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A B S T R A C T   

Warming-induced marine anoxia has been hypothesized as an environmental stressor for the end-Triassic mass 
extinction (ETME), but links between the spread of marine anoxia and the two phases of extinction are poorly 
constrained. Here, we report iron speciation and trace metal data from the Bristol Channel Basin and Larne Basin 
of the NW European epicontinental sea (EES), spanning the Triassic–Jurassic (T–J) transition (~ 202–200 Ma). 
Results show frequent development of anoxic-ferruginous conditions, interspersed with ephemeral euxinic epi-
sodes in the Bristol Channel Basin during the latest Rhaetian, whereas the contemporaneous Larne Basin 
remained largely oxygenated, suggesting heterogeneous redox conditions between basins. Subsequently, more 
persistent euxinic conditions prevailed across the T–J boundary in both basins, coinciding precisely with the 
second phase of the ETME. We propose that this later phase of benthic faunal loss in the NW EES was directly 
driven by the bottom-water oxygen crisis. Conversely, although anoxic conditions persisted into the early Het-
tangian, the benthos diversified at this time in nearshore areas. Post-extinction conditions were poised at a 
fluctuating redox state, but anoxia did not extend into the shallowest areas where benthic marine ecosystem 
recovery was occurring.   

1. Introduction 

The end-Triassic mass extinction (ETME) was one of the five largest 
biotic turnovers in the geologic record (Wignall, 2015). The crisis was 
closely linked to eruptions of the Central Atlantic magmatic province 
(CAMP), and the associated massive greenhouse gas emissions are 
thought to have triggered rapid warming (McElwain et al., 1999; Pálfy 
and Smith, 2000; Ruhl et al., 2011). Nevertheless, the direct trigger for 
marine ecosystem collapse is debated, with causes such as ocean acidi-
fication and anoxia being amongst the favoured mechanisms (Ward 
et al., 2004; Greene et al., 2012; Fox et al., 2020, 2022). Isotope records 
from seawater sulfate and uranium have shown clear evidence for short- 
lived, but pervasive development of marine anoxia on a global scale, 
coinciding precisely with the extinction interval (Jost et al., 2017; He 
et al., 2020). Regional marine sediment nitrogen and sulfur isotope re-
cords (Luo et al., 2018; Fujisaki et al., 2020) and biomarkers (Richoz 
et al., 2012; Beith et al., 2021; Fox et al., 2020, 2022) demonstrate the 
development of brief anoxia on the deeper parts of the shelves and slopes 
in the latest Rhaetian, with subsequent expansion of euxinia into 

shallow settings in the early Hettangian. Conversely, conditions on the 
Panthalassa ocean floor remained fully oxygenated across the ETME 
(Hori et al., 2007; Wignall et al., 2010; Fujisaki et al., 2020). 

Existing evidence for shelf anoxia provides only indirect measure-
ments of redox conditions, but more direct proxies (e.g., iron speciation 
linked to redox sensitive trace metal systematics) are available to assess 
local water-column redox conditions. Furthermore, Wignall and Atkin-
son (2020) have recently shown that the ETME was divided into two 
separate extinction phases, occurring in the late Rhaetian and immedi-
ately below the Triassic–Jurassic (T–J) boundary. However, the precise 
nature of the correlation between marine redox conditions in the EES 
and the two crisis events is not well constrained. 

Here we report the first combined Fe speciation and trace metal 
analyses from three marine siliciclastic successions of the NW EES, 
which provide a continuous record of water column redox evolution 
through the latest Rhaetian to early Hettangian. These successions 
include the relatively offshore St Audrie's Bay (STAB) and Lilstock (LILS) 
sections from the Bristol Channel Basin of southwestern England, and 
the more proximal Larne section (LN) from the Larne Basin of Northern 
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Ireland. Our data show evidence for an extensive spread of marine 
anoxia throughout the T–J transition, and the development of highly 
inhospitable euxinic conditions associated with the second phase of the 
ETME. 

