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Abstract

This paper proposes a class of minimum distance estimators for the underlying

parameters in a Markovian parametric multiplicative error time series model. This

class of estimators is based on the integrals of the square of a certain marked residual

process. The paper derives the asymptotic distributions of the proposed estimators. In

a finite sample comparison, some members of the proposed class of estimators dominate

a generalized method of moments estimator in terms of the finite sample bias at a

variety of chosen error distributions while neither dominate each other in terms of the

mean squared error at these error distributions. A real data example is considered to

illustrate the proposed estimation procedures.
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1 Introduction

The analysis of financial time series often requires modeling of sequences of non-negative

random variables. Examples include financial durations, absolute values of returns, trade

volumes, and realized volatility. Due to the nature of high frequency financial data one

often encounters zeros or near zeros in such non-negative random variables with non-trivial

probability. Therefore, the usual practice of analyzing the log-transformed data is often

not applicable. Furthermore, there are several drawbacks to taking logs when observations

very near zero are possible, see, e.g. Engle (2002). Multiplicative error models (MEMs)

of Engle (2002) decompose the observable process into its conditional mean and a non-

negative valued multiplicative error and hence avoid the need to rely on log-transforms.

These models have been found to be useful for modeling a variety of non-negative time

series. Numerous applications and properties of these models are discussed in Engle and

Russell (1998), Bauwens and Giot (2000), Bauwens and Veredas (2004), Manganelli (2005),

Chou (2005), Engle and Gallo (2006), Fernandes and Grammig (2006), Gao, Kim and Saart

(2015) and Koul and Perera (2021), among others.

The problem of estimating MEMs with parametric conditional means has been addressed

by several authors. The quasi maximum likelihood estimator (QMLE) based on the stan-

dard exponential distribution was investigated by Engle and Russell (1998), Engle (2002),

and Drost and Werker (2004). Cipollini, Engle and Gallo (2013) developed a generalized

method of moments (GMM) estimator when the error distribution is unknown. The QMLE

is consistent and asymptotically normal, provided that the innovation has unit mean and a

finite second moment, even if the true distribution is not exponential (see Engle, 2002). The

GMM estimator is more suited to the vector specification of the MEM and allows practi-

tioners to estimate the assumed model without specifying an innovation distribution. Some

of the key features of QML and GMM estimators have been discussed in Pacurar (2008),

Hautsch (2012), Brownlees, Cipollini and Gallo (2012), Cipollini, Engle and Gallo (2013)

and Perera, Hidalgo and Silvapulle (2016), among others. Although these estimators have

desirable asymptotic properties, their finite sample performance can at times be sensitive

to the (unknown) conditional distribution of the observable process, and hence, in prac-

tice, when available, fully efficient maximum likelihood (ML) estimates are often preferred

(see Grammig and Maurer 2000, Perera and Silvapulle 2021). For example, even though the

asymptotic distribution of the QMLE is independent of the innovation distribution, when the

data generating process is based on an innovation distribution that induces a non-monotonic

hazard rate function (e.g. Burr distribution), the QMLE based on the standard exponen-

tial distribution may perform poorly, even with quite large sample sizes (see Grammig and

Maurer 2000). It is thus desirable to develop new estimation methods for MEMs that im-

prove upon the existing methods. The objective of this paper is to contribute to this line of
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research by developing a new class of minimum distance (m.d.) estimators in a parametric

Markovian MEM, that are applicable when fully efficient ML estimates are not available.

More precisely, let p, q be known positive integers, Rp
+ := [0,∞)p, Rq := (−∞,∞)q and

let ψ(z, ϑ), z ∈ R
p
+, ϑ ∈ Θ ⊂ R

q be a family of positive functions. In the MEM of interest

here we observe positive stationary time series Yi, i ∈ Z := {0,±1, · · · } and a known p-vector

of nonnegative functions Zi−1 of Yi−1, · · · , Yi−ℓ, for a known ℓ ≥ 1 such that for some θ ∈ Θ,

Yi = ψ(Zi−1, θ)εi, i ∈ Z, (1.1)

where εi, i ∈ Z are independent and identically distributed (i.i.d.) non-negative random

variables (r.v.’s), E(ε0) = 1, Var(ε0) = σ2 > 0 and for each i ∈ Z, εi is independent of

Yi−1, · · · , Yi−ℓ. It is implicitly assumed that the parameter space Θ is such that when θ ∈ Θ

is true, the above time series Yi, i ∈ Z is stationary. An example of this model, with p = 1

and Zi−1’s different from Yi−1’s, is provided in Example 2 of Perera and Koul (2017), where

the time series {Yi} consists of daily annualized realized volatility measures, constructed

from some intraday spot price data for the S&P500 index. It was seen in a certain data set

that the changes of Yi seem to be influenced by the fluctuations of past realized volatilities,

which suggested to take Zi−1 =
∑ℓ

t=1wtYi−t, a weighted sum of past realized volatilities with

known {wi} and ℓ. Several other applications of this family of models are discussed in Koul,

Perera and Silvapulle (2012) and Guo and Li (2018).

In the current paper we propose a class of m.d. estimators of θ in the above semi-

parametirc model (1.1) based on the data (Zi−1, Yi), 1 ≤ i ≤ n where distributions of Z0

and ε0 are unknown. To proceed further, for any real numbers a, b, a ∨ b := max(a, b).

For any two vectors x = (x1, · · · , xp)′, y = (y1, · · · , yp)′ ∈ R
p
+, x

′(∥x∥) denote transpose

(Euclidean norm) of x,
{
x ≤ y

}
:=

{
xj ≤ yj, 1 ≤ j ≤ p

}
and x∨ y :=

(
x1∨ y1, · · · , xp∨ yp

)′
.

The m.d. estimators of interest here are the ones that are based on the marked residual

empirical process

Un(z, ϑ) := n−1/2

n∑

i=1

( Yi
ψ(Zi−1, ϑ)

− 1
)
I(Zi−1 ≤ z), z ∈ R

p
+, ϑ ∈ Θ.

Using the ideas from Stute (1997) and Koul and Stute (1999), Koul et al. (2012) provide

some motivation for basing inference in the above MEM models on an analog of the process

Un(z, ϑ), z ∈ R
p
+, ϑ ∈ Θ. In additive models several m.d. estimators based on integrated

squared residual empirical processes are known to have robustness and efficiency properties,

see, e.g., Donoho and Liu (1988a,b) and Koul (1985a,b, 1986, 1996). For these reasons it is

desirable to develop the m.d. estimators based on similar statistics involving the process Un.

Now, let L be a distribution function (d.f.) on R
p
+, Gn(z) denote the proportion of
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Zi−1, 1 ≤ i ≤ n less than or equal to z, i.e., Gn(z) := n−1
∑n

i=1 I(Zi−1 ≤ z) and define

Mn1(ϑ) :=

∫
U2
n(z, ϑ)dL(z), θ̂n1 := argminϑMn1(ϑ), (1.2)

Mn2(ϑ) :=

∫
U2
n(z, ϑ)dGn(z), θ̂n2 := argminϑMn2(ϑ).

A further motivation for the above estimators is as follows. Note that E
{(
Yi/ψ(Zi−1, θ)

−1
)
I(Zi−1 ≤ z)

}
= 0, for all i ∈ Z, z ∈ R

p
+. Thus intuitively, one may estimate θ by that

entity ϑ that brings the set of variables YiI(Zi−1 ≤ z)/ψ(Zi−1, ϑ), 1 ≤ i ≤ n, z ∈ R
p
+ close

to the set of variables I(Zi−1 ≤ z), 1 ≤ i ≤ n, z ∈ R
p
+, in some sense. The estimators

θ̂nj, j = 1, 2 bring these two data sets close to each other in terms of the integrated square

differences n−1Mnj(ϑ), j = 1, 2 between their averages. Note that θ̂n1 provides a class of

estimators, one for each L.

In some applications Zi−1 is one dimensional. For example the lack-of-fit test proposed by

Koul et al. (2012), indicates that a Markovian MEM of the form (1.1) provides a good fit for

a time series of squared log returns of a stock, denoted {Yi}, with ψ(Zi−1; θ) = θ1 + θ2Zi−1,

Zi−1 = Yi−1, where θ1 > 0, 0 ≤ θ2 < 1, θ = (θ1, θ2)
′. In such cases we give a representation

of Mnj(ϑ), j = 1, 2 that is useful for their computation and that of θ̂nj, j = 1, 2. Since

Zi−1, 1 ≤ i ≤ n are one-dimensional, one orders Zi−1, 1 ≤ i ≤ n as Z(0) ≤ Z(1) ≤ · · · ≤ Z(n−1).

Let Y ∗
i denote the Yi corresponding to Z(i−1), 1 ≤ i ≤ n. Direct computation shows that

Mn1(ϑ) = n−1

n∑

i=1

n∑

j=1

( Yi
ψ(Zi−1, ϑ)

− 1
)( Yj

ψ(Zj−1, ϑ)
− 1

)∫
I(Zi−1 ≤ z, Zj−1 ≤ z)dL(z)

= n−1

n∑

i=1

( Y ∗
i

ψ(Z(i−1), ϑ)
− 1

)2(
1− L

(
Z(i−1) −

))

+ 2n−1

n∑

i=1

∑

1≤i<j≤n

( Y ∗
i

ψ(Z(i−1), ϑ)
− 1

)( Y ∗
j

ψ(Z(j−1), ϑ)
− 1

)[
1− L

(
Z(j−1) −

)]
.

