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Highlights✶

Design, testing and analysis of a pivoted-bar inerter device used as a vibration absorber✷

Hakan Dogan,Neil D. Sims,David J. Wagg✸

• A new design for an inerter-based dynamic vibration absorber (IDVA) is developed, which can be deployed✹

between an auxiliary mass and a host structure.✺

• A pivoted-bar mechanism with frictionless flexure hinges is used for the physical realisation of the inerter device.✻

• The inerter device designed allows fine tuning of the inertance by simply adding additional masses.✼

• Hysteretic damping is employed in the proposed device.✽

• The vibration suppression performance improvement is experimentally validated and performs 18% better than✾

a classical tuned mass damper.✶✵
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✶✻ A B S T R A C T✶✼

✶✽

In this paper a new design for a small scale inerter-based dynamic vibration absorber (IDVA) is✶✾

presented, based upon a pivoted-bar mechanism. There are several new innovations in this study.✷✵

The first is to design, build and test an inerter-based device that does not need to be grounded,✷✶

or placed between different parts of the structure in order to create relative motion. Instead,✷✷

the relative motion is created between an auxiliary mass and the host structure. Secondly, the✷✸

pivoted-bar mechanism is designed to act as a pure inerter, and avoids unbalanced inertance✷✹

effects such as those that occur in the dynamic antiresonant vibration isolator (DAVI). Thirdly,✷✺

the effects of parasitic mass are minimised by using (i) the appropriate device arrangements, (ii)✷✻

numerical optimisation, and (iii) fine tuning of the device by adding small additional masses.✷✼

Fourth, the optimum device damping values are obtained by using a gel damper that can be✷✽

modelled as a hysteretic damper. In addition, the design uses frictionless flexure hinges that✷✾

have a small amount of stiffness that can affect the device performance. It is shown how this✸✵

can also be compensated for using the design optimisation and fine tuning strategies. Detailed✸✶

design and analysis methodologies are provided, in order to extend the existing work on inerters✸✷

towards practical design and implementation. In terms of applications, it is anticipated that the✸✸

design would be suitable for small-size restricted-space applications. A prototype of the design✸✹

for a small-scale and relatively high frequency application is manufactured. Experimental and✸✺

numerical results show that the device provides a 18% improvement in performance compared✸✻

to a classical tuned mass damper (TMD).✸✼

✸✽

1. Introduction✸✾

Inerter-based devices have been increasingly utilised in recent years to mitigate the effects of unwanted vibrations✹✵

in machines and structures. An inerter is a mechanical device that generates a force proportional to the relative ac-✹✶

celeration between its terminals. The concept was introduced by Smith [1] in 2002 using the force-current analogy✹✷

between mechanical and electrical systems.✹✸

Prior to Smith’s work, multiple other mechanical devices had been used as inerters, but were known by other names✹✹

— see for example the historical review in [2]. For example, an inerter device called the gyro-mass was patented by✹✺

Atsushi [3] in 1997. Similarly, a relative-acceleration inertial mechanism, named the rotational-viscous-damper, was✹✻

studied by Kuroda et al. [4] and Saito et al. [5]. Later, Ikago [6] proposed the tuned-viscous-mass-damper (TVMD)✹✼

by adding a flywheel and a spring to the rotational-viscous-damper.✹✽

One aspect of inerter research that has received much attention is the performance of devices with different config-✹✾

urations of elements (normally springs, viscous dampers, inerters and masses). From this, three main configurations✺✵

have emerged as most commonly used. The first is the TVMD [6], mentioned above. The second, proposed by Lazar✺✶

et al. [7], is the tuned-inerter-damper (TID). The TID is broadly similar to a classical tuned-mass-damper (TMD), but✺✷

with inertance replacing the mass element. The TID parameter design (known as tuning) initially followed an iterative✺✸

strategy based on the fixed-points theory of Den Hartog [8]. Hu et al. [9] systematically evaluated performance of✺✹

five different inerter-based configurations for both isolation and absorption applications (note the TID was labelled C3✺✺

in their study). The authors obtained closed-form solutions for the optimal design parameters for both 𝐻∞ and 𝐻2✺✻

performances of the inerter-based isolators considered.✺✼

The third important device configuration was proposed by Marian and Giaralis [10, 11] and is called the tuned-✺✽

mass-damper-inerter (TMDI). The authors derived the closed-form solution for the optimal design parameters for an✺✾
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undamped single degree-of-freedom (SDOF) system equipped with a TMDI under harmonic excitation and compared✻✵

vibration suppression performance to a TMD. Similar to the TID, a TMDI can reduce the mass of the device without✻✶

loss in the control performance when compared with the TMD. Alternatively the TMDI can achieve a better suppression✻✷

performance than the TMD for the same sized mass. The performance of TMDI was further discussed in [12] by✻✸

employing a generic model and in [13] by considering the nonlinear response.✻✹

Further studies of the (passive) control performance of these devices have been undertaken. For example, Hu✻✺

and Chen [14] investigated the 𝐻∞ and 𝐻2 performances of an undamped SDOF system controlled by six different✻✻

configurations of inerter-based dynamic vibration absorbers (IDVAs). The IDVAs in their study are built by replacing✻✼

the damper element in the TMD with inerter-based mechanical networks, including the TID (as IDVA-C4) and TVMD✻✽

(as IDVA-C6). It was demonstrated that employing an inerter with a spring to a TMD improves the performance by✻✾

more than 20% for small mass ratios and provides a wider effective frequency range. Barredo et al. [15] extended the✼✵

fixed-points theory (mentioned above) to derive quasi-optimal design parameters for a 𝐻∞ optimisation of the best✼✶

performing devices which were the TID (C4 in [14]) and TVMD (C6 in [14]). Inspired by the work of Zhou et al.✼✷

[16], Barredo et al. [17] subsequently proposed using these configurations physically attached to a TMD connecting✼✸

the host structure and the supporting ground. Their study demonstrated that a grounded TID connected to a TMD✼✹

further improves both the 𝐻∞ and 𝐻2 performances for an undamped SDOF system. However, as is also the case for✼✺

the TMDI, a grounded connection limits the possible layouts for multi-degree-of-freedom structures.✼✻

Applications of TID and TMDI with non-grounded inerters were analysed in different studies, including the initial✼✼

works [7, 10] and in studies regarding wind-induced vibration control of structures [18, 19] and seismic control [20].✼✽

Similarly, TVMD application with a non-grounded inerter is also possible [21]. Furthermore, more complex layouts✼✾

with non-grounded inerters were presented for vehicle suspension systems [22]. However, all these non-grounded✽✵

inerter applications are deployable between two different parts of the structure (e.g. between two adjacent storey✽✶

or between vehicle body and tyre) to create relative motion. Although these layouts have the potential of providing✽✷

better performance than a classical TMD, they do not provide as versatile solution as TMDs. IDVAs, on the other✽✸

hand, are identical to TMDs in terms of implementation. They are attached to a host structure with an auxiliary mass✽✹

instead of placing between two different parts of the structure. Although their performances were theoretically studied✽✺

[14, 23, 24], to the author’s knowledge, no experimental study has been conducted. The physical realisation of an IDVA✽✻

for experimental study requires a special attention in its design, especially in small-scale applications. Therefore, this✽✼

study addresses a small-scale design of an IDVA and experimental validation of its performance.✽✽

In terms of application areas, inerters have been proposed for vehicle suspension systems [22, 25, 26, 27], motorcy-✽✾

cle steering [28], building isolation [7, 29, 30, 31], landing-gear systems in aircraft [32], train suspensions [33], wind✾✵

turbines [23] and large-space applications [34, 35, 36]. In terms of practical design, the most common types are the✾✶

rack and pinion inerter [1, 37], the ball-screw inerter [37], and fluid-based inerters [34, 31]. More detailed discussions✾✷

of some mechanical inerter devices are described in [38].✾✸

The impacts of friction that exists in the rack and pinion inerter [13, 25], the ball-screw inerter [39], and the fluid-✾✹

based inerter [40] has been explored. However, the majority of inerter systems have been proposed for relatively✾✺

large-scale applications, and as a mechanical device gets smaller, friction between components and flow losses (for✾✻

fluid-based devices) can become increasingly problematic. To the author’s knowledge, the only inerter design which✾✼

has been developed for use in applications of a smaller-scale was the recently proposed frictionless, living-hinge inerter✾✽

[41], where the device size was of the order of 120mm. This device used a pivoted flywheel inerter design, whilst✾✾

simultaneously eliminating friction by using flexural-hinges (living-hinges) at the pivots. This inerter was used in an✶✵✵

isolator system where one terminal of the inerter is grounded (or connected to an infinitely large mass). The rigid body✶✵✶

motion of the inerter can therefore be neglected in their study.✶✵✷

This study proposes a new mechanical design of an IDVA which uses a pivoted-bar mechanism with flexural-hinges✶✵✸

and is of a similar scale to the device studied in [41] but includes the rigid body motion of the inerter by considering✶✵✹

the mass of the inerter. Therefore, one novel aspect of the new design is that is can be mounted at a specific point on✶✵✺

the host structure, in the same manner as a classical TMD. This is in contrast to most inerter applications which have to✶✵✻

be either grounded, or positioned between host system components to work effectively. The design is experimentally✶✵✼

validated for the vibration suppression of an forced-excited SDOF system. In this context, it offers an experimental✶✵✽

validation of the performance improvement of an IDVA-C4 (in [14]). Another novelty in the inerter designed in this✶✵✾

study, which is based on a modified version of the pivoted flywheel inerter design of John and Wagg [41], is that✶✶✵

it allows the adjustment of its inertance by simply attaching additional lumped masses. This feature is particularly✶✶✶

useful for fine tuning of the inertance after manufacture. Linear hysteretic damping is used in the experimental system,✶✶✷
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following the work of Deastra et al. [42]. Many previous studies concerning inerter configurations have tended to focus✶✶✸

on lumped parameter analysis of the system performance. Therefore, one final aim of the present study is to provide a✶✶✹

more detailed design methodology to support the implementation of the approach in practice. It is worth noting that✶✶✺

small angle approximation is applied to establish the linear model in the design study of the pivoted-bar inerter. Large✶✶✻

relative motion of the pivoted-bar violates this approximation and would introduce nonlinearity in the model.✶✶✼

Performance improvement through the use of an idealised (i.e. theoretical) IDVA has already been shown for an✶✶✽

undamped system in [14]. However, for relatively small scale applications, the physical realisation of an idealised✶✶✾

IDVA can be impracticable. Consideration of a parasitic mass and hysteretic damping in the model can be favourable✶✷✵

in terms of practicality. Therefore, Section 2 presents performance evaluations of the IDVA with a parasitic mass, and✶✷✶

the IDVA with both a parasitic mass and hysteretic damping by comparing the idealised IDVA. This includes using the✶✷✷

self-differential evolution (SaDE) algorithm to obtain the optimal device parameters to meet the required performance✶✷✸

specification. Then in Section 3 the detail of the IDVA device design with a pivoted-bar inerter is presented. This✶✷✹

includes the design of the flexure notches used in the design of pivots. The effect of the stiffness on the flexure notch✶✷✺

and the fatigue life cycle are also evaluated in this Section. Furthermore, the damping and the stiffness of the silicone gel✶✷✻

used in the physical device is characterised. In Section 4, experimental test results are presented in order to validate✶✷✼

the design and analysis undertaken in the preceding sections. Finally discussions and conclusions are presented in✶✷✽

Sections 5 and 6 respectively.✶✷✾

2. Mathematical models and performance analyses✶✸✵

2.1. Mathematical models✶✸✶

A schematic representation of a damped SDOF system with three types of IDVA is shown in Figure 1. Throughout✶✸✷

the paper, the three cases shown in Figure 1 will be referred to as designs D1, D2, and D3. The IDVAs are obtained✶✸✸

by replacing the damper element in a classical TMD with an inerter-based mechanical network (denoted in Figure✶✸✹

1 by a blue dashed-circle), which is the only part that differs in each design. The damped SDOF subsystem is the✶✸✺

host structure which is subject to unwanted vibrations, and has parameters, mass 𝑀 kg, spring stiffness, 𝐾 N/m, and✶✸✻

viscous damping, 𝐶 Ns/m. The designs D1, D2, and D3 are mounted on the host structure and denoted in Figure 1✶✸✼

by a dashed-box. Each of the three designs has a mass 𝑚𝑎 kg and spring 𝑘𝑜 N/m, and a series of other components✶✸✽

including; inerter, 𝑏 kg, parasitic mass 𝑚𝑝 kg, viscous damper 𝑐 Ns/m, spring 𝑘𝑖 N/m and hysteretic spring/damper✶✸✾