2. Palaeogeography and stratigraphic settings 

The stratigraphic units straddling the T–J boundary at the STAB, LILS 
and LN sections were deposited in the western part of the EES (Fig. 1) 
and represent a regressive-transgressive cycle (Wignall and Atkinson, 
2020). Regression is manifest in a shallowing-up succession from the 
marine mudstone/shale facies in the Westbury Formation, into 

shallower siltstone-rich lithofacies of the lower-mid Cotham Member of 
the Lilstock Formation, where a widespread desiccation horizon is 
developed (Wignall and Bond, 2008) (Fig. 2). The upper Cotham 
Member marks the onset of transgression (Hallam and Wignall, 1999), 
beginning with brackish facies which typically comprise limestones and 
calcareous marl-mudstones in the shallower Larne Basin (Simms, 2007; 
Simms and Jeram, 2007; Morton et al., 2017), and thinly-bedded marls 
and fine-grained sandstone in the Bristol Channel Basin. With continued 
sea-level rise, a fully marine fauna developed in the overlying Langport 
Member, which comprises micritic limestones and calcareous muds in 
the Bristol Channel area (Swift, 1999), and interbedded siltstones and 
mudstones at the Larne section (Simms and Jeram, 2007). The Blue Lias 
(SW England) and Waterloo Mudstone (Larne section) formations 
represent the lowest units of the Jurassic, and comprise interbedded 
organic-rich shales, marls and limestones (Wignall, 2001; Hesselbo 
et al., 2002; Atkinson and Wignall, 2019; Wignall and Atkinson, 2020). 
The lowest part of both formations consists of the Pre-planorbis Beds 
(Hesselbo et al., 2002) (Fig. 2). At the STAB section, the studied suc-
cession continues up to the Liasicus Zone of the mid-Hettangian, which 
mainly comprises black shale and mudstone. 

The stratigraphic correlation between the Bristol Channel and Larne 
areas (Fig. 2) is based upon biostratigraphic and lithostratigraphic cor-
relation (Simms and Jeram, 2007; Atkinson and Wignall, 2019, 2020) 
and further corroborated by a new carbon isotope record at the Larne 
section (Jeram et al., 2021). The Rhaetian Westbury and Lilstock for-
mations contain an abundant but fairly low diversity euryhaline fauna 
dominated by bivalves and ostracods, and lesser numbers of gastropods, 
corals, conodonts and echinoderms (Wignall and Atkinson, 2020). The 
overlying Hettangian Blue Lias and Waterloo Mudstone formations are 
characterised by an abundant and diversifying fauna dominated by bi-
valves, including Plagiostoma, Gryphaea and Pinna, and ammonites 
(Atkinson and Wignall, 2019, 2020; Wignall and Atkinson, 2020). 
Detailed investigation of the ranges of bivalves, ostracods and conodonts 
in the British Isles and across the western EES, have revealed two distinct 
extinction horizons, the first in the lower part of the Cotham Member 
and the second at the top of the Langport Member (Fig. 2). These hori-
zons were immediately followed by trends of increasing benthic mac-
rofaunal diversity (Wignall and Atkinson, 2020). 

3. Material and methods 

3.1. Samples 

A total of 100 mudstone, black shale and marl samples were collected 
from the STAB (ST 103432) and LILS (ST 179453) sections in south-
western England, and the LB section (Irish Grid Ref D409 037) in 
Northern Ireland. Associated sandstone lithofacies were not analyzed. 
Weathered surfaces or crusts of the whole-rock samples were first 
removed using a diamond-tipped saw. The cleaned rock slabs were then 
crushed and ground to fine powder using an agate disc mill. 

3.2. Fe speciation 

Fe speciation is widely used to distinguish water-column redox 
conditions, ranging from fully oxic, through anoxic-ferruginous, to 
anoxic-euxinic states (Poulton and Canfield, 2011; Poulton, 2021). 
These states are determined by evaluating the abundance of the highly 
reactive iron (FeHR) fraction relative to the total iron pool. FeHR phases 
include carbonate associated iron (Fecarb), pyrite (FePY), ferric oxides 
(Feox) and magnetite (Femag). Sequential extraction of FeHR phases was 
performed according to the standard chemical protocol described by 
Poulton and Canfield (2005). Around 100 mg of sample powder was first 
treated with a sodium acetate solution at pH 4.5 and 50 ◦C for 48 h to 
extract Fecarb. Feox was then extracted via a sodium dithionite solution at 
pH 4.8 and room temperature for 2 h. This was followed by the final 
leaching of Femag with an ammonium oxalate solution at room 