Similarly, using the fact Gn

(
Z(i−1) −

)
= (i− 1)/n, for all 1 ≤ i ≤ n, we obtain

Mn2(ϑ) = n−1

n∑

i=1

( Y ∗
i

ψ(Z(i−1), ϑ)
− 1

)2
[1−Gn

(
Z(i−1) −

)
]

+ 2n−1

n∑

i=1

∑

1≤i<j≤n

(
Y ∗
i

ψ(Z(i−1), ϑ)
− 1)(

Y ∗
j

ψ(Z(j−1), ϑ)
− 1)

[
1−Gn

(
Z(j−1) −

)]

= n−2

n∑

i=1

(
n− i+ 1

)( Y ∗
i

ψ(Z(i−1), ϑ)
− 1

)2

+ 2n−2

n∑

i=1

n∑

j=i+1

(
n− j + 1

)( Y ∗
i

ψ(Z(i−1), ϑ)
− 1

)( Y ∗
j

ψ(Z(j−1), ϑ)
− 1

)
.
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In the computation ofMn1(ϑ), for the choice of L, one may consider any d.f. with positive

support; for example, the standard exponential distribution or a member of the standard

gamma family (with two parameters). We discuss some such choices of L in (2.2) below in

the next section. Note that, once a suitable choice of L is made, one can easily compute θ̂n1

and θ̂n2 by using the computational formulas described above for Mn1(ϑ) and Mn2(ϑ).

Our goal here is to derive the asymptotic distributions of the estimators θ̂n1 and θ̂n2 and

to study their finite sample bias and mean square error (MSE), in comparison with some

competing estimators.

The next section reports the findings of a finite sample simulation study, where we find

that the empirical bias of the several m.d. estimators is much less than that of the GMM

estimator (GMME) at all chosen error distributions and some m.d. estimators compete very

well in terms of the empirical MSE with the GMME. In Section 3 we illustrate the proposed

estimation procedures in an empirical example. The asymptotic normality of these estimators

along with the needed regularity conditions are presented in Section 4. Remark 4.1 below

describes a limited comparison of the asymptotic variance of θ̂n1 and θ̂n2 with that of the

GMME. Section 5 concludes the paper and some proofs are relegated to an Appendix A.

2 Simulation study

In this section we present the findings of a Monte Carlo simulation study that evaluates

the finite sample performance, in terms of bias and MSE, of some members of the above

proposed class of m.d. estimators θ̂nj, j = 1, 2, and GMME θ̂mm.

2.1 Design of the simulation study

In this simulation study, we use p = 1, q = 2, and

ψ(Zi−1; θ) = θ1 + θ2Zi−1, θ1 > 0, 0 ≤ θ2 < 1, θ = (θ1, θ2)
′. (2.1)

This process is stationary for θ ∈ Θ := (0,∞)× [0, 1). Similar specifications have previously

been considered for the conditional mean in Koul et al. (2012) and Guo and Li (2018) in the

MEM setting. Also note that the ψ(z, ϑ) = ϑ1+ϑ2z satisfies the conditions (C.1), (C.2) and

(4.8) in Section 4 below, and hence (C.3) and (C.4) in Section 4 also hold (see Lemma 4.1).

For Zi−1 we consider the following four cases:

(a) : Zi−1 = Yi−1, (b) : Zi−1 =

( 3∏

k=1

Yi−k

)1/3

, (c) : Zi−1 =

( 3∑

k=1

Yi−k

)/
3,

(d) : Zi−1 = 3

{ 3∑

k=1

(
1/Yi−k

)}−1

, i = 1, · · · , n.

5



The first case (Zi−1 = Yi−1) corresponds to the Markovian model considered in Koul et

al. (2012). A setup similar to (c) was considered in Perera and Koul (2017) for a closely

related threshold model. In (b) and (d) we consider respectively the geometric and harmonic

means of the three lagged values of Yi.

For the error distribution, we consider the following families of densities on (0,∞).

1. Exponential [E]: f(x) := e−x, x > 0.

2. Gamma [G]: f(x) := ααΓ(α)−1xα−1e−αx, x > 0, α > 0.

3. Generalized gamma [GG]:

f(x) = c{σΓ(a)}−1(x/σ)ac−1 exp{−(x/σ)c}, a, c > 0, σ = {Γ(a+ c−1)}−1Γ(a).

4. Burr: f(x) = (a/σ)(x/σ)a−1[1 + b(x/σ)a]−(1+b−1), a > b > 0, and

σ = {Γ(1 + a−1)Γ(b−1 − a−1)}−1b(1+a−1)Γ(1 + b−1).

For the exponential distribution, Eε0 = 1, while for each of the other three distributions, the

scale parameter is selected to have E(ε0) = 1. For the sample sizes we consider n = 100, 200

and 500.

The first two distributions above have been identified as having important roles in mul-

tiplicative error models, see, Engle and Russell (1998), Drost and Werker (2004) and Engle

and Gallo (2006). The next two have been suggested in various empirical studies, see, e.g.,

Lunde (1999), Grammig and Maurer (2000) and Grammig and Wellner (2002).

In the tables below we write θ̂1 = (θ̂11, θ̂12), θ̂2 = (θ̂21, θ̂22) for θ̂n1, θ̂n2, respectively, and

call them MDEs, while θ̂mm,1, θ̂mm,2 denote the GMMEs of θ1, θ2, respectively. We evaluate

the performance of θ̂1 corresponding to each of the following four choices of L.

L1(y) = 1− exp(−y/2), L2(y) = 1− exp(−y), (2.2)

L3(y) = 1− exp(−2y), L4(y) = 1− exp(−4y), y > 0.

MEMs require the conditional mean to be always positive. We ensure this by imposing a

positive intercept θ1 and a non-negative coefficient θ2 in the conditional mean equation (2.1).

Further, the coefficient θ2 is restricted to be less than 1 to ensure stationarity. Therefore,

under the specification (2.1), the parameter space in the minimization problem (1.2) is

inequality restricted. To implement the constrained minimization problem in (1.2), under

the specification (2.1), we use the fmincon function in Matlab.

2.2 Summary of the results

The simulation findings about empirical bias are given in Tables 1, 3, 5 and 7, and those on

MSE are given in Tables 2, 4, 6 and 8. The main findings of the simulations are as follows.

All the chosen m.d. estimators perform considerably better than the GMME in terms of
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the empirical bias while being competitive in terms of the empirical MSE at all the chosen

error distributions and the sample sizes. Recall that the GMME is equivalent to the MLE

when the error term follows a Gamma distribution yet we find the empirical MSE of some

of the chosen m.d. estimators at the Gamma error distribution to be very close to that of

the GMME.

Table 1: Empirical bias of the GMME and the MDEs of θ for the DGP (2.1) with θ = (0.4, 0.6)′, Zi−1

≡ Yi−1 and the error d.f. F0.

F0 θ̂mm,1 θ̂11 θ̂21 θ̂mm,2 θ̂12 θ̂22

L1 L2 L3 L4 L1 L2 L3 L4

n = 100 n = 100

E .015 .008 .006 .005 .005 .005 -.038 -.015 -.008 .002 .006 -.003

G .020 .014 .013 .013 .014 .011 -.030 -.017 -.014 -.013 -.014 -.010

GG .017 .007 .005 .004 .004 .004 -.039 -.006 .003 .011 .012 .009

Burr .026 .017 .018 .020 .023 .017 -.042 -.016 -.017 -.021 -.028 -.010

n = 200 n = 200

E .006 .001 .000 .000 .001 .000 -.016 -.002 .002 .004 .006 .004

G .010 .008 .006 .005 .005 .005 -.014 -.009 -.005 -.001 .001 -.002

GG .008 .003 .002 .002 .004 .002 -.012 .007 .009 .011 .011 .010

Burr .013 .007 .006 .005 .006 .005 -.020 -.003 .003 .009 .007 .006

n = 500 n = 500

E .003 .001 .000 .000 .000 .000 -.003 .003 .005 .006 .009 .005

G .004 .002 .002 .003 .003 .002 -.005 -.002 -.002 -.002 -.004 -.001

GG .005 .002 .002 .002 .002 .002 -.009 .002 -.001 .001 .003 .000

Burr .003 .001 .000 .000 .000 .000 -.009 -.001 .001 .004 .006 .002
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Table 2: Empirical MSE of the GMME and the MDEs of θ for the DGP (2.1) with θ = (0.4, 0.6)′, Zi−1

≡ Yi−1 and the error d.f. F0.

