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ABSTRACT

Lattice Boltzmann method models offer a novel framework for the simulation of high Reynolds number dilute gravity currents. The numerical
algorithm is well suited to acceleration via implementation on massively parallel computer architectures. Here, we present two lattice
Boltzmann method models of lock-exchange dilute gravity currents in which the largest turbulent length scales are directly resolved. The three-
dimensional simulations are accelerated by exporting computations to a graphics processing unit and are validated against experiments and
high-resolution simulations for Reynolds numbers up to 30 000. The lattice Boltzmann method models achieve equivalent accuracy to conven-
tional large-eddy simulation models in the prediction of key flow properties. A conservative analysis of computational performance relative to
conventional methods indicates that the presented framework reduces simulation times by two orders of magnitude. Therefore, it can be used
as a foundation for the development of depth-resolving models that capture more of the complexity of environmental gravity currents.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0082959

NOMENCLATURE

c Velocity quantum, c ¼ Dx=Dt
cQmijk Discrete set of m velocities in a three-dimensional

space where i; j; k 2 f1; 0;�1g
Cnrs Cumulant of order nþ r þ s
C�nrs Post-collision cumulant of order nþ r þ s
Ceq
nrs Equilibrium cumulant of order nþ r þ s

CPU Central processing unit
Cs Smagorinsky constant
cs Speed of sound in the lattice
D Diffusivity of the scalar field

DnQm Defines a lattice structure with n dimensions and m
velocities

DNS Direct numerical simulation
eL1 L1 error
eg Unit vector in the direction of gravitational accelera-

tion, i.e., eg ¼ 0; 0;�1ð ÞT
f Continuous particle distribution function

FB Boussinesq forcing term
fijk Discretized particle distribution function
f eqijk Discretized equilibrium particle distribution function
Fw Total frictional force applied to the lower boundary

FDNS
w Total frictional force applied to the lower boundary

in a DNS simulation
FLBM�LES
w Total frictional force applied to the lower boundary

in an LBM–LES simulation
Fr Froude number
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G Macroscopic body force acting on the flow
g Gravitational acceleration
g 0 Reduced gravity

GPU Graphics processing unit
H Channel depth
h0 Initial current depth
hf Height of the current head
L1 Length of the computational domain in the x

direction
L2 Length of the computational domain in the y

direction
L3 Length of the computational domain in the z

direction
LBM Lattice Boltzmann method

LBM-GPU Lattice Boltzmann method solver that ports computa-
tions to a graphics processing unit

LBM-LES Lattice Boltzmann method model that uses a large
eddy simulation turbulence model

LES Large eddy simulation
Mnrs Factorized central moments of order nþ r þ s
M�nrs Post-collision factorized central moments of order

nþ r þ s
mABC Raw moments of order Aþ Bþ C

MNUPS Million node updates per second
NL3 Number of nodes discretizing the L3 dimension of

the computational domain
Nnodes Total number of nodes in the computational domain

Nt Number of timesteps for which a results file was writ-
ten to the hard drive

NS Navier–Stokes
NS-DNS A method that solves the Navier–Stokes equations

and resolves all scales of the turbulent flow
NS-LES A method that solves the Navier–Stokes equations

and uses a large-eddy simulation turbulence model
P Pressure
Pj A list of n processors, that is, Pj 2 fP1;P2;…;Png.
pk Kinematic pressure

Reb Buoyancy Reynolds number
Recr Critical buoyancy Reynolds number

S Local stress tensor
Sijk Momentum density source term in the lattice

Boltzmann equation
Sc Schmidt number

ScT Turbulent Schmidt number
t Time

tiPj A block of processing time on one of n processors
Pj 2 fP1;P2;…; Png

TCPU Total central processing unit time required to run a
simulation

TE Total elapsed time required to run a simulation
TEnd Time at which the simulation is terminated

ti A list of Nt times at which a results file was output
i.e., ti 2 ft1; t2;…; tNtg

tIV Time at which a lock-exchange gravity current transi-
tions from the inertial to viscous phase

tSI Time at which a lock-exchange gravity current transi-
tions from the slumping to inertial phase

tSV Time at which a lock-exchange gravity current transi-
tions from the slumping to viscous phase

u Macroscopic velocity field u ¼ u; v;wð ÞT
Ub Buoyancy velocity
uf Front velocity of the gravity current
us Friction velocity

wQm
ijk A constant set of weights corresponding to m discrete

velocities
x Position in Cartesian coordinate system, that is,

x ¼ x; y; zð ÞT
x0 The distance of the lock gate from the start of the channel
xf The distance between the current front and the initial

lock gate position
zþmax The maximum zþ recorded across all wall-adjacent

nodes throughout the duration of the simulation
zþ Non-dimensional distance from the wall
a Coefficient of expansion
D Filter width

Dt Time step
Dx Grid spacing

Dz1 Distance from a wall adjacent node to the boundary wall
Dz2 Distance from a wall adjacent node to the nearest

node in the wall normal direction
dq The component of fluid density that fluctuates

around the mean
jnrs Central moments of order nþ r þ s
� Viscosity of the ambient fluid
�T Local eddy viscosity
n Particle velocity field n ¼ ðnx; ny; nzÞ
N Velocity–frequency variable N ¼ N;Y ;Zf g

nIP Empirical constant that parameterizes the inertial
phase scaling law

nVP Empirical constant that parameterizes the viscous
phase scaling law

q Density
%q Mean density

q0 Initial current density
qa Density of the ambient fluid
qs Solute density
s Characteristic relaxation time of the fluid

sw Wall shear stress
sU Characteristic relaxation time of the scalar field
U Continuous particle distribution function for the sca-

lar field
Uijk Discretized particle distribution function for the sca-

lar field
Ueq

ijk Discretized equilibrium particle distribution function
for the scalar field

v Solute concentration
v0 Initial solute concentration in the current
va Solute concentration of the ambient fluid
X Continuous collision operator

Xijk Discretized collision operator
xnrs Characteristic relaxation frequency of order nþ r þ s

^accent: Indicates that the variable has been non-
dimensionalized by the length scale h0 and the veloc-
ity scale g 0h0

� �1
2
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~accent: Indicates that the variable has been non-
dimensionalized by the length scale H and the veloc-
ity scale Ub¼ g 0H

� �1
2

�accent: Indicates that the variable has been spanwise aver-
aged, i.e., along the L2 direction

I. INTRODUCTION

Gravity currents are flows driven by the buoyancy forces that
arise due to the action of gravity on a density gradient within a fluid.
The broad class of environmental buoyancy-driven flows includes
thermohaline flows1 and saline currents,2 which are driven by temper-
ature and salt-concentration gradients, respectively. Temperature and
salinity gradients can occur simultaneously within a system, resulting
in double-diffusive gravity currents.3 Density gradients may also be
generated by the suspension of particles within the flow, as is the case
in turbidity currents, which are ocean-floor underflows consisting of a
dense mixture of fluid and sediment particles.4 In the case of turbidity
currents, there is the added complexity of the current exchanging par-
ticulate material with the boundary through erosion and deposition,
resulting in a two-way coupled relationship between the hydrodynam-
ics of the flow and morphodynamics of the channel geometry.5,6

Direct observation and measurement of turbidity currents in the envi-
ronment are rare due to the infrequent and destructive nature of the
flow. Therefore, the dynamics are investigated through theoretical,
experimental, and numerical modeling. The propagation of gravity
currents is of broad interest in environmental fluid dynamics, with rel-
evance to research areas as diverse as the study of ocean current
dynamics,7 and the development of carbon capture and storage
processes.8

The lock-exchange saline gravity current experiment is the clas-
sical problem used to investigate the dynamics of dilute gravity cur-
rents. The conventional experimental setup is illustrated in Fig. 1
and consists of a straight channel of depth H in which a relatively
light ambient fluid of density, qa, is separated by a gate from a fluid
of density q0 > qa, and depth h0. In the case of dilute gravity cur-
rents, the density difference is small ðq0 � qaÞ=qa � 1; hence, the
Boussinesq approximation can be applied, which assumes density
variations are small enough to be neglected in the governing equa-
tions unless they are acted on by gravity.9 The reduced gravity of the
system is defined as g 0 ¼ g q0 � qað Þ=qa, where g is acceleration due
to gravity.

The gate is placed at a distance x0 from the start of the channel,
and when removed, a gravity current is initiated by the resulting hori-
zontal hydrostatic pressure gradient. The current propagates along the
channel, with its front located at a distance xf ðtÞ from the initial posi-
tion of the gate (x0), and at a height of hf ðtÞ above the lower bound-
ary, where t denotes time. The channel depth ðHÞ is taken as the

characteristic length scale of the flow, and the characteristic velocity
scale is the buoyancy velocity Ub ¼

ffiffiffiffiffiffiffiffi
g 0H

p
. These characteristic scales

combine with the viscosity of the ambient fluid (�) to define the buoy-
ancy Reynolds number, Reb ¼ UbH=�.

Following a brief period of frontal acceleration, lock-exchange
gravity currents exhibit three distinct phases: the slumping, iner-
tial, and viscous phases.10 In the slumping phase, the current front
advances at a constant velocity (uf ) under a balance of pressure
and drag forces.10–13 The Froude number of the current is defined
as the non-dimensional front velocity in the slumping phase,
Fr ¼ uf

Ub
.

In the inertial phase, the flow is governed by a balance of iner-
tial and buoyancy forces. It has been determined, through both theo-
retical modeling and empirical study, that in the inertial phase front
location (xf ) and velocity (uf ) tend asymptotically toward Eqs. (1)
and (2), respectively.10,14–16 In Eqs. (1) and (2), and throughout
this paper, symbols with a � above them indicate values non-
dimensionalized by the characteristic length scale H, and velocity
scale Ub,

~xf ¼ nIP ~h0~x0
� �1

3~t
2
3; (1)

~uf ¼
2
3
nIP ~h0~x0
� �1

3~t�
1
3: (2)

The viscous phase is governed by the balance of viscous and
buoyancy forces. Hoult15 derived a self-similarity solution of the
depth-averaged Navier–Stokes equations to determine the viscous
spreading rate of oil slicks on the surface of freshwater. Huppert17

completed a similar analysis for the case of a dense viscous under-
flow over a no-slip boundary, which bears a closer relation to the
lock-exchange problem, arriving at the scaling laws in the following
equations:

~xf ¼ nVP ~h
3
0 ~x30Reb

� �1
5
~t
1
5; (3)

~uf ¼
1
5
nVP ~h

3
0 ~x30Reb

� �1
5
~t�

4
5: (4)

The empirical constant nIP was originally set to nIP ¼ 1:6 by Hoult15

and nIP ¼ 1:47 by Huppert and Simpson.10 Huppert17 set the viscous
phase constant to nVP ¼ 1:13. The values of the empirical constants
were revised by Cantero et al.,18 who fit the nIP and nVP using a range
of experimental and numerical results, ultimately arriving at the best
fit values of nIP ¼ 1:47 and nVP ¼ 3:2.