𝑘𝑖(1 + 𝑗𝜂) N/m, where 𝜂 is the loss factor and 𝑗 =
√
−1. These components are all localised additions [43] to the host✶✹✵

structure; as previously noted this is an important feature of the proposed design configurations, as the designs do not✶✹✶

require structural connections to the ground.✶✹✷

The logic linking the three designs is that D1, shown in Figure 1 (a), corresponds to an idealised (i.e. theoretical)✶✹✸

TID, which is the concept from which the practical design is derived. However, to implement an TID in practice some✶✹✹

additional factors have to be taken into account. Firstly, parasitic mass (explained below) needs to be included, and so✶✹✺

D2 (Figure 1 (b)) is the same as D1, but with the addition of a parasitic mass, 𝑚𝑝. Secondly, the practical damping used✶✹✻

is a hysteretic gel damper, and thus in D3, a hysteretic damper is modelled. Note that D2 is similar to the TMDI studied✶✹✼

by [10], and D3 is similar to the tuned-mass-hysteretic-damper-inerter (TMhDI) considered in [42], but with a design✶✹✽

approach that assumes an addition of the absorber subsystem (dashed boundary in Figure 1), rather than modifications✶✹✾

to the bracing or inter-storey compliance of an existing lumped parameter system.✶✺✵

The issue of parasitic mass arises because in smaller-scale applications of this type, the possible inertance-to-mass✶✺✶

ratios (𝛿 = 𝑏∕𝑚𝑎) are relatively small, specifically 0.01 < 𝜇 < 0.1 in this study. Because 𝛿 is small, the mass of✶✺✷

other components in the system can act as parasitic mass and distort the overall performance. Therefore, when tuning✶✺✸

the inertance value for optimum performance the parasitic mass needs to be considered — as discussed in [44]. For✶✺✹

example, in Section 3.3 it will be shown that the mass of the sliding plate moving in the hysteretic gel damper acts as✶✺✺

a parasitic mass in the system.✶✺✻

The equations of motion of the SDOF system controlled with D1, shown in Figure 1a, can be derived as✶✺✼

𝑀𝑥̈𝑚(𝑡) + 𝐶𝑥̇𝑚(𝑡) +𝐾𝑥𝑚(𝑡) − 𝑘𝑜
(
𝑥𝑎(𝑡) − 𝑥𝑚(𝑡)

)
− 𝐹𝑇 𝐼𝐷(𝑡) = 𝐹 (𝑡),

𝑚𝑎𝑥̈𝑎(𝑡) + 𝑘𝑜
(
𝑥𝑎(𝑡) − 𝑥𝑚(𝑡)

)
+ 𝐹𝑇 𝐼𝐷(𝑡) = 0,

𝐹𝑇 𝐼𝐷(𝑡) = 𝑏
(
𝑥̈𝑏(𝑡) − 𝑥̈𝑚(𝑡)

)
= 𝑐

(
𝑥̇𝑎(𝑡) − 𝑥̇𝑏(𝑡)

)
+ 𝑘𝑖

(
𝑥𝑎(𝑡) − 𝑥𝑏(𝑡)

)
,

(1)✶✺✽

where 𝑥𝑚(𝑡) and 𝑥𝑎(𝑡) are the displacements of the host structure and the auxiliary mass, respectively and 𝑥𝑏(𝑡) is the✶✺✾
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displacement of the point between the inerter and the spring-damper arrangement, as shown in Figure 1 (a). Meanwhile,✶✻✵

𝑀 , 𝑚𝑎 are the host and absorber masses, 𝐶 and 𝐾 are the stiffness and damping of the host system, 𝑘𝑜, 𝑘𝑖, 𝑐 & 𝑏 are the✶✻✶

stiffnesses of the outer spring and the inner spring, damping of the absorber and the inertance of the inerter respectively.✶✻✷

𝐹 (𝑡) and 𝐹𝑇 𝐼𝐷(𝑡) are the excitation force and the force which is transmitted across the terminals of the series-connected✶✻✸

inerter to the spring-damper arrangement.✶✻✹

Similarly, the equations of motion for the mechanical model D2 (Figure 1 (b)) can be derived as✶✻✺

𝑀𝑥̈𝑚(𝑡) + 𝐶𝑥̇𝑚(𝑡) +𝐾𝑥𝑚(𝑡) − 𝑏
(
𝑥̈𝑝(𝑡) − 𝑥̈𝑚(𝑡)) − 𝑘𝑜

(
𝑥𝑎(𝑡) − 𝑥𝑚(𝑡)

)
= 𝐹 (𝑡),

𝑚𝑝𝑥̈𝑝(𝑡) + 𝑏
(
𝑥̈𝑝(𝑡) − 𝑥̈𝑚(𝑡)

)
− 𝑐

(
𝑥̇𝑎(𝑡) − 𝑥̇𝑝(𝑡)

)
− 𝑘𝑖

(
𝑥𝑎(𝑡) − 𝑥𝑝(𝑡)

)
= 0,

𝑚𝑎𝑥̈𝑎(𝑡) + 𝑘𝑜
(
𝑥𝑎(𝑡) − 𝑥𝑚(𝑡)

)
+ 𝑐

(
𝑥̇𝑎(𝑡) − 𝑥̇𝑝(𝑡)

)
+ 𝑘𝑖

(
𝑥𝑎(𝑡) − 𝑥𝑝(𝑡)

)
= 0,

(2)✶✻✻

where 𝑚𝑝 is the parasitic mass positioned between the inerter and the spring-damper, and 𝑥𝑝(𝑡) is the displacement of✶✻✼

the parasitic mass.✶✻✽

The following dimensionless parameters are now introduced:✶✻✾

𝜇 =
𝑚𝑎

𝑀
, 𝛽 =

𝑚𝑝

𝑚𝑎

, 𝛿 =
𝑏

𝑚𝑎

, 𝜁𝑚 =
𝐶

2
√
𝐾𝑀

,

Ω =
𝜔

𝜔𝑚

, 𝛾 =
𝜔𝑎

𝜔𝑚

, 𝛼 =
𝜔𝑏

𝜔𝑎

, 𝜁𝑎 =
𝑐

2
√
𝑘𝑜𝑚𝑎

,

(3)✶✼✵

✶✼✶

where 𝜔 is the forcing frequency and 𝜔𝑚, 𝜔𝑎 and 𝜔𝑏 can be expressed as✶✼✷

𝜔𝑚 =

√
𝐾

𝑀
, 𝜔𝑎 =

√
𝑘𝑜

𝑚𝑎

, 𝜔𝑏 =

√
𝑘𝑖

𝑏
.✶✼✸

Taking the Fourier transform of Equations 1 and 2, dimensionless versions of the equations of motion can be written✶✼✹
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in the frequency domain. From Equation 1, the equations of motion for D1 can be derived as✶✼✺

[
𝛿Ω4 − 𝑗2

(
𝜁𝑚𝛿 + 𝜁𝑎𝛾 (1 + 𝜇𝛿)

)
Ω3 −

(
4𝜁𝑚𝜁𝑎𝛾 + 𝛿 + 𝛼2𝛾2𝛿 (1 + 𝜇𝛿)

)
Ω2

+ 𝑗2
(
𝜁𝑚𝛼

2𝛾2𝛿 + 𝜁𝑎𝛾
(
1 + 𝜇𝛾2

))
Ω +

(
𝛼2𝛾2𝛿

(
1 + 𝜇𝛾2

)) ]
𝑋𝑚 (Ω) +

[
𝑗2𝜁𝑎𝜇𝛾𝛿Ω

3

+
(
𝜇𝛾2𝛿 (1 + 𝛼𝛿)

)
Ω2 − 𝑗2𝜁𝑎𝜇𝛾

3Ω − 𝜇𝛾4𝛼2𝛿

]
𝑋𝑎 (Ω) = Δ (Ω)

(
−𝛿Ω2 + 𝑗2𝛾𝜁𝑎Ω + 𝛼2𝛾2𝛿

)
,

[
𝑗2𝜁𝑎𝛾𝛿Ω

3 +
(
𝛾2𝛿

(
1 + 𝛾2𝛿

))
Ω2 − 𝑗2𝜁𝑎𝛾

3Ω − 𝛾4𝛼2𝛿

]
𝑋𝑚 (Ω) +

[
𝛿Ω4 − 𝑗2

(
𝜁𝑎𝛾 (1 + 𝛿)

)
Ω3

−
(
𝛾2𝛿

(
𝛼2 + 1 + 𝛿

))
Ω2 + 𝑗2𝜁𝑎𝛾

3Ω + 𝛾4𝛼2𝛿

]
𝑋𝑎 (Ω) = 0,

(4)✶✼✻

where 𝑋𝑚 (Ω) and 𝑋𝑎 (Ω) are the Fourier transforms of 𝑥𝑚(𝑡) and 𝑥𝑎(𝑡). Δ (Ω) = ℱ{𝐹 (𝑡)}∕𝐾 is the scaled excitation✶✼✼

signal in the frequency domain. The equivalent equations of motion for D2 are obtained from Equation 2 as✶✼✽

(
(−1 − 𝛿𝜇) Ω2 + 𝑖2𝜁𝑚Ω + 1 + 𝛾2𝜇

)
𝑋𝑚 (Ω) +

(
𝛿𝜇Ω2

)
𝑋𝑝 (Ω) −

(
𝛾2𝜇

)
𝑋𝑎 (Ω) = Δ (Ω) ,

(
𝛿Ω2

)
𝑋𝑚 (Ω) +

(
(−𝛿 − 𝛽) Ω2 + 𝑖2𝜁𝑎𝛾Ω + 𝛼2𝛾2𝛿

)
𝑋𝑝 (Ω) +

(
−𝑗2𝜁𝑎𝛾Ω − 𝛼2𝛾2𝛿

)
𝑋𝑎 (Ω) = 0,

(
−𝛾2

)
𝑋𝑚 (Ω) +

(
−𝑗2𝜁𝑎𝛾Ω − 𝛼2𝛾2𝛿

)
𝑋𝑝 (Ω) +

(
−Ω2 + 𝑗2𝜁𝑎𝛾Ω + 𝛾2 + 𝛼2𝛾2𝛿

)
𝑋𝑎 (Ω) = 0,

(5)✶✼✾

where 𝑋𝑝 (Ω) is the Fourier transform of the displacement of 𝑥𝑝(𝑡).✶✽✵

The imaginary part in the complex stiffness term in D3 has no physical meaning in the time domain and this leads✶✽✶

to a noncausal model. The time domain analysis of this model can be important for the problem where the transient✶✽✷

response of the system is critical such as seismic response of a structure [42]. One method to obtain the time-domain✶✽✸

response using analytic signals was presented by Inaudi and Makris [45] and extended to the TID and the TMDI with✶✽✹

hysteretic damping by Deastra et al. [42]. However, the scope of the present study is only the steady-state response. For✶✽✺

the steady-state response, the equations of motion for D3 can be directly expressed in the frequency domain. Taking✶✽✻

𝑐 = 0 and replacing the stiffness 𝑘𝑖 term with complex stiffness term 𝑘𝑖(1 + 𝑗𝜂) in D2 the equations of motion for the✶✽✼

mechanical model D3 (Figure 1 (c)) can be written as✶✽✽

− 𝜔2𝑀𝑋𝑚 (𝜔) + 𝑗𝜔𝐶𝑋𝑚 (𝜔) +𝐾𝑋𝑚 (𝜔) + 𝜔2𝑏
(
𝑋𝑝 (𝜔) −𝑋𝑚 (𝜔)

)
− 𝑘𝑜

(
𝑋𝑎 (𝜔) −𝑋𝑚 (𝜔)

)
= 𝐹 (𝜔) ,

− 𝜔2𝑚𝑝𝑋𝑝 (𝜔) − 𝜔2𝑏
(
𝑋𝑝 (𝜔) −𝑋𝑚 (𝜔)

)
− 𝑘𝑖 (1 + 𝑗𝜂)

(
𝑋𝑎 (𝜔) −𝑋𝑝 (𝜔)

)
= 0,

− 𝜔2𝑚𝑎𝑋𝑎 (𝜔) + 𝑘𝑜
(
𝑋𝑎 (𝜔) −𝑋𝑚 (𝜔)

)
+ 𝑘𝑖 (1 + 𝑗𝜂)

(
𝑋𝑎 (𝜔) −𝑋𝑝 (𝜔)

)
= 0.