F0 θ̂mm,1 θ̂11 θ̂21 θ̂mm,2 θ̂12 θ̂22

L1 L2 L3 L4 L1 L2 L3 L4

n = 100 n = 100

E .0084 .0084 .0086 .0092 .0102 .0084 .0261 .0285 .0338 .0450 .0680 .0319

G .0076 .0078 .0081 .0090 .0109 .0082 .0155 .0167 .0191 .0255 .0437 .0197

GG .0103 .0098 .0100 .0106 .0118 .0099 .0364 .0416 .0469 .0599 .0884 .0448

Burr .0133 .0135 .0145 .0161 .0182 .0143 .0374 .0438 .0497 .0635 .0921 .0487

n = 200 n = 200

E .0038 .0039 .0040 .0042 .0050 .0039 .0122 .0147 .0177 .0242 .0426 .0167

G .0035 .0036 .0038 .0044 .0060 .0038 .0072 .0078 .0092 .0135 .0271 .0093

GG .0054 .0055 .0057 .0062 .0071 .0056 .0188 .0229 .0277 .0388 .0629 .0261

Burr .0067 .0073 .0076 .0083 .0096 .0075 .0172 .0223 .0272 .0394 .0635 .0261

n = 500 n = 500

E .0014 .0015 .0016 .0017 .0021 .0015 .0048 .0058 .0069 .0098 .0195 .0065

G .0013 .0013 .0014 .0016 .0022 .0015 .0026 .0029 .0035 .0053 .0104 .0037

GG .0019 .0021 .0022 .0024 .0028 .0021 .0074 .0090 .0111 .0162 .0304 .0104

Burr .0024 .0026 .0027 .0031 .0037 .0027 .0082 .0099 .0123 .0181 .0320 .0121

Table 3: Empirical bias of the GMME and the MDEs of θ for the DGP (2.1) with θ = (0.3, 0.5)′, Zi−1

≡ (
∏

3

k=1
Yi−k)

1/3 and the error d.f. F0.

F0 θ̂mm,1 θ̂11 θ̂21 θ̂mm,2 θ̂12 θ̂22

L1 L2 L3 L4 L1 L2 L3 L4

n = 100 n = 100

E .018 .013 .011 .009 .007 .007 -.076 -.054 -.046 -.035 -.021 -.016

G .026 .021 .019 .018 .016 .014 -.067 -.052 -.047 -.041 -.035 -.027

GG .019 .012 .010 .007 .005 .004 -.079 -.047 -.034 -.018 -.003 .009

Burr .027 .020 .018 .016 .016 .014 -.084 -.057 -.047 -.038 -.033 -.021

n = 200 n = 200

E .009 .005 .005 .004 .003 .002 -.039 -.024 -.020 -.014 -.009 -.005

G .015 .012 .011 .010 .010 .009 -.036 -.028 -.026 -.023 -.021 -.016

GG .012 .007 .006 .005 .006 .004 -.038 -.017 -.012 -.008 -.006 .002

Burr .015 .011 .010 .009 .008 .007 -.046 -.029 -.024 -.018 -.012 -.006

n = 500 n = 500

E .004 .002 .002 .001 .001 .001 -.010 -.003 -.002 .000 .001 .003

G .006 .004 .004 .004 .004 .003 -.013 -.009 -.008 -.007 -.007 -.004

GG .005 .003 .002 .002 .003 .002 -.019 -.008 -.007 -.006 -.006 -.003

Burr .005 .002 .002 .002 .002 .001 -.019 -.009 -.007 -.006 -.005 -.002
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Table 4: Empirical MSE of the GMME and the MDEs of θ for the DGP (2.1) with θ = (0.3, 0.5)′, Zi−1

≡ (
∏

3

k=1
Yi−k)

1/3 and the error d.f. F0.

F0 θ̂mm,1 θ̂11 θ̂21 θ̂mm,2 θ̂12 θ̂22

L1 L2 L3 L4 L1 L2 L3 L4

n = 100 n = 100

E .0061 .0059 .0059 .0060 .0064 .0063 .0602 .0582 .0593 .0636 .0783 .0726

G .0069 .0067 .0067 .0068 .0074 .0072 .0395 .0387 .0392 .0414 .0496 .0470

GG .0066 .0064 .0064 .0066 .0071 .0070 .0738 .0741 .0766 .0831 .0967 .0928

Burr .0088 .0086 .0086 .0089 .0095 .0093 .0772 .0798 .0828 .0881 .0998 .0964

n = 200 n = 200

E .0027 .0026 .0026 .0027 .0030 .0029 .0291 .0285 .0292 .0321 .0422 .0385

G .0031 .0030 .0030 .0032 .0036 .0034 .0174 .0170 .0174 .0190 .0248 .0229

GG .0038 .0037 .0038 .0040 .0044 .0043 .0404 .0417 .0439 .0490 .0613 .0578

Burr .0048 .0049 .0050 .0052 .0056 .0054 .0393 .0418 .0437 .0488 .0605 .0573

n = 500 n = 500

E .0010 .0010 .0011 .0011 .0013 .0013 .0102 .0107 .0114 .0131 .0176 .0160

G .0011 .0011 .0011 .0012 .0014 .0014 .0060 .0061 .0063 .0071 .0095 .0088

GG .0014 .0014 .0014 .0015 .0017 .0017 .0161 .0166 .0175 .0204 .0278 .0260

Burr .0018 .0019 .0019 .0021 .0024 .0023 .0178 .0188 .0197 .0225 .0303 .0285

Table 5: Empirical bias of the GMME and the MDEs of θ for the DGP (2.1) with θ = (0.3, 0.5)′, Zi−1

≡ (
∑

3

k=1
Yi−k)/3 and the error d.f. F0.

F0 θ̂mm,1 θ̂11 θ̂21 θ̂mm,2 θ̂12 θ̂22

L1 L2 L3 L4 L1 L2 L3 L4

n = 100 n = 100

E .033 .025 .023 .021 .021 .019 -.075 -.055 -.048 -.042 -.037 -.032

G .035 .028 .026 .025 .025 .022 -.066 -.051 -.047 -.043 -.043 -.034

GG .031 .021 .018 .016 .016 .014 -.070 -.042 -.032 -.024 -.015 -.012

Burr .038 .027 .024 .021 .022 .020 -.073 -.045 -.035 -.026 -.023 -.019

n = 200 n = 200

E .016 .011 .010 .009 .010 .008 -.038 -.026 -.022 -.019 -.019 -.014

G .020 .016 .016 .015 .015 .013 -.037 -.029 -.027 -.025 -.026 -.020

GG .016 .010 .009 .009 .009 .008 -.030 -.014 -.009 -.006 -.004 -.001

Burr .020 .014 .012 .011 .011 .010 -.037 -.021 -.015 -.010 -.007 -.005

n = 500 n = 500

E .006 .004 .004 .004 .005 .003 -.011 -.005 -.004 -.004 -.005 -.001

G .007 .006 .005 .005 .006 .005 -.013 -.009 -.009 -.009 -.010 -.007

GG .008 .005 .005 .005 .006 .005 -.016 -.009 -.008 -.008 -.009 -.006

Burr .006 .003 .003 .002 .003 .002 -.016 -.007 -.005 -.004 -.004 -.002
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Table 6: Empirical MSE of the GMME and the MDEs of θ for the DGP (2.1) with θ = (0.3, 0.5)′, Zi−1

≡ (
∑

3

k=1
Yi−k)/3 and the error d.f. F0.

F0 θ̂mm,1 θ̂11 θ̂21 θ̂mm,2 θ̂12 θ̂22

L1 L2 L3 L4 L1 L2 L3 L4

n = 100 n = 100

E .0109 .0103 .0104 .0111 .0129 .0111 .0421 .0408 .0424 .0484 .0655 .0482

G .0096 .0092 .0092 .0095 .0110 .0100 .0328 .0317 .0326 .0359 .0470 .0395

GG .0108 .0105 .0107 .0116 .0134 .0113 .0467 .0506 .0535 .0616 .0809 .0598

Burr .0133 .0129 .0129 .0139 .0158 .0138 .0495 .0544 .0593 .0694 .0874 .0683

n = 200 n = 200

E .0045 .0044 .0044 .0046 .0055 .0047 .0191 .0188 .0197 .0235 .0345 .0237

G .0043 .0042 .0042 .0045 .0055 .0049 .0143 .0142 .0146 .0165 .0229 .0187

GG .0054 .0054 .0057 .0065 .0079 .0063 .0229 .0246 .0279 .0359 .0524 .0337

Burr .0065 .0069 .0071 .0078 .0093 .0078 .0243 .0281 .0313 .0388 .0549 .0379

n = 500 n = 500

E .0016 .0016 .0017 .0019 .0024 .0019 .0067 .0071 .0076 .0092 .0138 .0093

G .0015 .0015 .0016 .0017 .0022 .0019 .0049 .0051 .0054 .0062 .0090 .0072

GG .0019 .0020 .0021 .0023 .0028 .0023 .0091 .0098 .0110 .0139 .0215 .0137

Burr .0024 .0026 .0028 .0031 .0038 .0031 .0105 .0119 .0132 .0160 .0256 .0168

Table 7: Empirical bias of the GMME and the MDEs of θ for the DGP (2.1) with θ = (0.3, 0.5)′, Zi−1

≡ 3{∑3

k=1
(1/Yi−k)}−1 and the error d.f. F0.

