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Abstract 36 

Losing a point in tennis could result from poor shot selection or faulty stroke execution. To explore 37 

how the brain responds to these different types of errors, we examined feedback-locked EEG 38 

activity while participants completed a modified version of a standard three-armed bandit 39 

probabilistic reward task. Our task framed unrewarded outcomes as either the result of errors of 40 

selection or errors of execution. We examined whether amplitude of a medial frontal negativity (the 41 

Feedback-Related Negativity; FRN) was sensitive to the different forms of error attribution. 42 

Consistent with previous reports, selection errors elicited a large FRN relative to rewards and 43 

amplitude of this signal correlated behavioral adjustment following these errors. A different pattern 44 

was observed in response to execution errors. These outcomes produced a larger FRN, a 45 

frontocentral attenuation in activity preceding this component, and a subsequent enhanced error 46 

positivity in parietal sites. Notably, the only correlations with behavioral adjustment were with the 47 

early frontocentral attenuation and amplitude of the parietal signal; FRN differences between 48 

execution errors and rewarded trials did not correlate with subsequent changes in behavior. Our 49 

findings highlight distinct neural correlates of selection and execution error processing, providing 50 

insight into how the brain responds to the different classes of error that determine future action. 51 

 52 
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Introduction 55 

When an action fails to produce the desired goal, there is a “credit assignment” problem to resolve: 56 

Did the lack of reward occur because the wrong course of action was selected, or was it because 57 

the selected action was poorly executed? Consider a tennis player who, mid-game, must 58 

determine whether losing the last point was the result of selecting the wrong action or executing 59 

the action poorly. The player might have attempted a lob rather than the required passing shot, an 60 

error in action selection. Alternatively, a lob might have been appropriate but hit with insufficient 61 

force, an error in motor execution.  62 

Reinforcement learning presents a framework for understanding adaptive behavior through 63 

trial and error interactions with the environment. According to numerous models (e.g. temporal 64 

difference learning; Sutton & Barto, 1998), the discrepancy between expected and actual 65 

outcomes, the reward prediction error, provides a learning signal that allows an agent to refine its 66 

predictions and update its action selection policy. But what happens when a negative prediction 67 

error could arise from either poor action selection or poor response execution?  68 

To address this question, McDougle et al. (2016) used a “bandit” task in which participants 69 

chose between two stimuli to maximize reward. In one condition, choices were made using a 70 

standard button-press method, a situation in which the negative prediction errors on unrewarded 71 

trials were attributed to poor action selection (given the negligible demands on motor execution). In 72 

a second condition, choices were made by reaching to the desired bandit. Here, unrewarded trials 73 

were attributed to movement execution errors. In the latter condition, participants strongly 74 

discounted the negative prediction errors on unrewarded trials relative to the former condition. The 75 

authors hypothesized that errors credited to the motor execution system block value updating in 76 

the action selection system. Consistent with this hypothesis, McDougle et al. (2019) reported that 77 

reward prediction error coding in the human striatum was attenuated following execution errors, 78 

relative to selection errors. Differences between responses to selection and execution errors have 79 

been attributed to a greater sense of “agency” in the latter, with participants’ choice biases 80 

indicating a belief that they can reduce execution errors by making more accurate movements 81 

(Parvin et al., 2018). 82 

A window into the processes that underlie outcome monitoring is offered through the 83 

discovery of the Feedback-Related Negativity (FRN), a negative deflection in the EEG first 84 

identified following the presentation of feedback indicating incorrect responses (Miltner et al., 85 

1997). Following its identification, the component quickly became the subject of intense 86 

investigation as a marker signaling gains and losses (Gehring & Willoughby, 2002) and outcomes 87 

that are worse than expected (Holroyd et al., 2006). The most prominent explanation of its 88 

significance, the “reinforcement learning theory of the error-related negativity” (RL-ERN; Holroyd & 89 

Coles, 2002) holds that the component (and its response-locked variant, the Error-Related 90 

Negativity, the ERN) indexes the activity of signals from the midbrain dopamine that are conveyed 91 

to the anterior cingulate cortex for adaptive modification of behaviour (Holroyd & Coles, 2002; 92 



 

Holroyd & Umemoto, 2016). Recent developments reveal that much of the variation in this 93 

component is driven by a positive going component (a Reward Positivity; RewP) responding to 94 

outcomes that are better than expected (Foti et al., 2011; Holroyd et al., 2008; Proudfit, 2015). 95 

Irrespective of whether this signal is framed as a feedback negativity or reward positivity (here, we 96 

refer to this component as the FRN- the most widely label), there is a consensus, as indicated by a 97 

meta-analysis of 55 datasets (Sambrook & Goslin, 2015), that it is sensitive to reward prediction 98 

error. 99 

The FRN’s sensitivity to errors of action is more contentious. A series of experiments 100 

(Krigolson et al., 2008; Krigolson & Holroyd, 2006, 2007a) contrasting high level (goal-attainment) 101 

errors, variously operationalized as a failure to reach a target (Krigolson et al., 2008; Krigolson & 102 

Holroyd, 2007a), avoid a collision (Krigolson & Holroyd, 2006, 2007b), and the erroneous selection 103 

of the wrong hand or force (de Bruijn et al., 2003) with low-level errors (i.e. mismatch between 104 

actual and intended motor command), concluded that the latter do not elicit a FRN. Instead, 105 

reflecting a hierarchical error processing system (Krigolson & Holroyd, 2006), these motor errors 106 

are proposed to be mediated within posterior parietal cortex (Desmurget et al., 1999, 2001; 107 

Diedrichsen, 2005). Further elaborations indicated that the FRN may only be generated for action 108 

errors that cannot be corrected (Krigolson et al., 2008; Krigolson & Holroyd, 2007a), indicating a 109 

binary high level coding of outcomes in the FRN (i.e. signaling whether the goal was achieved or 110 

not). In line with this, a recent experiment isolating reward-based and sensory error-based motor 111 

adaptation reported a FRN in response to binary reward feedback, but not sensory error feedback- 112 

which instead generated a P300 (Palidis et al., 2019). Previous work on the P300’s sensitivity to 113 

“low level” motor execution errors led to the proposal that this later parietally distributed component 114 

might reflect the revision of an internal forward model in posterior parietal cortex (Krigolson & 115 

Holroyd, 2007a). 116 

A contrasting set of results suggest that the FRN (and its response-locked variant, the 117 

ERN) may in fact be sensitive to motor errors and reflect more than binary coding of outcomes, 118 

with evidence showing that it scales with the magnitude of error during sensorimotor adaptation 119 

(Anguera et al., 2009) and correlates with the size of hand-path deviations following externally 120 

perturbation to target reaches (Torrecillos et al., 2014). These findings are more in line with a 121 

growing body of work suggesting that the FRN indexes a general salience prediction error (Oliveira 122 

et al., 2007; Torrecillos et al., 2014). A computational model attempting to unify a broad range of 123 

findings on medial prefrontal cortex function (Alexander & Brown, 2011) proposes that this region 124 

is responsible for tracking discrepancies between expectations and outcomes, which are reflected 125 

in the FRN. Viewed in this way, the processing of execution and selection error may share a 126 

common neural network that signals a mismatch between the outcome and expectations in the 127 

service of behavioural adaptation (Cavanagh et al., 2012; Torrecillos et al., 2014).  128 

To test whether outcome errors of action and selection can be dissociated in the medial 129 

frontal cortex, we recorded feedback-locked ERPs while participants engaged in a modified bandit 130 



 

task where choices were selected via rapid arm movements. Unrewarded trials were either framed 131 

as errors in choosing the wrong bandit (a selection error) or the result of an inaccurate movement 132 

(an execution error). Following a large body of evidence reporting that the FRN is sensitive to RPE 133 

(Sambrook & Goslin, 2015), we expected that unrewarded outcomes attributed to selection error 134 

would elicit an FRN response. If this medial frontal monitoring system also tracks general action-135 

outcome discrepancies, then we should expect a deflection following errors of action execution too. 136 

However, should the recently proposed movement-dependent account of RL hold, the FRN 137 

response should be attenuated when errors can be ascribed to the motor system. We would 138 

expect P300 amplitude, a putative index of internal forward model revision (Krigolson & Holroyd, 139 

2007a), to be largest for execution errors.  140 

In addition to these predictions, we also examined the relationship between the FRN and 141 

behavioral modification. Specifically, we predicted that participants who exhibited a larger change 142 

in the FRN would be more likely to switch between the different options. Notably, we expected this 143 

brain-behavior relationship would hold for selection errors, but not for execution errors. Reasoning 144 

that action errors may instead be encoding information about the size of the execution error, with 145 

this feedback used to correct discrepancies between the planned and actual outcome, we explored 146 

the possibility that these signals may be correlated with the magnitude of error and subsequent 147 

change in motor response. 148 



 

Materials and Methods 149 

Participants 150 

Using an effect size estimate derived from our previous work on the FRN (η2p = .167; Mushtaq et 151 

al., 2016), with a desired statistical power of 0.8 and alpha criterion set at 0.05, we set a minimum 152 

sample size of 28 participants. In total we tested thirty-two right-handed participants (EHI > 40; 153 

Oldfield, 1971). Two participants were excluded due to excessive EEG artifacts, and a technical 154 

error during data collection rendered one participant’s dataset unusable. All analyses were 155 

performed on the resulting sample of 29 participants (19 females, 10 males, µ age = 26.75 years, 156 

±9.51 years). 157 

Participants were told they would be remunerated based on their performance. However, 158 

due to the pseudo-veridical nature of outcomes (see Procedure), all received a fixed payment of 159 

£10.00. Participants signed an informed consent document, were fully debriefed, and the 160 

experiment was approved by the Ethics Committee in the School of Psychology at the University of 161 

Leeds, United Kingdom.162 



 

Design and Procedure 163 

We employed a novel three-armed bandit task (Figure 1) where the absence of reward on a given 164 

trial could be the product of a poorly executed action or an error in action selection (McDougle et 165 

al., 2019). Following EEG set-up, the participant was seated in a chair approximately 50 cm away 166 

from a 24” ASUS monitor (53.2 X 30 cm [2560 x 1600 pixels], 100 Hz refresh rate). The participant 167 

was instructed to make a choice by making a reaching movement, sliding their right arm across a 168 

graphics tablet (49.3 X 32.7 cm, Intuos 4XL; Wacom, Vancouver, WA) while holding a digitizing 169 

pen encased inside a customized air hockey paddle. The tablet was placed below the monitor on 170 

the table and between an opaque platform that occluded the hand.   171 

The experimental session comprised 400 trials, with opportunity for self-paced breaks. To 172 

initiate each trial, the participant made a reaching movement, sliding their right arm to position a 173 

white cursor (diameter of 0.5 cm) inside the home position, indicated by a solid white circle at the 174 

center of the screen. After maintaining this position for 400 ms, the start circle turned green and 175 

three bandits appeared on the screen (positioned at a radial distance 8 cm from the center at 90°, 176 