(6)✶✽✾

Using the dimensionless parameters in Equation 3, the dimensionless form of the equations of motion for D3 are✶✾✵

written from Equation 6 as✶✾✶

(
(−1 − 𝛿𝜇) Ω2 + 𝑗2𝜁𝑚Ω + 1 + 𝛾2𝜇

)
𝑋𝑚 (Ω) +

(
𝛿𝜇Ω2

)
𝑋𝑝 (Ω) −

(
𝛾2𝜇

)
𝑋𝑎 (Ω) = Δ (Ω) ,

(
𝛿Ω2

)
𝑋𝑚 (Ω) +

(
(−𝛿 − 𝛽) Ω2 + 𝛼2𝛾2𝛿 (1 + 𝑗𝜂)

)
𝑋𝑝 (Ω) −

(
𝛼2𝛾2𝛿 (1 + 𝑗𝜂)

)
𝑋𝑎 (Ω) = 0,

(
−𝛾2

)
𝑋𝑚 (Ω) −

(
𝛼2𝛾2𝛿 (1 + 𝑗𝜂)

)
𝑋𝑝 (Ω) +

(
−Ω2 + 𝛾2 + 𝛼2𝛾2𝛿 (1 + 𝑗𝜂)

)
𝑋𝑎 (Ω) = 0.

(7)✶✾✷

With some algebraic manipulation, it is possible to define the dimensionless frequency response functions between✶✾✸

the host structure and the excitation force:✶✾✹

|𝐻𝐷1(Ω, 𝛿, 𝛾, 𝛼, 𝜁𝑎, 𝜁𝑚, 𝜇)| =
𝑋𝑚

Δ
, (8)✶✾✺

✶✾✻

|𝐻𝐷2(Ω, 𝛿, 𝛾, 𝛼, 𝛽, 𝜁𝑎, 𝜁𝑚, 𝜇)| =
𝑋𝑚

Δ
, (9)✶✾✼

✶✾✽

|𝐻𝐷3(Ω, 𝛿, 𝛾, 𝛼, 𝛽, 𝜂, 𝜁𝑚, 𝜇)| =
𝑋𝑚

Δ
. (10)✶✾✾

Full expressions for Equations 8-10 are given in Appendix A. The dimensionless FRFs derived from Equations 8-10✷✵✵

are used in the numerical optimisation to obtain the optimal design parameters which is considered next.✷✵✶
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𝜇 𝛽 𝛾 𝛼 𝛿 𝜁𝑎 𝜂

❚▼❉ 0.0474 − 0.9476 − − 0.1342 −

❉✶ 0.0474 − 0.9710 0.9413 0.1073 0.0224 −

❉✷ 0.0450 0.054 0.9993 1.2924 0.0559 0.0221 −

❉✸ 0.0450 0.054 0.9870 1.2209 0.0655 − 0.5114

❚❛❜❧❡ ✶

❖♣t✐♠❛❧ ❞✐♠❡♥s✐♦♥❧❡ss ❞❡s✐❣♥ ♣❛r❛♠❡t❡rs ❢♦r t❤❡ ■❉❱❆s ❛♥❞ ❚▼❉✳

2.2. Tuning strategy and optimisation✷✵✷

To minimise the maximum amplitude, 𝐻∞ optimisation is used to obtain the optimal design parameters. For an✷✵✸

undamped SDOF host structure controlled with D1, closed-form solutions for the quasi-optimal design parameters✷✵✹

were presented in [15] and the optimal design parameters were already numerically obtained in [14]. However, these✷✵✺

optimal parameters are only applicable to undamped SDOF structures. Here, the optimal design parameters of D1 will✷✵✻

be determined by considering the damping in the host structure and the optimal design parameters of each configuration✷✵✼

will be numerically obtained using the Self-adaptive Differential Evolution (SaDE) algorithm [46, 47].✷✵✽

To do this, the objective function for 𝐻∞ optimisation will be constructed as follows✷✵✾

min𝜒

(
maxΩ

(
|𝐻𝑖(Ω)|

))
, (11)✷✶✵

where 𝜒 is a vector containing the unknown design parameters of the 𝑖th design, D𝑖, for 𝑖 = 1, 2, 3. Therefore, the✷✶✶

design parameters vector becomes 𝜒 = [𝛿, 𝛾, 𝛼, 𝜁𝑎]
𝑇 for D1 and D2, and 𝜒 = [𝛿, 𝛾, 𝛼, 𝜂]𝑇 for D3. The function |𝐻𝑖(Ω)|✷✶✷

is given in Equations 8-10 for D1, D2 & D3 respectively. It is assumed that Equation 11 is subjected to 𝜒 > 0 as each✷✶✸

parameter has to be a real and positive value.✷✶✹

For a given mass ratio, 𝜇, and parasitic mass ratio, 𝛽, the dimensionless optimal design parameters computed using✷✶✺

the SaDE algorithm are given in Table 1. In order to try and make a fair comparison of the performance analysis,✷✶✻

the inertial effect of the parasitic mass in D2 and D3 was also included in D1 and the TMD cases, by taking the sum✷✶✼

of 𝑚𝑝 and 𝑚𝑎 as the auxiliary mass. Therefore, an equivalent mass ratio, which equals 𝜇
D3
(1 + 𝛽

D3
), was considered✷✶✽

for D1 and the TMD. The frequency response of each configuration is shown in Figure 2 in comparison with a TMD✷✶✾

and the uncontrolled host structure. The result shows that D2 and D3 provide almost identical vibration suppression
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❋✐❣✉r❡ ✷✿ P❡r❢♦r♠❛♥❝❡ ❝♦♠♣❛r✐s♦♥ ♦❢ ❉✶✱ ❉✷✱ ❉✸✱ ❚▼❉ ❛♥❞ ✉♥❝♦♥tr♦❧❧❡❞ str✉❝t✉r❡ ✉s✐♥❣ t❤❡ ♦♣t✐♠❛❧ ❞✐♠❡♥s✐♦♥❧❡ss ❞❡s✐❣♥
♣❛r❛♠❡t❡rs ❣✐✈❡♥ ✐♥ ❚❛❜❧❡ ✶✳ ❚❤❡ ♠❛ss r❛t✐♦ ✭𝜇✮ ♦❢ ❚▼❉ ❛♥❞ ❉✶✱ ✇❤❡r❡ ♥♦ ♣❛r❛s✐t✐❝ ♠❛ss ❡①✐sts ✭𝛽 = 0✮✱ ❝♦♥s✐❞❡rs ♥♦t
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✷✷✵

performance and are also very close to the D1 response. All the IDVA designs are visibly better than the TMD✷✷✶

performance.✷✷✷

3. Design study✷✷✸

The realisation of D1, which is an idealised TID with no parasitic mass, is difficult for applications requiring small✷✷✹

inertance because even small amounts of component mass (e.g. the mass of the inerter’s terminal or the mass of the✷✷✺

terminal of the spring or damper) act as a parasitic mass. In this case, the parasitic mass has a strong effect on the✷✷✻

vibration suppression performance and it therefore has to be considered in the mathematical model. Furthermore, in the✷✷✼

present study, the practical implementation of the spring-damper arrangement will be accomplished using a complex✷✷✽

stiffness mechanism. As a result, the IDVA design is modified from the theoretical concept in D1 to the implementation✷✷✾

model in D3 that includes the parasitic mass and the complex stiffness mechanism as shown in Figures 1(a-c).✷✸✵

A pivoted-bar mechanism with flexural-hinges is employed for the inerter design while a simple notch type linear✷✸✶

spring is used for the outer spring. Analyses of the fatigue strength and the stiffness at the pivot become important with✷✸✷

the use of flexural-hinges. The next subsections present the design methodology, considering the fatigue life-cycle,✷✸✸

effect of the stiffness of the flexural-hinges, and the realisation of the damping in the structure.✷✸✹

3.1. Inerter design✷✸✺

The force, 𝐹 , produced by an (idealised) inerter is typically modelled using✷✸✻

𝐹 = 𝑏(𝑥̈2 − 𝑥̈1) (12)✷✸✼

where 𝑏 is the inertance with units of kg and (𝑥̈1 − 𝑥̈2) is the relative acceleration of the inerter. The subscripts 1✷✸✽

& 2 refer to the inerter device terminals, and an overdot represents differentiation with respect to time, 𝑡. Before the✷✸✾

introduction of the inerter concept by Smith [1], Flannelly [48] patented the Dynamic Vibration Isolator (DAVI) with✷✹✵

a lever mechanism, as shown schematically in Figure 3 (a). This DAVI system is a type of inerter but because of✷✹✶

the asymmetry cannot be effectively modelled using Equation 12. John and Wagg [41] developed a pivoted-flywheel✷✹✷

inerter device (Figure 3 (b)) which eliminates the asymmetry and therefore can be modelled as a pure inerter term✷✹✸

(i.e. a factor of (𝑥̈1 − 𝑥̈2)) as in Equation 12 (see also the discussion in [2]). Following a similar approach to [41], the✷✹✹

pivoted-bar inerter design proposed in this paper, is shown in Figure 3 (c). This also eliminates the asymmetry relating✷✹✺

to the relative acceleration terms in the DAVI system and can therefore be modelled as a pure inerter term, which is✷✹✻

proportional to the difference of the accelerations of the terminals. However, there are some important details relating✷✹✼

to this, which are explained in the next Subsection.✷✹✽

3.1.1. Mathematical model for the inerter design✷✹✾

The inerter bar in Figure 3 (c) is subject to both translational and the rotational motion depending on the accelera-✷✺✵

tions of the inerter’s terminals. Thus, it can be evaluated as a semi-definite system without considering any connection✷✺✶

at the terminals (meaning it is analysed without being connected to ground) [49]. Referring to Figure 3 (c), and ne-✷✺✷

glecting the mass of the legs on the pivots, the kinetic energy of the pivoted-bar inerter can be written as✷✺✸

𝑇 =
1

2
𝑚𝑥̇2

3
+

1

2
𝑚𝑥̇2

2
+

1

2
𝐼𝜃̇2 +

1

2
𝑚𝑏𝑎𝑟𝑥̇

2
1

(13)✷✺✹

where 𝐼 is the rotational moment of inertia of the inerter bar. Assuming the small angle approximation in the inerter✷✺✺

bar, linear relationships can be used to define 𝑥3 and 𝜃 in terms of 𝑥1 (which for this device is the displacement of the✷✺✻

centre of the mass of the inerter bar) and 𝑥2 (displacement of the lower pivot) as✷✺✼

𝑥3 = 2𝑥1 − 𝑥2 and 𝜃 =
𝑥1 − 𝑥2

𝑙𝑏𝑎𝑟∕2
. (14)✷✺✽

✷✺✾

Substituting the first derivative of the expressions in Equation 14 into Equation 13 yields✷✻✵

𝑇 =
1

2
𝑚
(
2𝑥̇1 − 𝑥̇2

)2
+

1

2
𝑚𝑥̇2

2
+

1

2
𝐼

( 𝑥̇1 − 𝑥̇2

𝑙𝑏𝑎𝑟∕2

)2

+
1

2
𝑚𝑏𝑎𝑟𝑥̇

2
1
. (15)✷✻✶
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la
lb
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x1
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x3

x1

x2

(a) (b)

x1

x2

x3

(c)

centre of mass

lbar/2

x1

m

m

x2

x3
centre of mass

(d)

m m

❋✐❣✉r❡ ✸✿ ❙❝❤❡♠❛t✐❝ ✈✐❡✇s ♦❢ ✭❛✮ t❤❡ ❉❆❱■ ♦❢ ❋❧❛♥♥❡❧❧② ❬✹✽❪✱ ✭❜✮ t❤❡ ♣✐✈♦t❡❞✲✢②✇❤❡❡❧ ✐♥❡rt❡r ❞❡✈✐❝❡ ♣r♦♣♦s❡❞ ❜② ❏♦❤♥ ❛♥❞
❲❛❣❣ ❬✹✶❪✱ ❛♥❞ ✭❝✮ t❤❡ ♣✐✈♦t❡❞✲❜❛r ✐♥❡rt❡r ❞❡s✐❣♥ ♣r♦♣♦s❡❞ ✐♥ t❤✐s ♣❛♣❡r✳ ❘❡❧❛t✐✈❡ ♠♦t✐♦♥ ❜❡t✇❡❡♥ t✇♦ t❡r♠✐♥❛❧s ♦❢ ✭❝✮
❝❛✉s❡s ❛ r♦t❛t✐♦♥ ♦❢ 𝜃 ✐♥ t❤❡ ❜❛r ❛s s❤♦✇♥ ✐♥ ✭❞✮✳