F0 θ̂mm,1 θ̂11 θ̂21 θ̂mm,2 θ̂12 θ̂22

L1 L2 L3 L4 L1 L2 L3 L4

n = 100 n = 100

E .009 .006 .004 .003 .002 .003 -.067 -.042 -.034 -.021 -.005 -.004

G .018 .014 .013 .011 .009 .008 -.059 -.045 -.040 -.032 -.022 -.016

GG .010 .005 .004 .002 .000 .001 -.067 -.033 -.022 -.006 .012 .022

Burr .017 .012 .011 .010 .009 .010 -.075 -.048 -.040 -.030 -.023 -.016

n = 200 n = 200

E .004 .002 .001 .001 .000 .000 -.033 -.018 -.014 -.007 .001 .002

G .010 .008 .007 .006 .005 .005 -.031 -.024 -.021 -.018 -.013 -.011

GG .006 .003 .002 .002 .002 .008 -.032 -.008 -.003 .003 .007 .011

Burr .010 .006 .006 .005 .005 .005 -.043 -.025 -.021 -.016 -.011 -.005

n = 500 n = 500

E .002 .001 .001 .000 .000 .000 -.008 .000 .002 .004 .007 .008

G .004 .003 .003 .002 .002 .002 -.011 -.008 -.007 -.006 -.004 -.002

GG .003 .001 .001 .001 .001 .001 -.018 -.005 -.004 -.002 -.001 .001

Burr .002 .001 .001 .000 .000 .000 -.017 -.007 -.006 -.004 -.002 .000
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Table 8: Empirical MSE of the GMME and the MDEs of θ for the DGP (2.1) with θ = (0.3, 0.5)′, Zi−1

≡ 3{∑3

k=1
(1/Yi−k)}−1 and the error d.f. F0.

F0 θ̂mm,1 θ̂11 θ̂21 θ̂mm,2 θ̂12 θ̂22

L1 L2 L3 L4 L1 L2 L3 L4

n = 100 n = 100

E .0037 .0036 .0036 .0036 .0038 .0038 .0695 .0680 .0692 .0732 .0850 .0867

G .0046 .0045 .0045 .0045 .0048 .0048 .0414 .0407 .0410 .0427 .0499 .0502

GG .0043 .0041 .0042 .0042 .0044 .0046 .0923 .0925 .0952 .1004 .1115 .1157

Burr .0057 .0055 .0055 .0056 .0059 .0060 .0911 .0912 .0924 .0966 .1071 .1102

n = 200 n = 200

E .0017 .0017 .0017 .0017 .0018 .0018 .0035 .0035 .0036 .0038 .0472 .0486

G .0021 .0021 .0021 .0021 .0023 .0023 .0185 .0183 .0185 .0197 .0244 .0246

GG .0024 .0024 .0024 .0025 .0027 .0027 .0539 .0552 .0572 .0620 .0727 .0771

Burr .0032 .0032 .0033 .0034 .0036 .0037 .0488 .0509 .0523 .0564 .0674 .0709

n = 500 n = 500

E .0007 .0007 .0007 .0007 .0008 .0008 .0125 .0129 .0135 .0152 .0198 .0208

G .0008 .0008 .0008 .0008 .0009 .0009 .0064 .0066 .0068 .0074 .0095 .0097

GG .0010 .0010 .0010 .0010 .0011 .0011 .0228 .0233 .0241 .0267 .0338 .0377

Burr .0013 .0013 .0013 .0013 .0015 .0015 .0232 .0241 .0247 .0269 .0329 .0359

3 Empirical example

In this section, we illustrate the proposed m.d. estimation procedures by considering a real

data example. The time series of interest {Yi} is the monthly squared log returns of Intel

stocks. The data for this example were downloaded from the home page of Professor Ruey S.

Tsay. The data spans the period January 1973 to December 2009. Koul et al. (2012) studied

a shorter version of this data set, and concluded that a Markov MEM of the form (1.1) with

ψ(Zi−1; θ) = θ1 + θ2Yi−1, where θ1 > 0, 0 ≤ θ2 < 1, θ = (θ1, θ2)
′, provides a good fit.

Therefore, in this empirical illustration we consider the following Markov MEM:

Yi = ψ(Zi−1; θ)εi, ψ(Zi−1; θ) = θ1 + θ2Yi−1, θ1 > 0, 0 ≤ θ2 < 1, θ = (θ1, θ2)
′. (3.1)

Model diagnostics

First, we apply several model diagnostic tests to check the adequacy of model (3.1) for

the data. More specifically, we apply (a) the lack-of-fit test developed by Koul et al. (2012),

denoted KPS, (b) the LjungBox Q test (Ljung and Box, 1978), (c) a LM test (Meitz and

Teräsvirta, 2006), and (d) a generalized moment test (Chen and Hsieh, 2010).

The large sample level-α critical value cα of the KPS test is equal to the 100(1 − α)%

quantile of sup0≤t≤1 |W0(t)| where W0 is the standard Brownian motion (Koul et al., 2012).
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For α = 0.01, 0.05 and 0.10, these critical values are 2.807034, 2.241403 and 1.959964, respec-

tively. For the LM test we use the form in Theorem 1 of Meitz and Teräsvirta (2006), with

ACD(2, 0) being the model under the maintained hypothesis. Hence, the asymptotic null

distribution of the resulting LM statistic is χ2
1 (Meitz and Teräsvirta, 2006). We compute the

Ljung-Box Q statistic as LBQ(ℓ0) = T (T + 2)
∑ℓ0

k=1 (T − k)−1ρ2k, where ℓ0 is the number of

autocorrelation lags included in the statistic, and ρ2k is the squared sample autocorrelation at

lag k of the estimated residuals. The critical values to implement the LBQ(ℓ0) are obtained

from χ2
ℓ0
(see Pacurar, 2008). The generalized moment test is the M -test of Chen and Hsieh

(2010). To compute the M -test statistic, as in Koul et al. (2012), we use (εi−1 − 1) as the

“misspecification indicator” gi (see page 354 in Chen and Hsieh, 2010). The asymptotic null

distribution of the resulting M test statistic is χ2
1 (see page 353 in Chen and Hsieh, 2010).

The observed value of the KPS test statistic turns out to be 1.2610. Since this value is

smaller than the 10% level critical value 1.959964, the KPS test does not reject the Markov

MEM in (3.1) at 10% level. The observed values of LBQ(ℓ0), for ℓ0 = 1, 5 and 15, LM and

M test statistics, together with their p-values (reported within parentheses) are as follows:

LBQ(1) = 0.7963 (0.3722), LBQ(5) = 7.0291 (0.2185), LBQ(10) = 13.6782 (0.1882),

LBQ(15) = 31.9087 (0.0067), LM = 0.8946 (0.3442), M = 3.4992 (0.0614).

Therefore, apart from LBQ(15), all the other tests fail to reject the null Markov MEM in (3.1)

at 5% level. Hence, we fit the model (3.1) to the observed data set.

Estimation

We estimate the parameter θ of the Markov MEM in (3.1) by using the proposed m.d.

estimators θ̂nj, j = 1, 2, in (1.2). For comparison, we also include the GMME of Cipollini

et al. (2013). In the model (1.1), the GMM estimator is obtained by solving the following

sample moment conditions for ϑ:

n−1

n∑

i=1

ψ̇(Zi−1, ϑ)
{Yi − ψ(Zi−1, ϑ)

ψ2(Zi−1, ϑ)

}
= 0.

These conditions coincide with the first-order conditions of a log-likelihood function max-

imization in the model (1.1) when εi are i.i.d. Gamma distributed r.v.’s, see Engle and

Gallo (2006). The above GMME, denoted by θ̂mm herein, provides a consistent estimator

of θ under the correct specification of the conditional mean, without relying on any para-

metric assumptions on the error distribution. Moreover, under some regularity conditions,

n1/2(θ̂mm − θ) →D N(0, σ2Σ−1), Σ = E[φ(Z0)φ(Z0)
′].

To compute the m.d. estimator θ̂1 we use each of the four choices of L in (2.2). The
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estimated Markov multiplicative error models for the selected methods are as follows:

For θ̂n1 with L1(y) : ψ(Zi−1; θ̂n1) = 0.01142 + 0.35452Yi−1,

For θ̂n1 with L2(y) : ψ(Zi−1; θ̂n1) = 0.01139 + 0.35940Yi−1,

For θ̂n1 with L3(y) : ψ(Zi−1; θ̂n1) = 0.01133 + 0.36803Yi−1,

For θ̂n1 with L4(y) : ψ(Zi−1; θ̂n1) = 0.01125 + 0.38153Yi−1,

For θ̂n2 : ψ(Zi−1; θ̂n2) = 0.01062 + 0.51316Yi−1,

For θ̂mm : ψ(Zi−1; θ̂mm) = 0.01137 + 0.35927Yi−1.

In view of these results, the observed values of θ̂n1 are very similar to those of the GMME

θ̂mm, for all four choices of L, whereas the m.d. estimator θ̂n2, obtained by using the empirical

d.f. Gn for L, produces slightly different estimated values for both θ1 and θ2. Figure 1 shows

that the conditional mean processes for θ̂mm, θ̂n1 with L2(y), and θ̂n2 are all very similar

to each other and closely match the observed monthly Intel squared log return series. The

corresponding conditional mean processes produced by θ̂n1 with L1(y), L3(y), and L4(y) (not

plotted here) are also very similar to those for θ̂mm and θ̂n1 with L2(y).

4 Asymptotic distributions of θ̂nj, j = 1, 2

This section derives the asymptotic distributions of θ̂n1 and θ̂n2 under fairly general as-

sumptions on the underlying entities. This is facilitated by applying the general method of

Section 5.4 of Koul (2002) to the current setup. This method requires two steps. The first

step requires to show that the Mnj(ϑ), j = 1, 2 are AULQ (asymptotically uniformly locally

quadratic) in n1/2(ϑ − θ) for ϑ ∈ Nn(b) := {ϑ ∈ Θ, n1/2∥ϑ − θ∥ ≤ b}, for every 0 < b < ∞.