The time of transition between the phases can be determined by
equating the scaling laws.18 Doing so results in the transition from the
slumping to inertial phase occurring at ~t SI , the transition from

FIG. 1. Lock-exchange gravity current
parameters.
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slumping to viscous occurring at ~t SV , and the inertial to viscous phase
transition occurring at ~t IV , as shown in Eqs. (5)–(8), respectively. In
the event that ~t SV < ~t SI , the flow will transition straight from the
slumping to viscous phase and bypass the inertial phase entirely. The
parameterization of the constants nIP and nVP; conducted by Cantero
et al.,18 had the effect of fitting the phase transition times predicted by
the scaling laws to empirical data. The critical Reynolds number, above
which the inertial phase develops, can be found by equating Eqs. (5)
and (6), giving Eq. (8),

~t SI ¼
2nIP
3Fr

� �3

~h0~x0; (5)

~t SV ¼
1
5
nVP

� �5
4 ~h0~x0
� �3

4

Fr
5
4

Re
1
4
b; (6)

~t IV ¼
3nVP
10nIP

� �15
7

~h0~x0
� �4

7Re
3
7
b; (7)

Recr ¼
2nIP
3Fr

� �12
5Fr
nVP

� �5
~h0~x0: (8)

The time of transition from the slumping to inertial phase is a function
of the initial non-dimensional lock length ~x0. It is often convenient to
alter the non-dimensionalization of velocity and length scales, such

that û ¼ ~uf = ~h0
� �1

2 ¼ uf = g0h0
� �1

2 and t̂ ¼ ~t ~h0
� �1

2=~x0 ¼ t g 0h0
� �1

2=x0,
which causes the transition time to collapse down to

t̂ SI ¼ 2nIP~h
1
2

0=3Fr
� �3

.18

A range of depth-resolving models have been developed to simu-
late the mechanics of dilute gravity currents. The models numerically
solve the incompressible Navier–Stokes (NS) equations of mass and
momentum conservation coupled, via the Boussinesq approximation,
with an advection–diffusion equation for the scalar concentration
field.19 As the dynamics of environmental gravity currents are substan-
tially influenced by turbulent processes, such as turbulent mixing
within the current and at the current–ambient interface, depth-
resolving models are classified by the extent to which they resolve or
model the turbulent length scales of the flow.

Numerical studies using direct numerical simulation (DNS), in
which all turbulent length scales are resolved, have been conducted for
lock-exchange gravity current flows with low-to-moderate Reynolds
numbers.18,20–26 However, due to the high levels of grid refinement
required for DNS simulations, the approach is extremely computa-
tionally expensive, which precludes the study of highly turbulent flows
in large complex domains of the sort observed in the environment.

Reynolds-averaged Navier–Stokes (RANS) models, derived by
time-averaging of the governing equations, have been applied to the
simulation of dilute gravity currents with both fixed and deformable
boundaries.27–32 Although RANS models are far less computationally
expensive than DNS models, which has enabled the simulation of
environmental scale flows, the inherent averaging of the governing
equations reduces the accuracy with which they can capture the com-
plex time-dependent turbulent flow features of gravity currents.

In large-eddy simulation (LES) models, the largest length scales are
directly resolved, while the sub-grid scales of turbulent motion are mod-
eled, usually using variants of the Smagorinsky model.33 The grid reso-
lution requirements for a well-resolved gravity current simulation have

been studied by Pelmard et al.34 NS-LES models benefit from enhanced
accuracy relative to RANS approaches as they directly capture the large-
scale turbulent flow features, while offering a less computationally
expensive alternative to DNS.34–39 However, the computational expense
of conventional NS-LES models is still considerable, limiting the insights
that can be gained into the dynamics of dilute gravity currents, as it
becomes prohibitively expensive to extend the models to incorporate
more of the full complexity of real-world environmental flows.

The lattice Boltzmann method (LBM) offers an alternative
numerical framework to the aforementioned numerical methods,
which all model fluid motion at the macroscopic scale, where the fluid
and flow properties are continuous. The LB method differs fundamen-
tally, as fluid motion is modeled at the mesoscopic scale, between
macro and microscopic, where the fluid is described by a particle dis-
tribution function.40 The evolution of the particle distribution function
is governed by the Boltzmann equation, which is discretized to form
an explicit numerical scheme. Guo et al.41 first demonstrated that an
LBM formulation equivalent to the Navier–Stokes equations, using the
Boussinesq approximation to couple the governing equations, could
effectively simulate flows driven by density gradients.

LBM models have been formulated to solve the depth-averaged
shallow water equations, to predict the current height and front veloc-
ity of gravity currents.42 However, there is very limited research on the
application of LBM models to the simulation of gravity currents,
where the LBM formulation is equivalent to the Navier–Stokes equa-
tions, and the Boussinesq approximation is applied. Ottolenghi et al.43

published the first study of such a model, comparing the results of
two and three-dimensional LBM large-eddy simulations (LBM–LES)
of lock-exchange saline gravity currents against experimental data.
Two-dimensional simulations were run for Reynolds numbers of
Reb 2 f1000; 5000; 10 000; 30 000g, and three-dimensional simula-
tions were run for Reb 2 f1000; 5000; 10 000g. Ottolenghi et al.43
made an initial comparison between the results of LBM simulations
and experiments, demonstrating reasonable agreement with their
experiments and theoretical results in the prediction of some key flow
characteristics, such as the Froude number, entrainment of ambient
fluid, and lobe-cleft development at the head. However, further valida-
tion is required, especially against DNS results, to determine whether
the LBM framework can be used as an accurate numerical tool for the
simulation of gravity currents.

The present study aims to address this open question and estab-
lish the LBM–LES method as an accurate alternative numerical frame-
work for studying dilute gravity currents. Two LBM–LES codes,
RAFSINE49,80 and VirtualFluids,78,79,81 are validated against a wide
range of experimental data and high-resolution simulations. The key
model performance tests, previously unaddressed in the literature,
include the careful validation of LBM model predictions of flow phase
transition against experimental data and high-resolution simulations,
study of LBM–LES model accuracy in the near-wall region, and a
comparison of the LBM–LES model accuracy to conventional NS-LES
models. The accuracy and stability of an LBMmodel are influenced by
the details of its formulation. The Ottolenghi et al.43 LBM model
uses a single relaxation time collision operator, which is the most
widely used, but also the simplest of the available options. The LBM
model implemented in VirtualFluids uses more advanced collision
operators, creating potential for greater accuracy and stability in the
simulations.44
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Additionally, the computational performance advantages of the
LBM framework are also yet to be established. In the Ottolenghi
et al.43 study, the LBMmodel is implemented in an in-house code that
utilizes OpenMP parallelization on CPU cores, resulting in simulation
times ranging from 1 to 5 days on a six-core desktop machine. The
authors acknowledge that this does not reflect the potential computa-
tional efficiency of the approach. LBM models are particularly well
suited to implementation on massively parallel machines, such as
graphic processing units (GPUs) as the numerical scheme only con-
tains calculations with locally defined variables. This allows LBM algo-
rithms to effectively utilize the architecture of the GPU. When
simulations are run on central processing units (CPUs) with multi-
core processors, the domain is divided between the various cores,
which perform calculations in parallel and communicate when neces-
sary. LBM model implementations on a GPU offer much greater
potential for parallel fluid simulations than the CPU, as each node in
the domain can be assigned to a different thread and stepped forward
in time in parallel, resulting in orders of magnitude reductions in sim-
ulation times.45 In the present study, simulations in RAFSINE and
VirtualFluids are accelerated by exporting computations to a GPU.
The computational performance of the LBM-GPU implementations is
compared with conventional methods in the field to quantify the rela-
tive performance gains that are realized through the novel application
of this framework.

The paper is structured as follows: the methods used to develop
the LBM-LES models and the NS-DNS validation simulations are
detailed in Sec. II; results and discussion regarding model accuracy
and computational performance are presented in Sec. III; finally, con-
clusions are delivered in Sec. IV.

II. METHODS
A. Macroscopic governing equations

The macroscopic governing equations of a dilute saline gravity
current flow are those of mass and momentum conservation for an
incompressible flow coupled, via the Boussinesq approximation, with
an advection–diffusion equation for the scalar concentration field. In
the Boussinesq limit density (qðx; tÞ) is a linear function of saline con-
centration and is defined in Eq. (9), where a ¼ ðqs � qaÞ=qa, qs is sol-
ute density, and vðx; tÞ is solute concentration. Therefore, the
macroscopic body force acting on the flow is G, defined in Eq. (10),
where eg ¼ 0; 0;�1ð ÞT is the unit vector in the direction of gravita-
tional acceleration. The constant term in G is absorbed into the pres-
sure term of the momentum equation as hydrostatic pressure,
$P ¼ $ðpkðx; tÞ � gqazÞ, where pk is kinematic pressure. Therefore,
the flow is driven by the Boussinesq forcing term FB, Eq. (11),

q x; tð Þ ¼ qa 1þ av x; tð Þð Þ; (9)

G ¼ gqa 1þ av x; tð Þð Þeg ; (10)

FB ¼ gqaav x; tð Þeg : (11)

Solute concentration in the ambient and dense fluids are set to zero
(va ¼ 0) and unity (v0 ¼ 1), respectively. The governing equations
are non-dimensionalized using the characteristic length scale H, and
velocity scale Ub, resulting in the non-dimensional incompressible
mass and momentum conservation equations [Eqs. (12) and (13)],
and an advection–diffusion equation for the scalar concentration field

~v x; tð Þ ¼ v x; tð Þ=v0 [Eq. (14)]. Non-dimensional density is defined
by the equation ~q x; tð Þ ¼ ðq x; tð Þ � qaÞ=ðq0 � qaÞ,

$ � ~u ¼ 0; (12)

@~u
@~t
þ ~u � ~$~u ¼ �~$~P þ 1

Reb
~$
2
~u þ ~veg ; (13)

@~v

@~t
þ ~u � ~$~v ¼ 1

RebSc
r2~v: (14)

The governing equations contain two non-dimensional numbers, the
buoyancy Reynolds number (Reb ¼ UbH=�), and the Schmidt num-
ber (Sc ¼ �=D), which is the ratio between the viscosity of the ambient
fluid and the diffusivity of the scalar concentration field.

B. The lattice Boltzmann method framework

Conventional depth-resolving models directly discretize the mac-
roscopic governing equations and solve them numerically. The lattice
Boltzmann method models fluid motion at the mesoscopic scale, that
is, between the micro and macroscopic scales. An overview of LBM
theory is provided below, but readers are referred to Kruger et al.44 for
a rigorous derivation.