Fig. 1. Paleogeographical map for the Triassic–Jurassic (T–J) transition 
showing localities for studied sections of NW European epicontinental sea. This 
figure is reprinted from the work of Richoz et al. (2012) and He et al. (2020). 
Yellow filled circle indicates the location of St. Audrie's Bay section and Lilstock 
section in the Bristol Channel Basin, southwestern England. Yellow filled tri-
angle indicates the location of Larne section in the Larne Basin, Northern 
Ireland. CAMP: Central Atlantic Magmatic Province. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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Fig. 2. Rhaetian–Hettangian stratigraphy of the St Audrie's Bay, Lilstock and Larne sections. Stratigraphic depth and the lithological log are presented alongside the 
global stages and regional biozones. Stratigraphic correlation for lithological units and positions of extinction are based on biostratigraphic and lithostratigraphic 
data (Atkinson and Wignall, 2019, 2020). W., Westbury Formation; Co., Cotham Member; Lan., Langport Member. Fm., Formation; Mb., Member. Organic carbon 
isotope (δ13Corg) data of St Audrie's Bay section are presented from the work of Hesselbo et al. (2002). Horizontal orange dash lines indicate the two-phase extinction 
events at the lower part of Cotham Member (phase 1) and the top of Langport Member (phase 2), respectively (Wignall and Atkinson, 2020). 
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temperature for 6 h. The concentration of these iron phases was 
measured using a ThermoFisher iCE 3300 atomic absorption spec-
trometer (AAS) in the Cohen Geochemistry Laboratory, University of 
Leeds. Pyrite Fe (FePY) was extracted following the chromous chloride 
distillation method (Canfield et al., 1986). The concentration of FePY 
was calculated stoichiometrically by the weight of precipitated silver 
sulfide from the extraction. Replicate extractions of samples and refer-
ence material WHIT (Alcott et al., 2020) yielded relative standard de-
viations (RSDs) of <5% for all highly reactive Fe phases. 

3.3. Total digestion and bulk elemental concentrations 

Approximately 100 mg of sample powder was first ashed for 8 h at 
550 ◦C to remove organic matter. Total digestion of the residue was 
performed using an acid combination of HNO3-HF-HClO4. Boric acid 
was used to prevent the formation of Al complexes. An aliquot of the 
resulting solution was measured for concentrations of Al using a Ther-
moFisher iCAP 7400 radial inductively coupled plasma optical emission 
spectrometer (ICP-OES), and trace metals (Mo and U) using a 

ThermoFisher iCAP Qc inductively coupled plasma mass spectrometer 
(ICP-MS) in the Cohen Geochemistry Laboratory, University of Leeds. 
Total Fe concentrations (FeT) were measured using a ThermoFisher iCE 
3300 atomic absorption spectrometer (AAS). Accuracy was monitored 
by analyzing certified reference materials USGS Eocene Green River 
Shale (SGR-1). Repeated measurement of samples yielded RSDs for all 
elements of better than 3%. 

4. Results and discussions 

4.1. Water column redox proxies 

Here we combine proxy evidence from sediment Fe speciation and 
trace metal abundances to constrain water column redox variability 
through the T–J transition in the Bristol Channel Basin and Larne Basin 
(see data in Table S1). Calibrations in modern and ancient marine en-
vironments suggest that sediments are enriched in highly reactive iron 
(FeHR) in an anoxic water column (FeHR/FeT > 0.38) in contrast to fully 
oxic conditions, where FeHR/FeT ratios are commonly <0.22 (Poulton 

Fig. 3. Geochemistry of Fe speciation and trace metal from the St Audrie's Bay section, Bristol Channel Basin. a&b Iron speciation data: highly reactive iron to total 
iron ratios (FeHR/FeT); pyrite to highly reactive iron ratios (FePY/FeHR); Vertical dash lines represent the thresholds for oxic (FeHR/FeT < 0.22) and anoxic (FeHR/FeT 
> 0.38), and ferruginous (FePY/FeHR < 0.6) and euxinic (FePY/FeHR > 0.8) depositional conditions. FeHR/FeT ratios between 0.22 and 0.38 and FePY/FeHR ratios 
between 0.6 and 0.8 are considered equivocal and may represent either oxic or anoxic conditions, and ferruginous or euxinic conditions respectively (Poulton, 2021). 
c The proportion of different reactive iron phases within the total highly reactive Fe pool; FeCARB, carbonate-associated iron; FePY, pyrite; FeOX, ferric oxides; FeMAG, 
magnetite. d U to Al ratios. e Mo to Al ratios. f Mo to U ratios. Elemental mass ratios are expressed as log([element]/[element]). Vertical dashed lines in d-f represent 
the mass ratios of average elemental compositions of upper continental crust (UCC) (Rudnick and Gao, 2014). g Variation in water column redox conditions: 
Commonly euxinic intervals (green bands); Commonly anoxic-ferruginous intervals (purple bands). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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and Canfield, 2011). The enrichment of redox-sensitive U can provide 
independent constraints on anoxic conditions (Algeo and Tribovillard, 
2009; Tribovillard et al., 2012). Under reducing conditions, U(VI) in 
seawater is reduced to less soluble U(IV), promoting authigenic 
enrichment of U in the sediments relative to the average crustal abun-
dance (e.g., upper continental crust (UCC)) (Rudnick and Gao, 2014). 
The reduction of U starts at the Fe (II)–Fe (III) redox boundary and links 
directly with Fe redox reactions rather than the presence of free H2S in 
the water column (i.e., euxinia). 