The second step requires to show that n1/2∥θ̂nj − θ∥, j = 1, 2 are asymptotically bounded

in probability. To begin with we focus on the class of estimator θ̂n1.

4.1 Asymptotic distribution of θ̂n1

Let Y−ℓ, Y1−ℓ, · · · , Yn denote a given stretch of realizations of an observable stationary process

{Yi} obeying (1.1). Let Tn1(t) := Mn1(θ + n−1/2t), t ∈ R
q. Proving that Mn1(ϑ), ϑ ∈ Nn(b)

is AULQ is equivalent to proving that for every 0 < b < ∞, Tn1(t) is approximated by a

quadratic form in t, uniformly in ∥t∥ ≤ b, in probability.

Let G denote the d.f. of Z0. We shall write Un(z) for Un(z, θ). Because εi are independent
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Figure 1: Monthly squared log returns of Intel stocks (Panel A), and the corresponding conditional mean

processes for the estimators θ̂mm, θ̂n1 with L = L2, and θ̂n2 for fitting a Markov MEM (Panel B).
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of Zi−1 and because Eε0 = 1, we obtain

Un(z) = n−1/2

n∑

i=1

(εi − 1)I(Zi−1 ≤ z), Tn1(0) =

∫
U2
n(z)dL(z),

EUn(z) ≡ 0, EU2
n(z) ≡ σ2G(z), ETn1(0) = σ2

∫
G(z)dL(z) ≤ σ2 <∞.

Hence, by the Markov inequality,

Mn1(θ) = Tn1(0) = Op(1). (4.1)

This fact is useful in showing that
∥∥n1/2(θ̂n1 − θ)

∥∥ = Op(1).

Before proceeding further, we shall state the additional needed assumptions as follows.

In the sequel, the variables z, ϑ vary over Rp
+,Θ, respectively, unless specified otherwise.

(C.1) infz,ϑ ψ(z, ϑ) ≥ C > 0, for some C <∞.

(C.2) There exists a q-vector ψ̇(z, ϑ) such that E∥ψ̇(Z0, θ)∥2 < ∞ and for every 0 < b <

∞, sup1≤i≤n, ∥t∥≤b

√
n|ψ(Zi−1, θ + n−1/2t)− ψ(Zi−1, θ)− n−1/2t′ψ̇(Zi−1, θ)| = op(1).

(C.3) ∀ ϵ > 0, 0 < η <∞, ∃Nϵ,η, 0 < b ≡ bϵ,η <∞, such that ∀n > Nϵ,η,

P
(

inf
∥t∥>b

Mn1(θ + n−1/2t) ≥ η
)
≥ 1− ϵ.

The assumptions (C.1) and (C.2) are used to derive the AULQ property of Mnj, j = 1, 2,

while (4.1) and assumption (C.3) are used to show that ∥n1/2(θ̂n1 − θ)∥ = Op(1).

Let φ(z) := ψ̇(z, θ)/ψ(z, θ). Assumptions (C.1) and (C.2) imply that

E
(∥ψ̇(Z0, θ)∥2
ψj(Z0, ϑ)

)
≤ C−jE∥ψ̇(Z0, θ)∥2 <∞, ∀ j ≥ 1, (4.2)

E∥φ(Z0)∥2 < C−2E∥ψ̇(Z0, θ)∥2 <∞.

To proceed further we need some more notation. Let

Ψn(z) := n−1

n∑

i=1

φ(Zi−1) I(Zi−1 ≤ z), Ψ(z) := E
(
φ(Z0)I(Z0 ≤ z)

)
,

Vn1 :=

∫
Un(z)Ψ(z)dL(z), G1 :=

∫
Ψ(z)Ψ(z)′dL(z),

Qn1(t) :=

∫ (
Un(z)− t′Ψ(z)

)2
dL(z) = Tn1(0)− 2t′Vn1 + t′G1t, t̃n1 := argmintQn1(t).

Next, we give a representation of Vn1 which is useful for determining its limiting distri-

bution. For any d.f. L on R
p
+, let L(y) :=

∫
I(x ≥ y)dL(x) and

ξ1(x) :=

∫

z≥x

Ψ(z)dL(z), x ≥ 0.
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The Fubini Theorem, L being a d.f. and (4.2) imply

ξ1(x) =

∫

z≥x

E
(
φ(Z0)I(Z0 ≤ z)

)
dL(z) = E

(
φ(Z0)L

(
Z0 ∨ x

))
,

sup
x≥0

∥∥ξ1(x)
∥∥2 ≤ E

(∥∥φ(Z0)
∥∥2)

<∞.

Let Z01, Z02 be independent copies of Z0. Then Σ1 := E
(
ξ1(Z02)ξ1(Z02)

′
)
is well defined and

Σ1 = E
{
E
(
φ(Z0)φ(Z01)

′L
(
Z0 ∨ Z02

)
L
(
Z01 ∨ Z02

)∣∣∣Z02

)}
.

Moreover,

Vn1 := n−1/2

n∑

i=1

(εi − 1)

∫
I(Zi−1 ≤ z)Ψ(z)dL(z) = n−1/2

n∑

i=1

(εi − 1)ξ1(Zi−1), (4.3)

EVn1 ≡ 0, E(Vn1V
′
n1) ≡ σ2E(ξ1(Z02)ξ1(Z02)

′) = σ2Σ1.

We are now ready to state the following main result about θ̂n1.

Theorem 4.1. Suppose (1.1), (C.1) and (C.2) hold. Then the following AULQ result holds.

sup
∥t∥≤b

∣∣Mn1(θ + n−1/2t)−Qn1(t)
∣∣ = op(1), for every 0 < b <∞. (4.4)

If, in addition, (C.3) holds, then

∥n1/2(θ̂n1 − θ)∥ = Op(1). (4.5)

If, further G1 is positive definite, then t̃n1 = G−1
1 Vn1 and

(a) ∥n1/2(θ̂n1 − θ)− t̃n1∥ = op(1), (b) n1/2(θ̂n1 − θ) →D N
(
0, σ2G−1

1 Σ1G−1
1

)
. (4.6)

The proof of Theorem 4.1 appears in the Appendix A below.

4.2 Asymptotic distribution of θ̂n2

Here, we shall derive the asymptotic distribution of θ̂n2. This asymptotic distribution is

equivalent to that of the θ̂n1 corresponding to L = G. Let

M̃n2(θ) :=

∫
U2
ndG, Vn2 :=

∫
Un(z)Ψ(z)dG(z), G2 :=

∫
Ψ(z)Ψ(z)′dG(z),

Qn2(t) :=

∫ (
Un(z)− t′Ψ(z)

)2
dG(z) = M̃n2(θ)− 2t′Vn2 + t′Gn2t,

t̃n2 := argmintQn2(t), ξ2(x) :=

∫

z≥x

Ψ(z)dG(z), x ≥ 0.
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By the Fubini Theorem,

G2 =

∫
E
(
φ(Z0)I(Z0 ≤ z)

)
E
(
φ(Z01)

′I(Z01 ≤ z)
)
dG(z) = E

(
φ(Z0)φ(Z01)

′G
(
Z0 ∨ Z01

))
.

The Fubini Theorem and G being a d.f. imply

ξ2(x) =

∫

z≥x

E
(
φ(Z0)I(Z0 ≤ z)

)
dG(z) = E

(
φ(Z0)G

(
Z0 ∨ x

))
,

sup
x≥0

∥ξ2(x)∥2 ≤ E
(
∥φ(Z0)∥2

)
<∞.

Hence Σ2 := E(ξ2(Z02)ξ2(Z02)
′) is well defined and

Σ2 = E
{
E
(
φ(Z0)φ(Z01)

′G
(
Z0 ∨ Z02

)
G
(
Z0 ∨ Z02

)∣∣∣Z02

)}
.

Moreover,

Vn2 := n−1/2

n∑

i=1

(εi − 1)

∫
I(Zi−1 ≤ z)Ψ(z)dG(z) = n−1/2

n∑

i=1

(εi − 1)ξ2(Zi−1),

EVn2 ≡ 0, E(Vn2V
′
n2) ≡ σ2E(ξ2(Z0)ξ2(Z0)

′) = σ2Σ2.

Next, assume the following condition, which is the analog of (C.3) for Mn2.

(C.4) ∀ ϵ > 0, 0 < η <∞, ∃Nϵ,η, 0 < b ≡ bϵ,η <∞, such that ∀n > Nϵ,η,

P
(

inf
∥t∥>b

Mn2(θ + n−1/2t) ≥ η
)
≥ 1− ϵ.

The following theorem describes the AULQ property of Mn2(θ + n−1/2t) in ∥t∥ ≤ b and

the asymptotic distribution of n1/2(θ̂n2 − θ). Its proof appears in the Appendix A below.

Theorem 4.2. Under the above set up and (C.1) and (C.2), the following AULQ result holds.

sup
∥t∥≤b

∣∣Mn2(θ + n−1/2t)−Qn2(t)
∣∣ = op(1), for every 0 < b <∞. (4.7)

If, in addition, the condition (C.4) holds, then

∥n1/2(θ̂n2 − θ)∥ = Op(1).

