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ABSTRACT

We study the role of nonlinear effects on tidally-excited internal gravity waves in stellar ra-
diation zones in exoplanetary or binary systems. We are partly motivated to study tides due
to massive short-period hot Jupiters, which preferentially orbit stars with convective cores,
for which wave breaking near the stellar centre cannot operate. We develop a theory (and test
it with numerical calculations) for the nonlinear excitation of super-harmonic “secondary”
waves (with frequencies 2ωp) by a “primary” tidal wave (with frequency ωp) near the inter-
face between the radiation zone and convective envelope. These waves have the same hori-
zontal phase speeds to leading order, and this nonlinear effect could contribute importantly
to tidal dissipation if the secondary waves can efficiently damp the primary. We derive cri-
teria involving the orbital and stellar parameters required to excite these secondary waves to
large amplitudes using a local model of the radiative/convective interface, which we convert
to apply to tides in a spherical star. We numerically evaluate the critical amplitudes required
for this new nonlinear effect to become important using stellar models, comparing them to
the “conventional” criteria for wave breaking in radiative cores and the application of WKBJ
theory near convective cores. The criteria for this new effect are easier to satisfy than the con-
ventional measures of nonlinearity in 1.4 and 2M⊙ stars on the main-sequence. We predict
nonlinear effects to be important even for planetary-mass companions around the latter, but
this effect is probably less important in stars with radiative cores.

Key words: planet -star interactions, stars: binaries: close,

1 INTRODUCTION

Tidal interactions play an important role in exoplanetary and close

binary systems. Although development of the modern theory of

tides in celestial bodies began over a century ago (starting with e.g.

Darwin 1880) there are still many open problems in this area. Per-

haps the most important questions concern the efficiency of tidal

energy dissipation in stars and giant planets, which are wholly or

partly fluid bodies. This is because tidal dissipation can drive evolu-

tion of the spins and orbits of stars and planets in close binary and in

exoplanetary systems (see e.g. the reviews by Ogilvie 2014; Mathis

2019). It has long been argued that when the standard equilib-

rium (also referred to as quasi-stationary) tides (e.g. Hut 1981) are

considered in convection zones the dissipative efficiency could be

negligibly small in many applications involving planets and main-

sequence stars (e.g. Goldreich and Nicholson 1977, who built upon

earlier ideas by Zahn 1966). Modern numerical calculations have

⋆ E-mail: pbi20@cam.ac.uk (PBI)
† E-mail: chernov@td.lpi.ru (SVCh)
‡ E-mail: A.J.Barker@leeds.ac.uk (AJB)

confirmed this qualitative statement1, although the detailed phys-

ical picture of the processes involved may be different from what

was originally envisaged (see e.g. Ogilvie and Lesur 2012; Duguid,

Barker and Jones 2020a,b; Vidal and Barker 2020a,b). Thus, the

equilibrium (quasi-stationary) tides are unlikely to explain the ob-

served parameters of main-sequence close binary and exoplanetary

systems, including the orbital evolution inferred in some hot Jupiter

systems. However, equilibrium tides are still likely to be the dom-

inant mechanism in giant stars (e.g. Verbunt and Phinney 1995;

Mustill and Villaver 2012). Another potentially important tidal dis-

sipation mechanism is dynamical tides (e.g. Cowling 1941; Zahn

1977), which involve the resonant excitation of low frequency nor-

mal modes (or waves) of a planet or a star by the time-dependent

tidal potential. Usually, the dynamical tide is thought to consist of

internal gravity waves in stably-stratified (radiative) regions, and

inertial waves in convective regions of rotating bodies.

In this paper, we consider non-rotating main-sequence stars,

1 Unless the mechanism considered by Terquem (2021) can work as effi-

ciently as they estimate, though this is highly uncertain (Barker and Astoul

2021).
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2 P. B. Ivanov, S. V. Chernov, A. J. Barker

or sufficiently slowly rotating ones for which all relevant tidal fre-

quencies are larger than the Coriolis frequency (like in most hot

Jupiter hosts), therefore tidal forcing cannot directly excite inertial

waves. On the other hand, internal gravity waves existing in stably-

stratified radiative zones may be resonantly excited by tidal forc-

ing, and, in principle, their dissipation can explain certain observa-

tional phenomena (including WASP-12 b’s inferred orbital decay

e.g. Maciejewski et al. 2016; Chernov et al. 2017; Weinberg et al.

2017; Patra et al. 2020; Yee et al. 2020; Barker 2020) provided that

these waves are sufficiently strongly dissipated inside the star. The

regime in which this is the case has been referred to as “moderately

large dissipation” (MLD, by e.g. Ivanov et al. 2013; Chernov et al.

2017) or as the “fully damped” or ”travelling wave” regime (by e.g.

Barker and Ogilvie 2010; Barker 2020). Qualitatively, this regime

is expected when the propagation time of a tidally-excited gravity

wave packet is larger than its damping time2. However, the ‘stan-

dard’ linear mechanisms to damp gravity waves (radiative diffusion

and convective damping of the evanescent tails in the envelope) are

usually not efficient enough to justify the validity of this regime

for close orbits (e.g. Terquem et al. 1998; Goodman and Dickson

1998). In this situation various non-linear effects have been pro-

posed for which this fully damped (MLD) regime may be possible,

such as weakly non-linear mode-mode interactions (e.g. Barker and

Ogilvie 2011; Weinberg et al. 2012; Essick and Weinberg 2016), or

wave breaking near the centres of solar-like stars possessing radia-

tive cores in which the waves can be geometrically focused and

attain large amplitudes (Goodman and Dickson 1998; Ogilvie and

Lin 2007; Barker and Ogilvie 2010; Barker 2011, 2020). Note that,

although different theoretical approaches (for example, the normal

mode formalism of Ivanov et al. 2013 or the low-frequency asymp-

totic approach taken by e.g. Goodman and Dickson 1998) should,

in principle, give the same results for, say, the conditions under

which non-linear effects are predicted to be important, in prac-

tice they use various different simplifying assumptions, and could

therefore differ in their quantitative predictions. Hence, it is worth-

while reproducing results obtained in one formalism with those of

another when possible.

Wave breaking near the centres of solar-type stars with ra-

diative cores can lead to efficient wave absorption through the

formation a critical layer (e.g. Barker and Ogilvie 2010; Barker

2011), which can naturally explain the occurrence of the fully

damped/MLD regime. For example, it has been proposed that

WASP-12 has a radiative core due to being a subgiant, for which

this mechanism may explain the inferred orbital evolution (e.g.

Weinberg et al. 2017). In the current Sun, the criterion for the

onset of wave breaking requires that a planet in a one-day orbit

must exceed about 3 Jupiter masses, though this mass threshold is

a strong function of the stellar mass and age (Barker and Ogilvie

2010; Barker 2020). At the end of the main-sequence, much lower

mass planets can cause wave breaking in the stellar core and poten-

tially be destroyed. However, stars with masses even slightly larger

than 1.1 M⊙ typically have convective cores on the main-sequence.

Although a similar criterion for wave breaking can be formulated in

the radiation zones of these stars using WKBJ theory (e.g. Sun et al.

2018; Barker 2020), the threshold companion masses to cause wave

breaking are much larger than the ones obtained in solar-like stars,

2 Since the group speed of a high radial order gravity wave is much smaller

than its phase speed, its propagation time can be much larger than the dy-

namical time, so the damping rate (and hence the viscosity or radiative dif-

fusivity damping the wave) need only be ‘moderately’ large.

and this effect appears unlikely to ever be important for planetary-

mass companions until the star evolves off the main sequence. It is

important to verify the validity of this result, and to explore whether

tides in F-type stars can be in this fully damped regime or not, be-

cause many of the most massive ultra-short period hot Jupiters have

been observed to orbit such stars (such as WASP-18b, Wilkins et al.

2017).

The criterion for wave breaking is equivalent to the condi-

tion that the radial gradient of the total specific entropy, includ-

ing both the radiative background and the wave, becomes negative.

This condition is always formally satisfied in the radiation zone at

a point sufficiently close to the interface between the inner radia-

tive region and an outer convective envelope (as we will show in

Section 3). This suggests that non-linear effects acting on tidal per-

turbations could be important in this region of a star even though

this is not predicted from WKBJ theory. In this paper, we analyse

the nonlinear dynamics of these perturbations in some detail by

considering a region of small radial extent near such an interface.

We use weakly nonlinear theory (second order perturbation theory)

to find a condition for which the amplitudes of the generated sec-

ondary waves by the primary tidal waves become comparable with

the amplitude of the latter. We apply the formalism of Ivanov et

al. (2013) assuming the fully damped/MLD regime to describe the

primary tidal wave (i.e. the first order perturbations). Additionally,

for simplicity, we assume that, after certain modifications, results

obtained in planar geometry can be applied to a spherical star. We

also adopt the Boussinesq approximation for the equations of mo-

tion (e.g. Spiegel and Veronis 1960), and assume that square of the

Brunt-Väisälä frequency in the radiation zone depends linearly on

the distance to the interface provided that this distance is small (see

e.g. Barker 2011; Ivanov et al. 2013, for a discussion of this point).

We find, in agreement with results recently obtained in fluid

dynamics and oceanography (see e.g. Wunsch 2017; Baker and

Sutherland 2020), that first order tidal perturbations generate

(through their nonlinear self-interaction) super-harmonic second

order perturbations with approximately double the frequency and

wavenumber (and hence the same horizontal phase speed). We

derive the conditions required for the secondary super-harmonic

waves to attain approximately the same amplitudes as their primary

waves in our Cartesian model, and then apply this to realistic stel-

lar models assuming that the amplitude of the primary tidal wave

(at first order) is in the fully damped/MLD regime. Our criterion

is written in terms of the quantity q/(1 + q), where q is the mass

ratio (secondary perturber mass/primary star mass), which must be

larger than a certain critical value, Ccrit, which is a function of the

orbital period and stellar parameters. We apply this criterion to a

set of main-sequence stellar models with masses M = 1, 1.4 and

2M⊙ with different ages.