The precise nature of anoxic depositional conditions can be further 
evaluated by examining the relative proportion of pyrite in the FeHR 
pool, where a ferruginous (anoxic, Fe2+ rich and sulfide-free) water 
column generally yields FePY/FeHR lower than 0.6–0.8, with euxinic 
conditions diagnosed above this threshold (Poulton, 2021). The redox 
evaluation can be supported by investigation of Mo systematics. Mo is 
present as the molybdate anion in the modern oxic ocean, but in euxinic 
settings, seawater Mo is converted to particle-reactive thiomolybdate or 
is associated with authigenic iron sulfides, leading to excess Mo en-
richments and elevated Mo/U ratios relative to oxic and ferruginous 
settings (Algeo and Lyons, 2006). 

4.2. Marine redox variations in the late Rhaetian 

Enrichments in highly reactive Fe (FeHR/FeT > 0.38) in siliciclastic 
samples occur throughout the Westbury and Lilstock formations in the 

STAB and LILS sections (Fig. 3a & 4a), suggesting that anoxic water 
column conditions were a prevalent feature of late Rhaetian deposition 
in the Bristol Channel Basin. These elevated FeHR/FeT ratios coincide 
with U/Al ratios that are higher than the average composition of UCC 
(Rudnick and Gao, 2014) (Fig. 3d & 4d). Furthermore, samples that are 
increasingly enriched in FeHR/FeT (above the oxic-anoxic boundary of 
0.38) also show a progressive enrichment in U/Al (Fig. 6a), clearly 
supporting anoxic intervals, with co-enrichment in FeHR and U as the 
overall intensity or persistence of anoxia increased. However, benthic 
macrofossils are abundant and diverse throughout most of these Rhae-
tian sediments (Wignall and Atkinson, 2020), which indicates that the 
anoxic conditions were not persistent; oxygenated conditions and 
benthic colonization was likely frequent but short lived. Thus, water 
column redox conditions during this commonly anoxic interval in the 
late Rhaetian, as recorded by geochemical proxy evidence, may have 
fluctuated between anoxic and oxic conditions on a variety of 
timescales. 

The majority of late Rhaetian samples in the Bristol Channel Basin 
show FePY/FeHR values scattering around the equivocal zone (0.6–0.8) 
(Fig. 3b and 4b), which may represent either anoxic-ferruginous or 
euxinic condition (Poulton, 2021). However, only a few of these samples 
exhibit co-enrichments in Mo/Al and Mo/U (Figs. 3e,f and 4e,f), sug-
gesting that euxinic conditions were rare. Therefore, when anoxic 
deposition occurred in the Westbury Formation to upper Langport 
Member of the Bristol Channel Basin, it was dominated by ferruginous 

Fig. 4. Geochemistry of Fe speciation and trace metal from the Lilstock section, Bristol Channel Basin. a&b Iron speciation data. c The proportion of different reactive 
iron phases within the total highly reactive Fe pool. d U to Al ratios. e Mo to Al ratios. f Mo to U ratios. g Variation in water column redox conditions: Commonly 
euxinic intervals (green bands); Commonly anoxic-ferruginous intervals (purple bands). 
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conditions interspersed with ephemeral euxinic episodes (Fig. 3g, 4g 
and 7a). In detail, it is noteworthy that the upper part of the Cotham 
Member shows a mixture of ferruginous and euxinic conditions at a level 
considered to be brackish, based on the presence of ostracods and con-
chostracans (Morton et al., 2017), implying deposition in a restricted, 
possibly lagoonal, setting. The redox conditions in the lower part of the 
Cotham Member were not assessed because of the unsuitable siltstone 
and sandstone lithologies at this level, and thus the oxygenation regime 
at the time of the first phase of extinction remains unresolved. The shale 
horizons of the Langport Formation at the STAB and LILS sections 
generally record anoxic-ferruginous conditions (Figs. 3g and 4g). In 
sharp contrast to the Bristol Channel Basin, sediments in the shallower 
Larne Basin have FeHR/FeT ratios lower than 0.38 across most of the late 
Rhaetian, suggesting that fully oxic conditions were dominant (Fig. 5a, 
g). 