If, further G2 is positive definite, then t̃n2 = G−1
2 Vn2 and

(a) ∥n1/2(θ̂n2 − θ)− t̃n2∥ = op(1), (b) n1/2(θ̂n2 − θ) →D N
(
0, σ2G−1

2 Σ2G−1
2

)
.

Conditions (C.3) and (C.4). Here we shall discuss a sufficient condition for (C.3)

and its analog (C.4) for Mn2. Any ∥ϑ∥ > b can be written as ϑ = re, for some unit vector

e ∈ R
q, ∥e∥ = 1 and a real number r such that |r| > b. Assume the following.

ψ(z, θ + n−1/2re) is monotonic in r, ∀ z ∈ R
p
+ and ∀ e ∈ R

q, ∥e∥ = 1. (4.8)

The following lemma proves the said sufficiency of (4.8). Its proof appears in Appendix A.
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Lemma 4.1. Assumptions (C.1), (C.2) and (4.8) imply (C.3) and (C.4).

Remark 4.1. Here we shall make a limited comparison of the asymptotic variance of θ̂n1, θ̂n2

with that of θ̂mm. The estimator θ̂nj is asymptotically more efficient than θ̂mm whenever

Σ−1 − G−1
j ΣjG−1

j is positive definite, j = 1, 2.

The expressions G−1
1 Σ1G−1

1 and G−1
2 Σ2G−1

2 are structurally different compared to Σ−1,

and hence it is difficult to compare them with Σ−1 analytically in general. However, here we

provide a comparison of Σ−1 with G−1
j ΣjG−1

j , j = 1, 2 in a limited restrictive setup.

To this end, let G and L be the uniform distributions on [0, 1] and [0, 2], respectively.

Let ψ(Zi−1, θ) = 0.1 + θZi−1, 0 < θ ≤ 1 and Zi−1 = Yi−1, i ∈ Z. Then it is possible to derive

algebraic expressions for the differences Σ−1−G−1
j ΣjG−1

j and observe that Σ−1−G−1
1 Σ1G−1

1 >

0, for every 0 < θ ≤ 1 and Σ−1−G−1
2 Σ2G−1

2 < 0, for every 0 < θ ≤ 1. Figure 2 provides plots

of Σ−1−G−1
1 Σ1G−1

1 and Σ−1−G−1
2 Σ2G−1

2 against θ for 0 < θ ≤ 1. Hence, θ̂n1 is asymptotically

Figure 2: Plots of Σ−1 − G−1
1 Σ1G−1

1 and Σ−1 − G−1
2 Σ2G−1

2 against θ, for 0 < θ ≤ 1, when G

and L are the uniform distributions on [0, 1] and [0, 2], respectively, ψ(Zi−1, θ) = 0.1 + θZi−1 and

Zi−1 = Yi−1, i ∈ Z.
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more efficient than θ̂mm while θ̂mm is asymptotically more efficient than θ̂n2 in this example.

5 Conclusion

This paper advances the current state of econometric methodology in multiplicative error

models for nonnegative valued time series. In particular, we propose a class of m.d. esti-

mators for the underlying parameters in a Markovian parametric multiplicative error model.
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We prove the asymptotic normality of the proposed m.d. estimators under fairly general and

easily verifiable conditions. The simulation findings about empirical bias and mean squared

error demonstrate that the proposed class of estimators can potentially complement, or serve

as an alternative to, the GMM estimation approach of Cipollini et al. (2013) in estimating

parametric Markovian multiplicative error models.

Acknowledgements

Authors are grateful to the referee and the editor for their useful comments and suggestions

on the earlier draft of the paper.

A APPENDIX: Main proofs

A.1 Proofs of Theorems 4.1 and 4.2

Proof of Theorem 4.1. The proof of (4.4) is given later. Arguing as in the proof of The-

orem 5.4.1 of Koul (2002), one verifies that (4.1), (C.3) and (4.4) imply (4.5) and (4.6)(a).

To prove (4.6)(b), by the positive definiteness of G1 we clearly have t̃n1 = G−1
1 Vn1. More-

over, Vn1 is a vector of the sums of martingale difference arrays satisfying (4.3). By the

martingale central limit theorem (CLT), see Hall and Heyde (1980), Vn1 →D N(0, σ2Σ1) and

t̃n1 = G−1
1 Vn1 →D N(0, σ2G−1

1 Σ1G−1
1 ). This fact together with the Slutsky Theorem, (4.5)

and (4.6)(a) imply (4.6)(b).

Proof of (4.4). Let θnt := θ + n−1/2t, t ∈ R
q. Define, for z ∈ R

p
+, t ∈ R

q,

Wn(z, t) := n−1/2

n∑

i=1

[ ψ(Zi−1, θ)

ψ(Zi−1, θnt)
− 1

]
εi I(Zi−1 ≤ z),

Sn(z) := n−1

n∑

i=1

φ(Zi−1) (εi − 1) I(Zi−1 ≤ z), Tn11(t) :=

∫ (
Wn(z, t) + t′Ψ(z)

)2
dL(z),

Tn12(t) :=

∫
(Wn(z, t) + t′Ψ(z))(Un(z)− t′Ψ(z))dL(z).
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Use the model assumption εi = Yi/ψ(Zi−1, θ) to obtain

Un(z, θnt) = n−1/2

n∑

i=1

[ Yi
ψ(Zi−1, θnt)

− 1
]
I(Zi−1 ≤ z) (A.1)

= n−1/2

n∑

i=1

[ Yi
ψ(Zi−1, θnt)

− Yi
ψ(Zi−1, θ)

+
Yi

ψ(Zi−1, θ)
− 1

]
I(Zi−1 ≤ z)

= n−1/2

n∑

i=1

[ ψ(Zi−1, θ)

ψ(Zi−1, θnt)
− 1

]
εi I(Zi−1 ≤ z) + n−1/2

n∑

i=1

(εi − 1)I(Zi−1 ≤ z)

= Wn(z, t) + Un(z), ∀ z ∈ R
p
+, t ∈ R.

Hence,

Tn1(t) =

∫
U2
n(z, θnt)dL(z) =

∫ (
Wn(z, t) + t′Ψ(z) + Un(z)− t′Ψ(z)

)2

dL(z) (A.2)

= Tn11(t) + 2Tn12(t) +Qn1(t).

We shall shortly prove the following facts. For every 0 < b <∞,

(a) sup
∥t∥≤b

Tn11(t) = op(1), (b) E
(
sup
∥t∥≤b

Qn1(t)
)
= O(1). (A.3)

Then by the Cauchy-Schwarz inequality, sup∥t∥≤b

∣∣Tn12(t)
∣∣2 ≤ sup∥t∥≤b Tn11(t) sup∥t∥≤bQn1(t)

= op(1). Hence the claim (4.4).

Proof of (A.3)(a). Rewrite

Wn(z, t) := n−1/2

n∑

i=1

[ ψ(Zi−1, θ)

ψ(Zi−1, θnt)
− 1

]
εi I(Zi−1 ≤ z)

= −n−1/2

n∑

i=1

1

ψ(Zi−1, θnt)

[
ψ(Zi−1, θnt)− ψ(Zi−1, θ)− n−1/2t′ψ̇(Zi−1, θ)

]
εi I(Zi−1 ≤ z)

− t′n−1

n∑

i=1

[ 1

ψ(Zi−1, θnt)
− 1

ψ(Zi−1, θ)

]
ψ̇(Zi−1, θ) εi I(Zi−1 ≤ z)

− t′n−1

n∑

i=1

φ(Zi−1)(εi − 1) I(Zi−1 ≤ z)

− t′n−1

n∑

i=1

[
φ(Zi−1) I(Zi−1 ≤ z)− E

(
φ(Z0)I(Z0 ≤ z)

)]
− t′Ψ(z).

Let dit := ψ(Zi−1, θnt)−ψ(Zi−1, θ) and δit := dit−n−1/2t′ψ̇(Zi−1, θ). Then the above identity
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is equivalent to

Wn(z, t) + t′Ψ(z) (A.4)

= −n−1/2

n∑

i=1

δit
ψ(Zi−1, θnt)

εi I(Zi−1 ≤ z) + t′n−1

n∑

i=1

dit
ψ(Zi−1, θnt)

φ(Zi−1) εi I(Zi−1 ≤ z)

− t′Sn(z)− t′
(
Ψn(z)−Ψ(z)

)

= A1(z, t) + A2(z, t)− t′Sn(z)− t′
(
Ψn(z)−Ψ(z)

)
, say.

