio of the contact line
region (called “CL region” in this work) to the whole macro droplet is so small that the
arising behaviours at the contact line is insignificant for the droplet dynamics as a whole.
However, if the droplet size is down to sub-micro and nano scales, the role of boundary
conditions becomes crucial for accurate predictions [26].

Molecular dynamics (MD) has been proved to be a power tool for probing the
microscopic properties of wetting at the nanoscale. The implementation of MD is very
simple, i.e., it solves Newton’s equations of motion for each particle, and averages the
properties of particles to obtain the macroscopic quantities of a system [27]. By
performing MD simulations, researchers have found the underlying mechanism of

forces at the contact line [28-30] and developed slip models for the continuum flow
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simulations [31-34]. However, the application of MD to macro droplets is strictly
limited by its expensive computational cost, despite the rapid developments of
hardware during the past two decades. Considering the computational efficiency, a
continuum simulation approach corroborated by appropriate microscopic models is a
better choice when simulating droplets above the nanoscale. Nevertheless, the VOF
method with standard boundary conditions developed for macroscale flows may be
problematic for applications at the nano and sub-micron scales [35], where the
particular contact line effects that relate to the interfacial molecular physics become
dominant. Therefore, more suitable boundary conditions are highly required for the
VOF methods to simulate the dynamic wetting of droplets with considerable small sizes.

Recently, some efforts have been put into the development of multiscale simulation
methodology for the dynamic wetting problems [36], which is commonly carried out
by means of domain decomposing [37] or hierarchical simulating [38]. Among them,
we proposed a sequential multiscale strategy [26], i.e., the VOF simulations are
performed with the boundary conditions resolved by MD. Specifically, the boundary
conditions include the MKT slip for the three-phase contact line and the classical Navier
slip for the remaining part of the liquid-solid interface, as well as the MKT DCA model
that accounts for the contact angle changes. Our results demonstrated that capturing the
particular slip behaviour at the contact line is crucial for the accurate prediction of
dynamic wetting of nanodroplets. However, it should be noted that most of the DCA
models, including the well-known Kistler’s model [39], Shikhmurzaev’s model [40],
Kalliadasis’s model [41], and the MKT DCA model, assume a relationship between the
DCA and contact line velocity, while the contact line velocity is also an unknown

quantity, which needs to be determined on-the-fly. Since the MKT slip model and the
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MKT DCA model adopted in our previous work to calculate the contact line velocity
and the instant DCA intrinsically come from one formula but just in different forms,
they are actually implemented twice in one calculation step, which is still theoretically
elusive and might result in accumulations of numerical errors.

To develop more self-consistent boundary conditions for the dynamic wetting
simulations, the changes of DCA must be uncoupled from the slip models. In this work,
we replace the MKT DCA model by including an additional source term into the VOF
momentum equation, inspired by the recent work of Boelens and de Pablo [42]. The
MKT slip model used in our previous work [26] is still kept to account for the particular
slip behaviour at the CL region. We will demonstrate that this new strategy has the best
performance among these methods in predicting the dynamic wetting process of
nanodroplets, on both smooth and pillared surfaces.

The remainder of this paper is structured as follows. The simulation methodology
and the corresponding theories are introduced in Section 2, including the standard VOF
method, the self-consistent boundary conditions proposed in this work, the modelling
and settings of MD simulations, and the implementation of the multiscale simulation
methodology. Simulation results are presented in Section 3, including the MD-derived
boundary conditions, the performance of the multiscale method in simulating dynamic
wetting of nanodroplets, and the feasibility of extending this method to larger scales.
Conclusions are provided in Section 4. Note that the standard VOF method in this paper
refers to the VOF method with standard boundary conditions, i.e., with the Navier slip
model for the whole liquid-solid interface and the DCA models for the variation of

contact angle.



2. Theory and methodology

2.1 Volume of fluid method

2.1.1 The standard VOF method.

In this paper, all VOF simulations are performed using the modified OpenFOAM
code [43]. The VOF method was first implemented in OpenFOAM as the interFoam
solver [44], whose accuracy and efficiency have been assessed by Deshpande et al. for
a variety of benchmark cases [45]. Numerous researchers have integrated new modules
into the OpenFOAM code, benefiting from its open source nature, to simulate
increasingly complex multiphase flows. In the present work, we develop new models
and modify the original interFoam solver to make it efficient and accurate for the
simulation of dynamic wetting at considerably small scales.