Nonetheless, samples from both the upper Cotham and Langport 
members of LN section show rising trends of elevated FeHR/FeT ratios (>
0.38) and higher FeHR/FeT ratios coincide with relatively higher U/Al 
values (Fig. 5a,d), which are suggestive of intervals of more persistent 
anoxic-ferruginous conditions (Fig. 5g). Dominantly euxinic conditions 
only developed around the base of the Waterloo Mudstone Formation, in 
the Pre-planorbis Beds. This intensification of anoxia, to the point of 
persistent euxinia, is seen in all our study sites, and coincides with the 
second phase of the ETME (Fig. 7b). Independent evidence from aryl 
isoprenoids and isorenieratane occurrences (Beith et al., 2021), also 
support the presence of photic zone euxinia in the Bristol Channel Basin 

during this interval. 

4.3. Enhanced redox fluctuations through the early Hettangian 

Euxinic conditions persisted during deposition of the Pre-planorbis 
Beds in the Bristol Channel Basin, as demonstrated by elevated ratios of 
FePY/FeHR (> 0.7), Mo/Al and Mo/U (Figs. 3 and 4). This is immediately 
followed by a transition towards a more fluctuating redox state in the 
Hettangian planorbis and liasicus zones that alternates between anoxic- 
ferruginous and euxinic (Figs. 3g and 7c). By contrast, in the Larne 
Basin, while lower Hettangian samples are dominated by FeHR/FeT ra-
tios higher than 0.38, FePY/FeHR ratios are commonly below 0.6 (Fig. 5a, 
b). The U/Al record fluctuates during this interval in the Larne Basin 
(Fig. 5d), but some values are elevated relative to UCC, supporting 
frequent development of anoxic-ferruginous conditions in the water 
column (Fig. 7c). However, the post-extinction lower Hettangian sedi-
ments in these basins contain a benthic fauna dominated by bivalves 
that indicate transient oxygenation (Atkinson and Wignall, 2019, 2020). 

4.4. Marine redox landscape and ecosystem changes in the EES through 
the T–J transition 

Our new redox analyses reveal that anoxic-ferruginous waters were 
common in the late Rhaetian, and this was followed by the sporadic 
spread of euxinia in the Bristol Channel Basin. However, the facies 
associated with the first ETME phase in the lower Cotham Member 

Fig. 5. Geochemistry of Fe speciation and trace metal from the Larne section, Larne Basin. a&b Iron speciation data. c The proportion of different reactive iron phases 
within the total highly reactive Fe pool. d U to Al ratios. e Mo to Al ratios. f Mo to U ratios. g Variation in water column redox conditions: Commonly euxinic intervals 
(green bands); Commonly anoxic-ferruginous intervals (purple bands); Oxic intervals (yellow bands). 
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record very shallow-water conditions and are not suitable for redox 
analysis. In the Bristol Channel Basin, the first extinction phase occurs 
just below a widespread emergence surface with large desiccation cracks 
(Wignall and Bond, 2008). The contemporaneous Larne Basin section 
was also developed in a basin margin location and remained well‑oxy-
genated during deposition of the Cotham Member (Fig. 7). The role of 
anoxia in the first extinction phase is therefore unclear and requires 
study of more offshore sections than are available in the British Isles. 

By contrast, the intensification of euxinia across the two basins 
during the second phase of the ETME is clear (Fig. 7b). Thus, the spread 
of euxinic waters likely caused contraction of ecological habitable zones, 
and resulted in the dwarfing and high extinction rates observed at this 
time (Wignall and Atkinson, 2020). Commonly euxinic waters continued 
to develop in the Bristol Channel Bains and Larne Basin through the 
early Hettangian (Fig. 7c). The low oxygen conditions did not hinder 
long-term ecosystem recovery in the Early Jurassic because nearshore 
areas, seen for example in South Wales, deposited under fully oxygen-
ated conditions and thus acted as the cradle of recovery in the region 
(Atkinson and Wignall, 2019, 2020). The euxinic intervals in basinal 
settings of the early Hettangian alternated with oxic water column 
conditions, as evidenced by the sporadic presence of benthic macro-
faunal and bioturbation in these sediments. 