There is no potential energy, 𝑉 , in the pivoted-bar system as it consists of only inertial elements. Therefore, Lagrange’s✷✻✷

equation for the system in Figure 3 (c) is written as✷✻✸

𝑑

𝑑𝑡

𝜕𝑇

𝜕𝑞̇𝑛
−

𝜕𝑇

𝜕𝑞𝑛
+

𝜕𝑉

𝜕𝑞𝑛
= 𝑄𝑛 (16)✷✻✹

where 𝑉 = 0 and 𝑄𝑛 = 0 as there are no dissipative or external forces considered. Here 𝑛 is the number of degrees of✷✻✺

freedom and 𝑞𝑛 defines the generalised coordinates. The system depicted in Figure 3 (c) has two degrees of freedom✷✻✻

being described by 𝑥1 and 𝑥2. Therefore, two equations of motion are found with respect to 𝑥1 and 𝑥2. Substituting✷✻✼

them into 𝑞𝑛 in Equation 16 gives:✷✻✽

With respect to 𝑥1: (
𝑚𝑏𝑎𝑟

3
+ 2𝑚)(𝑥̈1 − 𝑥̈2) + (𝑚𝑏𝑎𝑟 + 2𝑚)𝑥̈1 = 0 (17a)✷✻✾

With respect to 𝑥2: (
𝑚𝑏𝑎𝑟

3
+ 2𝑚)(𝑥̈2 − 𝑥̈1) = 0 (17b)✷✼✵

✷✼✶

where 𝑚𝑏𝑎𝑟+2𝑚 is the mass of the pivoted-bar (i.e. the inerter). Notice that using this analysis, Equation 17a, considers✷✼✷

motion with respect to 𝑥1 that includes the rigid body motion of the mass of the inerter (which is only proportional to✷✼✸

𝑥̈1) and the relative inertance term. Whereas, Equation 17b, considers motion with respect to 𝑥2, but includes only the✷✼✹

relative inertance term. The relative inertance coefficient term will be defined to be✷✼✺

𝑏 = (
𝑚𝑏𝑎𝑟

3
+ 2𝑚). (18)✷✼✻

Note that 𝑏 is smaller than the total mass of the pivoted-bar (𝑚𝑏𝑎𝑟 + 2𝑚), and so the total mass of the bar (i.e. inerter)✷✼✼

cannot be neglected as it often is in other applications.✷✼✽
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      M
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𝑏
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)
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𝑀 + 𝑚𝑏𝑎𝑟 + 2𝑚
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𝑏
(
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)
+ 𝑚𝑝𝑥̈2 = 0
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      M

      mpParasitic mass

Host structure

Inerter

(b)

𝑏
(
𝑥̈1 − 𝑥̈2

)
+
(
𝑚𝑝 + 𝑚𝑏𝑎𝑟 + 2𝑚

)
𝑥̈1 = 0

𝑏
(
𝑥̈2 − 𝑥̈1

)
+𝑀𝑥̈2 = 0

❋✐❣✉r❡ ✹✿ ❚❤❡ ✐♥❡rt❡r ✐s ❝♦♥♥❡❝t❡❞ t♦ t❤❡ ❤♦st str✉❝t✉r❡ ❢r♦♠ t❤❡ ♣✐✈♦t ❛t t❤❡ ❝❡♥tr❡ ♦❢ ♠❛ss ✐♥ ✭❛✮ ❛♥❞ t❤✉s✱ t❤❡ str✉❝t✉r❛❧
♠❛ss ♦❢ t❤❡ ✐♥❡rt❡r ❝❛♥ ❜❡ ♥❡❣❧❡❝t❡❞ ❛s 𝑚𝑏𝑎𝑟 + 2𝑚 ❝❛♥ ❜❡ ✐♥❝❧✉❞❡❞ ✇✐t❤ t❤❡ ♠❛✐♥ ♠❛ss 𝑀 ✳ ■♥ t❤❡ ♦t❤❡r ❝❛s❡ ✭❜✮✱ t❤❡
str✉❝t✉r❛❧ ♠❛ss ♦❢ t❤❡ ✐♥❡rt❡r ❝♦♥tr✐❜✉t❡s t♦ t❤❡ ♣❛r❛s✐t✐❝ ♠❛ss✳

❉❡♥s✐t②✱ 𝜌 ✭❦❣✴♠3✮ ❈r♦ss s❡❝t✐♦♥ ✭♠ ① ♠✮ 𝑙𝑏𝑎𝑟 ✭♠✮ 𝑚𝑏𝑎𝑟 ✭❦❣✮

✷✼✵✵ ✵✳✵✶✺ ① ✵✳✵✶✺ ✵✳✵✽✵ ✵✳✵✹✽✻

❚❛❜❧❡ ✷

❉❡s✐❣♥ ♣r♦♣❡rt✐❡s ♦❢ t❤❡ ✐♥❡rt❡r ❞❡✈✐❝❡✳

Another important factor for this type of design is the attachment configuration, as shown in Figure 4. Here it can✷✼✾

be seen that if the pivot in the centre of the bar is connected to the host structure of the system, then the mass of the✷✽✵

pivoted-bar acts with the main mass, 𝑀 . In this way, the mass of the pivoted-bar can be excluded from the parasitic✷✽✶

mass, Figure 4 (a). In this scenario, it is often the case that 𝑀 ≫ 𝑚𝑏𝑎𝑟 + 2𝑚 and so there is little change to the system✷✽✷

behaviour. However, if the other pivot is connected to the host structure, the mass of the inerter increases the parasitic✷✽✸

mass in the system as shown in Figure 4 (b). This scenario is to be avoided, because it increases the influence of the✷✽✹

parasitic mass and this can degrade the system performance slightly, as shown in Figure 2 (dashed red line). Also, in✷✽✺

this scenario, adjusting the inertance by adding mass to the inerter bar (𝑚) causes an increase in the parasitic mass,✷✽✻

which leads to the detuning effect. Each adjustment in the inertance requires a new optimisation to obtain the best✷✽✼

design parameters due to change in the parasitic mass.✷✽✽

3.1.2. Design and test of the inerter✷✽✾

Equation 18 gives the inertance value which is used to design the experimental inerter device. The inertance✷✾✵

value can be increased by altering the parameters of the pivoted-bar. Figures 5 (a-c) show the schematic views of the✷✾✶

realisation of the mechanical model presented in Figure 3 (c). It is possible to adjust the inertance via the addition✷✾✷

of two equal masses at both ends of the bar as shown in Figure 5 (c). The mass of the bar, 𝑚𝑏𝑎𝑟 is the main design✷✾✸

parameter of the inerter while the masses at each end, 𝑚, in Equation 18 are used as a fine-tuning adjustment parameter✷✾✹

for the inerter. The design properties of the final inerter design are given in Table 2. The pivoted-bar inertance is✷✾✺

calculated as 0.0162 kg for the case when the fine-tuning adjustment masses are set to zero.✷✾✻

Figure 5 (d) illustrates the actual inerter device after its manufacture. The pivots were designed as flexure notches✷✾✼

to eliminate the friction and maintain a low stiffness. Both flexure notches and the inerter bar were manufactured from✷✾✽
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Aluminium material (more details of the design are given in Subsection 3.1.3).✷✾✾

❋✐❣✉r❡ ✺✿ ❉❡s✐❣♥ ♦❢ t❤❡ ✐♥❡rt❡r ❞❡✈✐❝❡ ✇✐t❤ ✢❡①✉r❡ ♥♦t❝❤ ❤✐♥❣❡s✳ ❚❤❡ s❝❤❡♠❛t✐❝ ✈✐❡✇s s❤♦✇ ✭❛✮ ❡q✉✐❧✐❜r✐✉♠ ♣♦s✐t✐♦♥✱ ✭❜✮
✇❤✐❧❡ r♦t❛t✐♥❣✱ ❛♥❞ ✭❝✮ s❤♦✇s t❤❡ s✐❞❡ ✈✐❡✇ ✇✐t❤ t❤❡ ❛❞❥✉st♠❡♥t ♠❛ss❡s ❛t ❜♦t❤ ❡♥❞s ♦❢ t❤❡ ✐♥❡rt❡r ❜❛r✳ P❧♦t ✭❞✮ s❤♦✇s ❛
♣❤♦t♦❣r❛♣❤ ♦❢ t❤❡ ♠❛♥✉❢❛❝t✉r❡❞ ✐♥❡rt❡r✳

The inerter design in Figure 5 (d) was experimentally tested to evaluate the performance. It was fixed at the base✸✵✵

and forced from the upper flexure notch using an impulse hammer. The data was measured from the same point✸✵✶

using an accelerometer type PCB 3553B18. The experiments were conducted for a selection of different fine-tuning✸✵✷

mass values, and the results are shown in Figure 6 with the theoretical model shown as dashed horizontal lines. The✸✵✸

experimentally computed inertance values are computed by taking the inverse of the accelerance response of the device✸✵✹

as 𝑏 = 𝐹∕𝑥̈ (averaged) for frequencies above 80 Hz. The results show that the inerter device achieves the targeted✸✵✺

inertance value (albeit with small fluctuations) for each mass added.✸✵✻
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❋✐❣✉r❡ ✻✿ ❊①♣❡r✐♠❡♥t❛❧ ✐♥❡rt❛♥❝❡ ♦❢ t❤❡ ♣✐✈♦t❡❞✲❜❛r ✐♥❡rt❡r ❞❡✈✐❝❡ ✇✐t❤ t❤❡ ❧♦✇❡r ✢❡①✉r❡ ✜①❡❞ ❛♥❞ t❤❡ ✉♣♣❡r ✢❡①✉r❡ ❡①❝✐t❡❞
✇✐t❤ ❛♥ ✐♠♣❛❝t ❤❛♠♠❡r ✭❉②tr❛♥ ✺✽✵✵❇✷✮✳ ✷♠ ✐♥ t❤❡ ❧❡❣❡♥❞ r❡♣r❡s❡♥ts t❤❡ t♦t❛❧ ♠❛ss❡s ❛❞❞❡❞ ❛t ❜♦t❤ ❡♥❞s ✭♠✰♠✮✳
❉❛s❤❡❞ ❤♦r✐③♦♥t❛❧ ❧✐♥❡s ✐♥❞✐❝❛t❡ t❤❡ ❞❡s✐❣♥❡❞ ✐♥❡rt❛♥❝❡ ✈❛❧✉❡ ❢♦r ❡❛❝❤ ❝❛s❡✳
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❚❛❜❧❡ ✸

❉❡s✐❣♥ ♣❛r❛♠❡t❡rs ♦❢ t❤❡ ♠❛♥✉❢❛❝t✉r❡❞ s❡♠✐✲❝✐r❝✉❧❛r ✢❡①✉r❡ ♥♦t❝❤❡s ❛♥❞ t❤❡ t❤❡♦r❡t✐❝❛❧ ❡st✐♠❛t✐♦♥ ♦❢ t❤❡ t♦t❛❧ st✐✛♥❡ss✱
✇❤❡r❡ 𝑘𝜃 ✐s t❤❡ r♦t❛t✐♦♥❛❧ st✐✛♥❡ss ♦❢ ♦♥❡ ✢❡①✉r❛❧✲❤✐♥❣❡ ❛♥❞ 𝑘𝑛𝑜𝑡𝑐ℎ ✐s t❤❡ t♦t❛❧ st✐✛♥❡ss ♦❢ ❢♦✉r ✢❡①✉r❛❧✲❤✐♥❣❡s ✐♥ ❋✐❣✉r❡ ✺

3.1.3. Design of the flexural-hinges✸✵✼

Although the use of the flexural-hinges provides the elimination of friction, the stiffness of the flexure notches✸✵✽

may still hinder the device from working effectively as an inerter across the required frequency range. Therefore, the✸✵✾

resonance region of the inerter device consisting of the pivoted-bar and flexural-hinges should be designed to be as✸✶✵

far away from the working frequencies as possible, or the device would have to be modelled as a series-connected✸✶✶

inerter-spring arrangement.✸✶✷

w

t

R

knotch b

(a) (b)

x1

x2

θ

❋✐❣✉r❡ ✼✿ ✭❛✮ ▼❡❝❤❛♥✐❝❛❧ ♠♦❞❡❧ ♦❢ ❛♥ ✐♥❡rt❡r ❞❡s✐❣♥ ✇✐t❤ ✢❡①✉r❛❧✲❤✐♥❣❡s ✭❜✮ t❤❡ ✐❧❧✉str❛t✐♦♥ ♦❢ ❛ s❡♠✐✲❝✐r❝✉❧❛r ✢❡①✉r❡ ♥♦t❝❤✳