At the mesoscopic scale, distribution functions are the key vari-
able and are used to represent the properties of a group of particles.
The particle distribution function is an extension of volumetric mass
density to include density in particle velocity space nx; ny; nz

� �
; hence,

in three-dimensions, f x; n; tð Þ has the units presented in the following
equation:

f x; n; tð Þ
	 


¼ kg � 1
m3
� 1

m
s

� �3 ¼
kg s3

m6
: (15)

The particle distribution function is a function of the particle position
vector xð Þ, particle velocity nð Þ, and time tð Þ. Therefore, the function
returns the particle density within a specified velocity range at a given
location and time. The total derivative of the particle distribution func-
tion produces the Boltzmann equation [Eq. (16)], which includes a
source term X fð Þ to account for the collision and subsequent redistri-
bution of particles. In the present study, the external body force term
in the Boltzmann equation is the Boussinesq forcing term FB,

Df x; n; tð Þ ¼ @t f x; n; tð Þ þ n � $f x; n; tð Þ þ FB � @n f x; n; tð Þ
¼ X fð Þ: (16)

The Boltzmann equation with forces is discretized to produce the lat-
tice Boltzmann equation (LBE) with a momentum density source
term (Sijk) in Eq. (17). This is an expression for the unknown distribu-
tion function f ijk x; tð Þ, which is defined at the nodes of a lattice struc-

ture. The lattice is defined using the naming structure DnQm, where n
indicates the number of spatial dimensions, and m is the number of
discrete velocities. Three lattice structures are shown in Fig. 2, D3Q6,
D3Q19, and D3Q27. Lattice nodes are connected by a set of discrete
velocities ðcQmijk Þ, where the indices i; j; k can take the values

2 f1; 0;�1g, corresponding to each component of velocity in a
Cartesian coordinate system. The lattice spacing is defined as Dx, and
particles move between site locations in time Dt. The LBE is second-
order accurate in both space and time44
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fijk x þ cQmijk Dt; t þ Dt
� �

¼ fijk x; tð Þ þ Xijk fijk
� �þ Sijk: (17)

The governing equations for macroscopic fluid flow, mass, and
momentum conservation can be recovered from the Boltzmann equa-
tion using asymptotic analysis46 or Taylor expansion.47 The raw
moments of the distribution function ðf ijkÞ are calculated using Eq.
(18), where the order of the moment is determined by the sum of its
indices Aþ Bþ C. Macroscopic density and momentum density are
calculated from the zeroth- and first-order raw moments of f ijk;
respectively, as illustrated inthe following equations:

mABC ¼
X
i;j;k

iAjBkCfijk; (18)

q ¼ m000 ¼
X
i;j;k

fijk; (19)

qu ¼ q m100;m010;m001ð Þ

¼
X
i;j;k

if ijk þ
Dt
2
Fx
B;
X
i;j;k

jf ijk þ
Dt
2
Fy
B;
X
i;j;k

kf ijk þ
Dt
2
Fz
B

 !
:

(20)

C. LBM implementations

An LBM gravity current model has been implemented in two
codes, RAFSINE and VirtualFluids, which accelerate simulations by
exporting computations to a GPU device. The broad structure of the
LBM-GPU implementations is illustrated through a flow chart in
Fig. 3. The flow chart emphasizes the transfer of data between the
CPU and GPU and is broad enough to apply to both RAFSINE and
VirtualFluids. Both packages are structured such that the pre-
processing of the simulation, that is, the definition of simulation

FIG. 2. Structure of (a) D3Q6, (b) D3Q19, and (c) D3Q27 lattices.

FIG. 3. Flowchart to outline the general structure of the LBM-GPU implementations in RAFSINE and VirtualFluids, with particular emphasis on the transfer of data between the
CPU and GPU device.
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parameters and geometry, is performed on the CPU, and then, data
are exported to the GPU where the computations are accelerated. The
two models utilize different collision operators Xijk

� �
, LES turbulence

models, and GPU implementations, allowing for comparison of trade-
offs in both accuracy and computational efficiency between the codes.

1. RAFSINE

RAFSINE was first developed by Delbosc45 for the application of
indoor airflow simulation. The version of the code applied in this
study uses the BGK collision operator, which is also referred to as the
single relaxation rate collision operator. The BGK approximation
developed by Bhatnagar et al.48 is widely used and is defined in Eq.
(21), where f eqijk is the equilibrium particle distribution function, Eq.
(22). Bhatnagar et al.48 model the collision operator as the relaxation
of the particle distribution function toward a state of local thermody-
namic equilibrium

Xijk fð Þ ¼ 1
s

f eqijk � f ijk
� �

: (21)

The equilibrium is parametrized by the local velocity, density, and the
speed of sound (related to the temperature), which is assumed to be
constant in this lattice Boltzmann model. The Maxwellian equilibrium
is simplified to a second order in velocity Taylor expansion, as shown
in the following equation:

f eqijk x; tð Þ ¼ wQ19
ijk q 1þ

u � cQ19ijk

c2s
þ

u � cQ19ijk

� �2
2c4s

� u � u
2c2s

0
@

1
A
: (22)

The velocity set cQ19ijk and the constant set of weights wQ19
ijk are defined

in Eqs. (23) and (24) and correspond to the D3Q19 lattice, which is
used to solve for the f ijk distribution in RAFSINE. The D3Q19 lattice

is shown in Fig. 2(b)

cQ19ijk2 �1; 0; 1f g ¼

i

j

k
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BBB@

1
CCCA
3
7775; (23)

wQ19
ijk

1
3
; jjcQ19ijk jj ¼ 0;

1
18
; jjcQ19ijk jj ¼ 1;

1
36
; jjcQ19ijk jj ¼

ffiffiffi
2
p

:

8>>>>>><
>>>>>>:

(24)

The macroscopic viscosity �ð Þ is derived from the characteristic
relaxation time of the fluid sð Þ, as shown in Eq. (25), where
cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2=ð3Dt2Þ

p
is the speed of sound in the lattice

� ¼ c2s s� 1
2

� �
Dx2

Dt
: (25)

The momentum density source term Sijk is defined in the following
equation:44

Sijk ¼ 1� Dt
2s

� �
wQ19
ijk

cQ19ijk

c2s
þ

cQ19ijk cQ19ijk

� �T
� c2s d

� �
u

c4s

0
B@

1
CA�FB: (26)

RAFSINE is capable of simulating density-driven flows by coupling
two LBM equations, one for the conservation of mass and momentum
in the fluid, and a second for the advection and diffusion of the con-
centration field vð Þ. The particle distribution function for the

concentration field is Uijk, and its zeroth-order raw moment is the
macroscopic concentration v, as shown in Eq. (27). The equations are
coupled via the Boussinesq approximation, as v is used to update the
local value of the forcing term FB at a given time step

v ¼
X
i;j;k

Uijk: (27)

The LBM–BGK equation for the Uijk distribution is presented in Eq.
(28), where Ueq

ijk x; tð Þ is the equilibrium distribution, defined in Eq.
(29). The macroscopic diffusivity is determined by the relaxation time
for the scalar field sU, as shown in Eq. (30)

Uijk x þ cQ6ijk Dt; t þ Dt
� �

¼ Uijk x; tð Þ �
1
sU

Uijk x; tð Þ � Ueq
ijk x; tð Þ

� �
;

(28)

Ueq
ijk x; tð Þ ¼ wQ6

ijk v 1þ
u � cQ6ijk
c2s

 !
; (29)

D ¼ c2s s/ �
1
2

� �
Dx2

Dt
: (30)

A D3Q6 lattice [Fig. 2(a)] is used to solve for the Uijk distribution in
RAFSINE, in line with the formulation originally used by Delbosc
et al.49 The lattice has the velocity set cQ6ijk , defined in Eq. (31), and a
constant weight wQ6

ijk ¼ 1=6,
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cQ6ijk2 �1;0;1f g ¼
i
j
k

0
@
1
A

¼
1
0
0

0
@

1
A; �10

0

0
@

1
A; 0

1
0

0
@

1
A; 0

�1
0

0
@

1
A; 0

0
1

0
@
1
A; 0

0
�1

0
@

1
A

2
4

3
5:
(31)

The code utilizes a standard Smagorinsky turbulence model, which is
an LES approach that models energy damping due to sub-grid turbu-
lence through a local eddy viscosity �Tð Þ, such that � ¼ �0 þ �T , as
given by Hou et al.50

�T ¼ CsD
2 Sj j; (32)

S ¼ 1
2

$uþ $uTð Þ ¼
X
i;j;k

cQ19ijk � c
Q19
ijk f ijk � f eqijk
� �

; (33)

Sj j ¼ 1

6CsD
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 18C2

sD
2
ffiffiffiffiffi
S S
pr
� �

 !
: (34)

The method assumes that small-scale turbulence is isotropic and is
implemented using Eq. (32), where Cs is the Smagorinsky constant, D
is the filter width, and S is the local stress tensor, defined in Eq. (33).
The magnitude of the local stress tensor is calculated from Eq. (34).
The Smagorinsky constant is set to Cs ¼ 0:03, according to the recom-
mendations of Delbosc.45

The diffusivity of the scalar field is also influenced by the effects
of sub-grid turbulence. In the Smagorinsky model, diffusivity is

calculated using Eq. (35), as determined by Liu et al.,51 where ScT is
the turbulent Schmidt number, which is taken to be equal to Cs

D ¼ c2s sU þ
CsD

2 Sj j
ScT

 !
� 1
2

 !
Dx2

Dt
: (35)

RAFSINE’s LBM implementation contains several measures to maxi-
mize computational efficiency when running on GPUs. These include
a number of adaptations to optimize the utilization of the GPU’s
memory bandwidth, such as eliminating redundant memory accesses,
increasing data coalescence, and efficient reading/writing of distribu-
tions. Delbosc et al.49 demonstrated that the optimizations resulted in
a computational performance just 6% below the maximum capacity of
the available hardware. When validated against experimental data of
thermal flow in a 32m3 room, RAFSINE simulated the flow at 1.5 times
real time on an NVIDIA Tesla C2070 GPU.