We find that the criterion for nonlinear self-interaction of the

primary tidal waves to be important in generating super-harmonic

secondary waves near radiative-convective interfaces can be satis-

fied much more easily than the (WKBJ) criterion for wave breaking

near convective cores, in most of our models with M > M⊙. It

would be interesting to explore with future numerical simulations

whether tidally-excited primary waves that satisfy our amplitude

criterion could be damped efficiently enough by this mechanism to

validate the occurrence of the fully damped/MLD regime in these

stars (as assumed by e.g. Chernov et al. 2017; Barker 2020). If

so, then our results may have important implications both for hot

Jupiter and close binary systems. In particular, the occurrence of

this fully damped/MLD regime allows straightforward prediction

of orbital decay rates in hot Jupiter systems, and orbital evolution

© 2022 RAS, MNRAS 000, 1–19
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in some close binary systems, as long as the properties of the stars

and orbital properties are known.

The structure of this paper is as follows. In § 2, we recap the

main results required to apply the formalism of Ivanov et al. (2013)

to obtain the linear tidal response. We then provide simple estimates

to predict when nonlinearity might be expected to be important for

tidally-excited gravity waves in § 3 at three particular locations:

near the centres of radiative cores, at the radiative interface with a

convective core, and at the interface between a radiation zone and

a convective envelope. This motivates the more detailed calcula-

tions of the generation of super-harmonic gravity waves by weakly

nonlinear interactions in a local Cartesian Boussinesq model of the

transition region between a radiation zone and a convective enve-

lope in § 4 and 5. We confirm our analytical results by comparing

them with numerical calculations in § 7. We then derive simple cri-

teria to predict when this new nonlinear effect is likely to become

important in § 6 and then apply these to stellar models in 8. Finally,

we present our conclusions and a discussion in § 9. In the main

text we assume that the star is non-rotating. However, we briefly

discuss the most important correction to our results if the star ro-

tates slowly (which is the appropriate regime for many stars hosting

short-period planets) in Appendix A.

2 LINEAR TIDAL RESPONSE IN RADIATION ZONES

We adopt the following notation and conventions throughout this

paper, unless specified otherwise: M∗ and R∗ are the stellar mass

and radius, respectively, G is the gravitational constant, Mp is the

perturber’s mass, and the mass ratio is q = Mp/M∗. We define

Ω∗ =
√

GM∗/R3
∗ (i.e. the dynamical frequency) and the mean

density ρ̄ = 3M∗/(4πR
3
∗). We express all quantities of interest in

these natural units. Namely, the density ρ is represented as ρ = ρ̄ρ̃,

the Lagrangian displacement vector ξ = R∗ξ̃, and all quantities

having the dimension of frequency are expressed in units of Ω∗.

To distinguish dimensional and dimensionless quantities we assign

tildes to the latter.

We follow closely Ivanov et al. (2013, hereafter IPCh) and as-

sume that all quantities of interest may be represented as a discrete

Fourier series in time and over the azimuthal angle φ. In particular,

the Lagrangian displacement vector induced at a point in the star

by tidal interactions, ξ, can be represented as

ξ =
∑

m,k

ξm,ke
−iωm,kt+imφ + c.c., (1)

where c.c. denotes the complex conjugate, it is implied that summa-

tion over the azimuthal number m contains only terms with m = 0
and 2, and the forcing frequency

ωm,k = kΩorb −mΩr, (2)

where Ωorb and Ωr are the orbital frequency and spin angular ve-

locity of the star, respectively, with k being an integer 3. Here-

after we assume that the star is effectively non-rotating by setting

Ωr = 0 in the main text, and briefly discuss the main effects caused

by a slow stellar rotation in Appendix A.

IPCh derived expressions for ξm,k in terms of the eigenvectors

3 Note that equation (2) implies that ωm,k are defined in the rotating frame.

In the inertial frame we have ωm,k = kΩorb.

of free stellar pulsations, ξj , as

ξm,k =
Am,k

2

∑

j

Qj

ωm,knj(ωm,k − ωj + iων)
ξj , (3)

where j is an integer, which represents a sum over all of the free

modes of the star. Here Am,k are quantities characterising the am-

plitudes of the Fourier components of the tidal potential, which are

given explicitly in Appendix A of IPCh, for example. For our pur-

poses, we only need to know A2,2, which is given by equation (10)

below. The quantities Qj , nj and ωj are the so-called tidal overlap

integral (determining how efficiently a given mode is excited by the

tidal potential), norm and eigenfrequency of a particular free mode,

while ων is its damping rate.

For a non-rotating star perturbed by the quadrupolar compo-

nent of the tidal potential, ξj can be expressed in terms of spherical

harmonics Y m
2 as

ξj = e−imφ {ξj(r)Y m
2 (θ, φ)er + ξj,S(r)r∇Y m

2 (θ, φ))} , (4)

where the standard spherical polar coordinate system centred on

the star (r, θ, φ) is used, er is the unit vector in the radial direction,

and the plane θ = π/2 coincides with the orbital plane. The pres-

ence of e−imφ in front of the brackets in (4) stems from our initial

definition (1), in that the dependence of ξ on φ is already taken into

account there and it is implied that the eigenvectors do not depend

on this angle.

For a non-rotating star we have

Qj = 2

∫ R∗

0

ρ(r)r3(ξj + 3ξj,S)dr, (5)

nj =

∫ R∗

0

ρ(r)r2(ξ2j + 6ξ2j,S)dr, (6)

where ρ(r) is the stellar density. Note that, for clarity, we explicitly

use the dimensional definition for Qj and nj here, contrary to e.g.

IPCh and references therein.

The summation in the expression for ξm,k can be approxi-

mately performed under the assumption that the spectrum of eigen-

modes is dense and regular. This is appropriate for the case of

high-order g-modes, for example. In this case only modes with fre-

quencies approximately equal to ωm,k contribute to the sum over

k in (3) and the difference is determined by the values of the factor

ωm,k−ωj+iων in the denominator for different modes, while other

quantities can be taken out of the sum over k. Let’s assume that

ωm,k is close to a particular eigenfrequency, with an index j = j0,

and then write down ωj0 = ωm,k +∆ωj0 , where |∆ωj0 | ≪ |ωj0 |
is a frequency offset. Also, we assume that eigenfrequencies with

indices j ∼ j0 depend approximately linearly on the difference

l = j − j0: ωj = ωj0 + (dω/dj)l, where dω/dj stands for

the difference ωj0 − ωj0−1. Under these assumptions, the factor

ωm,k − ωj + iων ≈ iων − (dω/dj)l − ∆ωj0 , and we can write

down

ξm,k = − Am,kQj0

2ωm,k(dω/dj)j0nj0

Sξj0
, S =

∞
∑

l=−∞

1

δ + l − iκ
,

(7)

where δ =
∆ωj0
dω/dj

is a dimensionless frequency offset, κ = ων
dω/dj

is a dimensionless damping rate, we formally extend summation

to infinite limits and set ωj0 = ωm,k in the terms outside the sum.

The sum S can be evaluated using complex variable theory (residue

calculus) with the result

S = −π cot(π(iκ− δ)). (8)

Of particular importance is the case of so-called ‘moderately large

© 2022 RAS, MNRAS 000, 1–19



4 P. B. Ivanov, S. V. Chernov, A. J. Barker

dissipation’ (MLD), which occurs when the damping rate is larger

than the distance between two neighbouring eigenfrequencies i.e.

κ > 1. For our calculations below related to this regime we use

κ = 1 for all values of δ. Note that in this case S(κ = 1, δ) is very

close to its limiting value S(κ → ∞, δ) = iπ.

3 SIMPLE ESTIMATES FOR TIDALLY-EXCITED

GRAVITY WAVES TO BECOME NONLINEAR

It is often assumed that internal gravity waves break (or become

essentially nonlinear) when the maximum magnitude of the (nega-

tive part of the) radial gradient of the Eulerian perturbation of the

specific entropy, ∂rs
′ becomes larger than the background value,

ds/dr (see e.g. Ogilvie and Lin 2007; Barker and Ogilvie 2010,

2011), since then there is a portion of the wave in which the entropy

profile is overturned (i.e. with a decreasing radial gradient which

would be “convectively unstable”). The Lagrangian perturbation of

specific entropy, ∆s, is clearly zero for adiabatic perturbations. We

note that ∆s = s′ + ds
dr
ξr , where ξr is the radial component of ξ.

Hence, from the condition |∂rs
′| > | ds

dr
|, we readily find

∣

∣

∣

∣

∣

∂

∂r
ξr +

d2s
dr2

ds
dr

ξr

∣

∣

∣

∣

∣

> 1, (9)

where this expression is meant to be evaluated in stellar radia-

tion zones, and we consider its maximal value over the coordinates

r, θ, φ, and a tidal forcing period.

In what follows, we consider the simplest case of an approx-

imately circular orbit, in which only the term with m = k = 2 is

important in the summation in (1), and the relevant tidal potential

component is A2,2, as defined in equation (A2) of IPCh, which has

the following explicit form

A2,2 ≈ −1

2

√

6π

5

GMp

a3
, (10)

where a is the orbital semi-major axis. We also have ω2,2 = 2Ωorb,

and from (1) and (7) we obtain

ξ = −π

2
A2,2

Q
dω
dj
Ωorbn

ξj0
sin(Ψ), (11)

where Ψ = 2(Ωorbt − φ). It is implied below that all quantities

associated with an eigenmode correspond to one having an approx-

imately resonant frequency 2Ωorb. We do not show the correspond-

ing mode index j0 in expressions for the overlap integral Q, the

norm n, the eigenfrequencies ω, and their differences dω/dj here-

after. Since we require that ξr in (9) should take its largest value

over a wave period, we set sinΨ = 1 in (11).