210° and 330° degrees relative to the origin). The bandits were colored light blue, dark blue, or 177 

purple and the color-position mappings were maintained for the entire experiment (randomized 178 

across participants). 179 

Following the appearance of the 3 bandits, participants had 2 seconds to initiate a reaching 180 

movement. If the reaction time (RT) was greater than 2 s, the trial was aborted and the message 181 

‘‘Too Slow’’ appeared. After movement onset, participants had 1 s (Movement Time; MT) to 182 

complete a rapid straight-line “shooting” movement through one of the bandits. Upon movement 183 

initiation, the cursor indicating hand position disappeared and did not reappear until feedback 184 

presentation. If the movement was not completed within the required 1 s window, the trial was 185 

terminated and the error message “Too Slow” was displayed.  If the movement was completed 186 

within the 1 s window, there were three possible outcomes: If the movement was accurate (hand 187 

passed through the bandit) the cursor was displayed within the spatial extent of the bandit. On 188 

these trials, there were two possible outcomes: (1) The bandit could turn green, indicating that a 189 

reward would be earned for the trial (reward outcome), or (2) the bandit would turn red, indicating 190 

that, while the movement was accurate, no reward would be given on that trial (selection error).  If 191 

the movement missed the bandit, a cursor would appear indicating the position when the hand was 192 

at the radial distance of the bandits, and thus indicate if the execution error was clockwise or 193 

counterclockwise relative to the target. The bandit would turn yellow, further signaling an execution 194 

error. Participants were informed of the three possible outcomes prior to the start of the experiment 195 

and presented with demonstrations of the three outcomes. 196 

Following McDougle et al. (McDougle et al., 2019), each bandit had its own fixed 197 

probabilities for the three trial outcomes. All bandits had a 40% reward outcome, and thus, the 198 

expected value for the three bandits were identical. However, the frequency of selection error and 199 



 

execution error trials varied.  For one bandit, 50% of the trials resulted in execution errors and 10% 200 

resulted in selection errors. We refer to this as the “High Execution/Low Selection Error” bandit. A 201 

second bandit resulted in execution errors on 10% of trials and 50% resulted in selection errors (a 202 

“Low Execution/High Selection Error” bandit). A third, “Neutral” bandit produced an equal number 203 

(30%) of execution and selection errors. 204 

To achieve these probabilities, outcomes were surreptitiously perturbed so that they aligned 205 

with predetermined feedback (a randomized sequence for each run) for the selected bandit. On 206 

trials in which the actual movement produced the desired outcome in terms of hitting or missing the 207 

bandit, the cursor was shown at its veridical position. However, if the participant’s movement 208 

missed the bandit, but the trial outcome was set as either a reward or selection error (i.e., 209 

outcomes requiring successful motor execution), the feedback showed the cursor landing inside 210 

the bandit, albeit near the side consistent with the actual hand position. Conversely, where a trial 211 

was set to be an execution error, but the stylus successfully intersected the bandit, the cursor was 212 

shifted just outside the bandit, with the side again consistent with the actual hand position (e.g., if 213 

the hit was slightly clockwise to the center of the bandit, the cursor appeared outside the spatial 214 

boundary of the bandit on the clockwise side). On trials in which feedback needed to be perturbed 215 

(i.e., deliver a false hit or false miss) to control the frequency of outcomes, the cursor position was 216 

shifted by randomly sampling from a normal distribution (± 6.24°, equivalent to .5 cm with an 8 cm 217 

reach) until a new cursor position was chosen that landed inside the bandit (for false hits) or 218 

outside the bandit (false misses).  219 

We included three further constraints to minimize the likelihood that participants would 220 

recognize that the outcomes were not always directly reflective of their movements: (i) No online 221 

movement feedback was available; (ii) end-point feedback was presented 1 s after the stylus had 222 

passed the bandit location (this also helped reduce the impact of motor artefacts contaminating the 223 

ERP); and (iii) if the actual reaching angle was greater than 10° from the closest bandit on any trial 224 

(irrespective of the set outcome), no outcome was shown, the experiment software instructed 225 

participants to “Please Reach Closer to the Bandit.” Trials in which the movement was not 226 

completed within 1 s of the onset of the bandits or in which the reach angle was greater than 10° 227 

from the closest bandit were repeated, ensuring a full data set of 400 trials for each participant.  228 

To increase motivation, participants were told that at the end of the experiment the software 229 

would randomly select five trials, and based on the outcomes from these trials, a cash bonus 230 

between £1-5 would be provided. As such, the goal was to accumulate as many reward trials as 231 

possible. In actuality, all participants received a fixed payment of £10 for taking part in the 232 

experiment.   233 

Finally, given that it is possible that the execution error feedback could be interpreted in 234 

different ways (for example, participants may have assumed these errors were the result of faulty 235 

technical equipment), participants were invited to complete a brief optional post-experiment survey 236 

where they were asked to rate their agreement with the statement "I felt that that the miss (yellow) 237 



 

outcomes were the result of poor arm reaches" on a 7-point Likert scale, where a score of 7 238 

indicated strongly agree and 1 indicated strongly disagree. From 21 respondents, a mean score of 239 

5.57 (SD = 1.6), which was statistically significantly different to the mid-point (neither agree nor 240 

disagree) on the scale (t(20) = 4.41, p < .001), indicated general agreement with the intended 241 

experimental manipulation. 242 

The experimental task was programmed using the Psychophysics Toolbox (Brainard, 1997; 243 

Kleiner et al., 2007) and lasted approximately 35 minutes, with an additional 25-30 minutes of 244 

technical set up for EEG data acquisition. 245 

246 
Figure 1- Experimental Task: (A) Participants moved a stylus on a tablet to make rapid shooting 247 

movements (i) through one of 3 bandits (large circles) at 90°, 210° and 330° degrees relative to the 248 

home position (small circle). Following a 1000 ms delay (not pictured), pseudo-veridical feedback (white 249 

cursor) was provided indicating if the outcome was a reward (ii), a selection error (iii) or an execution 250 

error (iv). (B) The hand was occluded throughout, and stimuli were presented on a monitor positioned in 251 

front of the participants at approximately eye level.  252 

 253 

Electrophysiological Data Recording and Preprocessing 254 

EEG data were recorded continuously from 64 scalp locations at a sampling rate of 1024 Hz using 255 

a BioSemi Active-Two amplifier (BioSemi, Amsterdam). Four electrooculograms (EOG) – above 256 

and below the left eye, and at the outer canthi of each eye – were recorded to monitor eye 257 

movements. Two additional electrodes were placed on the left and right mastoids. The CMS and 258 

DRL active electrodes placed close to the Cz electrode of the international 10-20 system served as 259 

reference and ground electrodes, respectively. EEG pre-processing was performed using the 260 

EEGLAB (Delorme & Makeig, 2004) and Fieldtrip (Oostenveld et al., 2011) toolboxes, combined 261 

with in-house procedures running using Matlab (The MathWorks, Inc., Natick, Massachusetts). 262 

All data were first re-referenced offline to the average of all channels, and downsampled 263 

from 1024 Hz to 256 Hz. The continuous time series data were filtered using a high-pass filter with 264 

a cut-off at 0.1 Hz (Kaiser windowed-sinc FIR filter, beta = 5.653, transition bandwidth = .2 Hz, 265 

order = 4638) and a low-pass filter with a cut-off at 30 Hz (Kaiser windowed-sinc FIR, beta = 5.653, 266 

transition bandwidth = 10 Hz, order = 126). A second filtering of the data was performed for 267 

subsequent independent component analysis using a high-pass filter cut-off at 1 Hz (Kaiser 268 

windowed-sinc FIR filter, beta = 5.653, transition bandwidth = 2 Hz, order = 4666). ICA typically 269 

attains better decompositions on data with a 1 Hz high-pass filter (Winkler et al., 2015). The data 270 



 

were segmented into epochs beginning 1s before and lasting 1s after the onset of feedback.  271 

Infomax ICA, as implemented in the EEGLAB toolbox, was run on the 1 Hz high-pass-filter 272 

epoched data, and the resulting component weights were copied to the .1 Hz high-pass-filter 273 

epoched data. All subsequent steps were conducted on the .1 Hz high-pass-filtered data. 274 

Potentially artefactual components were selected automatically using SASICA (Chaumon et al., 275 

2015), based on low autocorrelation, high channel specificity, and high correlation with the vertical 276 

and horizontal eye channels. The selections were visually inspected for verification purposes and 277 

adjusted when necessary. After removal of artefactual components, the Fully Automated Statistical 278 

Thresholding for EEG Artefact Rejection plugin for EEGLAB (Nolan et al., 2010) was used for 279 

general artefact rejection and interpolation of globally and locally artefact contaminated channels, 280 

supplemented by visual inspection for further periods of non-standard data, such as voltage jumps, 281 

blinks, and muscle noise.  282 

Following artifact-removal, 93.5% of total trials were available for analysis. There was no 283 

difference in the percentage of trials removed across conditions (F (2, 56) = 2.09, p = .133). 284 

However, as a product of the experimental design, there was a difference in the total number of 285 

trials between the conditions (F (2, 56) = 85.2, p < .001), with more reward trials (µ = 150, ±9) 286 

available for analysis relative to execution error (µ = 114, ±12; t(28) = 12.21, p < .001) and 287 

selection error trials (µ = 110, ±11; t(28) = 13.89, p < .001). There was no difference in trial counts 288 

for the two types of errors (t(28) = .82, p = .693). To increase the reliability of our conclusions by 289 

addressing potential problems of distribution abnormalities and outliers, averaged waveforms were 290 

constructed for each individual by taking the bootstrapped (n = 100,000) means from the EEG time 291 

series epochs. The waveforms were baseline corrected using a 200 ms time window pre-feedback 292 

onset.  293 

 294 

ERP Quantification 295 

Given that we had specific hypotheses, we focused our analysis on two locations.  First, meta-296 

analyses (Sambrook & Goslin, 2015; Walsh & Anderson, 2012) have shown the feedback-locked 297 

FRN effect to be maximal over the frontocentral region of the scalp. As such, we averaged activity 298 

across three frontocentral electrodes FC1, FCz, and FC2. Second, given that the P300 299 