With the VOF method, the interface is captured by advecting a scalar function, «,
which represents the volume fraction of one phase with respect to the total volume of
fluid enclosed in one computational cell [13]. We assume that a computational cell fully
occupied by the liquid or the gas phase has a =1 or o = 0, respectively, and thus for
a cell belonging to the interface there is 0 < a < 1. Accordingly, a transport equation
for a [Eq. (1)] needs to be solved with the governing equations for the incompressible
two-phase flows (continuity equation [Eq. (2)] and momentum equation [Eq. (3)]), that
18,

oa

=7 (al) +7- (a1 -@)0,) =0, €Y
v-U=0, (2)
@ +7-(o00) = —p +7 - (url) + ykVa, 3)

where t is the time, U is the velocity vector, p is the density, p is the pressure, u
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is the viscosity, and U. isa “compressive”, artificial velocity that is added to mitigate
the smearing of the interface stemming from the presence of the divergence term, V -
(al—f ), as the volume fraction is a steep function at the interface. The model is completed
by defining the generic material property, y, as a linear combination of the volume
fraction, i.e. ¥ = ay; + (1 — a)xgy, where the subscripts | and g stand for “liquid”
and “gas”, respectively.

The classical Navier slip model, namely,

_ aU
Us = ls@ly:O' (4)

is commonly used as the boundary condition for the velocity field U to represent the
slip behaviour at the solid-liquid interface, where [ is the slip length. The last term on
the right-hand side of Eq. (3) is the surface tension force defined by the continuum
surface force (CSF) model [46]. That is, it is the product of the surface tension
coefficient (y), the gradient of the volume fraction (V«), and the curvature of interface
(k). Note that the curvature of the interface is determined by the divergence of the unit
normal vector of the interface (1), i.e.,

k=-V-1, (5)
with the positive direction of 7 pointing from the lower volume fraction side to the

larger one. This unit normal vector is approximated as

Va

Val’ ©)

n=
except at the computational cells that are next to the boundary walls and located in
correspondence of the CL region (called “CL cells” in this work), where it is determined

by the contact angle via

n = n,cosf; + 1n;sinb, (7)



where 71, is the unit normal vector of the boundary wall, 7, is the unit vector
tangential to the boundary wall and perpendicular to the contact line, and 6, is the
dynamic contact angle (DCA), as shown in Fig. (1). In this way, DCA virtually behaves
as a geometric boundary condition, which determines the curvature of the interface (k)
at the three-phase CL region and affects the dynamic wetting process accordingly. The
correct value of DCA at each instant of time can be obtained by a DCA model, which
prescribes the DCA as a function of time or the contact line velocity. Another more
straightforward method that has similar effects as using DCA models is to explicitly
include a force term into the momentum equation at the boundary cells [42,47,48]. This

will be discussed in detail in Section 2.1.3.

CL cell a, =0

S|

a, = 1
liquid 04

Solid surface (Boundary wall)

Fig. 1. Schematic of the unit vector and contact angle at the three-phase contact line.

2.1.2 Velocity slip boundary condition based on molecular kinetic theory.

It has been recognized that for an accurate simulation of dynamic wetting, not only
the velocity slip behaviour for the common solid-liquid interface, as described by the
Navier slip condition, plays a crucial role, but also the particular slip effect in the
vicinity of the three-phase contact line is of vital importance [33]. As reported by our
previous work [26], without considering the specific slip behaviour at the three-phase
contact line, the model would fail on quantifying the speed of the dynamic wetting,

unless an artificial large slip length is used in the Navier slip model. However, it should
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be emphasized that the slip length is not an artificial parameter, but is related to the
surface chemistry and solid-liquid interactions [49], whose value can be determined by
MD simulations [50]. As a consequence, we follow our previous work [26] to account
for the particular slip behaviour at the CL region by referring to the molecular kinetic
theory (MKT) [51,52].

The principal hypothesis of the MKT model is that the dynamics of the three-phase
contact line is determined by the statistical kinetics of molecular events occurring at the
CL region. Two quantities, K™ and K™, are used to define the frequency of molecular
displacements induced by thermal motions in the forward and backward directions at
the CL region, respectively. When the droplet is at equilibrium, these two frequencies

are approximately identical, that is,

kyT

AG*
K= = Ko = () ew (7).

NkgT ®

where kg is the Boltzmann constant, h is the Planck constant, T is the absolute
temperature, N is the Avogadro number, and AG™ is the molar activation free energy
of wetting. In this case, the contact line is stationary. However, once the instantaneous
DCA (6,) deviates from its equilibrium value (8,), a localized shear stress, which is
referred to the uncompensated or unbalanced Young’s stress, would be generated at the
three-phase region, that is,

w = y(cosf, — cosly). 9
This uncompensated stress alters the activation energy barrier of molecular

displacements in two directions, and changes the displacement frequencies as follows,

kgT AG” w
e e T
n )P\ NkpT © 2nkgT (10)

which results in the movement of the contact line with a velocity of




U, = A(Kt —K7). (11)
Defining two dimensionless constants B = (2nkgT)/y and C = (2i1;4K,) /vy, Eq.