From (4) it follows that the radial component of ξj0
, ξrj0 ,

entering (9) is expressed in terms of ξ(r) through the factor

e−2iφY 2
2 (θ, φ), which is a function of the angle θ only. This factor

takes its largest value at θ = π/2, where it is equal to 1
4

√

15
2π

. Note

that ξ(r) is assumed to be known from the solution of the standard

problem of free stellar pulsations. We express ξrj0 in terms of ξ(r),
then substitute (10) in (11), to obtain the radial component

ξr =
3π

16

q

1 + q

Ωorb

dω/dj

Q

n
ξ. (12)

We then substitute (12) into (9) to obtain our criterion for nonlin-

earity

q

1 + q
> Ccrit, (13)

where

Ccrit =
16

3π

∣

∣

∣

dω
dj

∣

∣

∣

Ωorb

n
∣

∣

∣

∣

Q

(

dξ
dr

+
d2s
dr2
ds
dr

ξ

)∣

∣

∣

∣

. (14)

Note that (14) should be evaluated in radiative zones, and then its

minimal value should be used in (13) to determine whether or not

wave breaking (or other important nonlinear effects) is predicted.

3.1 Wave breaking in the radiative cores of solar-like stars

Firstly, we wish to apply the criterion (13) to the case of a solar-type

star with a radiative core, under the assumption that the minimum

value of Ccrit as a function of r is reached at the centre. This is the

case that has been studied by e.g. Goodman and Dickson (1998);

Ogilvie and Lin (2007); Barker and Ogilvie (2010); Barker (2011);

Weinberg et al. (2012); Barker (2020). Following Ogilvie and Lin

(2007) we assume that the Brunt-Väisälä frequency, N(r), depends

linearly on the distance to the centre of the star, i.e. N = Acentrer.

We also assume that the entropy gradient is proportional to N (and

g ∼ r there also). It then follows from Ogilvie and Lin (2007) or

Barker (2011), that near the centre ξ can be expressed in terms of

Bessel functions as

ξ(r) = Ccentrer
−3/2J5/2(Rcentrer), (15)

where Ccentre and Rcentre can be found by matching (15) to a

WKBJ solution ξWKBJ valid in the radiative region of a solar-like

star for a g-mode with a large radial order. Such a solution is given

e.g. by equation (88) of IPCh. Close to the centre it has the form

ξWKBJ = −CWKBJ
1√

ρcentreAcentrer2
sin(

√
6
Acentrer

ω
),

(16)

where ρcentre is the central stellar density and ω is the mode eigen-

frequency. The expression (15) should match (16) at large values of

the argument of the Bessel function, which allows us to obtain

Rcentre =
√
6
Acentre

ω
, & Ccentre = 61/4

√

π

2

CWKBJ√
ρcentreω

.

(17)

We now consider the opposite limit of small values of the ar-

gument of (15) to obtain our nonlinearity criterion. Taking into ac-

count (17) we obtain

ξ ≈ 63/2

15

CWKBJA
5/2
centre

ρ
1/2
centreω

3
r. (18)

Now, substituting (18) into (14) and noting that d2s
dr2

vanishes under

our assumptions, we obtain

Ccrit,centre =
80

63/2π

n

Q

∣

∣

∣

∣

dω

dj

∣

∣

∣

∣

ρ
1/2
centreω

3

CWKBJA
5/2
centre

Ω−1
orb (19)

As discussed in IPCh, for the modes described by WKBJ the-

ory, the constant CWKBJ can be expressed through the norm n and

eigenfrequency ω as (see their equation 109)

CWKBJ =

√

2n

I
ω, where I =

∫ rc

0

dr

r
N, (20)

and where rc is the radius at the base of the convective envelope,

while the frequency difference dω/dj is given by their equation

(125) with k = 2 and Λ = 6, i.e.

dω

dj
=

4π√
6

Ω2
orb

I
. (21)

© 2022 RAS, MNRAS 000, 1–19
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We substitute (20) in (18), then the result of this and (21) in (19),

and set ω = 2Ωorb, to obtain

Ccrit,centre =
320

9
√
2

ρ
1/2
centre

I1/2A
5/2
centre

1

Q̂
Ω3

orb, (22)

where

Q̂ = Q/
√
n, (23)

is a ‘normalised’ overlap integral whose value does not depend on

the eigenfunction amplitudes.

In the low frequency asymptotic limit Ωorb → 0, one can

show (see IPCh) that under the usual assumption that N2 close to

the base of the convective envelope scales linearly with the distance

from it, Q̂ ∝ Ω
17/6
orb . Therefore, CN ∝ Ω

1/6
orb . Comparing with our

criterion (13), we can see that this scaling agrees with equations

(A7) and (A9) of Ogilvie and Lin (2007) and with equations (49)

and (50) of Barker (2020). We have also confirmed that our crite-

rion gives quantitatively similar results to those in the literature in

the low frequency limit.

3.2 Wave breaking near convective cores

Stars with masses exceeding approximately 1.1M⊙ (in particular

we consider F-type or A-type stars) typically possess both convec-

tive envelopes and convective cores with a radiative zone in be-

tween. The transition of N2 from its value in the intermediate ra-

diative zone to the convective core is often very abrupt relative to

the wavelength of the tidal waves. In this case it is reasonable to as-

sume that the WKBJ approximation remains valid all the way down

to the transition radius, rcore. In such a situation, the criterion for

wave breaking is that the maximum value of |dξr/dr| > 1, where

ξr is determined by (12). The maximal value over one oscillation

period is considered and ξ entering (12) is given by eq. (88) of IPCh

at r → rcore. We find
∣

∣

∣

∣

dξr

dr

∣

∣

∣

∣

max

=
9
√
2

32

q

1 + q
ρ−1/2r−5/2 Q

n1/2

√
NcoreI

Ωorb
, (24)

where4 Ncore = N(r → rcore). Accordingly, from the condition

|dξr/dr|max > 1 we obtain

q

1 + q
> Ccrit,core, Ccrit,core =

32

9
√
2
ρ1/2r5/2

Ωorb√
NcoreI

1

Q̂
,

(25)

where we note that all quantities in (25) should be evaluated at

r → rcore. The approach here is essentially the same as the WKBJ

estimate in equations (51) and (53) of Barker (2020) except that the

amplitude of the wave is determined by directly computing over-

lap integrals rather than applying the energy flux obtained by an

asymptotic low-frequency analysis (though except for the shortest

orbital periods these approaches should give similar results).

3.3 Wave breaking near the transition from a radiation zone

to a convective envelope?

Formally, we can see that Ccrit can be arbitrary small just below

the base of a convective zone. In this region, the WKBJ approxima-

4 Note that, typically, the dependence of N2 on r has very sharp features in

the vicinity of rcore in stellar models. We believe that these features should

be discarded when evaluating Ncore, since they are probably unphysical

and would be smoothed out by various hydrodynamical mixing processes,

including convective overshoot.

tion is strictly invalid, and the corresponding wave solution predicts

ξ to be approximately constant when rc−r
rc

≪ 1, where rc is radius

at the base of the convective zone. On the other hand, the term
d2s
dr2

/ ds
dr

is expected to diverge when rc−r
rc

→ 0, which leads to

Ccrit formally tending to zero in the same limit. This observation

suggests that the situation close to the base of a convective enve-

lope deserves a special treatment. This is our aim in the next few

sections.

4 LOCAL WEAKLY NONLINEAR ANALYSIS OF

SUPER-HARMONIC WAVE GENERATION NEAR THE

BASE OF A CONVECTIVE ENVELOPE

In this section, we consider the evolution of stellar perturbations

near the base of a convective envelope and assume that the square

of the Brunt-Väisälä frequency has a linear dependence on the dis-

tance from the interface at rc, such that

N2 ≈ Ac(rc − r). (26)

We adopt units of length here in terms of rc, and units of time

in terms of ω−1
c , where ωc =

√
Acrc. We assume that the radial

wavelength of gravity waves is small enough that we can approxi-

mately describe them using Cartesian geometry with local coordi-

nates (x, y, z), such that z = rc − r, and x, y are local horizontal

coordinates. Additionally, we employ the well-known Boussinesq

approximation for the equations of motion (Spiegel and Veronis

1960), which is valid for low frequency gravity waves in a region

of small spatial extent. In this approximation, the corresponding

adiabatic non-linear equations of motion in the radiation zone can

be written

U̇+(U·∇)U = −∇P+bez, ∇·U = 0, ḃ+(U·∇)b = −zUz.
(27)

Here a dot stands for an Eulerian time derivative, U, P and b are

perturbations of the velocity and pressure, and the buoyancy vari-

able5, respectively. We have assumed that N2 is given by equation

(26) and that all dynamical variables are dimensionless by being

expressed in the units indicated above. Note that from (27) it fol-

lows that

U i
,kU

k
,i = −∆P +

∂b

∂z
, (28)

where summation over repeated indices is assumed from now on,

and ∆ is the Laplacian operator.

We now consider the z component of the equations of motion,

differentiate it with respect to time, and apply the Laplacian opera-

tor to the resulting expression. Then, using (28) to eliminate ḃ, we

obtain

∆Üz +∆⊥(zU
z) = −∆⊥(U · ∇)b+ Ṫ , (29)

where ∆⊥ = ∂2

∂x2 + ∂2

∂y2 , and

T =
∂

∂z
(U i

,kU
k
,i)−∆(U · ∇)Uz. (30)

In a linear analysis, the right hand side of (29) is ignored, which is

formally valid if the solution is of infinitesimally small amplitude.

If we substitute the linear solution to compute the terms on the

right hand side of (29) we can formulate a second order problem,

5 Defined by b = −gρ′/ρc, where ρ′ is an Eulerian density perturbation,

ρc is a constant reference density, and g is the local acceleration due to

gravity.
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which is referred to as a weakly nonlinear analysis. Technically,

our solution is then reduced to finding solutions of the same linear

equation, but with a forcing term determined by the solution to the

first order problem. We can then compare the first and second order

solutions for Uz . The condition that they are of the same order can

be considered as a condition for the breakdown of our perturbation

theory.