The mechanical model of the pivoted-bar plus flexural-hinges inerter device can be represented as as idealised✸✶✸

inerter and a spring arranged in parallel, as shown in Figure 7 (a). The rotational stiffness for a semi-circular notch✸✶✹

hinge, such as that shown schematically in Figure 7 (b), can be estimated as [50]✸✶✺

𝑘𝜃 ≈
2𝐸𝑤𝑡5∕2

9𝜋𝑅1∕2
(19)✸✶✻

where 𝐸, 𝑤, 𝑡 and 𝑅 are Young’s Modulus of the material, depth of the flexure notch, thickness of the flexure notch✸✶✼

and radius of the flexure notch respectively. The total translational stiffness 𝑘𝑛𝑜𝑡𝑐ℎ for the four notches manufactured✸✶✽

is presented in Table 3. This was found to be 5020.3 N/m for Aluminium material and 𝑙𝑏𝑎𝑟 = 80 mm.✸✶✾

The relative accelerance of the device in Figure 7 (a) is written as✸✷✵

(𝑥̈2 − 𝑥̈1)

𝐹
=

−𝜔2

𝑘𝑛𝑜𝑡𝑐ℎ − 𝑏𝜔2
, (20)✸✷✶

where 𝐹 is the force generated by the spring-inerter arrangement, 𝜔 is the forcing frequency. The inertance is found✸✷✷

by taking the inverse of the accelerance. The effect of the stiffness of the notched on the inertance is shown in Figure✸✷✸

8 for the given values of 𝐸,𝑤,𝑅 and 𝑙𝑏𝑎𝑟 in Table 3, and consequently, 𝑏 = 0.03 𝑘𝑔 in Equation 20. The results are✸✷✹

also shown for three different values of the notch thickness.✸✷✺

The designed inerter works effectively at frequencies larger than 50 Hz for the notch thickness of 0.1 mm, where✸✷✻

an almost constant inertance value can be obtained (dashed black line in Figure 8). However, due to manufacturing✸✷✼

limitations, flexural-hinges with a notch thickness of 0.5 mm were manufactured in this study. Therefore, there is✸✷✽

a difference between the inertance that is generated by the inerter device with a notch thickness of 0.5 mm and the✸✷✾

nominal (or targeted) inertance in the 100 − 200 Hz frequency band. If required, this difference arising from the✸✸✵

stiffness of the flexural hinges can be compensated for by adjusting the inertance, and a similar performance to the✸✸✶
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pure inerter (𝑘𝑛𝑜𝑡𝑐ℎ = 0) can be achieved — as presented in Section 4. It should be noted that the flexure stiffness✸✸✷

of the experimental result presented in Figure 6 is half of the total since one of the terminals where the measurement✸✸✸

happened was free.✸✸✹

The effective working frequency band of the pivoted-bar inerter is defined by the resonance region of the system✸✸✺

in Figure 7a. For low effective working frequency band, the resonance region must be shifted to as lower frequencies✸✸✻

as possible. This can be achieved by having either smaller notch stiffness or higher inertance in the denominator✸✸✼

of Equation 20. For a given inertance, the notch stiffness can be reduced by changing the geometric properties or✸✸✽

material from Equation 19. For instance, reducing the notch thickness 𝑡 reduces the notch stiffness and shifts the✸✸✾

resonance region to lower frequencies. Further reduction in the stiffness can be provided by choosing a material✸✹✵

with lower Young’s modulus. For high frequency applications, it is important to consider the fatigue life-cycle of the✸✹✶

flexural hinge and choose a material with a reasonable fatigue strength. For low frequency applications, the focus on✸✹✷

the material choice can be Young’s modulus as fatigue life-cycle ceases to be one of the main issues.✸✹✸

One of the main issues in the use of the flexural mechanism such as the notch hinges is fatigue failure. The life-cycle✸✹✹

of the absorber under harmonic excitation can be significantly reduced due to the fatigue failure of the notch hinges.✸✹✺

The fatigue life of the flexural-hinges can be improved by smaller notch thickness as the maximum stress, which occurs✸✹✻

in the thinnest section of the notch, decreases with decreasing notch thickness. Hence, the allowable rotational stroke✸✹✼

of the pivoted-bar without the fatigue failure is increased. The fatigue life-cycle analysis of the flexural-hinges is✸✹✽

presented in Appendix B.✸✹✾

3.2. Design and test of the damper✸✺✵

In the present study, a silicone gel material was chosen for the damping component. This material was relatively✸✺✶

straightforward to manufacture and incorporate into a small size device [51]. Hysteretic damping with complex stiffness✸✺✷

is used to model the gel, assuming that the mechanical properties of the gel are frequency-independent. The application✸✺✸

of linear hysteretic damping into both the TID and TMDI was previously studied by Deastra et al. [42].✸✺✹

The silicone gel used in the experiments was based on polyorganosiloxanes (named Magic Power Gel, from✸✺✺

Raytech) and consists of a mixture of two components and the mixing ratio defines the loss factor and Young’s modu-✸✺✻

lus. Previous studies have shown that the damping (loss factor) and elastic (Young’s Modulus) properties of the silicon✸✺✼

gel remain unchanged under different temperature and different dynamic strain at room temperature [52, 53, 54]. The✸✺✽

silicone gel with a mixing ratio of 1:1.1 was used to create the sliding plate device shown in Figure 9 (a). The gel on✸✺✾

both sides works on the shear plane and thus, noting that the shear modulus equals 𝐺 =
𝐸

2(1+𝜈)
, the stiffness of the gel✸✻✵
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❋✐❣✉r❡ ✾✿ ●❡❧ ❞❛♠♣❡r ❝♦♥s✐st✐♥❣ ♦❢ ❛ s❧✐❞✐♥❣ ♣❧❛t❡ ❛♥❞ t✇♦ s✐❧✐❝♦♥❡ ❣❡❧ ❧❛②❡rs✿ ✭❛✮ s✐❞❡ ✈✐❡✇ ❛♥❞ ✭❜✮ ✐s♦♠❡tr✐❝ ✈✐❡✇ ♦❢ t❤❡
♠❛♥✉❢❛❝t✉r❡❞ ❣❡❧ ❞❛♠♣❡r✳

❚♦t❛❧ ♠❛ss✱ 𝑚 ✭❣r❛♠✮ ◆❛t✳ ❢r❡q✳✱ 𝜔𝑛 ✭❍③✮ ▲♦ss ❢❛❝t♦r✱ 𝜂 ❙t✐✛♥❡ss✱ 𝑘𝑖 ❦◆✴♠

❚❡st ❛ ✭❋✐❣✉r❡ ✶✵❛✮ 38.5 110 0.545 23.4

❚❡st ❜ ✭❋✐❣✉r❡ ✶✵❜✮ 49.5 130 0.515 26.3

❚❡st ❝ ✭❋✐❣✉r❡ ✶✵❝✮ 66.5 141 0.505 25.3

❆✈❡r❛❣❡ − − 0.5217 24.97

❚❛❜❧❡ ✹

▲♦ss ❢❛❝t♦r ❛♥❞ t❤❡ st✐✛♥❡ss ♦❢ t❤❡ ❣❡❧ ♦❜t❛✐♥❡❞ ❢r♦♠ t❤r❡❡ t❡sts ✇✐t❤ t❤❡✐r ❛✈❡r❛❣❡ ✈❛❧✉❡s✳

damper can be calculated as:✸✻✶

𝑘𝑖 =
𝐸𝐴

(1 + 𝜈)𝑑
(21)✸✻✷

where 𝐸 is Young’s modulus corresponding to 1:1.1 mixing ratio, 𝐴 is the area of the gel, 𝑑 is the thickness of the gel✸✻✸

and 𝜈 is the Poisson’s ratio, which is assumed to be 0.5 [54]. Equation 21 shows that the stiffness of the gel damper✸✻✹

can be adjusted by setting the area and the thickness of the gel. A gel damper with two identical gel layers with an area✸✻✺

of 35 mm x 45 mm and a thickness of 3 mm on both side was manufactured as shown in Figure 9 (b).✸✻✻

In order to measure and evaluate the frequency-dependency of the mechanical properties of the gel under the✸✻✼

working frequencies, the impulse hammer test was applied to the gel damper. It was fixed from the damper base and✸✻✽

a small aluminium block was added to the sliding part for the connection of the accelerometer. The natural frequency✸✻✾

of the gel damper was increased by adding mass since the effects of the loss factor and the stiffness of the gel becomes✸✼✵

more apparent around resonance. Three cases were conducted: no additional mass added, the total mass was increased✸✼✶

by 11 gram and 28 gram. The impulse hammer was applied by hitting the small aluminium block. The accelerance of✸✼✷

the gel damper is written as:✸✼✸

𝑥̈

𝐹
=

−𝜔2

𝑘𝑖(1 + 𝑗𝜂) − 𝑚𝜔2
(22)✸✼✹

where 𝑘𝑖 and 𝜂 are the stiffness and the loss factor of the gel, 𝜔 is the forcing frequency and 𝑚 is the total mass of the✸✼✺

sliding plate, aluminium block and the accelerometer, which is 38.5 gram. The loss factor and the stiffness of the gel✸✼✻

were found by fitting 𝑘𝑖 and 𝜂 in Equation 22 to the experimental curve for known mass values.✸✼✼

The mechanical properties of the gel fitted are given in Table 4. The experimental results in comparison with the✸✼✽

numerical simulation using the corresponding mechanical properties are presented in Figure 10 (a-c), respectively.✸✼✾

They are also compared with the average values of the loss factors and the stiffness obtained from three cases.✸✽✵

It was observed that there is no significant change in the stiffness and the loss factor of the gel between 100 Hz✸✽✶

and 150 Hz, which are the working frequency of the absorber. The required loss factor 𝜂 of 0.5217 and stiffness 𝑘𝑖 of✸✽✷

24.97 𝑘𝑁∕𝑚 were achieved.✸✽✸
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♥✉♠❡r✐❝❛❧ s✐♠✉❧❛t✐♦♥s ♦❜t❛✐♥❡❞ ❜② ❊q✉❛t✐♦♥ ✷✷ ❛♥❞ t❤❡ ❛✈❡r❛❣❡ ✈❛❧✉❡s ♦❢ t❤❡ t❤r❡❡ ❝❛s❡s✿ ✭❛✮ ♥♦ ♠❛ss ❛❞❞❡❞✱ ✭❜✮ 11 ❣r❛♠
♠❛ss ❛♥❞ ✭❝✮ 28 ❣r❛♠ ♠❛ss ❛❞❞❡❞✳

3.3. Final design✸✽✹

The inerter-based dynamic vibration absorber (D3) after final assembly is shown in Figure 11. In the design D3✸✽✺

in Figure 1(c), a series connection of a hysteretic spring/damper 𝑘𝑖(1 + 𝑗𝜂), a parasitic mass 𝑚𝑝 and an inerter 𝑏 is✸✽✻

connected in parallel to an outer spring 𝑘𝑜. An auxiliary mass is added to the hysteretic spring/damper side, and the✸✽✼

whole system is attached to the host structure from the inerter side. In Figure 11, the gel damper operates as the✸✽✽

hysteretic spring/damper. The sliding plate acts as the parasitic mass and provides the series connection between the✸✽✾

gel damper and the inerter. The gel damper’s base (the damper-inner spring’s base) is also the auxiliary mass. The✸✾✵

prototype realises the design D3 as the series connection of the gel damper, the sliding plate and the inerter is parallel✸✾✶

connected to the outer spring between the auxiliary mass and the host structure after the attachment of the prototype✸✾✷

to the host structure from the absorber base.✸✾✸

The prototype includes a notch type linear spring as the outer spring (𝑘𝑜 in Figure 1 (c)) with a stiffness of 251.89✸✾✹

kN/m. The mass of the damper-inner spring base is accounted for as part of the auxiliary mass since it is completely✸✾✺

supported by the outer spring. The total auxiliary mass and consequently, the mass ratio is set by mounting additional✸✾✻

mass on the damper-inner spring base shown in Figure 11.✸✾✼

Auxiliary mass

Inerter

Outer spring

Damper-Inner spring

Absorber base

❋✐❣✉r❡ ✶✶✿ ❚❤❡ ♣r♦t♦t②♣❡ ♠❛♥✉❢❛❝t✉r❡❞ ❛❢t❡r t❤❡ ❛ss❡♠❜❧②✳

❍ ❉♦❣❛♥ ❡t ❛❧✳✿ Preprint submitted to Elsevier P❛❣❡ ✶✹ ♦❢ ✷✹



❉❡s✐❣♥✱ t❡st✐♥❣ ❛♥❞ ❛♥❛❧②s✐s ♦❢ ❛ ♣✐✈♦t❡❞✲❜❛r ✐♥❡rt❡r ❞❡✈✐❝❡ ✉s❡❞ ❛s ❛ ✈✐❜r❛t✐♦♥ ❛❜s♦r❜❡r

The mass of the sliding plate, as shown in Figure 9, is an isolated mass that cannot be included as part of the auxiliary✸✾✽

mass nor the host structure and acts as a parasitic mass of 0.026 kg in the system. Although it can be reduced, it would✸✾✾

be difficult to completely avoid the parasitic mass effect due to small inertance values as previously discussed.✹✵✵

4. Experimental testing✹✵✶

4.1. Experimental setup and dynamic properties✹✵✷

The experimental setup to test the prototype is presented in Figure 12. An aluminium block that is fixed to a com-✹✵✸

pliant mechanism is used for the host structure so that the dominant mode of the host structure is in the horizontal✹✵✹

direction. The prototype is placed to the top surface of the aluminium block attached at the base. Modal tests of the✹✵✺

structure with and without the prototype were conducted with the impulse hammer Dytran 5800B2 and the accelerom-✹✵✻

eter PCB 353B18. The impulse hammer was applied to the aluminium block in the direction of the dominant mode and✹✵✼

the acceleration was measured from the same direction. The data were acquired and processed with LMS Test.Lab.✹✵✽

The dominant vibration mode in the horizontal direction of the host structure was measured at 117.3 Hz with the modal✹✵✾

mass of 10.7 kg and damping of 2.3%.