(specifically, the P3b sub-component) is commonly present in feedback-locked ERPs and typically 300 

maximal over parietal electrodes (Polich, 2007), we averaged over electrodes P1, Pz, and P2. 301 

Averaging across electrodes improves the signal-to-noise ratio of the ERP measures (Oken & 302 

Chiappa, 1986).  303 

To test whether our results might be biased by the specific configurations of electrodes 304 

included in the averaged cluster and use of bootstrapped waveforms, we calculated the similarity 305 

between four different approaches to calculating the ERPs: (i) grand averaged activity from the raw 306 

waveforms in the clustered electrodes, (ii) grand averaged activity from the bootstrapped 307 

waveforms in the clustered electrodes, (iii) grand averaged activity from raw waveforms from a 308 



 

single electrode (FCz for frontocentral analysis and Pz for parietal); and (iv) grand averaged 309 

activity from bootstrapped means extracted from a single electrode. An intraclass correlation 310 

coefficient indicated a high level of agreement between all four approaches (Frontocentral ICC = 311 

.995, 95% CI 0.989- 0.997; Parietal ICC: = .996, 95% CI 0.994- 0.997). Clustered bootstrapped 312 

averaged ERP waveforms are reported here.  313 

With growing evidence that most of the variation in the FRN is driven by a reward positivity, 314 

we decided to make use of difference waveforms for our analysis to detect differences irrespective 315 

of whether they were driven by positive or negative deflections in the ERP (Krigolson, 2018). A 316 

difference waveform procedure has the added benefit of more easily isolating the FRN from 317 

components that precede (P2) and follow (a large P3 component comprising a frontal P3a and 318 

parietal P3b), eliminating activity in common between two conditions (Kappenman & Luck, 2017). 319 

The majority of research on the FRN has typically computed “reward prediction error” (RPE) 320 

difference waveforms, derived by subtracting error/loss trials from reward trials (Sambrook & 321 

Goslin, 2015).  Here, we created a “Selection Error” difference waveform by subtracting the 322 

average activity associated with Selection Error trials from the average activity related to all 323 

Reward trials, and an “Execution Error” difference waveform by subtracting the average activity 324 

associated with Execution Error trials from the average activity associated with Reward trials. 325 

Finally, we directly contrasted Execution and Selection Error ERPs by subtracting the Execution 326 

Error waveform from the Selection Error waveform to create an “Error Sensitivity” difference 327 

waveform. For statistical analysis, the parent waveform outcome trials were subjected to a one-328 

way ANOVA and where main effects emerged, one-sample t tests were conducted to identify 329 

where these difference waveforms were significantly different to zero.  330 

To reduce the number of false positives (Luck & Gaspelin, 2017), the ERP data were 331 

downsampled to 250 Hz and only activity between 150 and 500 ms (spanning the P2, FRN and P3 332 

ERPs) was analysed. For each analysis, p values were corrected by applying a false discovery 333 

rate (FDR) control algorithm (Benjamini & Hochberg, 1995; Lage-Castellanos et al., 2010). The 334 

Benjamin-Hochberg correction approach was adopted as previous studies have shown it to reliably 335 

control the FDR when data are correlated, even when the number of comparisons are relatively 336 

small (Hemmelmann et al., 2005). This method is also ideally suited for the exploration of focally 337 

distributed effects (Groppe et al., 2011). 338 

To aid the interpretation of the difference waveforms, we first visualised the grand averaged 339 

ERPs related to each outcome. For every statistically significant contrast, we present the mean 340 

amplitude from the cluster for each parent waveform. Differences between relevant conditions at 341 

each electrode site are also visualized through topographical maps to support interpretation of 342 

underlying components: Predicated on previous research (Walsh & Anderson, 2012), we 343 

anticipated that the FRN should show a frontocentral topography and, following an early 344 

frontocentral peak, there would be a subsequent posterior maximum corresponding to the P3b 345 

sub-component of the P300 (Holroyd & Krigolson, 2007). 346 



 

Brain-Behavior Relationships  347 

A key question in this study is whether electrophysiological signatures of different types of 348 

outcomes correlate with the participants’ choice behavior (see San Martín, 2012 for a review). 349 

Based on a reinforcement learning account of the FRN (Holroyd and Coles, 2002), we would 350 

expect the amplitude of the FRN to scale with the degree of behavioral adjustment: large 351 

differences in the FRN should be more likely to lead to changes in choice behavior compared to 352 

small differences in the FRN. Here we can ask this question with respect to both selection and 353 

execution errors. 354 

To examine brain-behavior correlations, we calculated a behavioral adjustment score, or 355 

“Switch Bias” rate, for each participant (operationalized as the ratio of the percentage of trials that 356 

the participant switched following an error to the percentage of switching following a reward). This 357 

served as an intuitive index of how much participants favored one outcome over another. Mean 358 

amplitudes from the statistically significant clusters of EEG activity were then correlated with these 359 

behavioral adjustment scores.  360 

Rather than signaling a need to switch from one target to another, feedback from Execution 361 

Errors might be more readily used to modify a motor plan for future action. To quantify the 362 

magnitude of cursor error, we calculated the angular deviation of the cursor relative to the center of 363 

the selected target. Hand error was calculated as the position of the hand relative to the center of 364 

the selected target and was different to cursor error only on trials with perturbed outcomes. The 365 

degree of motor correction was examined on a subset of data where participants selected the 366 

same target on consecutive trials and quantified as the degree of angular change in hand position 367 

relative to cursor position on the previous outcome. Mean cursor error and motor correction scores 368 

were correlated with mean amplitudes from the previously identified statistically significant clusters 369 

of EEG activity.  370 

   371 



 

Statistical Analysis 372 

For reporting purposes, time points are rounded to the nearest millisecond, amplitude (in 373 

microvolts; μV) to two decimal places and p values to three decimal places. The range for the 374 

scalp maps was time-interval specific and determined by the 1st and 99th percentile values across 375 

all electrodes. Spearman’s rho (rs) was used to examine correlations between amplitude and 376 

behavior. For correlations between behavior and neural activity, peak and mean amplitudes were 377 

extracted. Both are reported and the strongest correlations are visualized. Where appropriate, 378 

pairs of correlations were directly compared with Hittner, May, and Silver's (2003) modification of 379 

Dunn and Clark's (1969) approach, using a back-transformed average Fisher's Z procedure as 380 

implemented in the R package Cocor v. 1.1‐3 (Diedenhofen & Musch, 2015). The statistical 381 

significance threshold was set at p < .05. Generalized eta squared (ηG
2) is used as a measure of 382 

effect size for repeated measures ANOVAs. This measure was selected over eta squared and 383 

partial eta squared because it provides comparability across between- and within-subjects designs 384 

(Bakeman, 2005; Olejnik & Algina, 2003); we considered η2
g

 = 0.02 to be small, η2
g

 = 0.13 medium 385 

and η2
g = 0.26 to be a large effect size. All statistical analyses were performed using R (R Core 386 

Team, 2015).387 



 

Results 388 

Behavioral Responses 389 

A one-way ANOVA revealed a significant difference in bandit preference (F [2, 56] = 8.27, p < .001, 390 

η2
g = .23), with participants exhibiting bias towards the High Execution/Low Selection Error bandit. 391 

Overall, this bandit was chosen on average on 39% (SE = 2%) of the trials, which was significantly 392 

greater than the Low Execution/High Selection error bandit (M = 29%; SE = 1%; t(28) =  4.03, p = 393 

.001) and Neutral bandit (M = 32%; SE = 2%; t(28) = 2.58, p = .046), with no difference for the 394 

latter two (t(28) = 1.07, p = .877). Consistent with previous work, when expected value is equal, the 395 

data show that participants prefer choices in which unrewarded trials are attributed to errors in 396 

movement execution rather than errors in action selection (Parvin et al., 2018; Green et al., 2010; 397 

Wu et al., 2009). 398 

We then examined the effect of the different outcomes on the subsequent choice, asking 399 

how they influenced switching behavior (Figure 2A). Participants exhibited high switching rates 400 

overall (54%), but the rate differed according to outcome type (F [2, 56] = 10.23, p < .001, η2
g = 401 

.11). Switching was highest following selection errors (M = 66%; SE = 5%) and markedly lower 402 

following execution errors (M = 42%, SE = 5%; t(28) = 5.22, p < .001). This difference is consistent 403 

with the hypothesis that motor errors attenuate value updating, perhaps because participants 404 

believe they have more control to correct for execution errors (Parvin et al., 2018).  405 

Interestingly, switch rates following rewarded trials fell between the other two outcome 406 

types (M = 55%, SE = 6%). There was no difference between switch rates following reward relative 407 

to selection errors (t(28) = 1.85, p = .227) or execution errors, although the latter approached 408 

significance (t(28) = 2.46, p = .062, following Bonferroni correction). The fact that many participants 409 

(18 of 29) were so prone to switching after a rewarded outcome and even more so (numerically) 410 

than after an execution error was unexpected. The high switching rates would suggest a bias 411 

towards exploratory behavior in this task- which might have been promoted by the relatively low 412 

rewards and/or the highly probabilistic nature of the outcomes (Cohen et al., 2007; Daw et al., 413 

2006). Notably, there were very large individual differences in the treatment of the outcomes: 414 

Switch rates ranged from 3% to 98% following rewards, 7%-99% following selection errors and 415 

4%-81% following execution errors. 416 

 417 

ERP Responses 418 

Our primary aim was to examine whether selection and execution errors could be reliably 419 

distinguished in outcome-locked ERPs. To start, we ran an exploratory 3 (Bandit Type: High 420 

Execution/Low Selection Error vs. Low Execution/High Selection Error vs. Neutral) X 3 (Outcome: 421 

Reward vs. Selection Error vs. Execution Error) ANOVA at each time point for the frontocentral and 422 

parietal clusters. The main effect of Bandit Type was not significant (p’s ≥ .702) and there was no 423 

Bandit Type X Outcome interaction (p’s ≥ .671).  Thus, we collapsed across the three bandits in 424 



 

our primary analyses of the three outcomes, allowing us to avoid increasing the family-wise error 425 

rate.  426 

The grand averaged ERPs related to each outcome are shown in Figure 2B and 2C. F 427 

tests revealed two significant clusters in the frontocentral region between 156 -180 ms and 210-428 

336 ms, and three clusters in the parietal region (176-196 ms; 218-239 ms; and 355-438 ms). 429 