When looking for the linear solution, without loss of general-

ity we can assume that Uz depends only on z, x and t, and consider

Uz = v(z)ei(ωt+kx) + C.C., where C.C. stands for the complex

conjugate. Substituting this ansatz into (29) and neglecting the non-

linear terms, we see that it reduces to

v,zz = (k2 − k2

ω2
z)v. (31)

Solutions of (31) can be represented in terms of Airy functions

Ai(x) and Bi(x):

v(z) = C1Ai(−y)+C2Bi(−y), y =

(

k

ω

)2/3

(z−ω2). (32)

In order to express the nonlinear source term in terms of the

linear solution, it follows from the continuity equation that Ux
,x =

−Uz
,z and, accordingly, in the linear approximation we have Ux =

i
k
(v,ze

iφ − C.C.), where φ = ωt + kx. Using these relations we

obtain

U i
,jU

j
,i = 2((v2,z − vv,zz)e

2iφ + v,zv
∗
,z + vv∗,zz + C.C). (33)

Since only the term proportional to e2iφ, (v2,z−vv,zz), as well as its

complex conjugate, depends on time, and accordingly, contributes

to the source of second order perturbations, we only consider this

term below. Using equation (31), we obtain d
dz
(v2,z − vv,zz) =

k2

ω2 v
2. A similar calculations shows that the term (U ·∇)Uz enter-

ing (30) does not depend on time at second order, and therefore we

obtain

Ṫ = 4i
k2

ω
v2e2iφ, (34)

where we consider only the term proportional to e2iφ.

Now let us calculate the term ∆⊥(U·∇)b entering (29). From

the last equation in (27) it follows that to first order we have

b = i
z

ω
(veiφ − v∗e−iφ). (35)

Now we take into account that U ·∇ = i
k
(v,ze

iφ − v∗,ze
−iφ) ∂

∂x
+

(veiφ + v∗e−iφ) ∂
∂z

to obtain

(U · ∇)b =
i

ω
(v2e2iφ − v∗

2
e−2iφ),

∆⊥(U · ∇)b = −4i
k2

ω
v2e2iφ + C.C.. (36)

Substituting (34) and (36) in (29) and representing the second order

solution in the form

Uz
(2) = we2iφ + C.C., (37)

we arrive at the equation describing second order perturbations:

d2

dz2
w − 4k2w +

k2

ω2
zw = −2ik2

ω3
v2. (38)

This equation describes the nonlinear generation of super-

harmonics by the self-interaction of the primary wave, which we

assume to have been (linearly) tidally forced. In the next section

we will determine approximate solutions to this equation.

5 A WEAKLY NON-LINEAR MODEL EIGENPROBLEM

We now consider a model problem focussing on the interface be-

tween convective and radiative regions, which may be shown to

be relevant for the global perturbations in a star, as we show later

in section 6. We assume that Uz = 0 at finite distances z = zr
into the stable/radiative zone (z > 0), and z = −zc into the neu-

tral/convective zone (z < 0), respectively. We calculate the spec-

trum of eigenmodes corresponding to solutions of eq. (31) for this

problem and consider a particular ‘primary’ mode with frequency

ω = ω0. The corresponding eigenfunction is assumed to deter-

mine the source term on the right hand side of (38). The response

of super-harmonic second order waves is again solved through de-

composition of the solution over eigenmodes.

5.1 Linear solution in the neutral zone

In the neutral zone for z < 0, the solution can be expressed in terms

of growing and decaying exponentials,

v = C1
ne

−kz + C2
ne

kz = C2
n(e

kz − e−k(z+2zc)), (39)

where the last equality follows from our condition Uz(z = −zc) =
0. From equation (39) it follows that

v,z(z = 0) = κv(z = 0), κ = k
(1 + e−2kzc)

(1− e−2kzc)
. (40)

This condition should be matched to the solution in the radiative

zone. Note that when kzc ≪ 1, κ ≈ 1/zc does not depend on k.

5.2 Linear solution in the radiative zone and the

eigenspectrum

When z > 0 we represent the solution (32) in the form

v = Cv̄, v̄ = (cos(φ)Ai(−y) + sin(φ)Bi(−y)), (41)

where y = (z − ω2)/λ∗, and λ∗ = (ω
k
)2/3. In the limit z → 0 it

follows from (41) that

v ≈ C

(

(cosφ+
√
3 sinφ)

32/3Γ(2/3)
− (cosφ−

√
3 sinφ)

31/3Γ(1/3)

ω2

λ∗

+
(cosφ−

√
3 sinφ)

31/3Γ(1/3)

z

λ∗

)

. (42)

This implies that v,z ∝ (cosφ−
√
3 sinφ)

λ∗

. This ratio should be finite

in the considered limit λ∗ → 0, and, therefore, φ should be close

to π/6. We assume that φ = π/6 + ∆, where ∆ is small, and

substitute (42) in (40) to obtain

∆ = −Γ(1/3)

Γ(2/3)

31/6

2
κλ∗

(

1− Γ(1/3)

Γ(2/3)

κλ∗

2 · 31/3 − κω2

)

. (43)

Note that the last two terms in the brackets are unimportant in the

limit ω → 0 and are neglected hereafter.

We assume that zr ≫ λ∗. In the limit z ≫ λ∗,

v ∝ sin

(

2

3

(

(z − ω2)

λ∗

)3/2

+
5π

12
+ ∆

)

, (44)

and, from the condition v(z = zr) = 0, we obtain

2

3

k

ωn

(

zr − ω2
n

)3/2
+∆(ωn) = π

(

n− 5

12

)

, (45)

which is an equation for our eigenfrequencies ωn.
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When ωn is small it can be represented as ωn = ω0
n + ω1

n,

where

ω0
n =

2

3

kz
3/2
r

π(n− 5/12)
,

ω1
n = −3ω0

n

2zr

(

ω0
n
2
+

Γ(1/3)

Γ(2/3)

31/6κ

2
√
zr

(

ω0
n

k

)5/3
)

. (46)

Note that from (46) it follows that when ω0
n and k are given by

the first expression, then 2ω0
n is determined by the same expression

with a doubled wavenumber 2k. That means that there are eigen-

frequencies corresponding to k and 2k, which differ only by small

corrections, and accordingly there is a secondary mode which is in

near-resonance with the nonlinear source term due to the primary.

5.3 Weakly nonlinear generation of secondary waves

In a weakly nonlinear regime we assume that there is no back reac-

tion of the second order perturbations on the primary wave. In this

case, nonlinear terms entering eq. (29) are assumed to be given by

the right hand side of (38). We represent (29) in the form

∆Üz +∆⊥(zU
z) = S, S =

8ik2
p

ωp
C2

p v̄
2
pe

2i(ωpt+kpx), (47)

where we assign the index p to all quantities corresponding to the

primary mode, ωp and kp are related by eq. (46), v is given by (41),

we note that ∆⊥ = ∂2

∂x2 , and we omit the index n from here on in

this section. We seek series solutions to (47) of the form

Uz =
∑

i

ai(t)φi(x, z), (48)

where φi are solutions of the eigenproblem

λiφi = Âφi, Â = ∆−1∆⊥(zφi) = −k2
s∆

−1(zφi), (49)

where ∆−1 is the inverse of the Laplacian operator, ks = 2kp and

λi = ω2
i . It is easy to show that the set of eigenfunctions φi are

orthogonal with respect to the inner product

Ni,j =

∫

zφiφ
∗
jdxdz, (50)

where integration over z is performed from 0 to zr and we assume,

for simplicity, periodic boundary conditions in the x direction with

a period xb ≫ k−1. In order to prove this, we multiply (50) by λ∗
j

to obtain

λ∗
jNi,j =

∫

zφi∆
−1∆⊥(zφ

∗
j )dxdz

=

∫

∆⊥(zφi)∆
−1(zφ∗

j )dxdz

=

∫

∆∆−1∆⊥(zφi)∆
−1(zφ∗

j )dxdz

= λi

∫

zφiφ
∗
jdxdz

+λi

∫

∇(φi∇(∆−1(zφ∗
j ))−∆−1(zφ∗

j )∇φi)dxdz

= λiNi,j −
λiλ

∗
j

k2
s

∫

∂

∂z
(φi∇φ∗

j − φ∗
j∇φi)dx, (51)

where we use (49), integration by parts, the facts that our boundary

conditions are periodic in the x direction and that ∆⊥φi = −k2
sφi,

and known properties of the Laplacian. The last term in (51) is zero

due to our condition (40), and we arrive at (λ∗
j − λi)Ni,j = 0,

which proves the statement. In a similar way we can prove that the

eigenvalues λi are real and positive. Since λi = ω2
i , where ωi are

given by eq. (46) with n = i, this has already been shown and we

omit the proof.

We substitute (48) in (47), use (49), multiply the result by φ∗
j ,

and integrate over x and z to obtain

äj + λjaj = −λj

k2

Sj

Nj
, (52)

where

Sj =

∫

φ∗
jSdxdz, Nj = Nj,j =

∫

zφ∗
jφjdxdz. (53)

Remembering that S ∝ e2iωpt, solutions to (52) are

aj =
ω2
j

k2
s(4ω2

p − ω2
j )

Sj

Nj
e2iωpt, (54)

where we remember that λj = ω2
j .

5.4 Excitation of the near resonant secondary mode

As we have mentioned above, there is a secondary mode with

ks = 2kp, whose frequency is close to double the frequency of

the primary mode, 2ωp, and, accordingly, to the frequency of the

source S. Both the secondary mode and the source have the same

zeroth order frequency 2ω0
n, so their difference is due to the cor-

rections given by ω1
n in equation (46). Equation (54) tells us that

the amplitude of this secondary mode is expected to be much larger

than other secondary modes due to the factor 4ω2
p − ω2

j in the de-

nominator. Let us calculate aj corresponding to this mode. For that,

we take into account the difference between these frequencies only

in the denominator, in all other expressions we neglect the correc-

tions ω1
n, and assume that the eigenfunction of the secondary mode

is given by (41) with φ = π/6 multiplied by e2ikpx. We also set

the amplitude C of the secondary eigenfunction to unity, since our

final expressions do not depend on its value, and we omit the in-

dices enumerating different secondary modes hereafter, assigning

index s to quantities belonging to the secondary mode where this

matters.