2. VirtualFluids

VirtualFluids was developed by the Institute for Computational
Modeling in Civil Engineering (iRMB) at TU Braunschweig.
VirtualFluids utilizes more advanced collision operators, namely, the
factorized central moment method to solve for the advection–diffusion
of the scalar field, and the cumulant collision operator to solve for the
conservation of mass and momentum. A D3Q27 lattice, shown in Fig.
2(c), is used to solve for both the f ijk and Uijk distributions. The veloc-
ity set for the D3Q27 lattice is shown in the following equation:

cQ27ijk2 �1; 0; 1f g ¼
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The factorized central moment (FCM) method was applied to the
advection-diffusion equation by Yang et al.52 While the BGK collision
operator performs collisions in momentum space, relaxing distribu-
tions toward their equilibrium state, the factorized central moment
method performs collisions in factorized central moment space.
Moments of the discrete distribution function Uijk can be obtained by
first converting Uijk into a continuous function using the Dirac delta
function d, as shown in the following equation:

U nð Þ ¼ U nx þ ny þ nz
� �

¼
X
i;j;k

Uijkd ic� nxð Þd jc� ny
� �

d kc� nzð Þ: (37)

The central moment generating function is then obtained by applying
a bi-lateral Laplace transform to the function U u� nð Þ, as shown in
Eq. (38). These are referred to as central moments, as U nð Þ has been
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shifted into the frame of reference of the macroscopic fluid moving
with velocity u,

F Nð Þ :¼ L U u� nð Þ
� �

Nð Þ

¼ e�N�u
ð1
�1

U nð ÞeN�ndn

¼ e�N�u
X
i;j;k

Uijk

ð1
�1

d ic� nxð Þd jc� ny
� �

d kc� nzð ÞeN�ndn

¼
X
i;j;k

Uijke
Nðic�uÞþYðjc�vÞþZðkc�wÞ: (38)

The moment generating function, F Nð Þ, is a function of the velocity–
frequency variable N ¼ N;Y ;Zf g, and derivatives of F Nð Þ produce
non-orthogonal central moments of Uijk of order nþ r þ sð Þ, as
shown in the following equation:

jnrs :¼ c� nþrþsð Þ @n@r@s

@Nn@Yr@Zs
F Nð Þ


N¼0

¼
X
i;j;k

i� uð Þn j� vð Þr k� wð ÞsUijk: (39)

Statistical independence of the central moments can be achieved by
factorizing them.53 The factorized central moments are calculated
using Eqs. (40)–(49), where brackets are used to denote permutations
of the indices52

M000 ¼ j000 ¼ v; (40)

M 100ð Þ ¼ j 100ð Þ; (41)

M 110ð Þ ¼ j 110ð Þ; (42)

M111 ¼ j111; (43)

M 200ð Þ ¼ j 200ð Þ �
1
3
j000; (44)

M 210ð Þ ¼ j 210ð Þ �
1
3
j 010ð Þ; (45)

M 220ð Þ ¼ j 220ð Þ �
1
3
j000; (46)

M 221ð Þ ¼ j 221ð Þ �
1
9
j 001ð Þ; (47)

M 211ð Þ ¼ j 211ð Þ �
1
3
j 011ð Þ; (48)

M222 ¼ j222 �
1
27

j000: (49)

Collision is then performed in moment space, where moments Mnrs

are relaxed at the frequencyxnrs, toward their equilibria, which for fac-
torized central moments is set to zero. The postcollision moments
M�nrs are calculated using the following equation:

M�nrs ¼ 1� xnrsð ÞMnrs: (50)

When applied to the advection–diffusion equation, the only conserved
moment isM000 ¼ v. Diffusivity is calculated using the relaxation fre-
quency of j 100ð Þ, as shown in the following equation:

D ¼ 1
3

1
x100
� 1
2

� �
Dx2

Dt
: (51)

The VirtualFluids code solves the incompressible LBM equation in
which fluid density is decomposed into its mean ( %q) and fluctuating
(dq) components, as shown in Eq. (52). The dq component is calcu-
lated by the zeroth raw moment of the distribution f ijk [Eq. (53)], and
the %q ¼ 1 in lattice units

q ¼ %q þ dq; (52)

dq ¼ m000 ¼
X
i;j;k

f ijk: (53)

The cumulant collision operator is used to solve for mass and momen-
tum conservation in the fluid.54 The cumulant operator performs colli-
sions in cumulant space, where cumulants are statistically independent
observable quantities of the momentum distribution f ijk. They are cal-
culated from the series expansion of the logarithm of the moment gen-
erating function L f �nð Þ

� �
Nð Þ, as shown in the following equation:

Cnrs :¼ c� nþrþsð Þ @n@r@s

@Nn@Yr@Zs ln L f �nð Þ
� �

Nð Þ
� �

N¼0
: (54)

The postcollision cumulants C�nrs are calculated using Eq. (55), where
Ceq
nrs is the equilibrium cumulant

C�nrs ¼ 1� xnrsð ÞCnrs þ xnrsC
eq
nrs: (55)

The process for performing efficient transformations between momen-
tum space and cumulant space is detailed by Geier et al.55 As the
cumulant collision operator is applied to the conservation of mass and
momentum, the zeroth- and first-order cumulants are conserved,
which relate to density and velocity as shown in the following
equations:

q ¼ C000; (56)

u ¼ u; v; wð Þ ¼ C100;C010;C001ð Þ: (57)

Viscosity is calculated using the relaxation rate of the second-order
cumulants, the following equation:

� ¼ 1
3

1
x110
� 1
2

� �
Dx2

Dt
: (58)

A cumulant collision operator is deemed to be more accurate than the
BGK collision operator due to the incorporation of higher order veloc-
ity terms in the equilibrium and its Galilean invariant viscosity.54 The
current study applies the parameterized cumulant method of Geier
et al.55 The relaxation rates of the third-order cumulants are chosen to
eliminate the leading order error in diffusion such that the handling of
viscosity becomes essentially fourth-order accurate.

VirtualFluids does not incorporate a sub-grid eddy viscosity tur-
bulence model, which would destroy the advantage of the fourth-order
accuracy. To stabilize the method for resolutions not reaching DNS
quality, it is sufficient to add a limiter on the relaxation of the third-
order cumulants. Compared to adding an explicit sub-gird model, the
stabilized parametrized cumulant method has been shown to require
half the resolution to obtain the same enstrophy production.56 The
method was also successful in accurately predicting the drag crisis
behind a sphere,57 simulating flows with Reynolds numbers ranging
from 200 to 105. The approach taken by the cumulant method toward
turbulence is to provide the highest possible accuracy even at low
resolution, while non-resolved scales are naturally cut off. Adding a
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sub-grid model to the parameterized cumulant method has no known
advantages and typically leads to inferior results.56

VirtualFluids has been optimized to run on GPUs, using indirect
addressing to facilitate simulation in complex geometries, and the
Esoteric Twist data structure to minimize memory overhead and traf-
fic on the GPU.58

Previous studies in VirtualFluids have considered passive scalar
transport in which the cumulant and FCM kernels are one-way cou-
pled, so buoyancy forces do not drive the flow.52,59 In the present
study, two-way coupling has been implemented to allow the simula-
tion of a buoyancy driven gravity current flow.

D. Nek5000 direct numerical simulations

Direct numerical simulations are run in the high-order solver
Nek5000 to provide high-resolution simulation results against which
to benchmark the LBM–LES codes, in addition to that already avail-
able in literature. Nek5000-v19.082 is a CFD solver developed by
Argonne National Laboratory60 based on the spectral-element method
(SEM).61 The approach discretizes the computational domain into E
elements, each containing an Nth-order polynomial discretization. In
the present study, seventh-order polynomials were used for optimal
accuracy and performance.60 The non-dimensional governing equa-
tions outlined in Sec. IIA were solved in Nek5000 using second-order
backward differential formula (BDF) and operator-integration factor

scheme (OIFS) extrapolation, which allows for a target Courant num-
ber of 2–5 while maintaining stability and accuracy.62 The residual tol-
erance for pressure was set to 10�9, while the tolerances for fluid
velocity and concentration were set to 10�10.

E. Lock-exchange saline gravity current model

The full list of test cases is presented in Table I, where the channel
dimensions L1; L2; L3 ¼ Hð Þ are defined in Fig. 4. NL3 is the number
of nodes used to resolve the channel depth H, and Nnodes is the total
number of mesh points in the computational domain.

The LBM–LES models are validated against the DNS results pub-
lished by Cantero et al.,18,21 where simulations were run with buoyancy
Reynolds numbers ranging from Reb 2 ½895; 15 000�. As DNS becomes
prohibitively expensive at high Reynolds numbers, it was also necessary
to validate against the experimental results of Ottolenghi et al.,43 where
experiments were conducted for Reynolds numbers ranging from
Reb 2 ½1000; 30 000�. To achieve a more robust validation, DNS simu-
lations were run in Nek5000 for cases 2 and 4 in Table I.

The geometry and boundary conditions used in cases
2 2; 4; 6; 8f g, outlined in Fig. 4(a), were selected to model the exper-
imental conditions of Ottolenghi et al.43 A no-slip boundary condition
for the velocity field and a no-flux boundary condition for the concen-
tration field is applied on the upper and lower boundaries, end walls,
and spanwise walls. The initial velocity was zero throughout the

TABLE I. Saline current LBM–LES simulation parameters.

Case No. Reb L3=x0 L1 L2 NL3 Nnodes (106) Data type Data source

1 895 1 25 1.5 100 37.5 DNS Cantero et al.18

2 1 000 1 15 1 100 15 DNS; Exp Nek5000; Ottolenghi et al.43

3 3 450 1 25 1.5 100 37.5 DNS Cantero et al.18

4 5 000 1 15 1 100 15 DNS; Exp Nek5000; Ottolenghi et al.43

5 8 950 1 25 1.5 100 37.5 DNS Cantero et al.18

6 10 000 1 15 1 100 15 Exp Ottolenghi et al.43

7 15 000 1 25 1.5 104 42.2 DNS Cantero et al.21

8 30 000 1 15 1 140 41.2 Exp Ottolenghi et al.43

FIG. 4. Initial and boundary conditions of
saline gravity current simulations of (a)
cases 2 f2; 4; 6; 8g and (b) cases
2 f1; 3; 5; 7g.
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domain, while the concentration was set to ~v ¼ 1 within the lock, and
~v ¼ 0 elsewhere.

The geometry and boundary conditions applied in cases
2 1; 3; 5; 7f g, outlined in Fig. 4(b), are in alignment with those used
by Cantero et al.18,21 A no-slip boundary condition for the velocity
field and a no-flux boundary condition for the concentration field is
applied on the upper and lower boundaries, while the end and span-
wise wall are periodic, thereby producing a periodic array of gravity
currents. The initial velocity was zero throughout the domain, while
the concentration was set to ~v ¼ 1 within the lock, and ~v ¼ 0 else-
where. However, due to the periodic spanwise boundaries, a small ran-
dom perturbation was applied at the surface of the gate to initiate a
break-down into fully three-dimensional flow.

No-slip and no-flux boundary conditions in the LBM–LES mod-
els were implemented using halfway bounce-back boundary condi-
tions, as is conventional in the field.43,44,52,63 Simulations in RAFSINE
and VirtualFluids were run on a regularly spaced grid of nodes with a
non-dimensional grid spacing of D~x ¼ H=NL3 . The Nek5000 simula-
tions for cases 2 and 4 were run on grids of resolution 1600� 120
�120 and 2000� 184� 184, respectively.