Descriptively, the first cluster in the frontocentral region was driven by a delay in the onset of an 430 

initial P200-like signal following an execution error, and the second cluster incorporated FRN 431 

deflections following selection and execution errors, along with subsequent positive deflections, 432 

likely reflecting the P3a subcomponent of the P300 signal (Polich, 2007). The early two clusters in 433 

the parietal region reflect shifts in the latency and amplitude of the execution error ERP, with the 434 

third cluster driven by the attenuation of the P3b subcomponent of the P300 following selection 435 

errors.  436 

 437 

Figure 2- Behavioral Responses and ERP Grand Averages. (A) Switching rates following the three 438 

trial outcomes. Participants were more likely to repeat a choice (indexed by lower switch rates) 439 

following execution errors relative to selection error feedback. Error bars represent ±1 SEM. Feedback-440 

locked ERPs for each outcome type, recorded from (B) frontocentral and (C) parietal electrode clusters. 441 

Zero on the abscissa indicates feedback onset. The green shaded regions indicate the significant 442 

clusters identified in the mass univariate analysis. Pairwise differences in these clusters are visualized 443 

in Figures 3-5 through the comparison of difference waveforms.  444 

 445 

Figure 3A depicts the Selection Error difference waveform, derived by subtracting the 446 

Selection Error waveform from Reward ERPs for the frontocentral cluster (shown in Figure 2B) 447 

and shows a statistically significant cluster of time points between 242-336 ms (one-sample t-tests 448 

of the difference wave against zero). An examination of the scalp topography of the first (242-289 449 

ms) and second half of this window (289- 336 ms) indicated a clear frontocentral maximum in the 450 

early phase, followed by a shift towards centroparietal maximum in the later part of the window 451 

(Figure 3B).  452 

In line with the reinforcement learning account of the FRN, there was a relationship 453 

between neural activity and behavior. Specifically, amplitude (mean: rs = -.483, p = .009; peak : rs = 454 

-0.36, p = .052; Figure 3C) from the early part of the cluster (capturing the FRN) negatively 455 



 

correlated with behavioral adjustment: The larger the difference waveform (i.e., greater negative 456 

deflection for selection errors relative to rewards), the greater the bias for the participant to switch 457 

to a different bandit following a selection error outcome relative to a reward outcome. We note that 458 

one participant had a switch rate score of -0.87, which was 2.97 standard deviations away from the 459 

mean. Re-running the analysis without this participant showed a weaker relationship, but the 460 

pattern remained statistically significant (mean: rs = -.39, p = .042; peak: rs = -.34, p = .074). 461 

The topographical map (Figure 3C inset) demonstrates that this effect was localized to the 462 

frontocentral region. We found no evidence for such a relationship in the later, P3a, part of the time 463 

window (rs = -.08, p = .672; Figure 3D). The mean FRN and P3a correlations were marginally 464 

different from one another (z = 1.96, p = .05), providing support that the FRN, but not the P3a, is a 465 

reliable correlate of behavior change.  466 



 

 467 

Figure 3- Selection Error in the Frontocentral Cluster: (A) The Selection Error waveform, defined as 468 

the difference in the ERPs on trials resulting in selection errors and rewards. The green shaded regions 469 

indicate significant clusters for this contrast and the grey shaded regions indicate where the clusters 470 

identified in the original time-series analysis did not reach statistical significance for this difference 471 

waveform. Zero on the abscissa indicates feedback onset. (B) Mean amplitudes for the early and late 472 

phases of the statistically significant clusters, with insets showing scalp maps of the distribution of 473 

differences across sites for each time interval. Selection Error difference waveform amplitude (shown 474 

on the ordinate, where negative values indicate more negative amplitude for selection errors relative to 475 

reward) correlated with an increase in the Switch Bias score (shown on the abscissa, where positive 476 

values indicate more switching following selection errors relative to reward) at a time interval 477 

corresponding to the FRN (C), but not the P3 (D). The insets show scalp maps of the distribution of 478 

amplitude differences across sites, revealing a frontocentral maxima for the FRN correlation. 479 

 480 

Execution Errors 481 

To examine the electrophysiological correlates associated with unrewarded outcomes attributed to 482 

motor execution errors, we performed similar analyses, but now focus on the comparison between 483 

execution error trials and reward trials (the Execution Error difference waveform- the result of 484 

subtracting the Execution Error ERP from Reward ERPs in the frontocentral cluster shown in 485 



 

Figure 2B). This comparison revealed two statistically significant clusters- one ranging from 156-486 

180 ms and a second between 207-325 ms (Figure 4A).  487 

The first cluster showed an amplitude reduction in response to Execution Errors relative to 488 

reward trials. Similar to the Selection Error waveform result, we expected the second cluster would 489 

be contaminated by a P3a signal. Thus, we followed the same protocol, splitting this cluster into 490 

two equal intervals – (i) an early phase marked by the time interval 207-266 ms; and (ii) a later 491 

phase for activity between 266-325 ms. There was a clear frontocentral distribution for the early 492 

phase, and in the later time window, a shift towards centroparietal electrodes (Figure 4B).  493 

We next examined the relationship between these three epochs (156-180 ms; 207-266 ms; 494 

266-325 ms) and behavioral adjustment (Figure 4C-E). The peak amplitude difference in the 495 

earliest interval (156-180 ms) correlated positively (rs = 0.37, p = .05) with switching rates following 496 

an execution error relative to reward. Following execution errors, smaller peaks in the 156-180 ms 497 

time window were associated with a lower tendency to switch. Note that this pattern is opposite to 498 

that observed between the amplitude of the FRN and behavioral adjustments following selection 499 

errors. The mean amplitude measure had a similar pattern of results, but was not significant (rs = 500 

0.35, p = .065). An examination of topography revealed this correlation to be maximal in the 501 

frontocentral cluster, suggesting that smaller amplitudes in response to execution errors early in 502 

the feedback processing stream are associated with a higher tolerance to this outcome.  503 

In contrast to the results for Selection Errors, the FRN captured in the 207-266 ms time 504 

window did not correlate with behavioral adjustment (rs = .07, p = .722). We tested, and confirmed, 505 

that this correlation was reliably different to the correlation observed for Selection Errors in the 506 

FRN time interval (z = 2.40, p = .016). There was no correlation between the Execution Error 507 

waveform in the P3a time window (266-325 ms) and behavioral adjustment (rs =-.22, p = .258).  508 



 

 509 

Figure 4- Execution Error in the Frontocentral Cluster: (A) The Execution Error difference 510 

waveform, defined as the difference amplitude for execution error and reward ERPs. The green shaded 511 

regions indicate clusters showing statistically significant differences. Zero on the abscissa indicates 512 

feedback onset. (B) Mean amplitudes for the early and late phases of the significant clusters. (C) The 513 

Execution Error difference waveform amplitude (shown on the ordinate, where positive values indicate 514 

larger amplitude for execution errors relative to reward) positively correlated with an increase in the 515 

Switch Bias score (shown on the abscissa, where positive values indicate more switching following 516 

execution errors relative to reward) in this early time window, but there were no correlations in the later 517 

time windows (D & E).  518 

 519 

We conducted the same analysis for the Execution Error waveform in the parietal cluster of 520 

electrodes. Execution errors elicited smaller amplitude responses relative to rewards in an early 521 

time window (176-196 ms) but elicited larger amplitude responses at 218-239 ms post feedback. In 522 

the later time window, there was a positive correlation between amplitude and behavior (rs = .47, p 523 

= .01) in the posterior region, suggesting a shift from frontocentral to parietal regions in the 524 

processes driving behavioral adjustment (Dhar & Pourtois, 2011; Overbeek et al., 2005). 525 

Interestingly, and unexpectedly, the amplitude of the P3b subcomponent of the P300 signal—526 

proposed to reflect the revision of internal forward models in posterior parietal cortex (Krigolson & 527 

Holroyd, 2007a) showed no difference in the processing execution errors and rewards (see Figure 528 

2C) and there was no relationship with behavioral adjustment (rs = -0.01, p = .946). 529 



 

Error Sensitivity Difference Waveform  530 

As described in the previous two sections, when using a common baseline (rewarded trials), we 531 

observed differences in both the ERP results and correlational analysis between unrewarded trials 532 

that were attributed to failures in movement execution or action selection. We performed a direct 533 

comparison between these two types of unrewarded outcomes by analyzing an Error Sensitivity 534 

difference waveform, subtracting the ERP for selection errors from the ERP for execution errors 535 

(see Figure 2B for the parent waveforms).  536 

In the frontocentral cluster there was a significant difference in the range of the FRN (222-537 

250 ms; Figure 5 A, B). We had anticipated that the amplitude of the FRN would be attenuated 538 

following execution errors, assuming a lower response would be reflective of reduced value 539 

updating (McDougle et al., 2019).  However, the observed effect was in the opposite direction: 540 

Execution errors elicited a larger FRN deflection, relative to selection errors.  541 

We also examined whether the magnitude of this difference correlated with the “Switch 542 

Bias” rate.  For this measure, the proportion of switches following execution errors was subtracted 543 

from the number of switches made following selection errors. Note that these values range from 0 544 

to -0.91, due to the fact no participants produced more switches following execution errors relative 545 

to selection errors. Although the parent waveforms for this correlation are included in the previous 546 

analyses, the EEG activity in this analysis is specific to the range 220-250 ms, the window in which 547 

the error outcome ERPs differed significantly. 548 

There was no relationship between mean amplitude in this window and Switch Bias (rs = 549 

.23, p = .23). However, the peak negative amplitude revealed a positive correlation with Switch 550 

Bias (rs = .41, p = .026; Figure 5C). Participants who had relatively similar switching rates to the 551 

two unrewarded outcomes had smaller FRN differences, while individuals with a large negative 552 

bias (i.e., less switching after execution errors) also exhibited larger FRN amplitudes for motor 553 

execution errors relative to selection errors. This correlation was maximal in frontocentral sites 554 

(Figure 5C inset).  555 



 

 556 

Figure 5- Error Processing Differences in the Frontocentral Cluster: (A) The Error Sensitivity 557 

difference waveform, calculated by subtracting ERPs for selection error from execution error ERPs. The 558 

green shaded region indicates the single cluster in which there was a significant difference for this 559 

contrast and the grey shaded regions indicate where the clusters identified in the original time-series 560 

analysis did not reach statistical significance in this comparison. Zero on the abscissa indicates 561 

feedback onset. (B) Mean amplitudes for the early and late clusters indicated by shaded regions in 562 

panel A. Inset scalp maps show topographical distribution for each cluster. (C) Peak amplitude 563 

difference in the FRN (shown on the ordinate, where negative values indicate a larger negative 564 

deflection for execution errors relative to selection error) correlated with a larger Switch Bias score 565 