(11) can be written as

Cy (cosB, — cosb,)
Uc, = —sinh ,
CL " Sin B

(12)
where y is the surface tension coefficient, n is the number of adsorption sites per unit
area on the solid surface, A is the characteristic length of molecular displacement, and
Y; is the dynamic viscosity of the liquid. Equation (12) will be employed as the velocity
slip boundary condition at the three-phase CL region in VOF, with the values of B and

C determined by our MD simulations presented below.

2.1.3 Replacing the DCA model by a source term in the momentum equation.
Alternatively, Equation (12) can be reformulated in terms of the dependence of
DCA on the contact line velocity, namely,

6, = arccos (cos@e — Barcsinh %) (13)
where Ca = (u;Ucr)/y is the capillary number. In our previous work [26], we directly
implemented Eq. (12) (the MKT slip model) and Eq. (13) (the MKT DCA model) as
the boundary conditions for the slip velocity and the contact angle, respectively. To
avoid the intertwining of the calculations of the contact line velocity and DCA, and to
improve the self-consistency of boundary conditions as explained in Section 1, in this
paper, we dismiss the DCA model and employ an alternative way to account for the
changes of DCA during dynamic wetting.

According to the MKT theory, the driving force for the movement of contact line
is the uncompensated Young’s stress, which is composed of the dynamic effect f; =

ycosO,; and the equilibrium effect f, = ycos6,. As shown in Fig. 2, in the previous
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method, these two effects are incorporated into the MKT DCA model, which is used as
a boundary condition to modify the interfacial curvature (k) at the boundary cells and
hence the source term ykVa in the momentum equation. Conversely, if the interfacial
curvature (k) is not corrected by the DCA model, but is directly determined by the
instant flow field, the resulting source term ykVa accounts for dynamic effects
without considering the equilibrium effect. Therefore, a promising way to replace the
DCA model is to retain the original source term for the dynamic effect and adding a
new source term to account for the equilibrium effect in the momentum equation. Note
that the additional source term is only accounted for the CL cells. At the liquid-gas
interfacial cells away from the solid wall, only the original source term ykVa is used

to describe the surface tension exerted on the liquid-gas interface.

Egs. (5) and (7)

k = —V - (i, cos0,4 + i sinfy)

1
|
1
1
1
k - determined by the boundary condition 1 :
1
1
1
1

1
1
1
1
1
1
1
Uncompensated Young’s Stress Egs. (5) and (6) ! Source term at the CL cells
w =y (cosf, — cosby) k=-V-(Va/|Va|) I YkVa (a)
1
1
1
1
1
1
1
1
1
1
1
1
1

Equilibrium effect ' An additional source term ‘
fe = ycosé@, BycosB,Via (b)

Fig. 2. Considering the effect of the uncompensated Young’s stress in the VOF method: (a) using

l Taken into account by: l k - determined by the instant flow field :

1

Dynamic effect The original source term 1
fa = ycos@, : ykVa ‘ :
+ Source term at the CL cells :
Modelled as: ykVa — Bycos0,.V,.a 1

1

1

1

1

1

the MKT DCA model as a boundary condition; (b) keeping the original source term for the dynamic

effect and modelling the equilibrium effect using a new source term in the momentum equation.

The modelling approach of the equilibrium effect (f,) is analogous to that of the
CSF model. We refer the readers to the recent paper published by Boelens and de Pablo

[42] for a detailed theoretical derivation, while here we provide a brief account of its
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implementation in the interFoam solver. To this end, we note that fe is a line force

exerted on the three-phase contact line, namely,
fe(X) = ycosBe1, (%), (14)
where X, is position vector of the point forming the contact line. Since the contact line

is not tracked explicitly in VOF methods and its exact location is unknown, we need to

convert fe to an equivalent surface force, fe 4, exerted on the diffuse interface, that is,
tim [[ fn a7 = [ fGa, (15)