The LBM simulations are run in lattice units (LU), where conver-
sion between LU and non-dimensional units is achieved through the
length scale D~x; and timescale D~t . Appropriate Reynolds number scal-
ing in the LBM models is achieved by adjusting viscosity in lattice
units. The characteristic velocity in lattice Boltzmann units is fixed at a
value of UbLU ¼ 0:03, that is, ~Ub ¼ UbLUD~x=D~t ¼ 0:03D~x=D~t .
This was motivated by the recommendations of Kr€uger et al.44 on
maintaining accuracy and stability. As the value of the non-
dimensional velocity scale is ~Ub ¼ 1, the non-dimensional time
step for a simulation is given by D~t ¼ 0:03=NL3 . The reduced gravity

for a simulation can then be calculated as ~g 0 ¼ g 0 LUD~x=D~t 2

¼ 0:032
NL3

D~x=D~t2. As the characteristic length scale H ¼ NL3D~x , viscos-

ity is calculated as ~� ¼ � LUD~x2=D~t ¼ NL3 0:03
Reb

D~x2=D~t , for a given

Reynolds number. In this study, the Schmidt number is set to 1; there-
fore, ~� ¼ ~D in all simulations.

III. RESULTS AND DISCUSSION

In this section, the LBM–LES models are assessed based on their
ability to predict the following key characteristics of a lock-exchange
gravity current; front location and velocity within the slumping phase,
transition to the inertial and/or viscous phases, the development of the
correct qualitative turbulent flow features in the head and body, and
wall shear stress on the lower boundary. Additionally, the computa-
tional expense of the RAFSINE and VirtualFluids codes is compared
to recently developed NS-LES models of equivalent accuracy.

A. Slumping phase

As outlined in Sec. I, the slumping phase is characterized by a
period of constant front velocity in which ~xf / ~t . In the numerical
simulations, the span-averaged location of the current head, xf , was
determined by calculating the spanwise average of the density field,
qð~x;~zÞ ¼ 1

L2

Ð L2
0 ~qd~y , and then searching from ~x ¼ L1 to ~x ¼ 0 for

the first node with a density below the interface threshold of ~q ¼ 0:02.
This threshold has been used previously by Ottolenghi et al.,43 and it

was easily verified that the computed front location was insensitive to
variations in the threshold.

Plots of current front location against time are presented for each
case in Fig. 5, except for case 7 as validation data were not readily avail-
able for a direct comparison in the Cantero et al.21 publication. The
~xf / ~t curve is also plotted for reference. In each case, both RAFSINE
and VirtualFluids accurately capture the slumping phase, predicting a
constant gradient in xf until ~t 	 10. Additionally, within the slumping
phase, the computed front locations from both LBM–LES codes are in
close agreement with the DNS results of Nek5000 and the Cantero
et al.18 study. In cases 6 and 8, where the codes are validated against
experimental results, good agreement is observed with the experiments
and LBM simulations of Ottolenghi et al.43

The accuracy of the slumping phase simulation can be verified
more quantitatively through the Froude number, defined in Eq. (59)
as the constant non-dimensional front velocity within the slumping
phase. It is evaluated within the time range of 2:5 
 ~t 
 10,

Fr ¼ dxf
dt


2:5
~t
10

: (59)

The percentage error in the front velocity predictions of RAFSINE and
VirtualFluids are presented in Table II, where error is calculated rela-
tive to the results in the validation sources listed in Table I, and is
reported to two decimal places. All errors are less than 5%, demon-
strating close quantitative agreement with the reference data.

The accuracy of the Froude number predictions of both codes is
equal to that of conventional NS-LES models. Ooi et al.64 reported
Froude number predictions within 60:01 of the reference data in
their validation of a finite-volume LES code against the Hacker et al.65

lock-exchange experimental results, for Reynolds numbers of Reb
2 f30 980; 47 750; 87 750g.

More recently, an LES study conducted by Pelmard et al.,38 also
using a finite-volume method code, observed an error of approxi-
mately 4.17%, when validating the results of a Reb ¼ 60 000 simula-
tion against the experiments of Keulegan.66

In cases 4 and 6, Reb 2 f5000; 10 000g, both RAFSINE and
VirtualFluids demonstrate similar accuracy to the 3D LBM model of
Ottolenghi et al.,43 displaying errors of less than 3%. However, in case
2, Reb ¼ 1000, both RAFSINE and VirtualFluids predict the same
Froude number as the DNS result, while the Ottolenghi et al.43 model
has an error of 5.4%. Additionally, it is clear from Fig. 5(b) that
although there is close agreement in the front location predictions of
RAFSINE/VirtualFluids and the Nek5000 result, there are discrepan-
cies between the front location predicted by the Nek5000 DNS simula-
tion and the numerical and experimental results of Ottolenghi et al.43

These discrepancies are better understood through analysis of the front
velocity and transition to the inertial and/or viscous phases of the flow,
which is presented in Sec. IIIA.

In addition to achieving close quantitative agreement with the
reference DNS and experimental results, visualizations of the density
fields in the LBM–LES simulations demonstrates that the models cap-
ture the qualitative features of a slumping lock-exchange gravity cur-
rent flow. Iso-contours of density ~q ¼ 0:02, the chosen interface
between the current and ambient, are presented in Fig. 6 for cases with
Reb 2 1000; 5000; 10 000; 30 000f g at ~t ¼ 10, to illustrate the devel-
opment of turbulent flow features in the LBM–LES simulations across
a range of Reynolds numbers. The iso-contours are plotted in a
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FIG. 5. Validation of the front location predictions of RAFSINE and VirtualFluids for (a) case 1, (b) case 2, (c) case 3, (d) case 4, (e) case 5, (f) case 6, and (g) case 8. Results
are validated against the DNS results from Nek5000 and those of Cantero et al.18 as well as the experimental and numerical results of Ottolenghi et al.43 In (h), the front loca-
tion prediction from the Reb ¼ 30 000, Pelmard et al.34 NS-LES simulation is also plotted.
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sub-region of the full computational domain, ranging from ~x 2 ½0; 6�,
~y 2 ½0; 1�, and ~z 2 ½0; 1�.

Density iso-contours from the RAFSINE, VirtualFluids, and
Nek5000 DNS simulations of case 2 and 4, Reb ¼ 1000 and 5000, are
presented in Figs. 6(a) and 6(b), respectively. The results show that in
both cases the structure of the current interface in the LBM–LES mod-
els shows close agreement with the DNS simulation. The iso-contours
of case 2, Reb ¼ 1000, do not exhibit any significant turbulent flow
features. The interface between the dense current and ambient is rela-
tively smooth and flat in the body, and the head advances as a unified
front. The current interface in case 4, Reb ¼ 5000, exhibits clear turbu-
lent flow features, in agreement with observations from previous DNS
simulations at similar Reynolds numbers.20 Lobe and cleft structures
are visible at the lower boundary of the current front, due to instabil-
ities at the head. Additionally, a region of turbulent mixing is evident
at the current–ambient interface in the body due to the
Kelvin–Helmholtz instability. It is expected that subtle differences may
be observed between the interface structure at a single time (e.g.,
~t ¼ 10), as we are monitoring a turbulent time-dependent flow. Given
this caveat, both RAFSINE and VirtualFluids show good agreement
with the DNS result.

The density iso-contours produced by the RAFSINE and
VirtualFluids simulations of cases 6 and 8 are presented in Figs. 6(c)
and 6(d), respectively. Unfortunately, DNS iso-contours are not avail-
able for direct comparison. Figures 6(c) and 6(d) show that, as antici-
pated, with the increasing Reynolds number there is an intensification
of the turbulent flow features observed in case 4, Fig. 6(b). While at
low Reynolds numbers, there were negligible differences between the
current–ambient interface in the RAFSINE and VirtualFluids simula-
tions, significant differences are visible at higher Reynolds numbers.

The interface in the VirtualFluids simulation exhibits more
small-scale folds and structures relative to the RAFSINE result, a con-
trast that is most clearly observed in Fig. 6(d). Additionally, it is antici-
pated that with increasing Reynolds number, the size of lobes will
decrease, and their number will increase.18,20,67 This trend is observed
in the results of both LBM–LES models but appears to happen more
rapidly in VirtualFluids. This is likely the result of differences in turbu-
lence production due to shear on the lower boundary in both models.
Validation of shear stress on the lower boundary, detailed in Sec. III B,
indicates that shear stress is significantly underpredicted in RAFSNIE
at high Reynolds numbers. As shear stress on the lower boundary is a

key mechanism of turbulence generation, an underprediction of shear
stress would suppress the development of turbulent flow features.
Despite these observable differences in the current–ambient interface,
both LBM–LES models produce equivalent accuracy in Froude num-
ber predictions across the high Reynolds number cases, see Table I.

A. Transition to inertial and viscous phases

The transition between the various phases is most clearly
observed through the spanwise averaged front velocity of the current

uf ¼ dxf
dt . Plots of spanwise averaged front velocity against time are

presented in Fig. 7 for cases with Reynolds numbers of Reb 2 f1000;
5000; 8950; 10 000; 15 000; 30 000g. In addition to the results from
the validation data sources listed in Table I, results are plotted from
other lock-exchange experiments in the literature with relatively simi-
lar Reynolds numbers. The scaling law predictions, using the revised
empirical constants determined by Cantero et al.,18 are also plotted for
each case.

As outlined in Sec. I, following the slumping phase the flow tran-
sitions into the inertial phase if the Reynolds number exceeds the criti-
cal value defined in Eq. (8) in which case the inertial phase transition
time (~t SI) is smaller than the viscous phase transition time (~t SV ). It
was therefore anticipated that the inertial phase would only develop in
cases 3–8.

The results presented in Fig. 7 permit comparison of the
LBM–LES front velocity predictions against the scaling laws, experi-
mental data, and DNS results. Each offers a source of validation but
has its own limitations. As outlined in Sec. I, the scaling laws are
derived directly from the governing equations but contain empirical
constants that are fit by collating experimental and numerical results.
Therefore, although the asymptotic behavior of the front velocity with
time should match the scaling law, there may be small errors in the
quantitative prediction of front velocity. Additionally, as the scaling
laws were parameterized using some of the empirical data plotted in
Fig. 7, the scaling laws and individual experimental results are not
wholly independent sources of validation.

The experimental data are a record of a real-world lock-exchange
gravity current flow but is itself subject to error. Errors may accumu-
late from the natural variability in the system, in the measurement of
material properties, in the measurement of concentration and velocity
fields, and in the image post-processing required to analyze the results.

TABLE II. Validation of the Froude number predictions of RAFSINE and VirtualFluids against DNS results and experimental data.