(shown on the abscissa, where larger negative values indicate more switching following selection error 566 

relative to execution error). Note that no participants showed higher rates of switching following 567 

execution error relative to selection error. This correlation shows that as the similarity in the behavioral 568 

response to execution and selection error increased, amplitude differences in the processing of 569 

execution and selection error decreased.  570 

 571 

Examining the parietal cluster revealed no differences in the earliest interval (176-196 ms).  572 

However, differences emerged in the 218-239 ms and 359-445 ms epochs, with larger positive 573 

amplitudes for execution errors relative to selection errors. The mean amplitude across each of 574 

these clusters (218-239 ms and 359-445 ms) was not correlated with the behavioral adjustment 575 

scores (rs ≤ .179, p’s ≥ .352). 576 



 

Kinematic Analysis 577 

To gain a deeper understanding of the relationship between brain activity and task performance, 578 

we examined correlations between task kinematics and the statistically significant periods identified 579 

in the time series analysis in the frontocentral and parietal difference waveforms. We reasoned 580 

that, in contrast to Selection Errors, where there was a relationship between FRN amplitude and 581 

choice selection, the Execution Error FRN may instead be encoding information about cursor 582 

position and subsequent movement correction.  583 

In the first analysis, we examined whether there was a relationship between cursor error 584 

(the presented position of the cursor shown to participants at the end of the movement) magnitude 585 

and ERP activity. There were no reliable correlations between the mean activity of the statistically 586 

significant clusters in the difference waveforms and corresponding differences in cursor error 587 

magnitude (Execution Error: rs ≤ 0.228, p’s ≥ 0.233; Selection Error: r ≤ 0.176, p’s ≥ .359; Error 588 

Sensitivity: rs ≤ 0.152, p’s ≥ .429).  589 

In the second analysis, we asked whether ERP amplitude on the current trial would 590 

correlate with the degree of motor correction on subsequent trials. Here, we restricted analysis to 591 

the subset of trials in which participants chose the same target consecutively. The amount of motor 592 

correction in response to feedback (computed as the mean absolute change in end-point veridical 593 

hand position relative to the cursor position on the previous trial), varied as a function of Feedback 594 

(F (2, 56) = 75.37, p <.001, η2
g = .66). As both outcomes indicated a successful movement, we 595 

expected, and found, no difference (t(28) = 0.47, p > .999) in the subsequent degree of correction 596 

for Selection Error (M = 3.73, SE = 0.15) and Reward (M = 3.64, SE = 0.17) trials. In contrast, 597 

Execution Error, signaling a need to change one’s motor response to hit the target (M = 6.53, SE 598 

= 0.22) had higher rates of correction relative to both Selection Error (t(28) = 8.95, p <.001) and 599 

Reward (t(28) = 8.95, p <.001) outcomes. Despite these behavioral differences, there were no 600 

correlations between mean activity of the statistically significant clusters in the difference 601 

waveforms and relative differences in the magnitude of subsequent motor corrections (Execution 602 

Error: rs ≤ -0.239, p’s ≥ 0.211; Selection Error: rs ≤ -0.328, p’s ≥ 0.083; Error Sensitivity: rs ≤.152; 603 

p’s ≥ 0.429). 604 

To ensure that we did not miss any potential sensitivity to task kinematics in other time 605 

ranges, we undertook an exploratory search of the full time series data by correlating cursor error 606 

and motor correction with mean amplitude from 150ms to 500ms.  607 



 

We found no correlations between ERP difference waveforms and Cursor Error in the 608 

frontocentral (p’s ≥ .45) or parietal sites (p’s ≥ .75) following correction. We also note, with a 609 

degree of caution given the corrected p values were not significant, that there was one statistically 610 

significant pattern prior to correction- a positive correlation between the Error Sensitivity difference 611 

waveform and Cursor Error (rs = .43, 406 ms). In correlating motor correction rates with ERP 612 

amplitude, we found no significant relationships in the frontocentral cluster (p’s ≥ .454). Here, we 613 

noted that the strongest relationship (rs = .456) was a positive one between motor correction and 614 

the Error Sensitivity difference waveform at 164 ms – a pattern that was sustained across 156- 174 615 

ms. As participants made larger degrees of correction following Execution Errors relative to 616 

Selection Errors, they also exhibited greater amplitude. In the parietal cluster, we found no reliable 617 

patterns of activity following (p’s ≥ .97) or prior to correction (p’s ≥ .1).  618 

Perturbation Awareness 619 

In a final set of explorations, we examined whether participants were sensitive to the feedback 620 

manipulation that had been applied to control the frequency of our three outcomes. In almost half 621 

the trials (M = 47.8%, SE = 0.01%) we delivered perturbed instead of veridical feedback (52.2%, 622 

SE= 0.01%). We had taken measures to minimize the likelihood of participants booming aware of 623 

these changes (e.g., no online movement feedback was provided, and end-point feedback was 624 

presented 1 s after the stylus had passed the bandit) and in a post-experiment survey, participants 625 

indicated that they believed execution error outcomes to be the result of poor reaches, suggesting 626 

no explicit awareness of the manipulation. Nevertheless, we did find differences in cursor error 627 

(Figure 6A), as revealed through a 3 (Outcome: Reward vs. Selection Error vs. Execution Error) X 628 

2 (Veracity: Veridical vs. Perturbed) interaction (F (2, 56) = 27.4, p < .001, η2
g = .25). In all cases, 629 

cursor error was largest in the Veridical trials, but the effect was greatest for Reward (Veridical M = 630 

1.68, SE = 0.02, Perturbed M = 0.98, SE = 0.01; t(28) = 26.83, p < .001) and Selection Error 631 

(Veridical M = 1.72, SE = 0.02, Perturbed M = 0.97, SE = 0.02; t(28) = 30.95, p < .001) 632 

outcomes, with differences of 0.7 and 0.75 respectively. For Execution Error, there was a visual 633 

difference of 0.27 (Veridical 5.99, SE = 0.07, Perturbed M = 5.72, SE = 0.04; t(28) = 3.5, p = 634 

.045).  635 

In examining hand error (position of the hand relative to the center of the target), we found 636 

a Veracity X Outcome interaction (F (2, 56) = 4770.99, p <.001, η2
g = .981; Figure 6B). Veridical 637 

Execution Error trials (M = 5.99, SE = 0.07) were not statistically significantly different to 638 

perturbed Selection Error (M = 5.90, SE = 0.07; t (28) = 1.08, p = .886) and perturbed Reward 639 

trials (M = 5.93, SE = 0.07; t (28) = 1.09, p = .881). Similarly, there was no difference in hand 640 

error for perturbed Execution Error trials (M = 1.75, SE = 0.02) compared to veridical Selection 641 

Error (M = 1.72, SE = 0.02; t (28) = 0.998, p = .915) and veridical Reward trials (M = 1.68, SE = 642 

0.02; t (28) = 2.41, p = .188). 643 



 

Participants did not alter their behavioral strategy in response to feedback perturbations 644 

(Veracity: F(1, 28) = 0.899, p =.351, η2
g = < .01).; Veracity X Outcome: F(2, 56) = 1.42, p = .251, 645 

η2
g < .01; Figure 6C). However, a suggestion that they might have been implicitly sensitive to 646 

these differences is indicated by the degree of motor correction following veridical and perturbed 647 

feedback (Figure 6D). One participant had no stay trials following perturbed feedback in this 648 

subset of data and was excluded from this analysis. In the remaining participants, we observed an 649 

Outcome X Veracity interaction (F (2, 54) = 4.49, p = .016, η2
g = .04). There were no differences in 650 

the degree of motor correction following Execution Error (Veridical M= 6.3, SE = 0.19, Perturbed 651 

M = 6.84, SE = 0.32; t(27) = 2.07,  p = .718), but greater corrections (Reward: Veridical M= 2.92, 652 

SE = 0.13, Perturbed M = 4.28, SE = 0.26; t(27) = 4.56, p <.001; Selection Error: Veridical M= 653 

3.02, SE = 0.20, Perturbed M = 4.62, SE = 0.17; t(27) = 6.30, p <.001) followed false hits trials. 654 

These positively surprising outcomes (real reaches had missed the target on these trials, hence 655 

the perturbation) may have prompted overcompensation as participants sought to calibrate their 656 

movements to task feedback. 657 

Given these differences, we explored the extent to which the ERP signal was sensitive to 658 

the veracity of the feedback. We re-ran the ERP time-series analysis, performing a 3 (Outcome: 659 

Reward vs. Selection Error vs. Execution Error) X 2 (Veracity: Veridical vs. Perturbed) at each time 660 

point for the frontocentral and parietal clusters. There were no statistically significant main effects 661 

of Veracity (F’s ≤ 6.99, p’s ≥ .397) and no Outcome X Veracity interactions (F’s ≤ 2.55, p’s ≥ .79) in 662 

the frontocentral cluster and similarly, no main effects (F’s ≤ 5.42, p’s ≥ .853) or Veracity X 663 

Outcome interactions (F’s ≤ 1.83, p’s ≥ .986) in the parietal cluster.  664 

We then explored whether there were any differences in the relationship between ERP 665 

activity and kinematic adjustment as a function of Feedback Veracity. As perturbed feedback 666 

elicited larger corrective movements than veridical, we speculated that an ERP signal sensitive to 667 

positive surprise may scale in response to this behavior for Selection and Execution error trials. To 668 

explore this idea, a difference wave subtracting perturbed ERP amplitude from veridical was 669 

computed. The amplitude of this “Perturbation Difference” waveform was correlated with (i) the 670 

mean difference in cursor error for veridical and perturbed feedback per outcome; and (ii) the mean 671 

difference in degree of correction following veridical relative to perturbed feedback per outcome.  672 



 

In analysing the relationship between the Perturbation Difference waveform and Cursor 673 

Error in the frontocentral cluster, we found no correlations that survived correction for multiple 674 

comparisons (p’s ≥ .616). However, in the parietal cluster, the Selection Error waveform strongly 675 

correlated with Perturbation Difference amplitude at 273 ms (rs = -0.62, p = .011; Figure 6E), 676 

indicating a sensitivity to discrepancies between actual and presented hand position. Specifically, 677 

this correlation shows that for participants with larger veridical errors, perturbed feedback elicited 678 

larger positive amplitudes in a manner consistent with the P300 signaling surprise (Donchin, 1981; 679 

Nassar et al., 2019). The Error Sensitivity difference waveform showed a similar pattern but did not 680 

reach the significance threshold after correction (rs = -.47 at 343 ms). The pattern for Execution 681 