First, we calculate the difference 4ω2
p−ω2

j ≡ 4ω2
p−ω2

s . Using

equation (46), we obtain

4ω2
p − ω2

s =
12ω0

p
2

zc
ν, (55)

where

ν =
31/6

2
√
zr

Γ(1/3)

Γ(2/3)
(κ(2kp)− κ(kp))

(

ω0
p

kp

)5/3

+ 3ω0
p
2
,

and where κ(k) is given by (40) and all quantities on the right hand

side depend on ω0
p and kp. From (40) we have κ(2kp) − κ(kp) =

kp(1− e−2kpzc)/(1+ e−2kpzc). This relation tells us that the cor-

rection proportional to λ2
∗ tends to zero when zckp → 0. In all

other expressions below we can use ω0
p and kp, therefore, for sim-

plicity, we set ω ≡ ω0
p and k ≡ kp from now on. We substitute the

expression for the source term (47) and (55) in (54) and remember

that λj there should be equal to ω2
p. We obtain

as =
2izr
3ων

∫ zr
0

v̄3pdz
∫ zr
0

zv̄2pdz
C2

pe
2iωt. (56)

Note that since φ∗
s ∝ e−2ikpx and Sp ∝ e2ikpx the integrands do

not depend on x, so integration over x is trivial. In order to eval-

uate the integrals entering (56) we neglect ω2 in the expression
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for y in terms of z (see (41)), and change the integration variable

from z to y. Since the integral in the numerator converges when

zr/λ∗ → ∞, its upper limit of integration can be extended to infin-

ity. Numerical evaluation of
∫∞
0

v̄3pdy shows that its value is close

to 0.2. On the other hand the integral in the denominator diverges

as (zr/λ∗)
3/2 in the same limit. Therefore, we use the limiting

value of the ratio
∫ zr/λ∗

0
yv̄2p/(zr/λ∗)

3/2dy, which is close to 0.1

to obtain

∫ zr
0

v̄3

pdz∫ zr
0

zv̄2
pdz

≈ 2λ
1/2
∗

z
3/2
r

. Substituting this in (56) we get

as ≈ 4i

3

1

z
1/2
r k1/3ω2/3ν

C2
pe

2iωt. (57)

We expect nonlinear behaviour to be important when |as| & Cp,

and potentially even for amplitudes quite a bit smaller than this.

Equation (57) tells that the wave amplitude Cp in this case should

exceed its critical value

Ccrit
p =

3

4
z1/2r k1/3ω2/3

p ν, (58)

for these nonlinearities to be important. Above this amplitude, the

secondary waves have amplitudes that are comparable with or ex-

ceed the primary wave amplitude.

6 RELATION TO THE TIDAL PROBLEM AND

CRITERION FOR THE TRANSITION TO

NONLINEARITY

6.1 Relation of our local model results to a spherical star

In the previous section we used dimensionless units in which spatial

scales were expressed in terms of the radius of the base of the con-

vection zone, rc, and temporal ones were expressed in terms of the

characteristic frequency ωc =
√
Acrc, where Ac was defined in eq.

(26). Bearing this in mind, we can relate results obtained from the

local model in the two previous sections to the global normal modes

of a sun-like star. For that we compare (41) with equation (91),

and (46) with equations (103-106) of IPCh, respectively. From the

comparison of the first pair of equations, we see that they coincide

when the term proportional to ω2 is neglected in the argument of

the Airy functions in (41) and we set k =
√
Λ, where Λ is defined

in IPCh as an eigenvalue of Laplace’s tidal equation, and it can be

expressed as Λ = l(l+1), where l is the spherical harmonic degree

for a non-rotating star. Note that the term ∝ ω2 was neglected in

IPCh because of its smallness, but it is, however, important for our

purposes, since it gives a potentially important correction in the ex-

pression (58) for the quantity ν. Comparing the expression for ω0
n

with eq. (103) of IPCh, we see that they are equivalent to each other

provided we make the following redefinitions in (46): n → n + 2

and zr →
(

3
2

I
ωc

)2/3

, where I is defined in (104) of IPCh. Com-

paring eq. (105) of IPCh and the term proportional to the factor

κ in the expression for ν in (58), these equations formally lead to

the same frequency correction when κ = rcBc, where the quantity

Bc defined in equation (100) of IPCh. Note, that the numerical val-

ues are, of course, different, since Bc was calculated in spherical

geometry and for a particular size of convective envelope.

It is very important to stress that the planar geometry used in

the previous sections can be shown to be fully equivalent to the

spherical one only in the limit l → ∞. For the tidal problem con-

sidered in this paper, however, l = 2 for the primary mode. On the

other hand, for the secondary mode l should be equal to 4, which

results in an additional correction in the expression for the quan-

tity ν characterising the frequency difference between primary and

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
n

0,0001

0,001

0,01

0,1

1

f(
n
)

Figure 1. The function f(n) defined in eq. (62) is shown as a function of

n.

secondary modes. In order to calculate it, we start from the expres-

sion for the eigenfrequencies ω0,n calculated in IPCh in the WKBJ

approximation, and given in their equation (103):

ω0,n =

√

l(l + 1)I

π(n+ (l + 1)/2 + 1/12)
. (59)

Note that for simplicity we neglect their correction δφ(ω0,n), since

it is already taken into account in the expression for ν discussed

above. We assume n ≫ 1 for the validity of the WKBJ approxima-

tion, therefore the terms in the denominator can be considered as

small corrections. We can discard them altogether if we note that

when l = 2 and 4 for the primary and secondary modes, they differ

by one and this difference can be absorbed into a redefinition of

the mode number n. The rest don’t give any contribution at lead-

ing order in the small parameter ∆l =
√

6
5
− 1 ∼ 0.095 arising

from the difference between the values 2
√

l(l + 1) and
√

l(l + 1)
in the numerator in (59) for l = 2 and 4, respectively. Taking this

into account we can use

ω0,n =

√

l(l + 1)I

πn
. (60)

when calculating the frequency difference 2ωp − ωs and, accord-

ingly, the additional correction to ν setting l = 2 and 4 for ωp

and ωs, respectively. For the primary mode we set n = np and

for the secondary mode n = ns ≡ np − k, where it is assumed

that k ≪ np, and k should be chosen in such a way that the abso-

lute value of 2ωp − ωs is minimised. Taking into account only the

leading terms in ∆l, we obtain

2ωp − ωs =
2
√
6I

πnp
f(np) = 2ωpf(np), (61)

where

f(n) = mink

∣

∣

∣

∣

∣

√

6

5
− 1− k

n

∣

∣

∣

∣

∣

. (62)

We show the dependency of f(n) on n in Fig. 1. Comparing

(61) with the expression (55) for ν and remembering that zc =

( 3
2

I
ωc

)
2/3

, we see that ν should contain the additional term

(

2

3

)1/3(
I

ωc

)2/3

f(np). (63)

As we mentioned above for the tidal problem ωp ≈ 2Ωorb. Using

© 2022 RAS, MNRAS 000, 1–19



Tidal super-harmonic wave excitation in stars 9

(60) with l = 2 we can express np in terms of Ωorb and consider

f(n) to be a function of the orbital frequency. We have

np =

[
√
6I

2πΩorb

]

, (64)

where [.] implies that only the integer part of the expression is used.

Restoring physical units, using the redefinitions mentioned

above, and substituting (63) in (58), we obtain from (55) and (58):

ν =
3

1

6Γ( 1
3
)

2 · 6 5

6Γ
(

2
3

)

(

2

3

ωc

I

) 1

3

B

(

ωp

ωc

) 5

3

+ 3

(

ωp

ωc

)2

+

(

2

3

) 1

3

(

I

ωc

) 2

3

f(Ωorb), (65)

where B = rc(Bc(2 · 6
1

2 )−Bc(6
1

2 )), and

Ccrit
p = 3

3

2 2−
13

6

(

ωp

ωc

) 2

3

(

I

ωc

) 1

3

νωcrc. (66)

6.2 The criterion for transition to nonlinearity for a single

secondary mode

The above expression (66) should be compared with the amplitude

of the radial component of the linear tidal response. This amplitude,

Uz = iωpξ
r can be calculated using (12), where ωp = 2Ωorb and

we should take the limit r → rc when evaluating ξ. The corre-

sponding expression is given by equation (101) of IPCh:

ξ ≈ (−1)n

Γ( 2
3
)

√
π

(

3ωp

ωc

)− 1

6 6
1

12

ω
1

2
c ρ

1

2
c r

3

2
c

CWKBJ . (67)

Using equation (20) for CWKBJ we obtain from (67)

ξ ≈ (−1)n

Γ( 2
3
)
3−

1

12 2
7

12

√
π

(

ωp

ωc

) 5

6
(ωc

I

) 1

2 n
1

2

ρ
1

2
c r

3

2
c

. (68)

We substitute (68) in (12), use ωp = 2Ωorb, and multiply the result

by 2Ωorb, to obtain

Uz = 2iΩorbξ
r(rc)

= i
(−1)n

Γ( 2
3
)
3

11

12 2−
19

12 π
3

2

(

q

1 + q

)

×
(

ωc

|dω/dj|

)

(ωc

I

) 1

2

(

Ωorb

ωc

) 17

6

Q̂
ωc

ρ
1

2
c r

3

2
c

. (69)

Note that since Q̂ has dimensions g1/2 · cm, equation (69) has the

correct dimensions cm/s. When (69) is larger than than (66) we

assume that a fully non-linear regime sets in. From the condition

|Uz| > Ccrit
p we have

q

1 + q
> Ccrit,c = 3

7

12 2
1

12 π− 3

2Γ

(

2

3

) |dω/dj|
ωc

×
(

I

ωc

) 5

6

(

Ωorb

ωc

)− 13

6

ν
ρ

1

2
c r

5

2
c

Q̂
. (70)

Finally, we use (21) to obtain

Ccrit,c = 3
1

12 2
19

12 π− 1

2Γ

(

2

3

)(

I

ωc

)− 1

6

(

Ωorb

ωc

)− 1

6

ν
ρ

1

2
c r

5

2
c

Q̂
.

(71)

This is an amplitude criterion for our secondary super-harmonic

wave to have a comparable (or larger) amplitude to the primary tidal

wave, above which we expect consideration of nonlinear effects to

be essential.