In the sequel, the range of the vectors z, ϑ in infz,ϑ is over R
p
+ × Θ, unless mentioned

otherwise. By (C.1), infz,ϑ ψ(z, ϑ) ≥ C > 0 and for every b < ∞, sup1≤i≤n,∥t∥≤b n
1/2

∣∣δit
∣∣ =

op(1). Moreover, because E(ε0) = 1, we have n−1
∑n

i=1 εi = Op(1). Hence

sup
z∈Rp

+
,∥t∥≤b

|A1(z, t)| ≤ C−1 sup
1≤i≤n,∥t∥≤b

n1/2
∣∣δit

∣∣n−1

n∑

i=1

εi = op(1). (A.5)

Next, recall that the stationarity of the process Yi, i ∈ Z and E∥ψ̇(Z0, θ)∥2 < ∞ imply

that n−1/2 max1≤i≤n ∥ψ̇(Zi−1, θ)∥ = op(1), E
(
n−1

∑n
i=1 ∥φ(Zi−1)∥ εi

)
= E∥φ(Z0)∥ < ∞, and

by the Markov inequality, n−1
∑n

i=1 ∥φ(Zi−1)∥ εi = Op(1). Hence, (C.1) and (C.2) imply that

Dn := sup
1≤i≤n,∥t∥≤b

|dit| ≤ sup
1≤i≤n,∥t∥≤b

∣∣δit
∣∣+ bn−1/2 max

1≤i≤n
∥ψ̇(Zi−1, θ)∥ = op(1), (A.6)

sup
z∈Rp

+
,∥t∥≤b

|A2(z, t)| ≤ bC−1Dnn
−1

n∑

i=1

∥φ(Zi−1)∥ εi = op(1).

Next, consider Sn(z). Observe that Sn(z) is a vector of weighted empirical processes

with the summands of each component being stationary and ergodic and ESn(z) ≡ 0. Using

a Glivenko-Cantelli Lemma type argument one obtains that supz∈Rp

+
∥Sn(z)∥ = op(1). For

details see Stute (1976) and Koul (2019). Similarly, supz∈Rp

+

∥∥Ψn(z)−Ψ(z)
∥∥2

= op(1). Upon

combining these two facts with (A.4), (A.5) and (A.6) we obtain that for every 0 < b <∞,

sup
z∈Rp

+
,∥t∥≤b

∣∣Wn(z, t) + t′Ψ(z)
∣∣ = op(1). (A.7)

This fact combined with the definition of Tn11 and L being a d.f. readily yields (A.3)(a).

Next, to prove (A.3)(b), note that

Qn1(t) :=

∫ (
Un(z, θ)− t′Ψ(z)

)2

dL(z) ≤ 2Tn1(0) + 2t′G1t,

E
(
sup
∥t∥≤b

Qn1(t)
)
≤ 2ETn1(0) + 2b2

∫
∥Ψ(z)∥2dL(z)

= 2

∫
G(z)dL(z)

[
1 + b2E∥φ(Z0)∥2

]
<∞.

This also completes the proof of Theorem 4.1.
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Proof of Theorem 4.2. The proof is similar to that of Theorem 4.1, with some differences.

Let

Ṽn2 :=

∫
Un(z)Ψ(z)dGn(z), Gn2 :=

∫
Ψ(z)Ψ(z)′dGn(z),

Q̃n2(t) :=

∫ (
Un(z)− t′Ψ(z)

)2
dGn(z) =Mn2(θ)− 2t′Ṽn2 + t′Gn2t,

T̃n2(t) :=Mn2(θ + n−1/2t), T̃n21(t) :=

∫ (
Wn(z, t) + t′Ψ(z)

)2
dGn(z),

T̃n12(t) :=

∫
(Wn(z, t) + t′Ψ(z))(Un(z)− t′Ψ(z))dGn(z).

Then akin to (A.2),

T̃n2(t) =

∫
U2
n(z, θnt)dGn(z) = T̃n21(t) + 2T̃n22(t) + Q̃n2(t).

Now, sup∥t∥≤b T̃n21(t) ≤ supz∈Rp

+
,∥t∥≤b

(
Wn(z, t)+ t

′Ψ(z)
)2

= op(1), by (A.7). We shall shortly

prove that for every 0 < b <∞,

sup
∥t∥≤b

∣∣Q̃n2(t)−Qn2(t)
∣∣ = op(1). (A.8)

Argue as for (A.3)(b) to conclude that E
(
sup∥t∥≤bQn2(t)

)
= O(1). Hence sup∥t∥≤b Q̃n2(t) =

Op(1) and sup∥t∥≤b

∣∣T̃n22(t)
∣∣2 ≤ sup∥t∥≤b T̃n21(t) sup∥t∥≤b Q̃n2(t) = op(1). These facts together

yield the claim (4.7).

Next, to prove (A.8), note that the left hand side of (A.8) is bounded from the above by

∣∣
∫
U2
n

[
dGn − dG

]∣∣+ b
∥∥
∫
UnΨ

[
dGn − dG

]∥∥+ b2
∥∥
∫

ΨΨ′
[
dGn − dG

]∥∥.

By the Ergodic Theorem,
∥∥ ∫ ΨΨ′

[
dGn − dG

]∥∥ → 0, a.s. while by Lemmas A.1 and A.2

below, the first two terms tend to zero in probability. This completes the proof of (4.7). The

proofs of the other two claims of this theorem are similar to those of (4.5) and (4.6)(a), (b)

of Theorem 4.1.

A.2 Proof of Lemma 4.1

Proof of the claim about (C.3). Let h be a positive function on R
p
+ with 0 <

∫
h2dL <

∞ and let ∞ (0) denote the vector of p infinities (zeros). Let φ(z) :=
∫
x≤z

h(x)dL(x). Note

that φ is nondecreasing in each coordinate and φ(∞) < ∞. Moreover, γ(z) :=
∫
I(z ≤

x)h(x)dL(x) =
∫
I(z ≤ x)dφ(x) ≥ 0, for all z ∈ R

p
+. Define

Vn1(t) :=

∫
Un(z, θnt)h(z)dL(z) =

∫
Un(z, θnt)dφ(z)
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= n−1/2

n∑

i=1

[ Yi
ψ(Zi−1, θ + n−1/2t)

− 1
] ∫

I(Zi−1 ≤ z)dφ(z)

= n−1/2

n∑

i=1

[ Yi
ψ(Zi−1, θ + n−1/2t)

− 1
]
γ(Zi−1).

By the Cauchy-Schwarz inequality,

Mn1(θ + n−1/2t) ≥
(∫

Un(z, θnt)h(z)dL(z)
)2/∫

h2dL, ∀ t ∈ R
q.

Because γ(z) ≥ 0 for all z, by (4.8), ∀ e ∈ Rq, ∥e∥ = 1,Vn1(re) is monotonic in r. Hence

inf
∥t∥>b

Mn1(θ + n1/2t) = inf
e∈Rq ,∥e∥=1,|r|>b

Mn(θ + n−1/2re) ≥ inf
e∈Rq ,∥e∥=1,|r|=b

V2
n1(re)

/∫
h2dL.

Let

V̂n1(t) :=

∫ (
Un(z)− t′Ψ(z)

)
h(z)dL(z) =

∫
Un(z)dφ(z)− t′

∫
Ψ(z)dφ(z)

= Vn1(0)− t′
∫

Ψ(z)dφ(z).

In view of (A.1),

Vn1(t)− V̂n1(t) =

∫ {
Un(z, θnt)− Un(z) + t′Ψ(z)

}
dφ(z) =

∫ {
Wn(z, θnt) + t′Ψ(z)

}
dφ(z).

Because φ(∞) =
∫
hdL <∞, by (A.7),

sup
∥t∥≤b

∣∣∣Vn1(t)− V̂n1(t)
∣∣∣ ≤ sup

∥t∥≤b

∣∣Wn(z, θnt) + t′Ψ(z)
∣∣φ(∞) = op(1).

Therefore,

∣∣∣ inf
e∈Rq ,∥e∥=1,|r|=b

Vn1(re)− inf
e∈Rq ,∥e∥=1,|r|=b

V̂n1(re)
∣∣∣ = op(1). (A.9)

Let τ2 :=
∫
h2dL. Fix an ϵ > 0 and 0 < η <∞. By (A.9), there exists Nϵ,η such that

P
(

inf
e∈Rq ,∥e∥=1,|r|=b

∣∣∣Vn1(re)
∣∣∣ ≥ (τ2η)

1/2
)

≥ P
(

inf
e∈Rq ,∥e∥=1,|r|=b

∣∣∣V̂n1(re)
∣∣∣ ≥ (τ2η)

1/2
)
− ϵ

2
, ∀n > Nϵ,η.

Moreover, by the Cauchy-Schwarz inequality, EV2
n1(0) = σ2Eγ2(Z0) ≤ σ2

∫
h2dL < ∞.

Hence by the Markov inequality, for every ϵ > 0 there is a bϵ such that

P
(
|Vn1(0)| ≤ bϵ

)
≥ 1− (ϵ/2), ∀n ≥ 1. (A.10)
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Recall the elementary fact that for any real numbers a, b,
∣∣|a| − |b|

∣∣ ≤ |a ± b|. Also let

K :=
∫
∥Γ∥dφ. Let bϵ be as in (A.10). Choose b ≥ (bϵ + (v2η)

1/2)K−1. Then, ∀ n ≥ Nϵ,η,

P
(
inf
|t|>b

Mn1(θ + n−1/2t) ≥ η
)
≥ P

(
inf

e∈Rq ,∥e∥=1,|r|=b

∣∣∣Vn1(re)
∣∣∣ ≥ (τ2η)

1/2
)

(A.11)

= P
(∣∣∣Vn1(±be)

∣∣∣ ≥ (τ2η)
1/2, ∀ ∥e∥ = 1

)

≥ P
(∣∣∣V̂n1(±be)

∣∣∣ ≥ (τ2η)
1/2, ∀ ∥e∥ = 1

)
− ϵ/2

≥ P
( ∣∣∣

∣∣Vn1(0)| − bK
∣∣
∣∣∣ ≥ (τ2η)

1/2
)
− ϵ/2

≥ P
(
|Vn1(0)| ≤ bK − (τ2η)

1/2
)
− ϵ/2

≥ P
(
|Vn1(0)| ≤ bϵ

)
− ϵ/2 ≥ 1− ϵ,

thereby proving the claim about (C.3).