Error was reversed, with the strongest correlation observed later (rs = .45 at 492 ms)- with 682 

amplitude highest when both cursor error and amplitude were higher in the veridical condition 683 

relative to the perturbed condition. However, this too was not significant following correction.  684 

In terms of the relationship between perturbation amplitude differences and the degree of 685 

motor correction, there were no significant effects in the frontocentral (p’s ≥ .120) or parietal 686 

clusters (p’s ≥ .82). With the same note of caution for non-significant correlations offered above, 687 

two patterns suggest a further dissociation in the processing of selection and execution error: In 688 

the time frame of the FRN, there was a relationship between frontocentral amplitude of the 689 

Perturbation Difference waveform and motor correction (rs = -.542 at 289 ms). Here, greater 690 

corrective movements in response to perturbed feedback correlated with larger differences in the 691 

FRN; and (ii) later in the window, the Perturbation Difference waveform for Execution Errors 692 

positively correlated (rs = .52 at 335 ms) with the degree of motor correction, indicating that larger 693 

cursor error corrections in response to perturbed feedback have correspondingly larger amplitudes 694 

for perturbed feedback in the time range of the P3a. Despite the finding that Selection Error, like 695 

Reward, resulted in adaptation following perturbed relative to veridical outcomes, no relationship 696 

was observed, with the strongest effect at 420 ms (rs = -.299).  697 

Finally, as an alternative to averaging over perturbed and veridical trials, we correlated the 698 

degree of perturbation on a single trial, computed as the difference between hand error and cursor 699 

error (which was zero on veridical trials, a positive value on trials where the cursor was shown to 700 

be closer to the target than the hand position and a negative value when the cursor position was 701 

shown to be further away from the target relative to hand position) with amplitude in the 702 

frontocentral and parietal clusters at each time point in the ERP per outcome for every participant. 703 

We did not find any general patterns to indicate a sensitivity to perturbation magnitude. In the 704 

frontocentral cluster, one participant showed a positive correlation between perturbation and the 705 

processing of Reward (between 152-172 ms and 254-289 ms), another showed a correlation for 706 

Execution Error trials (between 70-86 ms, 110-137 ms, 188-204 and 289-500ms) and two 707 

participants showed positive correlations for Selection Error. The first had a positive correlation 708 

between 453-457 ms and the second had a positive correlation in multiple clusters across the 709 

whole time series (between 4-11 ms, 31-90 ms, 117-188 ms, 258-277 ms, and 460 -477 ms). In 710 



 

the parietal cluster, no relationships emerged for Reward or Execution Error, with two participants 711 

showing positive correlations between the degree of perturbation and the processing of Selection 712 

Error: one between 340-356 ms and a second participant between 289-317 ms and 382-500 ms.  713 

 714 

 715 

Figure 6- Feedback Perturbation and Awareness: (A) Cursor error was larger for veridical 716 

feedback relative to perturbed; (B) There was no difference in the magnitude of hand error for 717 

perturbed selection and reward error trials relative to veridical execution error trials and no 718 

difference between perturbed Execution Error trials compared to veridical Selection Error and 719 

Reward trials; (C) Despite smaller cursor error, participants made larger corrections in response to 720 

perturbed feedback, with the pattern most pronounced for false hits; (D) Perturbed feedback did 721 

not impact on the likelihood of switching bandits; (E) Amplitude differences between perturbed and 722 

veridical feedback in the Parietal cluster for Selection Errors at 273 ms (shown on the ordinate, 723 

where positive values indicate larger amplitude for veridical relative to perturbed outcomes) 724 

correlated with magnitude of the difference in cursor error for these outcomes (shown on the 725 

abscissa, where positive values indicate larger veridical cursor errors relative to perturbed).  726 



 

Discussion 727 

Adaptive behavior necessitates distinguishing between outcomes that fail to produce an expected 728 

reward due to either the selection of the wrong action plan or poor motor execution. Although the 729 

majority of decision-making research, in neuroscience as well as economics, have focused almost 730 

exclusively on the former, a few studies have shown that failed outcomes attributed to 731 

sensorimotor errors can markedly biases choice behavior (Green et al., 2010; McDougle et al., 732 

2016, 2019). Here, we examined this issue by asking how an ERP signature of reinforcement 733 

learning, the Feedback-Related Negativity/Reward Positivity (FRN), varied in response to selection 734 

and motor errors. Predicated on the theory that the FRN is a scalp-related prediction error (Holroyd 735 

& Coles, 2002), we tested the hypothesis that errors attributed to failures in execution should lead 736 

to an attenuation in the FRN.  737 

Consistent with our expectations, selection errors elicited a larger FRN relative to reward 738 

outcomes. Moreover, in line with a reinforcement learning account, the amplitude of the FRN 739 

following selection errors was negatively correlated with the probability that participants switched 740 

between the response options following feedback. Behaviorally, participants showed lower switch 741 

rates following execution errors, a pattern consistent with the hypothesis that the reinforcement 742 

learning system discounts these errors (McDougle et al., 2019). However, contrary to the 743 

prediction that FRN amplitude would be attenuated following execution errors, these errors actually 744 

produced the largest FRN. A striking difference between the ERPs in response to selection and 745 

execution error was that the amplitude of the FRN following selection errors was predictive of 746 

behavioral biases and learning, whereas this ERP response following execution errors did not 747 

correlate with these variables. 748 

While almost all participants were more likely to switch after a selection error compared to 749 

an execution error, the differential response (i.e., difference in switch rates) to these two error 750 

outcomes varied considerably across participants. Moreover, this behavioral difference was 751 

correlated with the neural response to the two types of feedback: The more similarly participants 752 

treated the two outcomes at a behavioral level, the smaller the difference in FRN amplitude in 753 

response to these outcomes. 754 

These findings could be reconciled by considering the top-down mechanisms that may 755 

modulate how execution errors are processed. Behavioral experiments have shown that a sense of 756 

agency related to the perceived ability to correct for motor errors biases choice behavior (Parvin et 757 

al., 2018). In the present experiment, the finding that participants persevered with a bandit 758 

following execution error but switched more often following selection errors also points towards 759 

differences in agency. Previous work on the FRN has shown that outcomes that can be controlled 760 

lead to a more negative FRN than those that cannot (Sidarus et al., 2017) and the FRN is 761 

attenuated in the absence of actively performed actions (Donkers et al., 2005; Donkers & van 762 

Boxtel, 2005). The finding that execution errors produced a larger FRN relative to selection error is 763 

consistent with the presumed greater sense of agency associated with this type of unrewarded 764 



 

outcome.  765 

 A recent fMRI experiment using a 3-arm bandit task similar to that employed here, revealed 766 

an attenuation of the signal associated with negative reward prediction error in the striatum 767 

following execution failures (McDougle et al., 2019). Our observation of a larger negative deflection 768 

for execution error trials in the FRN may appear contrary to these previously reported striatal 769 

results. However, the fMRI investigation did show increased ACC activity in response to execution 770 

errors compared to selection errors, suggesting that the former have their own neural signature.  771 

With regards to the EEG response, there have been a number of studies reporting FRN deflections 772 

in response to execution error (Anguera et al., 2009; Krigolson et al., 2008; Torrecillos et al., 2014). 773 

These studies, in line with the Prediction-Response Outcome model of medial frontal cortex 774 

function (Alexander & Brown, 2011), point to the existence of a general monitoring system that 775 

responds to violation of expectations. However, an important aspect of these tasks is that errors in 776 

movement execution typically resulted in high level goal errors (e.g., failure to reach or remain on 777 

target in a manual tracking task) and/or involved the introductions of perturbations during the 778 

movement phase (Krigolson et al., 2008). This makes it difficult to rule out the contribution of 779 

cognitive control and response inhibition processes- which are known to generate an N200 780 

component that shares similar spatial and temporal characteristics to the FRN signal (Holroyd, 781 

2004; Holroyd et al., 2008). A recent study separating reward and sensory prediction errors in a 782 

motor adaptation task showed that the FRN responds to the former, but not the latter (Palidis et al., 783 

2019). The present findings, indicating qualitatively different relationships between the two medial 784 

frontal negativities with behavioral modification, add weight to the possibility that execution error 785 

processing may be distinct from dopamine-related reinforcement learning processes.   786 

We also observed two distinct patterns of activity in time windows preceding and following 787 

the FRN that provide further support for the claim of differential processing of execution and 788 

selection error. First, smaller amplitude responses were observed following execution errors 789 

relative to rewards in frontocentral sites 156-180 ms post-feedback, and the amplitude of this 790 

component correlated with switch rates. Second, in parietal sites (218-239 ms), larger amplitude 791 

responses occurred following execution errors relative to reward and this difference was also 792 

correlated with switch rates. Importantly, in a reversal of the FRN pattern, magnitude differences in 793 

these early frontocentral and late parietal signals correlated with behavioral adjustment linked to 794 

execution errors. This pattern points towards the existence of distinct error monitoring systems 795 

operating at different levels of behavioural control (Yordanova et al., 2004). 796 

Exploratory analysis on the relationship between ERP amplitude and task showed that the 797 

degree of motor correction following execution errors relative to selection errors correlated with 798 

amplitude differences in an early frontocentral cluster (156-174 ms). The time course of this cluster 799 

closely mirrored that of the earliest difference between execution error and reward – where 800 

amplitude differences correlated with switch rates. Given that we had no a priori expectations for 801 

such a result and that this specific result did not survive correction for multiple comparisons, 802 



 

interpretations must be treated with caution and require further robustly powered replication work 803 

to confirm.  Should future work replicate this pattern it would add weight to the idea that the need to 804 

make a behavioural modification following an error in the motor system precedes the generation of 805 

the FRN.  806 

A pertinent question of the present task and data is the extent to which participants were 807 

aware of the perturbations applied to the feedback to control outcome frequencies. Participants did 808 

not have access to online feedback and end-point cursor information was presented with a 1 809 

second delay to minimize the likelihood of participants becoming aware of the perturbations. In a 810 

post-experiment survey, participants indicated that they had attributed execution errors to poor 811 

motor control. Consistent with this we found that during the task, perturbed feedback did not alter 812 

choice strategy, nor did it result in any significant differences in the ERP. However, participants did 813 

on average make larger corrective movements following perturbed feedback- this was despite 814 

these outcomes showing smaller cursor errors than veridical feedback. In exploratory analysis, we 815 

did not find any relationships between amplitude and perturbation magnitude at a trial level for the 816 

majority of the participants, but we did find a correlation between amplitude differences and cursor 817 

error when averaging across perturbed and veridical trials. This correlation manifested in the 818 

parietal cluster at 273 ms, which likely reflected the onset of the P300. Here, the positive amplitude 819 

of this signal reduced as the amount of veridical error increased. That the P300 shows a sensitivity 820 

to discrepancies between actual and presented hand position is consistent with the theory that the 821 

signal is generated through the active updating of an internal model of the environment (Donchin & 822 