6.3 The criterion for transition to nonlinearity with a dense

spectrum of secondary modes

If the spectrum of eigenmodes is sufficiently dense, the primary

mode can effectively excite a number of neighbouring secondary

modes instead of just the one having a frequency that most closely

matches the primary frequency. As discussed in Section 2, in or-

der for the spectrum to be sufficiently dense, either the ratio δ
of the value of the frequency offset (proportional to the quantity

ν defined in (55)) to the distance between neighbouring eigenfre-

quencies, dωj/dj, is large, or the inverse decay time, ων , is larger

than dωj/dj. While the former condition can be straightforwardly

calculated within the framework of our model, the latter condition

assumes that the wave packet composed of secondary waves with

approximately the same frequency decays during its travel across

a star. Since this has been assumed for the primary wave, it is rea-

sonable to make the same assumption for these secondary waves as

well. In both cases, the modified values of Ccrit,c are supposed to

be smaller than the values in (71), so we can consider (71) as a con-

servative estimate of Ccrit. On the other hand, our estimate here

can be considered a more ‘optimistic’ estimate, suggesting what

can in principle be achieved from the effect discussed in this paper.

The quantity δ defined below eq. (7) can be calculated us-

ing (21) and (55). From equation (55), it follows that the dis-

tance between the doubled primary and secondary frequencies,

∆ωs = 2ωp − ωs, can be expressed as

∆ωs = 3
1

3 2
5

3

(ωc

I

) 2

3

νΩorb, (72)

where we remember that zr = ( 3
2

I
ωc

)
2

3 and ωp = 2Ωorb. Now

we note that there should be 2
√
6 instead of

√
6 in the denomina-

tor of (21), see also eq. (125) of IPCh, and we divide (72) by this

expression to obtain

δ =
2

7

6 · 3 5

6

π

(

I

ωc

) 1

3

ν
ωc

Ωorb
. (73)

From our discussion in Section 2, it follows that when

δ and/or κ are large ∆ωs in the expressions for the ampli-

tude of excited modes, as in e.g. (56), should be substituted by

(dωs/dj)(S(δ, κ))
−1, where S(δ, κ) is given by (8) and we re-

member that dωs/dj =
2πΩ2

orb√
6I

for secondary modes. Since ν is

proportional to ∆ωs it should be changed accordingly in all ex-

pressions, including in (71). Therefore, in order to account for the

excitation of many near-resonant secondary modes we can express

ν in terms of ∆ωs using (72), and make the substitution

ν → π

3
5

6 · 2 7

6

|S|−1 Ωorb

I
1

3ω
2

3
c

(74)

in (71), where we use the absolute value of S, since it can be a

complex quantity. In this way, we obtain

Cdense
crit,c = 3−

3

4 2
5

12 π
1

2Γ

(

2

3

)(

I

ωc

)− 1

2

|S|−1

(

Ωorb

ωc

) 5

6 ρ
1

2
c r

5

2
c

Q̂
.

(75)

It is very important to stress here, that Cdense
crit given by (75) should

be considered as a qualitative indication of the importance of hav-

ing a dense spectrum of secondary waves rather than a quantitative

criterion, since the derivation of this expression is based on a num-

ber of simplifying assumptions. In particular, we assume that the

summation of the series in (7) can be formally extended to infinity.
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7 NUMERICAL STUDY OF WEAKLY NONLINEAR

EXCITATION OF SUPER-HARMONIC SECONDARY

WAVES

In this section we briefly present some numerical calculations to

verify the analytical results obtained in § 4–5. We first solve numer-

ically the generalised eigenvalue problem for time-harmonic solu-

tions proportional to ei(ωt+kpx) to the linearised system of equa-

tions

iωU = −∇P + bez − γU, (76)

iωb = −N2(z)Uz, (77)

∇ ·U = 0, (78)

where ω ∈ C is the eigenvalue,

N2(z) =

{

z, 0 6 z 6 zr,

0, −zc 6 z < 0,
(79)

subject to Uz(z = −zc) = Uz(z = zr) = 0. We have in-

troduced a frictional damping term −γU where γ = 10−4 is a

constant (analogous to ων in section 2, which is simpler numer-

ically than including viscosity or thermal diffusion). This prob-

lem is discretised in z using a Chebyshev collocation method with

N + 1 points (Boyd 2001), with N = 200, and we choose

kp ≡ k = zc = zr = 1 to define our choice of space and time

units (noting that we then have max[N(z)] = 1). The solution

of this eigenvalue problem gives us a set of eigenvalues {ωi} with

corresponding eigenvectors {(U, P, b)i}. We order the eigenvalues

ωi 6 max[N(z)] in descending order using their real part since the

modes with the largest frequencies are those that are best resolved

numerically.

We then choose a single mode i as our “primary mode”,

set ωp = Re[ωi], and substitute the corresponding eigenfunction

v̄p(z) = Uz
i (without loss of generality, this is normalised so that

it is real with a maximum magnitude that matches (41)) into the

right hand side of equation (47), to which we also add the addi-

tional frictional damping term γ∆U̇z on the left hand side (equiv-

alent to the term −γU in 76). We solve this equation for the “sec-

ondary modes” as an initial value problem with boundary condi-

tions Uz(z = −zc, t) = Uz(z = zr, t) = 0, initialising our so-

lution with Uz(z, t = 0) = 0 so that the forcing excites all of the

modes until they are damped by friction. To do this, we use Cheby-

shev collocation in z with N + 1 points (again with N = 200)

and a second-order central difference scheme for time integration.

This equation is integrated until a time t = 5000 and the frequency

power spectrum (|Ûz|2) is computed using a discrete Fourier trans-

form of the signal at the location z = 0.1.

We first show the spectrum of ωi from solving the above

eigenvalue problem in the complex plane in Fig. 2, where we high-

light a particular low frequency mode with ωp ≈ 0.0456 with a red

star. We show the analytical predictions for ωi from (46) as the ver-

tical cyan dashed lines, and our numerical values for the complex

mode frequencies for the modes with k = 1 as black crosses and

k = 2 as blue circles (the latter shows the “secondary” modes that

can be excited). The agreement is excellent between (46) and our

numerical results for the k = 1 modes for Re[ωi] . 0.1, with a

slight departure, as expected, when the frequency is larger.

In Fig. 3(a), we show the Uz eigenfunction for the particu-

lar primary mode with ωp ≈ 0.0456 together with the analyti-

cal prediction in (41) in the stable layer, again indicating excellent

agreement. We then show in Figs. 3(b) –3(d) the spatial structure

of the secondary solution at t = 5000 (the real and imaginary

10
-2

10
-1

4.5

5

5.5

6

6.5

10
-4

Figure 2. Mode spectrum showing the real and imaginary parts of the eigen-

frequencies ωi for k = 1 (black crosses) and k = 2 (blue circles) with

zc = zr = 1, γ = 10−4,N = 200. The cyan dashed lines are the analyt-

ical predictions for k = 1 using 46, which agree very well for low frequen-

cies. The red star highlights the mode with ωp = Re[ωi] ≈ 0.0456.

parts shown as solid and dashed lines, respectively), the tempo-

ral evolution of the secondary Uz at z = 0.1, and the frequency

power spectrum (|Ûz|2) of the secondary signal Uz(z = 0.1, t).
By t = 5000, modes with multiple frequencies still contribute to

the signal, though the power is maximised in the mode with a fre-

quency close to 2ωp. In Fig. 3(d), we also show the predicted fre-

quencies of the secondary modes ωs from solving the above eigen-

value problem in the case k = 2, which indicates that many of

these modes are excited and have not yet fully damped, as we ex-

pect from our initial conditions. Figs. 3(b) –3(d) show that the an-

alytical prediction for the secondary mode amplitude as in (57),

which is shown as the red horizontal lines in Figs. 3(b) and 3(c),

agrees quite well with our numerical results in this case. The sec-

ondary mode amplitudes are dominant near z ∼ 0, where the pri-

mary mode also takes its maximum value. We observe here that,

due to the near-resonance explained in § 5, the amplitude Uz of

the super-harmonic secondary solution can far exceed that of the

primary mode, and hence we predict this nonlinear effect to be im-

portant in this system because as ≫ Cp.

We also show results for a larger frequency mode with ωp ≈
0.263 in Figs. 4(a)–4(d) and a lower frequency mode with ωp ≈
0.0220 in Figs. 5(a)–5(d), with otherwise the same parameters. The

primary wave solution (and its frequency) for the larger frequency

case is clearly described less well by our analytical prediction, but

the agreement is still good. The amplitude predicted for as is also

comparable with the values we observe numerically in both of these

examples.

Our numerical calculations here have thus verified the analyt-

ical results derived for low frequencies in § 4–5, so we can be more

confident in their application. It would be interesting to explore the

fully nonlinear evolution of the system studied here using numeri-

cal simulations to analyse the long-term dynamics of the generation

of super-harmonic secondary waves and their interaction with the
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(d) Frequency power spectrum of Uz(z = 0.1, t).

Figure 3. (a): Comparison of (normalised) primary mode eigenfunction Uz with the analytical prediction in (41) for the mode with ωp = Re[ωi] ≈ 0.0456.

(b): Real (solid black line) and imaginary (dashed blue line) parts of secondary mode Uz as a function of z at t = 5000, compared with the prediction (red

dashed line) for as from (57). (c): Real (solid black line) and imaginary (dashed blue line) parts of secondary mode Uz as a function of t at z = 0.1 in the

stable layer. (d): Frequency power spectrum of Uz , |Ûz |2, at z = 0.1 as a function of angular frequency ω̃. Otherwise same parameters as Fig. 2.

primary (tidal) wave. These simulations will be presented in a fu-

ture publication.

8 APPLICATION OF THE CRITERIA FOR TRANSITION

TO NONLINEARITY TO MAIN-SEQUENCE STELLAR

MODELS

In this section, we turn to apply our criteria for the transition to

nonlinearity in several main-sequence stellar models computed us-

ing MESA version 151406 (Paxton et al. 2011, 2013, 2015, 2018,

2019). We calculate the values of Ccrit for each of the various sce-

narios given by eqns. (22), (25), (71) and (75) for a number of main-

sequence stellar models with masses M = 1, 1.4 and 2M⊙ and

different ages. The basic characteristics of our models are given in

table 1, where we show stellar masses in units of M⊙, their radii in

units of R⊙, ages in years, positions of the base of the convective

zone, rc, in units of the stellar radius R∗, density at the base of con-

vective zone, ρc, in units of the mean density ρ̄ = 3M∗/(4πR
3
∗),

and the mean density in units of the solar mean density, and finally

6 See http://mesa.sourceforge.net.
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(d) Frequency power spectrum of Uz(z = 0.1, t).