—0JJ4 L
where 7 is the position vector of the points located in the solid wall plane lying inside

the diffuse CL region, and h is the width (or thickness) of this region. On the other

hand, through adopting the delta function, §(# —X;), the integral of f_'; over the
contact line can be converted to a surface integral over the diffuse CL region, as

indicated below,
j £GdL = j j L) - 6G - 3,) dF, (16)
L A

where the delta function is defined as

SGF—%) =0, £ 7,)
1]6(?—92’L)d?= 1 (A7)
A

Comparing Egs. (15) and (16), the surface force fe 4 can be identified as
limfs(7) = yeos6,7i, () - §(F — %,). (18)
Supposing the liquid-gas interface is sharp (instead of diffuse), the liquid volume

fraction (a) field can be expressed using a discontinuous function as follows,

1 (F<Xx)
lima(7#) =405 (7 =X,), (19)
h—-0 - -

0 (*¥>xp)

and thus the gradient of a along the plane of the boundary wall is
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}li_r)r(l) Via(#®) = (1 = 01 (7)) - §(F — x1). (20)
Comparing Egs. (18) and (20), the delta function is to be substituted by the two-
dimensional gradient of «, namely,
feA = ycos6,V;a, (21)
where V.« can be easily computed through the interFoam solver, implemented as
Vea = Va— (Va - 1,)1,,. (22)
The last step is to convert fe 4 toan equivalent body force feV exerted on the CL cells,

so that it can be incorporated into the momentum equation as a source term, that is,
fevBVer = feabAcy, (23)

where AV, is the volume of a CL cell, and AA; is the area of its face that belongs

to the boundary wall. Note that AA;, and AV, are mesh properties that can be

directly accessed in the interFoam solver. Consequently, the momentum equation is

modified to
a(pU _ _
% + V- (pU0) = —Vp + V- (uvT) + ykVa — fycos8,V.a, (24)
with the prefactor
B=s-g(a) (AAc./AVcL), (25)

in which the coefficient s is an on-off switch to localize the new source term activated
only at the CL cells, that is, s = 1 for CL cells and s = 0 for the other ones. The
modification function g(a) is necessary when the grid resolution is low, and this is
further discussed in the Supplementary Material [53].

As the last two terms on the right-hand side of Eq. (24) represent the dynamic and
equilibrium effect of the uncompensated Young’s stress, it is expected that the contact
angle of droplet automatically changes in the process of dynamic wetting, relying on

the induced flow field rather than the prescribed function of any DCA models.
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Accordingly, the present method is uncoupled with the velocity slip model for the three-
phase contact line, and this is the key advantage in comparison with our previous

method for dynamic wetting [26].

2.2 Molecular dynamics

We build two MD systems to simulate the dynamic wetting of water droplets and
the Couette flow of water. The former is to provide a benchmark result at the nanoscale
for the evaluation of different VOF models and to determine the values of the
parameters B and C in the MKT slip model, while the latter is to determine the value of
the slip length in the Navier slip model. All the MD simulations are performed using
the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [54], and
the results are visualized by the Open Visualization Tool (OVITO) [55].

In the dynamic wetting cases, four nanodroplets of different sizes with the initial
radius (r5) 0f 25.6 A, 39.1 A, 55.8 A, and 72.5 A, consisting of 2342, 8337, 24233, and
53152 water molecules, respectively, have been considered. The solid surfaces are
composed of copper-like atoms, which are FCC structured with the lattice constant L .=
3.615 A. Two different surface morphology are simulated, as shown in Fig. 3 (a) and
(b), with one molecularly smooth and another decorated with concentric annular pillars,
whose thickness, spacing and height are 3L., 3L. and L., respectively. Each
nanodroplet first experiences sufficient relaxation using the Nosé-Hoover thermostat at
300 K to make its potential energy reach a stable minimum [56]. Subsequently, the
droplet is placed right above the solid surface in such a way that the distance between
the closest oxygen and the solid atom is 2 A. Each case is run in the microcanonical

ensemble for 1.05 million steps, with a computational time step of 0.002 ps.
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In the Couette flow cases, 6402 water molecules are confined between two parallel
horizontal solid plates at a distance of 120 A, as shown in Fig. 3(c). The upper plate
keeps moving at a constant velocity and the bottom one remains stationary. Periodic
boundary conditions are assumed for the directions parallel to the two plates. After the
system reaches a steady state, the streamwise velocities are measured in layers
distributed along the direction normal to the solid surface, and then the slip length can

be determined straightforwardly according to the Navier slip model.

Fig. 3. Snapshots of the initial MD system in different cases. The white, red and blue particles
represent oxygen, hydrogen, and solid atoms, respectively. (a) The smooth surface case from the
front view. (b) The pillared surface case from the perspective view, and an enlarged view of one
eighth of the pillared surface. Note that the substrate (dark blue) and pillars (light blue) consist of
the same type of atoms, and the different colouring is just used for a clear distinction. (c) The Couette

flow case from the perspective view.