Coles, 1988). The P300 is also notable for being a putative marker of conscious perception (Rutiku 823 

et al., 2015). If participants did indeed have access to this information during the task, it may be 824 

that these perturbations were not sufficiently large enough to signal a need to change strategy.  825 

These findings also raise a broader question of whether the present results might be 826 

specific to outcomes that are framed as execution errors, or extend to any endogenous or 827 

exogenous event that results in an unrewarded trial in which the outcome does not provide 828 

information about the reward probability associated with the selected object (Green et al., 2010).  829 

For example, if an unexpected gust of wind blew a tennis lob out-of-bounds, would that be treated 830 

as an “execution error”? Or, if after pulling the lever on a slot machine, a power failure caused the 831 

game to terminate without a payoff, would this affect how the choice is judged? A future study 832 

could test endogenous execution errors (e.g., reaching error) and exogenous errors (e.g., the task 833 

screen goes blank randomly before an outcome is delivered) more explicitly than the perturbations 834 

applied here. If similar results are found in both settings, elements of the early activity observed in 835 

frontocentral sites may indicate the establishment of a sensory “state”, representing that the 836 

intended action plan was not properly implemented, irrespective of whether this mismatch was due 837 

to endogenous or exogenous factors, even before the prediction error is evaluated. This echoes 838 

the sequential ordering in models of temporal difference learning, where first the agent perceives 839 

its state, and then computes reward prediction errors relevant to that state (Sutton & Barto, 1998). 840 



 

 841 

Limitations and Future Directions 842 

While we have hypothesized that execution errors impact choice behavior, either by 843 

attenuating the operation of reinforcement learning processes or via an enhanced sense of 844 

agency, it is also important to consider alternative hypotheses. In the behavioural data we 845 

observed a high base rate for switching between bandits. The highly probabilistic nature of the 846 

outcomes, coupled with the relatively low reward rate increased made the task of determining the 847 

optimal choice difficult (while each bandit different frequencies of execution and selection errors, 848 

they all had the same expected value). This may have biased participants towards an exploration 849 

strategy to reduce uncertainty by focusing on gathering more information about the reward 850 

likelihood of each bandit for later exploitation (Cohen et al., 2007; Daw et al., 2006). Viewed in this 851 

way, repetition of target selection following execution error might not be due to increased agency 852 

or RL discounting but may instead reflect a failure to acquire information on the reward probability 853 

of the chosen target on the previous trial and a drive to reduce uncertainty. Future work could 854 

disentangle these explanations by, for instance, assigning lower expected value to high 855 

execution/low selection error bandits and/or through the presentation of fictive outcomes for motor 856 

errors.  857 

 858 

Conclusion 859 

We observed a robust FRN in response to both selection and execution errors, but only the former 860 

correlated with behavioral adjustment. In contrast, the amplitude of a positive deflection in the 861 

ERP, both prior and after the FRN, correlated with choice behavior following execution errors. 862 

These results indicate a need for a more nuanced interpretation of what the FRN represents, and 863 

how it may be shaped by contextual information. More generally, the results provide insight into 864 

how the brain discriminates between different classes of error to determine future action. 865 
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	Abstract
	Losing a point in tennis could result from poor shot selection or faulty stroke execution. To explore how the brain responds to these different types of errors, we examined feedback-locked EEG activity while participants completed a modified version o...
	Key words: Credit Assignment, Medial Frontal Negativity, Feedback-Related Negativity, Prediction Error, Reinforcement Learning

	Introduction
	When an action fails to produce the desired goal, there is a “credit assignment” problem to resolve: Did the lack of reward occur because the wrong course of action was selected, or was it because the selected action was poorly executed? Consider a te...
	Reinforcement learning presents a framework for understanding adaptive behavior through trial and error interactions with the environment. According to numerous models (e.g. temporal difference learning; Sutton & Barto, 1998), the discrepancy between ...
	To address this question, McDougle et al. (2016) used a “bandit” task in which participants chose between two stimuli to maximize reward. In one condition, choices were made using a standard button-press method, a situation in which the negative predi...
	A window into the processes that underlie outcome monitoring is offered through the discovery of the Feedback-Related Negativity (FRN), a negative deflection in the EEG first identified following the presentation of feedback indicating incorrect respo...
	The FRN’s sensitivity to errors of action is more contentious. A series of experiments (Krigolson et al., 2008; Krigolson & Holroyd, 2006, 2007a) contrasting high level (goal-attainment) errors, variously operationalized as a failure to reach a target...
	A contrasting set of results suggest that the FRN (and its response-locked variant, the ERN) may in fact be sensitive to motor errors and reflect more than binary coding of outcomes, with evidence showing that it scales with the magnitude of error dur...
	To test whether outcome errors of action and selection can be dissociated in the medial frontal cortex, we recorded feedback-locked ERPs while participants engaged in a modified bandit task where choices were selected via rapid arm movements. Unreward...
	In addition to these predictions, we also examined the relationship between the FRN and behavioral modification. Specifically, we predicted that participants who exhibited a larger change in the FRN would be more likely to switch between the different...

	Materials and Methods
	Participants
	Using an effect size estimate derived from our previous work on the FRN (η2p = .167; Mushtaq et al., 2016), with a desired statistical power of 0.8 and alpha criterion set at 0.05, we set a minimum sample size of 28 participants. In total we tested th...
	Participants were told they would be remunerated based on their performance. However, due to the pseudo-veridical nature of outcomes (see Procedure), all received a fixed payment of £10.00. Participants signed an informed consent document, were fully ...
	Design and Procedure
	We employed a novel three-armed bandit task (Figure 1) where the absence of reward on a given trial could be the product of a poorly executed action or an error in action selection (McDougle et al., 2019). Following EEG set-up, the participant was sea...
	The experimental session comprised 400 trials, with opportunity for self-paced breaks. To initiate each trial, the participant made a reaching movement, sliding their right arm to position a white cursor (diameter of 0.5 cm) inside the home position, ...
	Following the appearance of the 3 bandits, participants had 2 seconds to initiate a reaching movement. If the reaction time (RT) was greater than 2 s, the trial was aborted and the message ‘‘Too Slow’’ appeared. After movement onset, participants had ...
	Following McDougle et al. (McDougle et al., 2019), each bandit had its own fixed probabilities for the three trial outcomes. All bandits had a 40% reward outcome, and thus, the expected value for the three bandits were identical. However, the frequenc...
	To achieve these probabilities, outcomes were surreptitiously perturbed so that they aligned with predetermined feedback (a randomized sequence for each run) for the selected bandit. On trials in which the actual movement produced the desired outcome ...
	We included three further constraints to minimize the likelihood that participants would recognize that the outcomes were not always directly reflective of their movements: (i) No online movement feedback was available; (ii) end-point feedback was pre...
	To increase motivation, participants were told that at the end of the experiment the software would randomly select five trials, and based on the outcomes from these trials, a cash bonus between £1-5 would be provided. As such, the goal was to accumul...
	Finally, given that it is possible that the execution error feedback could be interpreted in different ways (for example, participants may have assumed these errors were the result of faulty technical equipment), participants were invited to complete ...
	The experimental task was ﻿programmed using the Psychophysics Toolbox (Brainard, 1997; Kleiner et al., 2007) and lasted approximately 35 minutes, with an additional 25-30 minutes of technical set up for EEG data acquisition.
	Figure 1- Experimental Task: (A) Participants moved a stylus on a tablet to make rapid shooting movements (i) through one of 3 bandits (large circles) at 90 , 210  and 330  degrees relative to the home position (small circle). Following a 1000 ms dela...
	Electrophysiological Data Recording and Preprocessing
	EEG data were recorded continuously from 64 scalp locations at a sampling rate of 1024 Hz using a BioSemi Active-Two amplifier (BioSemi, Amsterdam). Four electrooculograms (EOG) – above and below the left eye, and at the outer canthi of each eye – wer...
	All data were first re-referenced offline to the average of all channels, and downsampled from 1024 Hz to 256 Hz. The continuous time series data were filtered using a high-pass filter with a cut-off at 0.1 Hz (Kaiser windowed-sinc FIR filter, beta = ...
	Infomax ICA, as implemented in the EEGLAB toolbox, was run on the 1 Hz high-pass-filter epoched data, and the resulting component weights were copied to the .1 Hz high-pass-filter epoched data. All subsequent steps were conducted on the .1 Hz high-pas...
	Following artifact-removal, 93.5% of total trials were available for analysis. There was no difference in the percentage of trials removed across conditions (F (2, 56) = 2.09, p = .133). However, as a product of the experimental design, there was a di...
	ERP Quantification
	Given that we had specific hypotheses, we focused our analysis on two locations.  First, meta-analyses (Sambrook & Goslin, 2015; Walsh & Anderson, 2012) have shown the feedback-locked FRN effect to be maximal over the frontocentral region of the scalp...
	To test whether our results might be biased by the specific configurations of electrodes included in the averaged cluster and use of bootstrapped waveforms, we calculated the similarity between four different approaches to calculating the ERPs: (i) gr...
	With growing evidence that most of the variation in the FRN is driven by a reward positivity, we decided to make use of difference waveforms for our analysis to detect differences irrespective of whether they were driven by positive or negative deflec...
	To reduce the number of false positives (Luck & Gaspelin, 2017), the ERP data were downsampled to 250 Hz and only activity between 150 and 500 ms (spanning the P2, FRN and P3 ERPs) was analysed. For each analysis, p values were corrected by applying a...
	To aid the interpretation of the difference waveforms, we first visualised the grand averaged ERPs related to each outcome. For every statistically significant contrast, we present the mean amplitude from the cluster for each parent waveform. Differen...
	Brain-Behavior Relationships
	A key question in this study is whether electrophysiological signatures of different types of outcomes correlate with the participants’ choice behavior (see San Martín, 2012 for a review). Based on a reinforcement learning account of the FRN (Holroyd ...
	To examine brain-behavior correlations, we calculated a behavioral adjustment score, or “Switch Bias” rate, for each participant (operationalized as the ratio of the percentage of trials that the participant switched following an error to the percenta...
	Rather than signaling a need to switch from one target to another, feedback from Execution Errors might be more readily used to modify a motor plan for future action. To quantify the magnitude of cursor error, we calculated the angular deviation of th...
	Statistical Analysis
	For reporting purposes, time points are rounded to the nearest millisecond, amplitude (in microvolts; μV) to two decimal places and p values to three decimal places. The range for the scalp maps was time-interval specific and determined by the 1st and...