Proof of the claim about (C.4). The proof of this claim is similar to that of the previous

claim, but with some differences. In particular we need the following two preliminary lemmas.

Lemma A.1. Under the above set up, Un converges weakly to a continuous Gaussian process

Z(x), x ∈ R
p
+ in Skorokhod space D([0,∞]p) and uniform metric.

The proof of this lemma is similar to that of the main theorem in Stute (1976).

Lemma A.2. Let U be a relatively compact subset of D[0,∞]p. Let µn, µ be a sequence of

possibly random multivariate distribution functions on [0,∞)p such that supx∈Rp

+

∣∣µn(x) −
µ(x)

∣∣ → 0, a.s. Then supy∈Rp

+
,α∈U

∣∣∣
∫
x≤y

α(x)[dµn(x)− dµ(x)]
∣∣∣ →p 0.

The proof of this lemma is similar to that of Lemma 3.1 of Chang (1990) and Lemma 4.2 of

Koul and Stute (1999). Details are left out for the sake of brevity.

Now, let h be a positive function on R
p
+ with 0 <

∫
h2dG <∞ and

∫
hdG = 1. Let

βnk(z) :=

∫

x≤z

hk(x)dGn(x) = n−1

n∑

j=1

hk(Zj−1)I(Zj−1 ≤ z),

βk(z) :=

∫

x≤z

hk(x)dG(x), k = 1, 2, z ∈ R
p
+, Bn2 := βn2(∞), B2 := β2(∞).

Note that βnk(0) = 0 = βk(0), 0 < βk(z) ≤ βk(∞) =
∫
hkdG < ∞, for all z ∈ R

p
+ and

Eβnk(z) ≡ βk(z), k = 1, 2. By the Ergodic Theorem and a Glivenko-Cantelli type argument,

see Stute (1976) and Koul (2019),

sup
z∈[0,∞]p

∣∣βnk(z)− βk(z)
∣∣ → 0, a.s., k = 1, 2; |Bn2 − B2| → 0, a.s. (A.12)

Thus for all sufficiently large n, βnk(z) > 0, for all z ∈ (0,∞]p, k = 1, 2, Bn2 > 0 (a.s.). The

arguments below are carried out on the event Bn2 =
∫
h2dGn > 0.
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Recall θnt = θ + n−1/2t. By the Cauchy-Schwarz inequality,

Mn2(θ + n−1/2t) ≥
(∫

Un(z, θnt)h(z)dGn(z)
)2/

Bn2, ∀ t ∈ R
q.

Let α(z) :=
∫
x≥z

dβ1(x), αn(z) :=
∫
x≥z

dβn1(x), z ∈ R
p
+ and

Vn2(t) :=

∫
Un(z, θnt)h(z)dGn(z) = n−1/2

n∑

i=1

[ Yi
ψ(Zi−1, θnt)

− 1
] ∫

I(Zi−1 ≤ z)dβn1(z)

= n−1/2

n∑

i=1

[ Yi
ψ(Zi−1, θ + n−1/2t)

− 1
]
αn(Zi−1).

Because αn(z) ≥ 0 for all z ∈ R
p
+, n ≥ 1, w.p.1, by (4.8), Vn2(re) is monotonic in r for all

e ∈ Rq, ∥e∥ = 1. Hence

inf
∥t∥>b

Mn2(θ + n1/2t) = inf
e∈Rq ,∥e∥=1,|r|>b

Mn2(θ + n−1/2re) ≥ inf
e∈Rq ,∥e∥=1,|r|=b

V2
n2(re)

/
Bn2.

Let

V̂n2(t) :=

∫ (
Un(z)− t′Ψ(z)

)
h(z)dGn(z) =

∫
Un(z)dβn1(z)− t′

∫
Ψ(z)dβn1(z)

= Vn2(0)− t′
∫

Ψ(z)dβn1(z),

V∗
n :=

∫
Un(z)dβ1(z) = n−1/2

n∑

i=1

(εi − 1)α(Zi−1).

By Lemma A.1, the process Un(z), z ∈ [0,∞]p is relatively compact with respect to the

uniform metric. Hence (A.12) and Lemma A.2 applied with µn = βn1/βn1(∞), µ = β1 yield

∣∣Vn2(0)− V∗
n

∣∣ =
∣∣∣
∫
Un(z)[dβn1(z)− dβ1(z)]

∣∣∣ = op(1).

Here we have used the fact β1(∞) =
∫
hdG = 1 and βn1(∞) →p β1(∞) = 1.

Let V̄n2(t) := V∗
n − t′

∫
Ψdβ1. Because by the Ergodic Theorem,

∫
Ψdβn1 →p

∫
Ψdβ1 and

sup
∥t∥≤b

∣∣V̂n2(t)− V̄n2(t)
∣∣ = op(1), (A.13)

by (A.1), we obtain

Vn2(t)− V̂n2(t) =

∫ {
Un(z, θnt)−Un(z) + t′Ψ(z)

}
dβn1(z) =

∫ [
Wn(z, θnt) + t′Ψ(z)

]
dβn1(z).

Therefore, by (A.7), (A.12) and (A.13)

sup
∥t∥≤b

∣∣∣Vn2(t)− V̄n2(t)
∣∣∣ ≤ sup

∥t∥≤b

∣∣∣Vn2(t)− V̂n2(t)
∣∣∣+ sup

∥t∥≤b

∣∣∣V̂n2(t)− V̄n2(t)
∣∣∣

≤ sup
∥t∥≤b

∣∣Wn(z, θnt) + t′Ψ(z)
∣∣βn1(∞) + op(1) = op(1).
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Also note that sup∥t∥≤b |V̄n2(t)| = Op(1) = sup∥t∥≤b |Vn2(t)| and by (A.12),

sup
∥t∥≤b

∣∣∣Vn2(t)

B
1/2
n2

− V̄n2(t)

B
1/2
2

∣∣∣ ≤ sup
∥t∥≤b

∣∣Vn2(t)
∣∣
∣∣∣ 1

B
1/2
n2

− 1

B
1/2
2

∣∣∣+ 1

B
1/2
2

sup
∥t∥≤b

∣∣Vn2(t)− V̄n2(t)
∣∣ = op(1).

This fact in turn implies that

∣∣∣ inf
e∈Rq ,∥e∥=1,|r|=b

Vn2(re)

B
1/2
n2

− inf
e∈Rq ,∥e∥=1,|r|=b

V̄n2(re)

B
1/2
2

∣∣∣ = op(1). (A.14)

Fix an ϵ > 0 and η > 0. By (A.14), there exists Nϵ,η such that

P
(

inf
e∈Rq ,∥e∥=1,|r|=b

∣∣Vn2(re)
∣∣

B
1/2
n2

≥ η1/2
)

≥ P
(

inf
e∈Rq ,∥e∥=1,|r|=b

∣∣V̄n2(re)
∣∣ ≥ (B2η)

1/2
)
− ϵ

2
, ∀n > Nϵ,η.

Moreover, E
(
V∗
n

)2
= σ2Eα2(Z0) ≤ σ2B2 <∞. Hence, by the Markov inequality, for any

ϵ > 0 there exists bϵ such that

P
(
|V∗

n| ≤ bϵ
)
≥ 1− (ϵ/2), ∀n ≥ 1. (A.15)

Let K :=
∫
∥Γ∥dβ and bϵ be as in (A.15). Choose b ≥ (bϵ + (B2η)

1/2)K−1 and argue as

for (A.11) to obtain that ∀ n ≥ Nϵ,η,

P
(
inf
|t|>b

Mn2(θ0 + n−1/2t) ≥ η
)

≥ P
(
|V∗

n| ≤ bK − (B2η)
1/2

)
− ϵ/2

≥ P
(
|V∗

n1| ≤ bϵ

)
− ϵ/2 ≥ 1− ϵ,

thereby proving the claim about (C.4). This also completes the proof of Lemma 4.1.
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Meitz, M. and Teräsvirta, T. (2006). Evaluating models of autoregressive conditional du-

ration. J. Bus. Econ. Stat., 24, 104–124.

Pacurar, M. (2008) Autoregressive conditional duration models in finance: A survey of the

theoretical and empirical literature. J. of Economic Surveys, 22, 711–751.

Perera, I., Hidalgo, J., and Silvapulle, M. J. (2016). A goodness-of-fit test for a class of

autoregressive conditional duration models. Econometric Reviews, 35(6), 1111–1141.

Perera, I. and Koul, H.L. (2017). Fitting a two phase threshold multiplicative error model.

J. Econometrics, 197, 348–367

Perera, I. and Silvapulle, M. J. (2021). Bootstrap based probability forecasting in multi-

plicative error models. J. Econometrics, 221(1), 1–24.

Stute, W. (1976). On a generalization of the Glivenko-Cantelli theorem. Z. Wahrschein-

lichkeitstheorie und Verw. Gebiete, 35(2), 167–175.

28



Stute, W. (1997). Nonparametric model checks for regression. Ann. Statist., 25(2), 613–

641.

29