Case No. Reb

DNS/experimental result VirtualFluids RAFSINE

Data source Fr Fr Error (%) Fr Error (%)

1 895 DNS—Cantero et al.18 0.36 0.37 2.70 0.36 0.00
2 1 000 DNS—Nek5000, present study 0.37 0.37 0.00 0.37 0.00
3 3 450 DNS—Cantero et al.18 0.41 0.41 0.00 0.40 2.44
4 5 000 DNS—Nek5000, present study 0.42 0.42 0.00 0.41 2.38
5 8 950 DNS—Cantero et al.18 0.42 0.43 2.38 0.41 2.38
6 10 000 Exp.—Ottolenghi et al.43 0.42 0.42 0.00 0.42 0.00
7 15 000 DNS—Cantero et al.21 0.42 0.44 4.65 0.42 0.00
8 30 000 Exp.—Ottolenghi et al.43 0.44 0.45 2.27 0.43 2.27
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These limitations are revealed through the data spread when compar-
ing experimental data sets from multiple sources with the same input
parameters, as can be observed when comparing the spread of experi-
mental data plotted in Figs. 7(a), 7(e), and 7(f).

DNS results provide the best source of validation data for theoretical
and numerical models as the Navier–Stokes and advection–diffusion
equations are solved directly across all length scales. Therefore, a DNS
result forms an upper limit on simulation accuracy. However, a DNS or
other numerical simulation result is still the solution of an idealized math-
ematical formulation of the problem, which may not map onto the physi-
cal reality and pragmatic constraints of a lock-exchange experiment.

Simulations commonly assume perfectly smooth walls, while
experiments will have some degree of microscale roughness which

impacts drag.68 Additionally, the simulations assume instantaneous
removal of the gate, while in reality subtle inconsistencies in the speed
of gate removal may have a significant impact on the resulting current
dynamics.69,70 Nevertheless, collectively the scaling laws, experimental
data, and DNS results provide a framework for assessing the accuracy
of LBM–LES models.

From the relatively low Reynolds number cases (Reb 
 5000), the
front velocity results for cases 2 and 4 have been selected [Figs. 7(a) and
7(b)], as they allow for comparisons between the results of the Nek5000
DNS simulations, the predictions of RAFSINE and VirtualFluids, and
the experimental and numerical results of Ottolenghi et al.43 In case 5,
where Reb ¼ 5000 and Fr ¼ 0:42, transition to the slumping phase
occurs at ~t 	 11 in the Nek5000 DNS model. The scaling laws predict

FIG. 6. Iso-contours of density ~q ¼ 0:02 at ~t ¼ 10 in the Nek5000, VirtualFluids, and RAFSINE simulations. (a) case 2, Reb ¼ 1000; (b) case 4, Reb ¼ 5000; (c) case 6,
Reb ¼ 10 000; (d) case 8, Reb ¼ 30 000.
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that transition to the inertial phase should happen at ~t SI ¼ 12:7, which
is in reasonable agreement with the DNS result.

The transition time predicted by RAFSINE and VirtualFluids, and
the experimental and numerical results of Ottolenghi et al.43 are in good

agreement with the DNS result. Within the inertial phase, front veloc-
ity in the DNS and LBM-LES simulations scale according to the
uf / ~t�

1
3 law. The scaling laws predict a short inertial phase with the

transition to the viscous phase occurring at ~t IV ¼ 15:4. Departure

FIG. 7. Validation of front velocity predic-
tions of the LBM–LES models for (a) case
2, (b) case 4, (c) case 5, (d) case 6, (e)
case 7, and (f) case 8. Results are vali-
dated against the DNS results from
Nek5000 and those of Cantero et al.,18,21

as well as comparison to the experimental
and numerical result of Ottolenghi et al.43

In (h), the front location prediction from
the Reb 	 30 000 Pelmard et al.34 NS-
LES simulation is also plotted. Front
velocity within the inertial (IP) is compared
with the theoretical scaling laws.10,13–15

Within the viscous phase (VP), front
velocity is compared to the theoretical
scaling laws established by Huppert.17

The scaling laws are calculated using
np ¼ 1:47 and np;Hp ¼ 3:2, which are
the revised values as determined by
Cantero et al.18
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from inertial scaling at this time occurs in both the DNS and LBM-LES
models, although the velocity then goes on to decay at a rate between
the theoretical laws for the inertial and viscous phases. This may be
due to the fact that the Reynolds number for case 4, Reb ¼ 5000, is
very close to the critical Reynolds number of Recr ¼ 3170, correspond-
ing to a case with a Froude number of Fr ¼ 0:42. The critical Reynolds
number is the threshold above which the current will transition from
the slumping phase to the inertial phase, and below which the current
will bypass the inertial phase, transitioning directly into the viscous
phase. In cases where Reb � Recr or Reb � Recr , closer agreement is
observed with the viscous scaling laws.

For case 2, where Reb ¼ 1000, the transition to the viscous
phase occurs at ~t 	 10 in the Nek5000 DNS model. The scaling laws
predict a direct transition from the slumping to viscous phase at
~t SV ¼ 11:2, in reasonable agreement with the DNS output.
Following the transition, front velocity in the DNS model scales
according to the uf / ~t�

1
3 law as expected. The predictions of

RAFSINE and VirtualFluids are in close agreement with the DNS
result, both in the time of transition to the viscous phase and the
subsequent decay in velocity. However, significant disparities are
observed between the DNS result and the experimental and numeri-
cal predictions of Ottolenghi et al.43 The front velocity in the experi-
ment declines to a constant value of uf ¼ 0:36, before transitioning
to the viscous phase at ~t 	 20, much later than the transition time
predicted by the scaling laws or observed in the DNS. The results of
two experimental runs conducted by Amy et al.71 for Reynolds num-
bers of 950 and 1280 are also plotted for reference. The Amy et al.71

experiments also transition at ~t 	 20, indicating that the Ottolenghi
et al.43 result is not an anomaly, although there is a wide spread
between the experimental front velocities post-transition. The 3D
LBM–LES simulation of Ottolenghi et al.43 also follows this trend. It
is proposed that the difference between the DNS and experimental
result is caused by greater turbulence generation in physical experi-
ments relative to the DNS and LBM–LES simulations. Around the
transitional Reynolds number, the experimental result may be more
sensitive to additional sources of turbulence generation in the
experiments, such as surface roughness, and disturbance triggered
by the gate release, which makes the idealized DNS model a poorer
representation of the experimental conditions. A review of the other
cases shows that at higher Reynolds numbers (Reb � 5000), the
results of DNS simulations are in good agreement with experiments.

The front velocity results for case 5 are presented in Fig. 7(c).
In case 5, Reb ¼ 8950, the front velocity predictions of RAFSINE
and VirtualFluids are validated against the DNS simulations of
Cantero et al.18 The transition times predicted by the Cantero
et al.18 DNS model are in very close agreement with the scaling laws,
which predict ~t SI ¼ 12.7 and ~t IV ¼ 19:8. Additionally, the scaling
laws are a very good quantitative prediction of front velocity. Both
RAFSINE and Virtual fluids show good agreement with the Cantero
et al.,18 correctly predicting transition times and scaling within each
phase. An experimental result of Marino et al.,72 experimental run 3
(Reb ¼ 8620), was also plotted for reference. The sparsity in front
velocity readings makes direct comparison challenging, but the tran-
sition time to the inertial phase is in reasonable agreement with the
Cantero et al.18 DNS model and LBM-LES simulations, although the
onset of the viscous phase appears to occur later in the Marino
et al.72 experimental run.

In case 6 [Fig. 7(d)], Reb ¼ 10 000, the results of RAFSINE and
VirtualFluids are very similar, both showing good agreement with
the scaling law predictions of ~t SI ¼ 12.7 and ~t IV ¼ 19:8. The LBM
model of Ottolenghi et al.43 shows good agreement with the scaling
laws in the slumping and inertial phase, but does not transition to
the viscous phase at the expected time. The experimental current of
Ottolenghi et al.43 appears to begin a transition to the inertial phase
at~t 	 12, and then front velocity plateaus, before decaying according
to the inertial scaling law until ~t 	 30. A similar trend is observed in
the experimental run B0–1 of Amy et al.,71 Reb ¼ 11 400, although
the onset of viscous scaling occurs at a later time due to the higher
Reynolds number.

For case 7 [Fig. 7(e)], Reb ¼ 15 000, the front velocity predictions
of RAFSINE and VirtualFluids are validated against the DNS simula-
tion of Cantero et al.21 The transition times in the Cantero et al.21

DNS results are again in very close agreement with the scaling
laws, which predict transition to the inertial and viscous phases at
~t SI ¼ 12.7 and ~t IV ¼ 24:7. The LBM–LES models demonstrate good
agreement with the DNS result, accurately predicting both phase tran-
sition times and scaling within the phases. Figure 7(e) also includes
plots from the Reb ¼ 15 550 experiment of Marino et al.,72 and the
Reb ¼ 15 700 experiment of Huppert and Simpson.10 To the extent
that either the RAFSINE or VirtualFluids simulation deviates from the
DNS, they remain within the range of front velocities spanned by the
two experimental results, indicating the models still offer a high degree
of accuracy.

Case 8 [Fig. 7(f)], Reb ¼ 30 000, is beyond the range of DNS,
but the predictions of the LBM–LES models can be validated against
the experiments of Huppert and Simpson10 and Ottolenghi et al.43

Additionally, it is possible to compare performance against the
finite-volume NS-LES model of Pelmard et al.,34 who ran a lock-
exchange simulation for Reb ¼ 28 284. Since the experiment of
Huppert and Simpson10 and simulation of Pelmard et al.34 have
lock-lengths of ~x0 > 1, it is necessary to rescale velocity and time

such that ~uf = ~h0
� �1

2 ¼ uf = g 0h0
� �1

2 and ~t ~h0

� �1
2=~x0 ¼ t g 0h0

� �1
2=x0,

causing the transition to the inertial phase to collapse down to the
same time regardless of lock-length, as outlined in Sec. I. Both exper-
imental results show close agreement with the scaling law prediction

of ~t SI ~h0

� �1
2=~x0 ¼ 11:0. The RAFSINE simulation transitions prema-

turely but shows close agreement with the experiments and scaling
laws in the inertial phase. VirtualFluids and the NS-LES model of

Pelmard et al.34 transition closer to
~t SI ~h0ð Þ

1
2

~x0
¼ 11, but the Pelmard

et al.34 simulation decays more rapidly post transition. Both
LBM–LES models displayed an equivalent degree of accuracy to the
conventional NS-LES model of Pelmard et al.,34 in the prediction of
front velocity and phase transition in lock-exchange gravity
currents.