Our findings are supported by contemporaneous isotopic evidence 
for the behavior of seawater sulfate in the wider EES. A positive S- 
isotope excursion in seawater sulfate was identified in the Cotham 
Member in the Larne Basin, indicating a short-lived marine deoxygen-
ation pulse (He et al., 2020). Records of sedimentary pyrite S-isotopes 
also demonstrate that the upper Rhaetian of the Bristol Channel Basin 
(Jaraula et al., 2013) and other basins of the eastern EES (Luo et al., 
2018) were characterised by brief anoxic/euxinic events during the 
extinction intervals. Additional data from green sulfur-derived bio-
markers indicate recurring photic zone euxinia through the T–J transi-
tion in both the Bristol Channel Basin and the Cleveland Basin of North 
Yorkshire (Jaraula et al., 2013; Beith et al., 2021; Fox et al., 2020, 2022). 
On a global scale, contemporaneous anoxia-hypoxia was widespread 
across the ETME in the shallow and mid-depth waters of the western 
Tethys and eastern Panthalassa (Jost et al., 2017; He et al., 2020, 2022). 

The reasons for the extensive or sporadic occurrence of anoxia in the 
EES and wider ocean during the ETME could plausibly be related to 
extreme hyperthermal conditions (Ruhl et al., 2011). The ETME was 
closely linked to the contemporaneous emplacement of the CAMP 
through the Late Triassic–Early Jurassic transition (Ruhl et al., 2010, 
2011; Blackburn et al., 2013; Thibodeau et al., 2016; Davies et al., 2017; 
Korte et al., 2018; Marzoli et al., 2018). Global warming may therefore 
have driven ocean deoxygenation and stratification (Jaraula et al., 2013; 
Luo et al., 2018; Fujisaki et al., 2020). Furthermore, low seawater sulfate 
concentrations across the T–J transition would have promoted benthic 
methane release, thereby exacerbating the intensity of bottom-water 
anoxia (He et al., 2020). 

5. Conclusions 

Sediment Fe speciation and trace metal data from two representative 
basins of the NW EES, provide a near-complete record of water column 
redox conditions through the T–J transition. Our data suggest an oscil-
lating redox state that commonly saw anoxic-ferruginous or euxinic 
conditions develop in the Bristol Channel Basin and Larne Basin. We also 
identify spatial redox variability in the latest Triassic between the Bristol 
Channel Basin and the Larne Basin, with the latter developing more 
oxygenated conditions through this interval, likely due to shallower 
water depths. Although no definite anoxia-extinction link is seen during 
the first phase of the ETME in the latest Rhaetian, when sea-level fell and 
an emergent horizon developed, a shift towards intensified euxinia 
occurred in the latest Rhaetian. This marks a major environmental 
deterioration event associated with the second ETME phase. We thus 
propose that oxygen deficiency was a direct driver for the second phase 
of the ETME in the NW EES. Further studies in deeper water settings are 
required to constrain redox conditions during the first ETME phase. 
During the post-extinction early Hettangian, anoxic-ferruginous or 

Fig. 6. Fe speciation and U concentration in Rhaetian–Hettangian sediments 
from the Bristol Channel Basin (BCB) and Larne Basin (LARNE). a U/Al versus 
FeHR/FeT. The horizontal dash line represents the average log(U/Al) value of 
UCC (Rudnick and Gao, 2014). b Figure shows the cross-plot of the ratios of 
pyrite Fe to highly reactive Fe (FePY/FeHR) against highly reactive Fe to total Fe 
(FeHR/FeT). Thresholds are made for anoxic (FeHR/FeT > 0.38) and euxinic 
(FePY/FeHR > 0.8) depositional conditions. FeHR/FeT ratios between 0.22 and 
0.38 and FePY/FeHR ratios between 0.6 and 0.8 are considered equivocal and 
may represent either oxic or anoxic conditions, and ferruginous or euxinic 
conditions respectively (Poulton, 2021). 
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euxinic conditions persisted in the EES basins, but the region was 
characterised by highly dynamic, fluctuating redox conditions on 
various timescales. 
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