Water molecules in all cases are simulated using the TIP4P/2005 model, which is

15



an acknowledged rigid planar model consisting of one Lennard-Jones center (the
oxygen atom) and three point charges (two hydrogen atoms and one virtual M point)
[57]. The interaction between any two water molecules i and j is represented by a van

der Waals term and a Coulomb term, namely,

U, = 4e <@)12 - <@>6 e ats (26)
Y °\ry T 4me, £ Tap ’

where 1;; is the distance between the Lennard-Jones centers, and a and b stand for the

charged sites. Other parameters appearing in Eq. (26), including the Lennard-Jones
parameters of oxygen, the charges of hydrogen and the massless site M, and the
permittivity of vacuum, are listed in Table 1. The SHAKE algorithm [58] is applied to
ensure that the oxygen-hydrogen bond length is 0.9572 A and the H-O-H bond angle is
fixed as 104.52°. The interactions between two solid atoms are described using a
Lennard-Jones potential with the parameters €,=0.4093 eV and 0,=2.338 A [59]. The
interactions between water molecules and solid atoms are also described by the
Lennard-Jones potential, and the parameters are determined by the Lorentz-Berthelot
mixing rule, i.e., 059 = (05 +0,)/2 and €50 = ke\/a, where k. is a scaling
parameter to tune the interaction strength. We set k.=0.33 and 0.25 in this work to
simulate two kinds of surfaces, corresponding to the static contact angle of 34.5° and

66.0°, respectively.

Table 1. Parameters of the TIP4P/2005 model [57]

€0 (€V) a0 (A qo(e) qu(e) qu(e) &g (F/m)
8.0312x103 3.1589 0 0.5564 -1.1128 8.8542x1012

2.3 Multiscale simulation methodology

In summary, the multiscale simulation methodology in this work is implemented as
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follows:

(1) The MKT slip and the Navier slip models are implemented into the VOF method as
the boundary conditions for the CL regions and for the remaining part of the solid-
liquid interface, respectively, as shown in Fig. (4).

(2) Molecular dynamics simulations are performed to determine the parameters (B and
C) in the MKT slip model and the slip length in the Navier slip model.

(3) A new source term, [ycos8,V;a, is added to the momentum equation in VOF and
activated at the CL cells. Together with the surface tension force term, ykVa, the

change of DCA is automatically considered.

a(pU)

+V- (pﬁﬁ) =—-/p+V-: (,uVﬁ) + ykVa — Bycos,V.a
| ot e I v

at

[TV

MKT slip Navier slip MKT slip

Fig. 4. Schematic of the multiscale simulation method. The region between two semicircles

represents the liquid-gas interface captured by the VOF method.

3. Results

3.1 Molecular dynamics derived boundary conditions for VOF.

We first determine the constants in the MKT model and the slip length in the
Navier slip model through MD simulations of dynamic wetting and Couette flow,
respectively. For each dynamic wetting case, we divide the whole simulation domain

into two-dimensional bins and determine the density distribution of a droplet by
17



counting the number of water molecules contained in each bin. The liquid-gas interface
is defined by the locations of bins where the density is half the value inside the droplet
[60]. Fig. 5(a) shows the temporal evolution of the liquid-gas interface for the droplet
with an initial radius of 55.8 A. By making a linear fit through the points of the liquid-
gas interface in the range of 6 ~ 15 A above the solid surface, i.e., the line denoted as
Line (1) shown in Fig. 5(b), we determine the DCA corresponding to each instant of
time. When the wetting process is sufficiently developed, the equilibrium contact angle
on different surfaces can be measured. Our MD results predict 6, = 34.5° for
k=033 and 6, = 66.0° for k.=0.28.

As shown in Fig. 5(b), to avoid an overestimation of the base radius (13), we
evaluate it through the distance from the droplet center to the intersection of Line (2)
instead of Line (1) with the solid surfaces, where Line (2) is defined as a vertical line
that intersects with Line (1) at the distance of 4 A above the solid surface. Figure 5(c)
presents the temporal evolution of the base radius during wetting. Note that the radius
and time are normalized as r* =1, /1y and t* =t/ \/m , respectively. We fit r*

as a ratio of polynomial functions of t*, namely,
e ()

1+ Ximex p (t)k

*

Trie =

(27)

where a; and b, are free parameters to be adjusted, and k,,,, is the order of the
best polynomial that minimizes the error but still gives 77;, as a concave increasing

function [61], and then the Capillary number can be calculated via

WU, o dry

Ca = .
Y ypiro At”

(28)

Finally, the values of parameter B and C in the MKT slip model are determined by

fitting the MD results of 8,, 6; and Ca to Eq. (13), as shown in Fig. 5(d).
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Fig. 5. (a) Temporal evolution of the liquid-gas interface during the wetting process of a droplet
(19=55.8 A) on the solid surface (k.=0.33). (b) Schematic of evaluating the DCA and base radius of
a wetting droplet (t=700 ps). (c) Temporal evolution of the normalized base radius of the droplet
(r9=55.8 A) and its fitting curve. (d) Extrapolation of the constant B and C in the MKT slip model
by fitting MD results to Eq. (13).