Compliant 

mechanism

Ground

❋✐❣✉r❡ ✶✷✿ ❊①♣❡r✐♠❡♥t❛❧ s❡t✉♣ ✇❤❡r❡ t❤❡ ♣r♦t♦t②♣❡ ✐s t❡st❡❞ ♦♥ ❛♥ ❆❧✉♠✐♥✐✉♠ ❜❧♦❝❦ ✭❤♦st str✉❝t✉r❡ ♠❛ss✮ ❛tt❛❝❤❡❞ t♦ ❛
❝♦♠♣❧✐❛♥t ♠❡❝❤❛♥✐s♠ ✭❤♦st str✉❝t✉r❡ st✐✛♥❡ss✮✳

✹✶✵

4.2. Tuning parameters for experiment✹✶✶

Based on the dynamic properties of the host structure, the optimal design parameters for D3 were obtained from✹✶✷

the dimensionless design parameters (as given in Table 1) for 𝜇 = 0.045 and 𝛽 = 0.054, considering a parasitic mass✹✶✸

of 0.026 kg due to the mass of the sliding plate between the gel layers. Initially, design parameters were obtained✹✶✹

assuming a constant inertance value at each frequency. However, for the notch thickness of 0.5 mm, the inerter does✹✶✺

not provide a constant inertance at the effective working frequency band of this experimental case due to the stiffness✹✶✻

of the flexure notches as discussed in Section 3.1.3. Hence, an equivalent optimal inertance was also obtained by✹✶✼

considering the spring-inerter arrangement (as shown in Figure 7 (a)) instead of just an inerter element. The notch✹✶✽

stiffness was determined as 5020.3 N/m from the theoretical estimation. However, it was estimated that the actual✹✶✾

stiffness value is around 9000 N/m on the flexure notches due to possible stress stiffening (owing to assembly and the✹✷✵

load of mass added to the inerter bar) and manufacturing errors.✹✷✶

Constraining all design parameters except the inertance to their optimal design values, the equivalent optimal✹✷✷

inertance values was found using a SaDE numerical optimisation. The optimal design parameters for the constant✹✷✸
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𝑘𝑜 ✭❦◆✴♠✮ 𝑘𝑖 ✭❦◆✴♠✮ 𝜂 𝑏 ✭❦❣✮ 𝐻𝑚𝑎𝑥 ✭♠✴◆✮

❉✸ ✭𝑘𝑛𝑜𝑡𝑐ℎ = 0✮ 254.51 24.84 0.5114 0.032 7.52 ① 10−7

❉✸ ✭𝑘𝑛𝑜𝑡𝑐ℎ = 5020.3 ◆✴♠✮ 254.51∗ 24.84∗ 0.5114∗ 0.043 7.69 ① 10−7

❉✸ ✭𝑘𝑛𝑜𝑡𝑐ℎ = 9000 ◆✴♠✮ 254.51∗ 24.84∗ 0.5114∗ 0.052 7.86 ① 10−7

✯❝♦♥str❛✐♥❡❞ ♣❛r❛♠❡t❡rs

❚❛❜❧❡ ✺

❖♣t✐♠❛❧ ❞❡s✐❣♥ ♣❛r❛♠❡t❡rs ♦❜t❛✐♥❡❞ ❜② ♣❡r❢♦r♠✐♥❣ ❙❛❉❊ ❢♦r ♥✉♠❡r✐❝❛❧ ♦♣t✐♠✐s❛t✐♦♥ ❢♦r t❤❡ ♥♦t❝❤ st✐✛♥❡ss ♦❢ 0✱ 5020.3
◆✴♠ ❛♥❞ 9000 ◆✴♠✳ 𝐻𝑚𝑎𝑥 ❝♦rr❡s♣♦♥❞s t♦ t❤❡ ♠❛①✐♠✉♠ ❛♠♣❧✐t✉❞❡ ✐♥ t❤❡ ❋❘❋ ♦❜t❛✐♥❡❞ ❢r♦♠ ♥✉♠❡r✐❝❛❧ ♦♣t✐♠✐s❛t✐♦♥✳

inertance case and the variable inertance cases where the notch stiffness is taken into account are given in Table 5.✹✷✹

The actual values of the experimental parameters were also identified. In this case, the actual stiffness of the outer✹✷✺

spring 𝑘𝑜 was measured as 251.89 kN/m, the stiffness 𝑘𝑖 and the loss factor 𝜂 were found to be 24.97 kN/m and 0.5217✹✷✻

respectively, which is the same as stated in Section 3.2.✹✷✼
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❋✐❣✉r❡ ✶✸✿ ❊①♣❡r✐♠❡♥t❛❧ r❡s✉❧ts ♦❢ t❤❡ ❤♦st str✉❝t✉r❡ ✇✐t❤ t❤❡ ♣r♦t♦t②♣❡ ✭■❉❱❆✲❉✸ ♠❛♥✉❢❛❝t✉r❡❞✮ ✇✐t❤ ❛ ♠❛ss r❛t✐♦ ♦❢
0.045 ❛♥❞ ❛ ♣❛r❛s✐t✐❝ ♠❛ss r❛t✐♦ ♦❢ 0.054 ✐♥ ❝♦♠♣❛r✐s♦♥ ✇✐t❤ t❤❡ ❡①♣❡r✐♠❡♥t❛❧ r❡s✉❧t ♦❢ t❤❡ ✉♥❝♦♥tr♦❧❧❡❞ ❤♦st str✉❝t✉r❡✱
❛♥❞ t❤❡ ♥✉♠❡r✐❝❛❧ s✐♠✉❧❛t✐♦♥s ♦❢ ❉✸ ✭❢♦r 𝑘𝑛𝑜𝑡𝑐ℎ = 0 ❛♥❞ 𝑘𝑛𝑜𝑡𝑐ℎ = 9000 ◆✴♠✮ ✇✐t❤ t❤❡ ❞❡s✐❣♥ ♣❛r❛♠❡t❡rs ♣r❡s❡♥t❡❞ ✐♥ ❚❛❜❧❡
✺ ❛♥❞ ❛ ❝❧❛ss✐❝❛❧ ❚▼❉✳

4.3. Experimental results✹✷✽

The magnitude of the frequency response function (FRF) of the host structure obtained from the modal tests with✹✷✾

the impulse hammer is shown in Figure 13. Here the FRF of the host structure without the prototype is shown as the✹✸✵

“uncontrolled structure" (black dotted line) compared with the host structure with the prototype which is “IDVA-D3✹✸✶

manufactured" (red dotted line). As would be expected, the addition of the prototype leads to a large reduction in the✹✸✷

resonant response of the host structure.✹✸✸

Also numerical simulations of a TMD (black dashed line) and two cases of D3 (blue solid and green dashed lines)✹✸✹

are plotted for comparison in Figure 13. The numerical simulation for the TMD was obtained from optimal design✹✸✺

parameters (as given in Table 1) for 𝜇
D3
(1 + 𝛽

D3
) = 0.0474, taking the effect of the parasitic mass into account in✹✸✻
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the comparison. The numerical simulation results for D3 were obtained using the optimal design parameters given in✹✸✼

Table 5 for 𝜇 = 0.045 and 𝛽 = 0.054, and two case are shown for 𝑘𝑛𝑜𝑡𝑐ℎ = 0 (blue) and 𝑘𝑛𝑜𝑡𝑐ℎ = 9000 (green).✹✸✽

The prototype reduced the maximum amplitude of the host structure from 36.34 x 10−7 m/N to 7.37 x 10−7 m/N,✹✸✾

which corresponds to 79.7% vibration suppression as seen in Figure 13. This means that the prototype has shown✹✹✵

18.1% performance improvement than a classical TMD when it compared with the numerical simulation result of the✹✹✶

host structure with TMD.✹✹✷

Simulation results demonstrate that the stiffness of the flexure notch of 9000N/m increases the maximum amplitude✹✹✸

by 4.5% compared to zero notch stiffness (pure inerter) when the inertance is properly adjusted. This shows that the✹✹✹

IDVA design with the notch stiffness can still effectively suppress the vibration in practice. It is worth pointing out✹✹✺

that the 4.5% increase in the maximum amplitude due the notch stiffness can be decreased to smaller than 1% if✹✹✻

the constraints are removed on the design parameters (marked with an asterisk in Table 5) in the optimisation. The✹✹✼

experimental case studied in this paper shows that adjustable inertance was helpful for fine tuning. Furthermore, the✹✹✽

effect of notch stiffness can be compensated for using the adjustable inertance, leading to a performance very similar✹✹✾

to the idealised case with zero hinge stiffness.✹✺✵

The result shows that the prototype effectively suppressed the vibration without a grounded connection. In order to✹✺✶

further demonstrate the effectiveness of the prototype proposed in this paper, experimental FRFs of the host structure✹✺✷

with the prototype for different inertance and auxiliary mass values are presented in Figure 14. Three auxiliary mass✹✺✸

values of 0.365 kg, 0.480 kg and 0.530 kg, and four inertance values of 0.020 kg, 0.030 kg, 0.043 kg and 0.054 were✹✺✹

tested. Numerical simulation results in Figure 14 were obtained by using the actual values of the elements of the IDVA✹✺✺

(𝑘𝑜 = 251.89 kN/m, 𝑘𝑖 = 24.97 kN/m and 𝜂 = 0.5217), which are close to the optimal design parameters presented in✹✺✻

Table 5.✹✺✼

Figure 14 demonstrates that the prototype responds to the change in the inertance for different auxiliary masses.✹✺✽

The experimental results presented in Figure 14 have a very close agreement with the simulation results. The deviations✹✺✾

between the experimental results and the numerical simulations and the design remarks will be discussed in the next✹✻✵

section.✹✻✶

5. Discussion✹✻✷

The experimental results have shown that D3 can effectively suppress the vibrations and obtain an improved per-✹✻✸

formance when compared to a classical TMD. One of the important properties of the design is that the inertance can✹✻✹

be adjustable by simply adding masses to both ends of inerter bar. This provides a method for fine tuning the inertance✹✻✺

during or after device manufacture, that can be used to reduce the detuning effects caused by the other components.✹✻✻

For example, as shown in Figure 13, comparable vibration suppression performances have been obtained for the cases✹✻✼

where the notch stiffness is neglected (𝑘𝑛𝑜𝑡𝑐ℎ = 0) and included (𝑘𝑛𝑜𝑡𝑐ℎ = 9000) by just increasing the inertance values✹✻✽

from 0.032 kg to 0.052 kg as shown in Table 5.✹✻✾

It can be noted that although the average inertance can be successfully increased to the desired value by adding✹✼✵

masses, this also increases the fluctuations in inertance values as shown in Figure 6. Adding excessive amounts of mass✹✼✶

could also shift the higher modes into the working frequency range of the absorber. Hence, it is suggested that the✹✼✷

added mass should only be used for relatively small adjustments of the inertance after the appropriate choice of 𝑚𝑏𝑎𝑟 in✹✼✸