	Results
	Behavioral Responses
	A one-way ANOVA revealed a significant difference in bandit preference (F [2, 56] = 8.27, p < .001, η2g = .23), with participants exhibiting bias towards the High Execution/Low Selection Error bandit. Overall, this bandit was chosen on average on 39% ...
	We then examined the effect of the different outcomes on the subsequent choice, asking how they influenced switching behavior (Figure 2A). Participants exhibited high switching rates overall (54%), but the rate differed according to outcome type (F [2...
	Interestingly, switch rates following rewarded trials fell between the other two outcome types (M = 55%, SE = 6%). There was no difference between switch rates following reward relative to selection errors (t(28) = 1.85, p = .227) or execution errors,...

	ERP Responses
	Our primary aim was to examine whether selection and execution errors could be reliably distinguished in outcome-locked ERPs. To start, we ran an exploratory 3 (Bandit Type: High Execution/Low Selection Error vs. Low Execution/High Selection Error vs....
	The grand averaged ERPs related to each outcome are shown in Figure 2B and 2C. F tests revealed two significant clusters in the frontocentral region between 156 -180 ms and 210-336 ms, and three clusters in the parietal region (176-196 ms; 218-239 ms;...
	Figure 2- Behavioral Responses and ERP Grand Averages. (A) Switching rates following the three trial outcomes. Participants were more likely to repeat a choice (indexed by lower switch rates) following execution errors relative to selection error feed...
	Figure 3A depicts the Selection Error difference waveform, derived by subtracting the Selection Error waveform from Reward ERPs for the frontocentral cluster (shown in Figure 2B) and shows a statistically significant cluster of time points between 242...
	In line with the reinforcement learning account of the FRN, there was a relationship between neural activity and behavior. Specifically, amplitude (mean: rs = -.483, p = .009; peak : rs = -0.36, p = .052; Figure 3C) from the early part of the cluster ...
	The topographical map (Figure 3C inset) demonstrates that this effect was localized to the frontocentral region. We found no evidence for such a relationship in the later, P3a, part of the time window (rs = -.08, p = .672; Figure 3D). The mean FRN and...
	Figure 3- Selection Error in the Frontocentral Cluster: (A) The Selection Error waveform, defined as the difference in the ERPs on trials resulting in selection errors and rewards. The green shaded regions indicate significant clusters for this contra...
	Execution Errors
	To examine the electrophysiological correlates associated with unrewarded outcomes attributed to motor execution errors, we performed similar analyses, but now focus on the comparison between execution error trials and reward trials (the Execution Err...
	The first cluster showed an amplitude reduction in response to Execution Errors relative to reward trials. Similar to the Selection Error waveform result, we expected the second cluster would be contaminated by a P3a signal. Thus, we followed the same...
	We next examined the relationship between these three epochs (156-180 ms; 207-266 ms; 266-325 ms) and behavioral adjustment (Figure 4C-E). The peak amplitude difference in the earliest interval (156-180 ms) correlated positively (rs = 0.37, p = .05) w...
	In contrast to the results for Selection Errors, the FRN captured in the 207-266 ms time window did not correlate with behavioral adjustment (rs = .07, p = .722). We tested, and confirmed, that this correlation was reliably different to the correlatio...
	Figure 4- Execution Error in the Frontocentral Cluster: (A) The Execution Error difference waveform, defined as the difference amplitude for execution error and reward ERPs. The green shaded regions indicate clusters showing statistically significant ...
	We conducted the same analysis for the Execution Error waveform in the parietal cluster of electrodes. Execution errors elicited smaller amplitude responses relative to rewards in an early time window (176-196 ms) but elicited larger amplitude respons...
	Error Sensitivity Difference Waveform
	As described in the previous two sections, when using a common baseline (rewarded trials), we observed differences in both the ERP results and correlational analysis between unrewarded trials that were attributed to failures in movement execution or a...
	In the frontocentral cluster there was a significant difference in the range of the FRN (222-250 ms; Figure 5 A, B). We had anticipated that the amplitude of the FRN would be attenuated following execution errors, assuming a lower response would be re...
	We also examined whether the magnitude of this difference correlated with the “Switch Bias” rate.  For this measure, the proportion of switches following execution errors was subtracted from the number of switches made following selection errors. Note...
	There was no relationship between mean amplitude in this window and Switch Bias (rs = .23, p = .23). However, the peak negative amplitude revealed a positive correlation with Switch Bias (rs = .41, p = .026; Figure 5C). Participants who had relatively...
	Figure 5- Error Processing Differences in the Frontocentral Cluster: (A) The Error Sensitivity difference waveform, calculated by subtracting ERPs for selection error from execution error ERPs. The green shaded region indicates the single cluster in w...
	Examining the parietal cluster revealed no differences in the earliest interval (176-196 ms).  However, differences emerged in the 218-239 ms and 359-445 ms epochs, with larger positive amplitudes for execution errors relative to selection errors. The...
	Kinematic Analysis
	To gain a deeper understanding of the relationship between brain activity and task performance, we examined correlations between task kinematics and the statistically significant periods identified in the time series analysis in the frontocentral and ...
	In the first analysis, we examined whether there was a relationship between cursor error (the presented position of the cursor shown to participants at the end of the movement) magnitude and ERP activity. There were no reliable correlations between th...
	In the second analysis, we asked whether ERP amplitude on the current trial would correlate with the degree of motor correction on subsequent trials. Here, we restricted analysis to the subset of trials in which participants chose the same target cons...
	To ensure that we did not miss any potential sensitivity to task kinematics in other time ranges, we undertook an exploratory search of the full time series data by correlating cursor error and motor correction with mean amplitude from 150ms to 500ms.
	We found no correlations between ERP difference waveforms and Cursor Error in the frontocentral (p’s ≥ .45) or parietal sites (p’s ≥ .75) following correction. We also note, with a degree of caution given the corrected p values were not significant, t...
	Perturbation Awareness
	In a final set of explorations, we examined whether participants were sensitive to the feedback manipulation that had been applied to control the frequency of our three outcomes. In almost half the trials (M = 47.8%, SE = 0.01%) we delivered perturbed...
	In examining hand error (position of the hand relative to the center of the target), we found a Veracity X Outcome interaction (F (2, 56) = 4770.99, p <.001, η2g = .981; Figure 6B). Veridical Execution Error trials (M = 5.99(, SE = 0.07() were not sta...
	Participants did not alter their behavioral strategy in response to feedback perturbations (Veracity: F(1, 28) = 0.899, p =.351, η2g = < .01).; Veracity X Outcome: F(2, 56) = 1.42, p = .251, η2g < .01; Figure 6C). However, a suggestion that they might...
	Given these differences, we explored the extent to which the ERP signal was sensitive to the veracity of the feedback. We re-ran the ERP time-series analysis, performing a 3 (Outcome: Reward vs. Selection Error vs. Execution Error) X 2 (Veracity: Veri...
	We then explored whether there were any differences in the relationship between ERP activity and kinematic adjustment as a function of Feedback Veracity. As perturbed feedback elicited larger corrective movements than veridical, we speculated that an ...
	In analysing the relationship between the Perturbation Difference waveform and Cursor Error in the frontocentral cluster, we found no correlations that survived correction for multiple comparisons (p’s ≥ .616). However, in the parietal cluster, the Se...
	In terms of the relationship between perturbation amplitude differences and the degree of motor correction, there were no significant effects in the frontocentral (p’s ≥ .120) or parietal clusters (p’s ≥ .82). With the same note of caution for non-sig...
	Finally, as an alternative to averaging over perturbed and veridical trials, we correlated the degree of perturbation on a single trial, computed as the difference between hand error and cursor error (which was zero on veridical trials, a positive val...
	Figure 6- Feedback Perturbation and Awareness: (A) Cursor error was larger for veridical feedback relative to perturbed; (B) There was no difference in the magnitude of hand error for perturbed selection and reward error trials relative to veridical e...

	Discussion
	Adaptive behavior necessitates distinguishing between outcomes that fail to produce an expected reward due to either the selection of the wrong action plan or poor motor execution. Although the majority of decision-making research, in neuroscience as ...
	Consistent with our expectations, selection errors elicited a larger FRN relative to reward outcomes. Moreover, in line with a reinforcement learning account, the amplitude of the FRN following selection errors was negatively correlated with the proba...
	While almost all participants were more likely to switch after a selection error compared to an execution error, the differential response (i.e., difference in switch rates) to these two error outcomes varied considerably across participants. Moreover...
	These findings could be reconciled by considering the top-down mechanisms that may modulate how execution errors are processed. Behavioral experiments have shown that a sense of agency related to the perceived ability to correct for motor errors biase...
	A recent fMRI experiment using a 3-arm bandit task similar to that employed here, revealed an attenuation of the signal associated with negative reward prediction error in the striatum following execution failures (McDougle et al., 2019). Our observa...
	With regards to the EEG response, there have been a number of studies reporting FRN deflections in response to execution error (Anguera et al., 2009; Krigolson et al., 2008; Torrecillos et al., 2014). These studies, in line with the Prediction-Respons...
	We also observed two distinct patterns of activity in time windows preceding and following the FRN that provide further support for the claim of differential processing of execution and selection error. First, smaller amplitude responses were observed...
	Exploratory analysis on the relationship between ERP amplitude and task showed that the degree of motor correction following execution errors relative to selection errors correlated with amplitude differences in an early frontocentral cluster (156-174...
	A pertinent question of the present task and data is the extent to which participants were aware of the perturbations applied to the feedback to control outcome frequencies. Participants did not have access to online feedback and end-point cursor info...
	These findings also raise a broader question of whether the present results might be specific to outcomes that are framed as execution errors, or extend to any endogenous or exogenous event that results in an unrewarded trial in which the outcome does...
	Limitations and Future Directions
	While we have hypothesized that execution errors impact choice behavior, either by attenuating the operation of reinforcement learning processes or via an enhanced sense of agency, it is also important to consider alternative hypotheses. In the behavi...
	Conclusion
	We observed a robust FRN in response to both selection and execution errors, but only the former correlated with behavioral adjustment. In contrast, the amplitude of a positive deflection in the ERP, both prior and after the FRN, correlated with choic...
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