For the Couette flow cases, we divide the computational domain between two plates
into 30 layers, and calculate the average velocity of water molecules in each layer. The
slip length (I5) can be determined by solving Eq. (4) with MD data, and the results give

1,=3.30 A for k.=0.33 and [,=4.35 A for k.=0.28.

3.2 Multiscale simulation of dynamic wetting of nanodroplets.

We first compare the results obtained by different VOF models with those obtained
by full MD simulations to evaluate the performance of the multiscale method in the

simulation of dynamic wetting at the nanoscale. To this end, five distinct VOF solvers
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are implemented with identical initial flow fields but under different boundary
conditions for the velocity slip and contact angle, as presented in Table 2. Specifically,
Solver 1 denotes the native interFoam solver in OpenFOAM, without any velocity slip
model and with a constant (static) contact angle; Solver 2 corresponds to the standard
VOF method, with the Navier slip model for the whole liquid-solid interface and a DCA
model for the variation of contact angle, and specifically, we use the MKT DCA model
for comparison with Solver 3; Solver 3 is identical to the one employed in our previous
work [26], where the MKT slip model is used for the CL region and the Navier slip
model is used for the remaining liquid-solid interface, and the MKT DCA model is used
for the variation of contact angle; Solver 4 is identical to the one employed in reference
[42], with the Navier slip model for the whole liquid-solid interface and a modified
source term added in the momentum equation; Solver 5 is the newest one proposed in
this work, where the velocity slip model is the same as in Solver 3, while a modified
source term analogous to Solver 4 is added in the momentum equation to replace the

DCA model.

Table 2. Boundary conditions of different VOF solvers evaluated in this paper. The acronyms LS

and CL denote the liquid-solid interface (except for the CL region) and CL region, respectively.

No. Velocity slip (LS)  Velocity slip (CL) Contact angle Note
Solver 1 No slip Constant value Native interFoam [44]
Solver 2 Navier slip model MKT DCA model Standard method
Solver 3~ Navier slip model MKT slip model MKT DCA model Zhang et. al. [26]
Solver 4 Navier slip model Modified source term Boelens et. al. [42]
Solver 5 Navier slip model MKT slip model ~ Modified source term Present method

In this section, we use the droplet with an initial radius of 55.8 A for presentations,
and the normalized base radius as well as the instant DCA measured by density contours

are used to quantify the dynamic wetting process. The simulation results of MD and
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different VOF solvers on the molecular smooth surfaces are shown in Fig. 6. It can be
inferred from Fig. 6 that both the base radius and DCA converge to their equilibrium
values after a sufficiently long time, indicating that all five solvers can predict the
correct equilibrium state of a wetted droplet. However, the dynamic wetting processes
predicted by different solvers have obvious distinctions, especially for the early wetting
stage (0 < t* < 10). Compared to the benchmark results obtained by MD, the native
interFoam solver (Solver 1) significantly underpredicts the temporal evolution of the
wetting process. The introduction of the Navier slip and DCA models (Solver 2)
enhances the wetting rate to some extent, but it is still far slower than the benchmark
results, unless an artificial large slip length is employed in the Navier slip model, as
reported in our previous work [26]. The temporal evolution of the normalized base
radius and DCA predicted by Solver 4 are quite close to those obtained by Solver 2,
confirming that the modified source term derived from the uncompensated Young’s
stress is qualified to replace the MKT DCA model. However, the performance of Solver
4 at the early stage of dynamic wetting is not further improved, suggesting that the
single Navier slip boundary condition for the whole liquid-solid surface is not accurate
enough, as the slip mechanism at the three-phase CL region is essentially different and
needs to be considered separately. With the MKT slip model plugged into the VOF
method for the CL region, both Solver 3 and Solver 5 show good performances
throughout the dynamic wetting process. Considering the advantages of replacing DCA
models by modifying the momentum equation (cf. the discussion presented in Section
2.1.3), Solver 5, i.e., the one proposed in this work, is considered as the best choice for
the simulation of nanodroplets wetting on smooth surfaces among the five

implementations.
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Fig. 6. Temporal evolution of the normalized base radius and DCA of the droplet (1,=55.8 A)
wetting on the smooth surfaces: (a) normalized base radius, k.=0.33; (b) DCA, k.=0.33; (¢)
normalized base radius, k.=0.28; (d) DCA, k.=0.28.