Equation 18. The experimental results presented in Figure 14 have deviations from the numerical results obtained for✹✼✹

𝑘𝑛𝑜𝑡𝑐ℎ = 9000 N/m for smaller inertance values (0.020 kg and 0.030 kg). For these values, better results are observed✹✼✺

when the theoretical stiffness 𝑘𝑛𝑜𝑡𝑐ℎ = 5020.3 N/m is considered in the numerical simulations. A possible explanation✹✼✻

is that adding mass to the inerter bar increases the stiffness due to a stress stiffening effect in the flexure hinges.✹✼✼

One of the important points that shortens the operation life of mechanical device involving compliant mechanisms✹✼✽

such as flexure notch is the fatigue life-cycle. Although the fatigue life of the flexural-hinges was not experimentally✹✼✾

tested, the importance of the fatigue analysis should be highlighted for high frequency applications. It has been ob-✹✽✵

served that smaller notch thickness helps the increase the fatigue life in addition to reducing the notch stiffness. In this✹✽✶

study the notch thickness was limited by manufacturing constraints.✹✽✷

The novelty of the practical design proposed is that it does not require direct attachment to inertial ground or✹✽✸

deployment between two adjacent storeys when compared with the idealised IDVA in [14]. It can be connected to✹✽✹

a host structure without a grounded element, which in practice is similar to the classical use of a TMD. The design✹✽✺

is applicable for small-size applications. It can be also employed for inertial grounded inerter applications such as✹✽✻

TMDIs [10] or non-traditional inerter-based dynamic vibration absorbers [16, 17] with small adjustments.✹✽✼
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❋✐❣✉r❡ ✶✹✿ ❊①♣❡r✐♠❡♥t❛❧ ❋❘❋s ♦❢ t❤❡ ❉✸ ✇✐t❤ t❤❡ ♥♦t❝❤ st✐✛♥❡ss ♦❢ 9000 ◆✴♠ ❢♦r ❛✉①✐❧✐❛r② ♠❛ss ♦❢ 0.365 ❦❣✱ 0.480 ❦❣ ❛♥❞
0.530 ❦❣ ✭❡❛❝❤ ❝♦❧✉♠♥ ❝♦rr❡s♣♦♥❞s ❛ ❝♦♥st❛♥t ♠❛ss✮ ❛♥❞ ✐♥❡rt❛♥❝❡ ♦❢ 0.020 ❦❣✱ 0.030 ❦❣✱ 0.043 ❦❣ ❛♥❞ 0.054 ❦❣ ✭❡❛❝❤
r♦✇ ❝♦rr❡s♣♦♥❞s ❛ ❝♦♥st❛♥t ♠❛ss✮ ✐♥ ❝♦♠♣❛r✐s♦♥ ✇✐t❤ t❤❡ ♥✉♠❡r✐❝❛❧ s✐♠✉❧❛t✐♦♥s✳

6. Conclusions✹✽✽

This paper has presented a new design for an inerter-based dynamic vibration absorber which is applicable to✹✽✾

restricted-space applications without the need for an inertial ground. It allows straightforward implementation and✹✾✵

deployment in a similar way to the classical tuned mass damper (TMD). The pivoted-bar mechanism is designed to act✹✾✶

as a pure inerter, and avoids unbalanced inertance effects such as those that occur in the dynamic antiresonant vibration✹✾✷

isolator (DAVI). The effects of parasitic mass have been minimised by using (i) the appropriate device arrangements,✹✾✸

(ii) numerical optimisation, and (iii) fine tuning of the device by adding small additional masses. The optimum device✹✾✹

damping values were obtained by using a gel damper that can be modelled as a hysteretic damper. The design uses✹✾✺

frictionless flexure hinges that have a small amount of stiffness that can affect the device performance. It was shown✹✾✻

how this can also be compensated for using the design optimisation and fine tuning strategies.✹✾✼

The design was experimentally tested with a damped single degree-of-freedom host structure and an 18% vibration✹✾✽

improvement was obtained compared to a classical TMD.✹✾✾

The main contribution of the present study is that a new design for the IDVA which is physically employable✺✵✵

for small-scale applications has been proposed. The design does not require direct attachment to an inertial ground or✺✵✶

deployment between two different parts of the structure. It provides a more versatile solution by being directly attached✺✵✷

to the host structure with an auxiliary mass like a classical TMD.✺✵✸
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An important aspect of the design is the adjustable inertance. The inertance of the inerter proposed can be relatively✺✵✹

simply adjusted by adding fine tuning masses. This provides a potentially useful feature to overcome the detuning✺✵✺

effects and other uncertainties in the system. The use of flexure notches in the pivoted-bar inerter were advantageous✺✵✻

for frictionless design compared to traditional inerters (rack and pinion, ball-screw and fluid-base inerters). It was✺✵✼

shown how the resulting changes in performance can be accounted for, alongside fatigue issues. An experimental✺✵✽

study of the fatigue behaviour of these type of flexure hinges is a topic for future work. The idea of flexure hinges for✺✵✾

inerter design extends the initial work of [41], and in this case has provided a straightforward method for realisation of✺✶✵

the inerter-spring arrangement. Also, in the vibration suppression case, only H∞ optimisation problem was considered✺✶✶

and random excitation was not analysed. Tuning the prototype for H2 optimisation and its experimental verification✺✶✷

remains to be future work.✺✶✸

The new design of the inerter-based absorber has the potential for implementation in applications with restricted-✺✶✹

space under forced excitation. As it can be applicable in a similar manner to the classical TMD, this design concept✺✶✺

could allow the replacement for a TMD in most applications. For instance, it is employable for chatter suppression✺✶✻

of flexible workpieces in milling operations, which generally allows limited spaces for passive control devices or✺✶✼

vibration suppression of cantilever-like structures under force excitation where grounded connections of the passive✺✶✽

control devices are difficult.✺✶✾
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Appendix A Dimensionless expression for frequency response functions✺✷✾

Using the dimensionless parameters in Equation 3, the FRFs in Equations 8-10 can be expressed, respectively as

|𝐻𝐷1(Ω, 𝛿, 𝛾, 𝛼, 𝜁𝑎, 𝜁𝑚, 𝜇)| =

√
𝐻𝑛𝑢𝑚1,𝐷1(Ω, 𝛿, 𝛾, 𝛼) +𝐻𝑛𝑢𝑚2,𝐷1(Ω, 𝛿, 𝛾, 𝜁𝑎)

𝐻𝑑𝑒𝑛1,𝐷1(Ω, 𝛿, 𝛾, 𝛼, 𝜁𝑎, 𝜁𝑚, 𝜇) +𝐻𝑑𝑒𝑛2,𝐷1(Ω, 𝛿, 𝛾, 𝛼, 𝜁𝑎, 𝜁𝑚, 𝜇)
, (A.1)

|𝐻𝐷2(Ω, 𝛿, 𝛾, 𝛼, 𝛽, 𝜁𝑎, 𝜁𝑚, 𝜇)| =

√
𝐻𝑛𝑢𝑚1,𝐷2(Ω, 𝛿, 𝛾, 𝛼, 𝛽, 𝜁𝑎) +𝐻𝑛𝑢𝑚2,𝐷2(Ω, 𝛿, 𝛾, 𝛼, 𝛽, 𝜁𝑎)

𝐻𝑑𝑒𝑛1,𝐷2(Ω, 𝛿, 𝛾, 𝛼, 𝛽, 𝜁𝑎, 𝜁𝑚, 𝜇) +𝐻𝑑𝑒𝑛2,𝐷2(Ω, 𝛿, 𝛾, 𝛼, 𝛽, 𝜁𝑎, 𝜁𝑚, 𝜇)
, (A.2)

|𝐻𝐷3(Ω, 𝛿, 𝛾, 𝛼, 𝛽, 𝜂, 𝜁𝑚, 𝜇)| =

√
𝐻𝑛𝑢𝑚1,𝐷3(Ω, 𝛿, 𝛾, 𝛼, 𝛽, 𝜂) +𝐻𝑛𝑢𝑚2,𝐷3(Ω, 𝛿, 𝛾, 𝛼, 𝛽, 𝜂)

𝐻𝑑𝑒𝑛1,𝐷3(Ω, 𝛿, 𝛾, 𝛼, 𝛽, 𝜂, 𝜁𝑚, 𝜇) +𝐻𝑑𝑒𝑛2,𝐷3(Ω, 𝛿, 𝛾, 𝛼, 𝛽, 𝜂, 𝜁𝑚, 𝜇)
, (A.3)

where the expressions for H𝑛𝑢𝑚1
, H𝑛𝑢𝑚2

, H𝑑𝑒𝑛1
and H𝑑𝑒𝑛2

are given as following:✺✸✵
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𝐻𝑛𝑢𝑚1,𝐷1(Ω, 𝛿, 𝛾, 𝛼) =
[
− 𝛿

(
− Ω4 + 𝛾2

(
1 + (𝛿 + 1)𝛼2

)
Ω2 − 𝛼2𝛾4

)]2

𝐻𝑛𝑢𝑚2,𝐷1(Ω, 𝛿, 𝛾, 𝜁𝑎) =
[
− 2𝜁𝑎𝛾

(
(𝛿 + 1)Ω2 − 𝛾2

)
Ω
]2

𝐻𝑑𝑒𝑛1,𝐷1(Ω, 𝛿, 𝛾, 𝛼, 𝜁𝑎, 𝜁𝑚, 𝜇) =
[
− 𝛿Ω6 +

(
𝛼2𝛾2(𝜇 + 1)𝛿2 +

(
1 + (𝛼2 + 𝜇 + 1)𝛾2 + 4𝛾𝜁𝑎𝜁𝑚

)
𝛿 + 4𝛾𝜁𝑎𝜁𝑚

)
Ω4

− 𝛾2
(
𝛼2𝛿2 +

(
𝛼2𝛾2(𝜇 + 1) + 𝛼2 + 1

)
𝛿 + 4𝛾𝜁𝑎𝜁𝑚

)
Ω2 + 𝛿𝛾4𝛼2

]2

𝐻𝑑𝑒𝑛2,𝐷1(Ω, 𝛿, 𝛾, 𝛼, 𝜁𝑎, 𝜁𝑚, 𝜇) =
[
2Ω

((
𝜁𝑎
(
1 + (𝜇 + 1)𝛿

)
𝛾 + 𝜁𝑚𝛿

)
Ω4 − 𝛾

(
𝜁𝑎(𝜇 + 1)𝛾2 + 𝛿𝜁𝑚(𝛿𝛼

2 + 𝛼2 + 1)𝛾 + 𝜁𝑎(𝛿 + 1)
)
Ω2

+ 𝛾3(𝛿𝛼2𝛾𝜁𝑚 + 𝜁𝑎)

)]2

✺✸✶

𝐻𝑛𝑢𝑚1,𝐷2

(
Ω, 𝛿, 𝛾, 𝛼, 𝛽, 𝜁𝑎

)
=

[
𝛾

((
(4𝛽 + 4𝛿 + 4)𝜁2

𝑎
+ 𝛼2𝛿(𝛽 + 𝛿)

)
Ω4 − 𝛾2

(
𝛿2(𝛽 + 𝛿 + 1)𝛼4 + 𝛼2𝛿(𝛽 + 𝛿) + 4𝜁2

𝑎

)
Ω2 + 𝛼4𝛿2𝛾4

)]2

𝐻𝑛𝑢𝑚2,𝐷2

(
Ω, 𝛿, 𝛾, 𝛼, 𝛽, 𝜁𝑎

)
=

[
2𝜁𝑎Ω

(
(𝛽 + 𝛿)Ω4 − 𝛾2Ω2(2𝛽𝛼2𝛿 + 2𝛼2𝛿2 + 2𝛼2𝛿 + 𝛽 + 𝛿)Ω2 + 2𝛼2𝛿𝛾4

)]2

𝐻𝑑𝑒𝑛1,𝐷2

(
Ω, 𝛿, 𝛾, 𝛼, 𝛽, 𝜁𝑎, 𝜁𝑚, 𝜇

)
=

[
−

([((
(4𝛽𝜇 + 4𝜇 + 4)𝛿 + 4𝛽 + 4

)
𝜁2
𝑎
+ 𝛼2𝛿

(
(𝛽𝜇 + 1)𝛿 + 𝛽

))
𝛾 + 4𝜁𝑎𝜁𝑚(𝛽 + 𝛿)