Insight into the internal dynamics of the gravity current can be
gained from a review of the spanwise averaged density contours ðqÞ
through time for case 8, presented in Fig. 8. The RAFSNE and
VirtualFluids contours of q in case 8 both display the development of
spanwise coherent, Kelvin–Helmholtz instability induced, billows at
early times (~t 
 5). Although these billows have been observed to
undergo substantial growth in 2D simulations, it is anticipated that in
a 3D simulation of a turbulent current, the billows will lose their
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spanwise coherence with time due to spanwise perturbations in the
chaotic flow field.18,20,21,43 This process occurs in both LBM–LES
models, with spanwise coherence of the Kelvin–Helmholtz billows dis-
integrating in the simulations by~t ¼ 10.

B. Near-wall region

In this section, the ability of the RAFSINE and VirtualFluids
models to capture the near-wall flow characteristics of a saline gravity
current is assessed by validation against DNS data from Cantero
et al.21 and the Nek5000 simulations. Accurate prediction of the flow
properties in the near-wall region is necessary for simulating a number
of important physical processes in environmental gravity current
flows, such as turbulence production due to lower boundary shear
stresses, as well as erosion and deposition of stationary material at the
boundaries.

Accurate simulation of near-wall flow requires a high level of
near-wall resolution, which is measured by the non-dimensional
distance (zþ) of the wall adjacent nodes from a no-slip boundary.
The distance from a wall adjacent node to the boundary (Dz1) is
non-dimensionalized by friction velocity (us), and kinematic vis-
cosity (�), as shown in Eq. (60). The friction velocity (us) is
defined in Eq. (61), where sw is the wall shear stress, calculated
using Eq. (62),

zþ ¼ ~usD~z1
~�

; (60)

~us ¼
ffiffiffiffiffiffiffiffiffiffiffi
~sw=~q

p
; (61)

~sw ¼ ~l
@~u
@~z


wall

: (62)

The velocity gradient at the lower boundary @~u
@~z jwall is calculated via a

second-order accurate finite difference approximation at the wall,
using the fluid velocity at the two nearest fluid nodes in the eg direc-
tion. A schematic of near-wall grid spacing in Nek5000, RAFSINE,
and VirtualFluids is presented in Fig. 9. The Nek5000 discretization
has a wall node where u ¼ 0, and the two nearest fluid nodes in the
ẑ direction are at spacings of D~z1, and D~z2 > D~z1 as grid spacing is
non-uniform in the vertical direction. In the LBM–LES models, the
boundary is located at a distance D~z1 ¼ D~x=2 from the nearest fluid
node due to the use of the halfway bounce-back boundary condi-
tion.44 The second fluid node is then spaced at a distance of D~x from
the wall adjacent node. As the Nek5000 DNS simulation has a non-
uniform grid spacing in the vertical direction, and a larger number
of mesh points relative to the LBM-LES models, the fluid nodes used
in the Nek5000 velocity gradient approximations span a smaller zþ

range.

FIG. 8. Contour plots of spanwise averaged density in LBM-LES simulations of
case 8, Reb ¼ 30 000, run in RAFSINE and VirtualFluids. Contours are plotted at
times (a) ~t ¼ 2:5, (b) ~t ¼ 5:0, (c) ~t ¼ 7:5, (d) ~t ¼ 10:0, (e) ~t ¼ 15:0, (f)
~t ¼ 20:0, and (g) ~t ¼ 25:0.

FIG. 9. Schematic of near-wall grid spacing in Nek5000, RAFSINE, and
VirtualFluids.
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Pelmard et al.,34 who investigated grid resolution requirements
for wall-resolved LES simulations of gravity currents, recommend
that the maximum zþ of a wall-adjacent node must meet the criteria
zþ < 10 to sufficiently capture the boundary layer. The maximum zþ

of wall-adjacent nodes, presented in Table III, shows that this standard
is met in all cases. Further to this condition, the maximum zþ is within
the viscous sublayer of the current’s boundary layer, zþ 
 5, in all
cases but cases 7 and 8 in VirtualFluids, where zþ lies just within
the buffer region 5 < zþ < 30. Overall, the range of maximum zþ

values is equivalent to that used by Pelmard et al.,34 who reported
2:5 < zþmax < 7 across their simulations.

Verification of the maximum zþ requires the calculation of the
non-dimensional wall shear stress (~sw), which has been validated
against DNS for cases 2 f2; 4; 7g. The validation of the ~sw predic-
tions of the LBM–LES models against DNS of case 2, Reb ¼ 1000, is
presented in Fig. 10, where contour plots of ~sw at ~t ¼ 8 and ~t ¼ 20
are presented in Figs. 10(a) and 10(b), respectively.

At ~t ¼ 8, the stress pattern in the DNS result is characterized by
a region of high stress along the current front, followed by a fairly uni-
form stress distribution in the body, and very low shear stresses in the
region behind the removed gate. There is a gradual increase in stress
ahead of the front due to the displacement of ambient fluid by the
flow. By ~t ¼ 20, two lobes have formed at the head, and the peaks in
shear stress occur along the edges of the lobes. Behind the head, the

TABLE III. Maximum zþ of wall-adjacent node in all numerical simulations.

Case No. Reb

Max zþ of wall-adjacent node

RAFSINE VirtualFluids Nek5000

1 895 0.57 0.60 � � �
2 1 000 0.56 0.59 0.11
3 3 450 1.53 2.10 � � �
4 5 000 1.80 2.75 0.10
5 8 950 2.83 4.45 � � �
6 10 000 2.89 4.68 � � �
7 15 000 3.83 5.98 � � �
8 30 000 4.45 6.92 � � �

FIG. 10. Validation of predicted dimensionless shear stress on the lower boundary of the RAFSINE the VirtualFluids simulations against the Nek5000 DNS result for case 2,
Reb ¼ 1000. (a) Contours of ~sw on the lower boundary at ~t ¼ 8. (b) Contours of ~sw on the lower boundary at ~t ¼ 20. (c) Plot of spanwise averaged shear stress (sw) at
~t ¼ 8. (d) Plot of spanwise averaged shear stress (sw) at ~t ¼ 20.
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spanwise stress distribution is relatively uniform but steadily decreases
with distance from the head. Stresses ahead of the front are lower at
~t ¼ 20 as fluid is displaced less rapidly, due to the deacceleration of
the current in the viscous phase. The stress distributions predicted by
RAFSINE and VirtualFluids are both in very close agreement with the
DNS contours.

A more quantitative validation can be conducted by comparing

plots of spanwise averaged wall shear stress sw ¼ 1
~L2

Ð ~L2

0 ~swd~y , pre-

sented in Figs. 10(c) and 10(d) for ~t ¼ 8 and ~t ¼ 20, respectively.
Shear stress is plotted against the rescaled streamwise distance
ð~x � ~x0Þ=~xf , where ~xf is the front location predicted by a given
numerical model at ~t 2 f8; 20g. This has the effect of collapsing the
location of the front ð~x � ~x0 ¼ ~xf Þ to ð~x � ~x0Þ=~xf ¼ 1 on the graphs,
which filters out errors in predicted front location in the LBM–LES
models, allowing the stream-wise profiles of sw to be compared rela-
tive to the front of each current.

The sw distribution in the DNS result exhibits a sharp spike in
shear stress at the current front, followed by a smaller rounded peak in
the body, after which stress decreases with distance from the head.
Profiles of sw in RAFSINE and VirtualFluids show close quantitative
agreement with the DNS result in the locations of peak sw, although
VirtualFluids appears to perform better in predicting the magnitude of
the peak stress. This is reflected in the eL1 error in the total frictional
force (Fw) applied to the lower boundary, defined in Eqs. (63)–(64),
where~t i 2 f~t1;~t2;…;~tNtg is a list of Nt ¼ 12 times at which a results
file was output,

eL1 ¼
1
Nt

X
i

FDNS
w

~t ið Þ � FLBM�LES
w

~t ið Þ
FDNS
w

~t ið Þ


; (63)

Fw ~x;~y;~t i
� �

¼
ð~L2

0

ð~L1

0
~sw ~x;~y;~t i
� �

d~xd~y: (64)

In case 2, the eL1 error in RAFSINE and VirtualFluids was 6.9% and
1.9%, respectively, demonstrating that although both models show
good agreement with the DNS result, the error in the VirtualFluids
prediction is less than a third of the RAFSINE model error.

Contours of ~sw in the RAFSINE, VirtualFluids and Nek5000 sim-
ulations of case 4 are presented in Figs. 11(a) and 11(b) at ~t ¼ 8 and
~t ¼ 20, respectively. At ~t ¼ 8, the DNS contours display peaks in
shear stress at the lobes of the current front, followed by a roughly cir-
cular region of high stress within the body. This secondary peak in
stress is less evident at ~t ¼ 20, where the high stress regions are con-
centrated at the head. The qualitative stress distribution is well repro-
duced in RAFSINE and VirtualFluids, as both display high stresses at
the current front, and a second circular high stress region in the body
at ~t ¼ 8. However, the contours indicate that the peaks in stress are
lower in the RAFSINE model than in the DNS result. This is con-
firmed by the plots of spanwise averaged shear stress in Figs. 11(c) and
11(d). Although the qualitative structure of the sw profile is captured
by RAFSINE, the magnitude of the peaks is substantially lower than
the DNS result. The magnitude of the peak stress in the VirtualFluids
result is in close agreement with the DNS at ~t ¼ 8, but is underpre-
dicted at ~t ¼ 20. This is evident in the eL1 errors for case 4, where the
VirtualFluids model has an error of 4.9%, still in good agreement with
DNS, while the RAFSINE model error was 33.4%. This reflects a
known limitation of the standard Smagorinsky turbulence model in

the near wall region when simulating turbulent flows.34,36 As Cs is
held constant, see Sec. IIC 1, the eddy viscosity may be non-zero in
the near-wall region, which reduces the velocity gradient at the wall,
thereby decreasing ~sw and artificially increasing the thickness of the
boundary layer. Although this can be overcome through the use of
Van Driest style damping or a dynamic Smagorinsky model, research-
ers often use the standard Smagorinsky model when concerned with
capturing flow features far from the wall.34,36,38,43 As outlined in Sec.
IIC 1, the VirtualFluids LBM formulation does not include a sub-grid
eddy-viscosity turbulence model, and so is not impacted by this
limitation.