We further evaluate the performance of five solvers on the rough surfaces, which
are decorated with concentric annular pillars. Figure 7 shows the snapshots of the last
time step simulated by five solvers that the droplet (r,=55.8 A) wets on the pillared
surface (k.=0.33). For the sake of comparison, each snapshot comprises the MD result
on the left-hand side while the corresponding VOF result is depicted on the right-hand
side. It is interesting to see that the droplet morphologies, including the base radius and
contact angle obtained by Solvers 1, 2, and 4 are completely different from MD, while

Solver 3 seems to give a better prediction and Solver 5 gives the best result.
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Fig. 7. Cross-sectional snapshots of droplet morphologies when the droplet (1,=55.8 A) wets the
pillared surface (k.=0.33) at t*=40.34. The left side of each subfigure shows the MD result in

comparison to the right-side results obtained by different VOF solvers.

The emergence of the pinning-depinning phenomenon on heterogeneous surfaces
should be the main cause for the large difference in the simulation performance between
five solvers. This phenomenon can be indicated by the step-like temporal variations for
both the base radius and contact angle of the droplet predicted by MD, as shown by the
black curves in Fig. 8. The molecular origin of this phenomenon lies in the competition
of pinning force and depinning force, which are essentially the intermolecular forces
exerted on the water molecules in the vicinity of contact line by the solid molecules in
pillars and other water molecules in the remaining portion of the droplet, respectively
[62]. Considering the contact line advances near the outermost edge of a pillar, it is
pinned due to the balance of pinning force and depinning force: as the depinning force
increases due to the accumulation of water molecules at the CL region, the pinning

force can increase instantaneously by adapting the solid-liquid intermolecular distance,
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which is contributed by the bending deformation of pillar structures [62]. The contact
line will keep on pinning until the depinning force exceeds the maximum pinning force
[63]. Obviously, since the pinning-depinning phenomenon is essentially caused by the
intermolecular interactions, MD is able to reproduce it, while its accurate simulation
via a VOF model without considering the interfacial molecular physics will be quite
more challenging.

As shown in Fig. 8, the dynamic wetting process predicted by Solvers 1, 2, and 4
are much slower than the MD results, indicating that the particular slip mechanism at
the CL region is indispensable for the prompt depinning of contact line from the pillar
edge. On the contrary, if the MKT slip model is supplemented at the contact line, e.g.
Solver 3 and Solver 5, the wetting rate is largely enhanced. The reason for this is that
the MKT slip model is derived based on the molecular dynamics, which predicts a non-
constant slip velocity for the contact line depending on the molecular movements at the
CL region. As the water molecules accumulate in the vicinity of contact line, which is
jointly caused by the drive of uncompensated Young’s stress and the pinning of contact
line, the DCA keeps increasing to make the predicted slip velocity increase as well (cf.
Eq. (12)). Consequently, the slip velocity could reach the critical value to get over the
maximum pinning force that the pillar molecules can provide, allowing for the prompt
depinning of contact line. Compared with the MD results, Solver 5 has a better
performance than Solver 3, which should attribute to the dismissal of MKT DCA model
that avoids the increasing numerical errors due to the intertwine between it and the
MKT slip model, as explained in Section 2.1.3. Overall, the deviations between the
dynamic wetting characteristics predicted by Solver 5 and the MD results are within an

acceptable level, considering that MD inevitably has statistical noise.
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Fig. 8. Temporal evolution of the normalized base radius and DCA of the droplet (1,=55.8 A)

wetting on the pillared surface: (a) normalized base radius, k.=0.33; (b) DCA, k.=0.33; (c)
normalized base radius, k.=0.28; (d) DCA, k.=0.28.

As a further demonstration, in Fig. 9 we compare the cross-sectional snapshots of

a nanodroplet (r,=55.8 A) spreading on the pillared surface (k.=0.33) at several typical

instants of time obtained by Solver 5 with those by MD. It can be seen that the overall

droplet properties (e.g., radius, height and curvature) obtained by two methods are quite

similar. For this case, the computational cost for the MD-VOF multiscale simulation is

around eight times less than that for the full MD simulation. With the increase of droplet

size, using this kind of multiscale simulation strategy could save more computational

resources.
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Fig. 9. Comparisons of the cross-sectional snapshots obtained by MD (the left side in each subfigure)
and by the multiscale Solver 5 (the right side), at four distinct instants during the droplet (15=55.8
A) wetting on the pillared surface (k.=0.33).