Figure 4. Same as Fig. 3 but for a mode with ωp = Re[ωi] ≈ 0.263.

the values of ωc and I in units of
√

GM∗

R3
∗

, respectively. Addition-

ally, we show radial profiles of the Brunt-Väisälä frequency and

stellar density in Figs. 6, 7 and 8, respectively.

In Fig. (9) we show the quantities Ccentre, Ccrit,c, and

Cdense
crit,c for both κ = 0 and κ = 1, as given by equations

(22), (71) and(75), respectively, as functions of orbital period for

the solar model. We observe that according to these criteria, the

transition to non-linearity at the stellar centre always happens for

much smaller mass ratios than any of the other measures i.e.

Ccentre ≪ Ccrit,c, C
dense
crit,c . This criterion is equivalent to the

condition for nonlinearity discussed by (e.g. Goodman and Dick-

son 1998; Ogilvie and Lin 2007; Barker and Ogilvie 2010; Barker

2020), and is the most important measure of nonlinearity in our

solar-mass model.

Note that in order for our criteria to predict the onset of nonlin-

earity, due to its definition we require Ccrit . 1 for any mass ratio.

From Fig. (22), we see that Ccrit,c given by (71) becomes smaller

than one only for very short orbital periods Porb ∼ 0.2d and the

corresponding mass ratio should be larger than ∼ 0.6 i.e. nonlin-

earity is predicted only for comparable mass ultra-close binaries.

Assuming that when our criteria for the transition to non-linearity

are satisfied the primary mode is then efficiently damped, we con-

clude here that generation of super-harmonic secondary modes near

the radiative-convective interface in our solar model is unlikely to

provide an important contribution to tidal dissipation.

It is interesting to note that both Ccrit,c and Cdense
crit,c (κ = 0)

are oscillatory functions of orbital period. In the former case, this

is due to the oscillatory character of the function f(n) shown in

Fig. 1. In the latter case, the behaviour is even more strongly oscil-

latory, which is due both to the oscillation of f(n) with n and to the

© 2022 RAS, MNRAS 000, 1–19
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(d) Frequency power spectrum of Uz(z = 0.1, t).

Figure 5. Same as Fig. 3 but for a mode with ωp = Re[ωi] ≈ 0.0220.

Table 1. Basic characteristics of our stellar models

Model Mass (M⊙) Radius (R⊙) Age (years) rc (R∗) ρc/ρ̄ ρ̄ ωc I

1a 1 0.96 2× 109 0.73 0.12 1.13 9.36 9.42

1.4a 1.4 1.65 1.07× 107 0.68 0.32 0.31 9.01 8.52

1.4b 1.4 1.43 2.03× 108 0.97 2.05× 10−5 0.48 49.2 10.3

1.4c 1.4 1.72 1.73× 109 0.94 1.89× 10−4 0.28 30.7 14.3

1.4d 1.4 1.93 2.38× 109 0.87 2.59× 10−3 0.19 20.5 19.0

2a 2 1.63 2.67× 107 0.99 1.78× 10−7 0.46 182.3 8.07

2b 2 2.68 9.97× 108 0.99 5.94× 10−7 0.10 113.4 16.7

2c 2 5.35 1.41× 109 0.96 3.02× 10−5 0.013 41.6 52.5

2d 2 5.75 1.44× 109 0.89 6.09× 10−4 0.011 17.7 59.9
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Figure 6. Radial profiles of stellar density ρ (black solid line) and square of

the Brunt-Väisälä frequency N2 (red dashed line), both in the natural units

defined in § 2, for model 1a.
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Figure 7. Radial profiles of ρ and N2 in natural units for the models 1.4a,

1.4b, 1.4c and 1.4d shown as black solid, red dashed, green dotted and red

dot-dashed lines, respectively. Although the lines corresponding to ρ and

N2 calculated for the same model have the same style, they can be easily

distinguished from each other, since ρ decreases monotonically with R.

sharp periodic changes of S(δ, κ) with δ when κ = 0, as indicated

by eq. (8). These curves have the same oscillatory behaviour in the

more massive stellar models considered below.

Figs. (10) and (11) are similar to Fig. (9), but the curves

are calculated for more massive models with M = 1.4M⊙ and

M = 2M⊙. Contrary to our solar model, apart from model 1.4a

the more massive stars have convective cores, as is shown in Figs. 7

and 8. In this case, the criterion for wave breaking near convective

cores predicted by (25) must be used instead of the criterion for

wave breaking at the centre of a radiative core in (22). The corre-

sponding curve is shown as a solid line in all figures apart from

the one corresponding to 1.4a, where (22) is shown in the same

way instead. Unlike the solar case we see from (10) and (11) that

the criteria for transition to nonlinear behaviour at the outer con-

vective/radiative interface is satisfied for smaller mass ratios than

the criterion for transition at the convective core (25), for almost
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Figure 8. Same as Fig. 7, but for the models 2a, 2b, 2c and 2d shown as

black solid, red dashed, green dotted and blue dot-dashed lines, respectively.
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Figure 9. Various criteria for transition to nonlinearity Ccrit are shown for

a solar mass model as a function of orbital period in days. The black solid

curve corresponds to Ccentre using the ‘standard’ expression (22) for wave

breaking in radiative cores, the red dashed one corresponds to Ccrit,c in

(71), the green dotted and blue dot-dashed curves are given by Cdense
crit,c in

eq. (75), where in the former we set κ = 0 and in the latter κ = 1.

all stellar ages and orbital periods7. The exceptions are models

1.4a, 1.4d and 2d. In the case of 1.4a, we see from Fig. 7 that

this model has a radiative core and an extended convective enve-

lope. This model is rather similar to the solar model and it is not

surprising that it demonstrates similar behaviour. The models 1.4d

and 2d also have quite large convective envelopes. The larger the

transition radius to the convective envelope, rc, the smaller is the

density at this radius, ρc, and the larger is typical frequency, ωc, at

this radius. Both the smaller density and larger ωc values lead to the

smaller values of Ccrit,c seen in most of these models. Note, how-

ever, that there are two other important factors determining values

of Ccrit,c, namely, values of the overlap integrals in units of the

frequency Ω∗ =
√

GM∗

R3
∗

, and a value for the “average frequency”

7 We ignore the very large amplitude oscillations of Cdense
crit,c due to the

trigonometric nature of S(δ, κ = 0) and assume that only some average

value of this quantity has physical meaning.
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Figure 10. Same as Fig. 9, but for our models with M = 1.4M⊙, and the black solid line shows (25). Top left, top right, bottom left and bottom right panels

correspond to the models a, b, c, d, respectively.

of a star. The former factor leads to smaller Ccrit,c for stars with

extended convective envelopes, since the overlap integrals are typi-

cally larger for such stars (e.g. Chernov et al. 2013, 2017). Smaller

values of the average density lead to larger values of the tidal forc-

ing frequency expressed in units of the natural frequency and, as a

result, smaller values of Ccrit,c. It may be possible that these two

factors counterbalance each other for certain stellar models how-

ever.

If we speculate that whenever our criteria for transition to non-

linear behaviour are satisfied, the primary tidally-excited modes are

efficiently damped, our results concerning more massive models

could have important implications for tidal evolution around such

stars. They would imply that above a critical mass ratio, tidal dis-

sipation rates can be straightforwardly computed as a known func-

tion of orbital period, stellar mass and age (essentially according to

linear tidal theory assuming a fully damped/MLD/travelling wave

regime). In some cases, this ratio can be as small as ∼ 10−3 for

Porb ∼ 1d, as in e.g. models 2a-2c, indicating that planetary mass

companions can cause a strongly nonlinear tidal response in the

star, potentially with efficient tidal dissipation. To illustrate this fur-

ther, we show the dependence of Ccrit,core, Ccrit,c and Ccrit,dense

on stellar age in Fig. 12, keeping the orbital period fixed at one day.

As shown in this figure, typical values of Ccrit,dense are indeed as

small as 10−3 for stellar ages ∼ 109yr, indicating that this mecha-

nism can potentially be important for tidal evolution of hot Jupiters

around such stars.

9 CONCLUSIONS AND DISCUSSION

We have studied the role of nonlinear effects on tidally-excited

gravity waves in the radiation zones of stars, primarily focussing on

a new mechanism that could be important in stars possessing con-

vective cores. Our work was partly motivated to study tides due to

massive short-period hot Jupiters, which are observed to preferen-

tially orbit stars with convective cores (e.g. WASP-18 b Wilkins et

al. 2017). For these stars, the geometric focussing and consequent

breaking (or nonlinear wave-wave interactions) of gravity waves in

the stellar core (which we have revisited in § 3.1), which can result

in efficient tidal dissipation when this occurs (e.g. Goodman and

Dickson 1998; Ogilvie and Lin 2007; Barker and Ogilvie 2010;

Barker 2011; Barker and Ogilvie 2011; Weinberg et al. 2012; Es-

sick and Weinberg 2016; Barker 2020), cannot take place for plan-

etary mass companions, unlike in solar-type with radiative cores.

We have developed a theory for the nonlinear excitation of

super-harmonic ‘secondary’ internal gravity waves by a ‘primary’

gravity wave, assuming that the latter is generated by tidal forc-

ing in a main-sequence star due to an orbiting companion. This

© 2022 RAS, MNRAS 000, 1–19
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Figure 11. Same as Fig. 10, but for the models with M = 2M⊙.
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Figure 12. Various expressions for Ccrit as a function of stellar age in

years for stellar models with M = 2M⊙. Solid curve, dashed, dotted and

dot-dashed curves correspond to (25), (71), (75) with κ = 0 and (75) with

κ = 1, respectively.

excitation appears to be the most efficient near the transition ra-

dius, rc, between a radiative interior and a convective envelope.