Similar trends are observed in case 7 (Fig. 12). In this case, the
contour plots of ~sw, Figs. 12(a) and 12(b), are compared to those pro-
duced by Cantero et al.,21 which unfortunately were published without
a color scale, making direct comparison challenging. However, the
streaking stress patterns in the head, clearly observable in the DNS
result, are reproduced in both RAFSINE and VirtualFluids, as well as a
banded region of high stress in the body at ~t ¼ 8. The stress distribu-
tion in RAFSINE is noticeably smoother than that observed in the
Cantero et al.21 DNS result and VirtualFluids, which is due to the pre-
viously discussed spurious damping in the near-wall region caused by
the standard Smagorinsky model. Plots of sw, Figs. 12(c) and 12(d),
show that RAFSINE substantially underpredicts shear stresses, while
the VirtualFluids profile shows reasonable quantitative agreement,
although still marginally underpredicting the frontal peak in stress. As
Cantero et al.21 do not provide quantitative stress data for the lower
boundary, but does provide plots of sw at ~t ¼ 8 and ~t ¼ 20, the eL1
error is calculated using the spanwise averaged frictional force on the
wall (Fw), as shown in Eqs. (65) and (66), where ~t i 2 f8; 20g. Using
this revised definition, the eL1 error in RAFSINE becomes substantial
at 50.6%, while the VirtualFluids model remains in good agreement
with DNS at 8.8%

eL1 ¼
1
Nt

X
i

F
DNS
w

~t ið Þ � F
LBM�LES
w

~t ið Þ
F
DNS
w

~t ið Þ


; (65)

Fw ~x;~t i
� �

¼
ð~L1

0
sw ~x;~t i
� �

d~x: (66)

In a modeling scenario where close quantitative agreement with DNS
is essential, errors could be reduced through the application of hierar-
chical grids to increase resolution in the near wall region.57

C. Computational performance of the LBM-GPU
framework

As outlined in Sec. IIC, the LBM–LES codes are accelerated by
exporting computations to a GPU at each time step, rather than com-
pleting the tasks on the CPU. The core motivation for shifting to this
LBM-GPU framework is that GPU acceleration reduces the elapsed
time of a simulation relative to an equivalent implementation that
runs exclusively on CPUs. However, direct comparison between the
computational performance of CPU and GPU implementations is
complicated by the fact that they run on different hardware using dif-
ferent data structures, and to the authors’ knowledge, consensus on a
suitable metric has not been established.
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When comparing the performance of two numerical models
implemented to run across CPU cores, the total CPU time (TCPU ) of
each program, that is, the total time taken to process instructions,
would be used to measure the computational cost of the numerical
models. The relationship between TCPU ¼

P
i;jt

i
Pj
and elapsed time is

illustrated in Fig. 13(a), where tiPj
is a single block of processing time

on one of n processors Pj 2 fP1; P2;…;Png. It seems appropriate to
extend this metric of total CPU time to comparisons between conven-
tional NS models written to run on CPUs and LBM implementations
in which the CPU exports computations to a GPU.

In both RAFSINE and VirtualFluids, total CPU time is
approximately equal to elapsed time, as the programs are executed
on a single CPU core that exports data to the GPU device, as illus-
trated in Fig. 13(b). Therefore, observed speedups in total CPU
time as a result of the GPU acceleration will not translate directly
into equivalent speedups in elapsed time relative to a NS model
running exclusively on CPU cores. The realized reduction in
elapsed time will depend upon the number of cores used to run the

CPU code, the efficiency of the parallel implementation, and the
time taken for input/output operations.

Using this framework, the speedup offered by the GPU-
accelerated LBM-LES codes relative to DNS in Nek5000 has been eval-
uated by comparing both total CPU time and elapsed time at low
Reynolds numbers (Reb 
 5000). The Nek5000 simulations were run
on ARC4, part of the High-Performance Computing facilities at the
University of Leeds, UK. Compute nodes on the cluster contain two
Intel Xeon Gold 6138 CPUs (“Sky Lake”), each with 20 cores, a clock
rate for non-AVX instructions of 2.0GHz, and are connected with
InfiniBand EDR of 100Gbit/s. The Reb ¼ 1000 and Reb ¼ 5000
Nek5000 simulations were run across 100 and 250 cores, respectively.
In the LBM-LES codes, computations were exported to an NVIDIA
V100 Tensor Core GPU.

The speedups in TCPU and TE are presented in Table IV, where
times are written in the format h:min:s. Both RAFSINE and
VirtualFluids reduce total processing time relative to Nek5000 by
a factor of 102 for the Reb ¼ 1000 simulation, and 102:6 for the
Reb ¼ 5000 case. This translates to a reduction in elapsed time of 101:2

FIG. 11. Validation of predicted dimensionless shear stress on the lower boundary of the RAFSINE the VirtualFluids simulations against the Nek5000 DNS result for case 4,
Reb ¼ 5000. (a) Contours of ~sw on the lower boundary at ~t ¼ 8. (b) Contours of ~sw on the lower boundary at ~t ¼ 20. (c) Plot of spanwise averaged shear stress (sw) at
~t ¼ 8. (d) Plot of spanwise averaged shear stress (sw) at ~t ¼ 20.
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and 102 for the respective cases, demonstrating significant speedups
relative to DNS can be achieved while preserving accuracy in the pre-
diction of key flow properties.

A comparison is also made to the computational cost of the NS-
LES simulations of Pelmard et al.,34 who used the structured non-
staggered finite-volume code described by Norris73 and which has been
applied to a wide range of problem types.74–76 Pelmard et al.34 ran simu-
lations on a computing cluster at New Zealand eScience Infrastructure
(NeSI) consortium, consisting of nodes with two Intel Xeon E5–2680
Sandy Bridge 2.70GHz CPUs, each with eight cores. Pelmard et al.34

report the total CPU time required to run a turbulent lock-exchange
gravity current simulation, with a standard Smagorinsky sub-grid turbu-
lence model, across a range of grid sizes. Simulations on the largest
meshes were run across 128 cores, while 64 cores were used for the

smaller grids. Their results are taken to be representative of the typical
cost associated with modern NS-LES codes.

The total CPU time required to simulate a unit of non-

dimensional time ð̂t ¼ ~t ~h0

� �1
2=~x0 ¼ t g 0h0

� �1
2=x0Þ in RAFSINE,

VirtualFluids, and the Pelmard et al.34 study is presented in Fig. 14.
Total CPU times for the LBM-LES models are presented for grid sizes
of Nnodes 2 15; 37:5; 42:2f g � 106, as this represents the full range of
grid sizes used in the present study. The comparison indicates that the
LBM-GPU framework reduces total processing time by a factor of
approximately 103, when contrasted with the representative total CPU
time of the finite-volume NS-LES framework. Assuming a speedup
due to multi-core CPU parallelization similar to that achieved by
Nek5000, it is anticipated that this would translate into a reduction in

FIG. 12. Validation of predicted dimensionless shear stress on the lower boundary of the RAFSINE the VirtualFluids simulations against Cantero et al.21 result for case 7,
Reb ¼ 15000. (a) Contours of ~sw on the lower boundary at ~t ¼ 8. (b) Contours of ~sw on the lower boundary at ~t ¼ 20: (c) Plot of spanwise averaged shear stress (sw) at
~t ¼ 8: (d) Plot of spanwise averaged shear stress (sw) at ~t ¼ 20.
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TE by a factor of approximately 102, when contrasted with the
Pelmard et al.34 code running across 128 cores on the NeSI cluster.
This conclusion is in agreement with the findings of a similar analysis
conducted by King et al.77 Additionally, the LBM-GPU framework
offers substantial performance advantages relative to the CPU imple-
mentation of Ottolenghi et al.,43 which has enabled 3D simulations at
higher Reynolds numbers.

The results in Table IV and Fig. 14 show that both RAFSINE and
VirtualFluids achieve similar speedups. The standard metric for com-
paring the performance of two LBM-GPU codes is the number of
node updates per second, typically reported in the millions, i.e.,
MNUPS. When running on an NVIDIA V100 GPU, RAFSINE and
VirtualFluids report average update rates of 1307 MNUPS and 1064
MNUPS, respectively. RAFSINE has been robustly optimized by
Delbosc et al.49 to run simulations in rectilinear domains, such as a
lock-exchange channel. However, a direct comparison of the efficiency
of the GPU implementations cannot be made since VirtualFluids uses
two D3Q27 lattices for the f ijk and Uijk distributions, which demands
more memory resources and computations than the D3Q19 and
D3Q6 lattices used by RAFSINE. Additionally, the cumulant collision
kernel requires more computations per time step than the BGK colli-
sion kernel. The marginal performance gap could be narrowed by the
integration of the cumulant and FCM kernels, as this would eliminate
redundant memory accesses caused by reading and writing distribu-
tion functions to calculate the same macroscopic variables in each
kernel.

IV. CONCLUSIONS

In the present study, two LBM–LES models of lock-exchange
gravity currents are validated against high-resolution simulations and
experiments with regard to their ability to capture key qualitative and
quantitative features of a lock-exchange gravity current flow across a
wide range of Reynolds numbers. The two codes, RAFSINE and
VirtualFluids, demonstrate equivalent accuracy to conventional NS-
LES solvers in predictions of front velocity in the slumping, inertial,

FIG. 13. Schematic of total CPU time as it relates to (a) CPU implementations, and (b) GPU accelerated implementations.

TABLE IV. Speedup in total CPU time and elapsed time of LBM-LES models relative to DNS in Nek5000. Times are presented in the format h:min:s.

Case No. Reb

Nek5000

RAFSINE VirtualFluids

TCPU ð	 TEÞ

Speedup

TCPU ð	 TEÞ

Speedup

TCPU TE TCPU TE TCPU TE

2 1000 39:21:13 07:53:47 00:23:48 102:0 101:3 00:26:52 101:9 101:2

4 5000 173:27:33 43:29:44 00:25:05 102:6 102:0 00:27:00 102:6 102:0

FIG. 14. Total CPU time per unit of non-dimensional time t̂ in RAFSNIE,
VirtualFluids, and finite-volume LES simulations of Pelmard et al.34
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and viscous phases of the flow. Additionally, the VirtualFluids model
achieved good agreement with DNS in the prediction of shear stress
on the lower boundary.

The computational performance of the LBM-GPU framework
was assessed relative to the computational cost of DNS run in
Nek5000 and that reported for the finite-volume NS-LES simulations
of Pelmard et al.34 It is demonstrated that the LBM-GPU framework
delivers speedups of at least one order of magnitude in the elapsed real
time of a simulation relative to DNS at low Reynolds numbers
(Re 
 5000), and speedups of three orders of magnitude in total CPU
time relative to a NS-LES model across a range of grid sizes for a fully
turbulent flow.

Given the speedup that can typically be achieved through multi-
core CPU parallelization of CFD codes, it is estimated that the LBM-
GPU models reduce the elapsed time required for a simulation by two
orders of magnitude while demonstrating equivalent accuracy. As a
result, the numerical modeling framework presented herein can be
used as a foundation for the development of models that capture more
of the complexity of gravity currents, such as the two-way coupling
between the hydrodynamics of environmental scale flows and the
morphodynamics of boundaries in channels with complex geometries.
This modeling objective would otherwise be too challenging to attempt
due to the computational expense of conventional NS-LES codes.
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