3.3 Extension of the multiscale simulation method to larger scales.

We have shown that the multiscale method gives good performance on the
simulations of dynamic wetting at the nanoscale. To extend its applicability to the larger
scales, two critical issues remain to be addressed. One is whether the parameters in
VOF boundary conditions obtained by the MD simulations using a certain initial radius
of droplet are applicable to simulating droplets of other sizes. To this end, we perform
MD simulations of dynamic wetting of droplets with four different initial radii on the
smooth surface (k.=0.33). As shown in Fig. 10, the temporal evolutions of the
normalized base radius and DCA both nearly collapse onto one single curve, indicating
that they are independent of the droplet size, if the small changes of contact angle due
to the effect of line tension is ignored [28]. Therefore, as long as the properties of the
droplets and the surfaces are unchanged, the MKT slip boundary condition applied to

other cases with different scales can be directly derived with the determined values of
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6., 6;, and rf*it, as presented in Section 3.1, without resorting to the additional

expensive MD simulations.
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Fig. 10. Temporal evolutions of the (a) normalized base radius and (b) DCA of droplets wetting on

the smooth surface (k.=0.33). The droplets are of four different initial radii.

Another issue is whether the dynamic wetting process predicted by the proposed
multiscale method is consistent with those by other VOF methods, for instance, the
standard VOF method implemented with the Navier slip and DCA models (Solver 2).
To this end, we simulate the wetting process of droplets with initial radii from 55.8 A
to 55.8 um using Solver 2 and Solver 5. To compare the results obtained by these two

solvers, we define a relative error, namely,

t;, —ts
8 — 2,X 5,x| ) (29)

tox
where ty, is the normalized time at which the base radius of droplet simulated by
Solver N reaches x percent of its maximum value. Specifically, we set x to 50%,
85%, and 98% to characterize the difference of the wetting rate at different wetting
stages predicted by Solver 2 and 5. As shown in Fig. 11, this difference at the nanoscale
is prominent. On the contrary, the difference above the micrometer scale is down to less

than 10%, indicating that our multiscale method is compatible with the standard VOF

method at the macroscales, as the effect of the particular slip at the CL region becomes
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less important. Note that if the droplet size falls in between nanometer and micrometer,
this difference is still notable. Therefore, the present multiscale method essentially
provides an efficient approach to simulate the dynamic wetting at such scales, at which
MD is limited by the massive computational cost and the standard VOF method is

limited by the computational accuracy.
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Fig. 11. The relative error of droplet wetting rate simulated by the standard VOF method and present

multiscale method.
4. Conclusions

In this paper, we propose a multiscale simulation method for the dynamic wetting
problem, based on the recent work of Zhang et. al. (2017) [26] and Boelens et. al. (2019)
[42]. Specifically, the volume of fluid (VOF) simulations are enhanced by using the
self-consistent boundary conditions derived from molecular dynamics (MD). Different
from the standard VOF boundary conditions that employ the Navier slip model for the
whole liquid-solid interface and the dynamic contact angle (DCA) models for the
variation of contact angle, we include a slip model based on the molecular kinetic theory
(MKT) for the three-phase contact line region to account for the particular interfacial
molecular physics, as well as the classical Navier slip model for the remaining part of

the liquid-solid interface. Besides, a newly-modelled source term that accounts for the
28



equilibrium effect of the uncompensated Young’s stress is supplemented to the
momentum equation in VOF to replace the convectional MKT DCA model. The
simulation results demonstrate that with these self-consistent boundary conditions, the
enhanced VOF simulations can provide consistent predictions with full MD simulations
for the dynamic wetting of nanodroplets on both smooth and pillared surfaces.
Compared with the standard VOF method and the method of Boelens and de Pablo [42],
the multiscale method introduced in this work has significantly better computational
accuracy in the prediction of the dynamic wetting of droplets with considerable small
sizes, especially on the pillared surfaces where the pinning-depinning phenomenon
emerges. Compared with our previous multiscale approach [26], the present method
replaces the MKT DCA model by an equivalent source term in the VOF momentum
equation, so that the variation of DCA is uncoupled with the calculation of contact line
velocity, which is performed by the MKT slip model, to avoid the accumulation of
numerical errors. At last, we demonstrate the flexibilities and possibilities of applying
this multiscale approach to analogous dynamic wetting problems at larger scales.
Considering that the MD is limited by the massive computational cost above the
nanoscale, and the standard VOF method is limited by the sensitivity and uncertainty
of boundary conditions below the microscale, the present multiscale method provides
an efficient and accurate simulation approach for the dynamic wetting at the

intermediate scales.
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