At this location, the usual WKBJ approximation for the descrip-

tion of high radial order gravity waves is strictly invalid. Similar

to the analogous problem recently studied in fluid dynamics and

oceanography (see e.g. Wunsch 2017; Baker and Sutherland 2020,

and references therein), the nonlinear self-interaction of an inter-

nal gravity wave propagating in a region with a spatially-varying

Brunt-Väisälä frequency can generate super-harmonic secondary

waves in stars, which can be in near-resonance with the primary

mode and potentially be excited to large amplitudes. If this mecha-

nism operates, this implies that nonlinear effects could be important

for tidal waves even in stars with convective cores with planetary

mass companions (as we have estimated in § 8).

We have adopted a number of simplifying assumptions to

model the generation of super-harmonic secondary waves. Firstly,

we have considered a region of small spatial extent near r = rc, and

employed a local Cartesian model instead of global spherical ge-

ometry. Secondly, we assumed the square of the Brunt-Väisälä fre-

quency to be a linear function of the distance from rc into the radia-

tive layer (see e.g. Barker 2011; Ivanov et al. 2013, for a justifica-

tion and discussion of the limitations of this assumption). Thirdly,

we have adopted the Boussinesq approximation to the equations of

motion, which formally limits us to a region of small spatial extent

near the transition region.

In this framework, we first considered a single ‘secondary

mode’ which has the smallest frequency distance from the ‘primary

mode’ and formulated a condition for nonlinear effects to be impor-
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tant based on when the amplitude of the near-resonant secondary

is comparable to that of the primary (see eq. (58)). Our analyti-

cal calculations were supported by a numerical study in § 7, where

we analysed the generation of secondary waves as a linear problem

with a source term determined by the presence of the primary wave,

which confirmed our analytical results.

We discussed how our model problem can be related to the

normal modes of a spherical star with a radiative interior and

convective envelope in § 6. We assumed the primary gravity

waves were excited in a non-rotating star by a point-like perturber

(i.e. planet or close binary star) on a circular orbit to illustrate this

effect. We formulated the criterion (71), which is based on (58),

and specifies Ccrit,c, which is the smallest value of q/(1 + q),
where q is the mass ratio (secondary perturber mass/primary star

mass), needed for the secondary mode with the closest frequency

to (double) the tidal forcing frequency, to exceed the amplitude of

the primary tidal wave, which occurs when q/(1 + q) > Ccrit,c.

We point out later that several modes with frequencies sufficiently

close to the tidal frequency could be effectively excited under cer-

tain assumptions, and provide the corresponding condition (75),

which can be used if both the secondary modes are non-dissipative

and when the condition of “moderately large dissipation” can be

applied to the secondary modes themselves (approximately equiv-

alent to the statement that the mode damping time is shorter than

the group travel time for a gravity wave packet across the radiation

zone). This condition defines the quantity Cdense
crit , which is anal-

ogous to Ccrit,c, but can be applied when there is a sufficiently

dense spectrum of secondary modes, and typically gives a slightly

more optimistic estimate of nonlinearity. In addition, we formulate

a similar criterion for wave breaking near the centre of a star with

a fully radiative interior (see eq. (22) and the same condition, but

for a star with a convective core near the core itself (see eq. (25)

in the formalism of Ivanov et al. (2013). Both (22) and (25) are

analogous to similar criteria reported by (e.g. Goodman and Dick-

son 1998; Ogilvie and Lin 2007; Barker and Ogilvie 2010; Sun et

al. 2018; Barker 2020). These conditions are formulated in terms

of Ccrit,centre and Ccrit,core, respectively, and for these nonlin-

ear effects to be important we require q/(1 + q) > Ccrit,centre or

q/(1 + q) > Ccrit,core, respectively.

We applied our results to stellar models to estimate the im-

portance of the nonlinear excitation of super-harmonic secondary

waves in § 8. We speculate that the conditions for transition to

non-linear behaviour near radiative-convective interfaces could re-

sult in an efficient damping of primary tidal waves, thus justifying

the assumption of “moderately large dissipation”. We calculated

Ccrit,centre, Ccrit,core, Ccrit,c and Cdense
crit for a number of mod-

els of main-sequence stars with masses M = 1, 1.4 and 2M⊙
and different ages. We found the condition for wave breaking near

the centre is always more important in our solar-mass model (and

others with radiative cores) than the condition for nonlinear be-

haviour near rc, consistent with prior work. The opposite situation

occurs however in more massive stars. Apart from two models with

extended convective envelopes, and, for one with a radiative cen-

tre, for all other models, ages, and orbital periods, Ccrit,c and the

average values of Cdense
crit,c are smaller, and, in many cases, much

smaller than Ccrit,core. In Fig. 12 we show, for example, the be-

haviour of these quantities for M = 2M⊙ and a fixed orbital pe-

riod Porb = 1d, with stellar age. This figure shows that for ages

of order 109yr, Ccrit,c can be as small as 10−3 (i.e. relevant for

planetary-mass companions). If our assumption that the transition

to nonlinear behaviour results in efficient dissipation is valid, this

implies that the nonlinear generation of super-harmonics by tidally-

excited gravity waves could be important for hot Jupiters and other

massive companions orbiting these stars.

In this paper we have ignored stellar rotation (with angular

velocity Ωr) except in Appendix A, under the assumption that the

star is rotating slowly relative to the tidal frequency ω ≈ 2Ωorb,

i.e. that Ω2
r ≪ ω2, and certainly that Ω2

r ≪ Ω2
∗. The neglect of

rotation is likely to be valid for predicting the current and future

evolution of most, but not all, of the shortest-period hot Jupiter sys-

tems observed. This is because their host stars typically rotate with

periods much longer than their planetary orbits (e.g. see the table in

Appendix C of Barker 2020), so we can probably neglect the corre-

sponding frequency shifts due to rotation (as long as their radiation

zones rotate similarly to their surfaces). For example, WASP-12 is

inferred to have a rotation period longer than 23 days and perhaps

as long as 38 days (based on the observed V sin i, see e.g. Patra

et al. 2020, and references therein), whereas the planet WASP-12

b orbits in only 1.09 days. A brief calculation of the possible ro-

tational correction to our results in Appendix A confirms that it

doesn’t appear to be significant for such orbital and rotational pe-

riods. In addition, inertial waves (restored by Coriolis forces) will

not be excited by planetary tidal forcing in these stars (which would

require ω2 6 4Ω2
r , in which case we could no longer describe the

modes as a single spherical harmonic in the form of equation 4).

However, the effects of rotation on the mechanism we have anal-

ysed should be explored in more detail in future work to enable us

to study more rapidly rotating planetary hosts, such as young stars

or those that are nearly rotating synchronously with their planetary

orbits e.g. τ -Boo or WASP-128.

Our initial study here should, however, be considered as a pre-

liminary one. Firstly, we should confirm our speculation that effi-

cient damping of the primary tidal wave occurs by exciting super-

harmonic secondary waves using direct nonlinear numerical cal-

culations. Secondly, we should extend our results to spherical ge-

ometry, incorporate stellar rotation, as well as more realistic Brunt-

Väisälä frequency profiles near rc, and the possibility of overshoot-

ing in the transition region, etc. These issues are left for future

work. Finally, a different mechanism to efficiently damp gravity

waves in stars with convective cores could involve the excitation of

a primary gravity mode to large amplitudes via resonance locking

(e.g. Witte and Savonije 1999, 2002; Zanazzi and Wu 2021; Ma and

Fuller 2021). This mechanism is unlikely to operate effectively in

stars with radiative cores due to the likelihood of wave breaking, as

predicted by (22) in this paper, for example, but it could potentially

be important in stars with convective cores and should be explored

further in those stars. The interaction with nonlinearly generated

super-harmonics should also be considered in that problem.
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APPENDIX A: THE CORRECTION TO ν PRODUCED BY

SLOW ROTATION

Rotation also causes a difference between the secondary wave fre-

quency, ωs, and twice the primary wave frequency, 2ωp. We esti-

mate it below assuming that the rotation axis of the star is perpen-

dicular to the orbital plane8 and the stellar rotational frequency, Ωr

(assumed constant), is much smaller than the frequencies of inter-

est. We neglect effects that are quadratic in Ωr , and consider ωs and

ωp as defined in the inertial frame, which is different from our def-

initions in the main text, where it is implied that these frequencies

are defined in the rotating frame. As discussed in Section 2, when

the frequencies are considered in the inertial frame the primary fre-

quency is simply double the orbital frequency, ωp = 2Ωorb. For a

high-order gravity mode with a frequency ω the leading order rota-

tional frequency correction is determined by (see e.g. Christensen-

Dalsgaard 1998, Equations 8.45 and 8.46)

ω ≈ ω0

(

1 +

(

1− 1

L2

)

mΩr

ω0

)

, (A1)

where ω0 is the mode eigenfrequency for a non-rotating star, and

m is the azimuthal wavenumber. We remind the reader that L =
√

l(l + 1), and we use l = m = 2 for the primary mode, and

l = m = 4 for the secondary mode. This choice originates from a

comparison of our planar problem with the full spherical problem.

Similar to what is done in Section 6.1, we calculate the difference

2ωp − ωs using ω0 = ωp and ω0 = 2ωp for the primary and

secondary mode, respectively, to obtain

2ωp − ωs ≈ − 7

15
Ωr. (A2)

Comparing (A2) with (61) we see that slow stellar rotation can be

accounted for in the expression for ν by redefining f(n) entering

(63) according to

f(n) → f(n)− 7

60

Ωr

Ωorb
. (A3)

It is seen from (A3) that the additional term is rather small, ap-

proximately 3.8 × 10−3, for orbital periods of approximately 1d

and rotational periods of order 30d, which are appropriate values

for many short period hot Jupiters like WASP-12. Comparing this

value with typical values of f(n) shown in Fig. 1, we see that this

term doesn’t appear to be significant for such systems. However, it

may be important for faster rotators. Finally, note that the correc-

tion is negative for prograde rotation, and therefore, the presence of

the additional term in ν could, in principal, make it negative. In this

case its absolute value should be used in our criteria for predicting

non-linear behaviour.
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