]
Ω6

− 𝛾

[((
𝛼4(𝛽𝜇 + 𝜇 + 1)𝛿3 +

(
(𝛽 + 1)𝛼2 + 𝛽𝜇 + 𝜇 + 1

)
𝛼2𝛿2 + 𝛼2𝛽(𝜇 + 1)𝛿 + 4𝜁2

𝑎
(𝛽𝜇 + 𝜇 + 1)

)
𝛾2

+ 8𝜁𝑎𝜁𝑚

(
𝛼2𝛿2 +

(1
2
+ (𝛽 + 1)𝛼2

)
𝛿 +

𝛽

2

)
𝛾 + 𝛼2𝛿2 + (𝛼2𝛽 + 4𝜁2

𝑎
)𝛿 + 4𝜁2

𝑎
(𝛽 + 1)

)]
Ω4

+ 𝛾3
[
𝛿2
(
𝛿 + (𝛽𝜇 + 𝜇 + 1)𝛾2 + 𝛽 + 1

)
𝛼4 + 𝛿(8𝛾𝜁𝑎𝜁𝑚 + 𝛽 + 𝛿)𝛼2 + 4𝜁2

𝑎

]
Ω2 − 𝛼4𝛿2𝛾5

)]2

𝐻𝑑𝑒𝑛2,𝐷2

(
Ω, 𝛿, 𝛾, 𝛼, 𝛽, 𝜁𝑎, 𝜁𝑚, 𝜇

)
=

[
2Ω

(
− 𝜁𝑎(𝛿𝛽𝜇 + 𝛽 + 𝛿)Ω6 + 2

[
2𝛾𝜁𝑚(𝛽 + 𝛿 + 1)𝜁2

𝑎
+

((
𝛼2(𝛽𝜇 + 𝜇 + 1)𝛿2

+
(
(𝛼2 +

𝜇

2
)𝛽 + 𝛼2 +

𝜇

2
+

1

2

)
𝛿 +

𝛽(𝜇 + 1)

2

)
𝛾2 +

𝛽

2
+

𝛿

2

)
𝜁𝑎 +

𝛼2𝛿𝛾𝜁𝑚(𝛽 + 𝛿)

2

]
Ω4

− 2𝛾2
[
𝛼4𝛿3𝛾𝜁𝑚

2
+

(
𝛾𝜁𝑚(𝛽 + 1)𝛼2 + 𝛾𝜁𝑚 + 2𝜁𝑎

)
𝛼2𝛿2

2
+
((

𝜁𝑎(𝛽𝜇 + 𝜇 + 1)𝛾2 +
𝛽𝛾𝜁𝑚

2

+ 𝜁𝑎(𝛽 + 1)
)
𝛼2 +

𝜁𝑎

2

)
𝛿 +

𝜁𝑎(4𝛾𝜁𝑎𝜁𝑚 + 𝛽)

2

]
Ω2 + 𝛼4𝛿2𝛾5𝜁𝑚 + 2𝛼2𝛿𝛾4𝜁𝑎

)]2

✺✸✷
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𝐻𝑛𝑢𝑚1,𝐷3

(
Ω, 𝛿, 𝛾, 𝛼, 𝛽, 𝜂

)
=

[
(𝛽 + 𝛿)Ω4 + 𝛾2

(
𝛼2(𝜂2 − 1)𝛿2 +

(
− 1 + (𝛽𝜂2 + 𝜂2 − 𝛽 − 1)𝛼2

)
𝛿 − 𝛽

)
Ω2 − 𝛼2𝛿𝜂2𝛾4 + 𝛼2𝛿𝛾4

]2

𝐻𝑛𝑢𝑚2,𝐷3

(
Ω, 𝛿, 𝛾, 𝛼, 𝛽, 𝜂

)
=

[
𝜂

(
𝛽 + 𝛿)Ω4 − 𝛾2(2𝛼2𝛽𝛿 + 2𝛼2𝛿2 + 2𝛼2𝛿 + 𝛽 + 𝛿)Ω2 + 2𝛼2𝛿𝛾4

)]2

𝐻𝑑𝑒𝑛1,𝐷3

(
Ω, 𝛿, 𝛾, 𝛼, 𝛽, 𝜂, 𝜁𝑚, 𝜇

)
=

[(
− (𝛽𝛿𝜇 + 𝛽 + 𝛿)Ω6 − 2𝜂𝜁𝑚(𝛽 + 𝛿)Ω5 −

[(
𝛼2(𝜂 − 1)(𝜂 + 1)(𝜇𝛽 + 𝜇 + 1)𝛿2 +

(
(𝛽𝜂2 + 𝜂2 − 𝛽 − 1)𝛼2

− 𝜇𝛽 − 𝜇 − 1
)
𝛿 − 𝛽(𝜇 + 1)

)
𝛾2 − 𝛽 − 𝛿

]
Ω4 + 2𝛾2𝜁𝑚𝜂(2𝛼

2𝛽𝛿 + 2𝛼2𝛿2 + 2𝛼2𝛿 + 𝛽 + 𝛿)Ω3

+ 𝛾2
[
𝛼2(𝜂2 − 1)𝛿2 +

(
− 1 + (𝜂 + 1)(𝜂 − 1)

(
(𝜇𝛽 + 𝜇 + 1)𝛾2 + 𝛽 + 1

)
𝛼2
)
𝛿 − 𝛽

]
Ω2

− 4𝛼2𝛿𝜂𝛾4𝜁𝑚Ω − 𝛼2𝛿𝜂2𝛾4 + 𝛼2𝛿𝛾4
)]2

𝐻𝑑𝑒𝑛2,𝐷3

(
Ω, 𝛿, 𝛾, 𝛼, 𝛽, 𝜂, 𝜁𝑚, 𝜇

)
=

[(
𝜂(𝛽𝛿𝜇 + 𝛽 + 𝛿)Ω6 − 2𝜁𝑚(𝛽 + 𝛿)Ω5 − 2𝜂

[(
𝛼2(𝜇𝛽 + 𝜇 + 1)𝛿2 +

(
(𝛼2 +

𝜇

2
)𝛽 + 𝛼2 +

𝜇

2
+

1

2

)
𝛿

+
𝛽(𝜇 + 1)

2

)
𝛾2 +

𝛽

2
+

𝛿

2

]
Ω4 − 2𝛾2𝜁𝑚

[
𝛼2(𝜂2 − 1)𝛿2 +

(
− 1 + (𝛽𝜂2 + 𝜂2 − 𝛽 − 1)𝛼2

)
𝛿 − 𝛽

]
Ω3

+ 2𝛾2𝜂
[
𝛼2𝛿2 +

(
1

2
+
(
(𝜇𝛽 + 𝜇 + 1)𝛾2 + 𝛽 + 1

)
𝛼2
)
𝛿 +

𝛽

2

]
Ω2 + 2𝛼2𝛿𝜂2𝛾4𝜁𝑚Ω − 2𝛼2𝛿𝛾4𝜁𝑚Ω

− 2𝛼2𝛿𝜂𝛾4
)]2

✺✸✸

Appendix B Fatigue life-cycle analysis of the flexural-hinges✺✸✹

A schematic view of a semi-circular flexural-hinge used in this study is given in Figure 7 (b). The maximum✺✸✺

stress tends to occur in the thinnest section of the flexural-hinge, whose fatigue strength is reduced by different factors✺✸✻

[50, 55]. The stress concentration factor, the effective stress concentration factor (as discussed in [56]), and the surface✺✸✼

roughness factor are considered in the fatigue analysis while the thermal effects are neglected. The allowable stress✺✸✽

amplitude 𝑆𝑎 is also a function of the mean stress 𝜎𝑚 at the notch and can be given with the Goodman criteria for✺✸✾

general use [50, 55] as✺✹✵

𝑆𝑎 = 𝑆𝑓

(
1 −

𝜎𝑚

𝑆𝑈

)
, (B.1)✺✹✶

where 𝑆𝑓 is the fatigue strength obtained from a smooth standard test specimen without notch and 𝑆𝑈 is the ultimate✺✹✷

tensile strength of the material used. After applying the reduction factors, Equation B.1 can be rewritten as [55]✺✹✸

𝑆𝑎 =
𝛾𝑠𝑆𝑓

𝐾𝑒

(
1 −

𝜎𝑚

𝑆𝑈∕𝐾𝑡

)
, (B.2)✺✹✹

where 𝐾𝑡, 𝐾𝑒 and 𝛾𝑠 are the stress concentration factor, the effective stress concentration factor and the surface rough-✺✹✺

ness reduction factor, respectively.✺✹✻

The maximum thickness of a notch for a given angular displacement is estimated by Smith [50], considering the✺✹✼

maximum stress at the thinnest section of the notch to be✺✹✽

𝑡𝑚𝑎𝑥 =
9𝜋2𝑅

𝐾2
𝑡
𝐸216

(
𝜎

𝜃

)2

, (B.3)✺✹✾

where 𝐾𝑡 is the stress concentration factor, which can be expressed as✺✺✵

𝐾𝑡 = (1 + 𝛽𝑛)
9∕20, (B.4)✺✺✶

where 𝛽𝑛 is a dimensionless parameter, which equals 𝛽𝑛 = 𝑡∕2𝑅. From Equation B.3, the maximum stress at the notch✺✺✷

yields for a given thickness and radius of the notch✺✺✸

𝜎𝑚𝑎𝑥 =

√
16𝐾2

𝑡
𝐸2𝑡

9𝜋2𝑅
𝜃, (B.5)✺✺✹
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where 𝜃 is the angular displacement of the flexural notch as expressed in Equation 14 and the relative displacement✺✺✺

between the terminals of the inerter can be calculated from the equations of motion in Equation 7.✺✺✻

The accuracy of the theoretically obtained maximum stress in Equation B.5 was also compared with finite element✺✺✼

analysis conducted in ANSYS Workbench. In the analysis, only one flexural hinge was considered and a equivalent✺✺✽

rotational displacement to the relative displacement between the terminals of the pivoted-bar inerter was applied to the✺✺✾

flexural hinge. The maximum stress occurred at the thinnest section of the notch as expected and the maximum stress✺✻✵

values were found very close to theoretical estimations obtained from Equation B.5. For the parameters in Table 3 and✺✻✶

1 mm relative displacement between the inerter’s terminals, theoretical estimation for the maximum stress was found✺✻✷

as 246.6 MPa, while it was obtained 248.3 MPa from the finite element analysis in ANSYS Workbench as shown in✺✻✸

Figure B.1 (a). The theoretical estimation and the finite element results for other relative displacement values were✺✻✹

found to be very close.✺✻✺

The ratio of the allowable stress given to the maximum stress which occurs at the notch gives the safety factor of✺✻✻

the notch hinge as✺✻✼

Safety Factor =
𝑆𝑎

𝜎𝑚𝑎𝑥
. (B.6)✺✻✽

The bending fatigue strength of Aluminium alloy 6082 T6/T651 for 100 million cycles and the surface roughness✺✻✾

reduction factor for the flexural notches were assumed to be 130 MPa for an ultimate tensile strength of 340 MPa, and✺✼✵

0.75 for wire eroding manufacturing of Aluminium alloy as discussed in [55]. The effective stress concentration factor✺✼✶

𝐾𝑒 was calculated from 𝐾𝑡 using the notch sensitivity which is described as✺✼✷

𝑞 =
𝐾𝑒 − 1

𝐾𝑡 − 1
. (B.7)✺✼✸

The notch sensitivity was taken to be 0.91 for the notch radius of 4.75 mm and Aluminium alloy as stated in [56].✺✼✹

In order to evaluate the fatigue life of the flexural notches for 100 million cycles, the safety factor is demonstrated✺✼✺

in Figure B.1 (b) for the relative displacement between the terminals of the inerter whose distance 𝑙𝑏𝑎𝑟 = 80 mm. The✺✼✻

safety factors for the relative displacement between the terminals of the inerter are given for the notch thicknesses of✺✼✼

0.1 and 0.5 assuming zero mean stress and mean stress of 50 MPa. Safety factors for the maximum stresses obtained✺✼✽

from ANSYS Workbench were also indicated in Figure B.1 (b) for only zero mean stress.✺✼✾

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

❋✐❣✉r❡ ❇✳✶✿ ✭❛✮ ▼❛①✐♠✉♠ str❡ss ♦❢ t❤❡ ✢❡①✉r❛❧ ❤✐♥❣❡ ♦❜t❛✐♥❡❞ ❢r♦♠ ❆◆❙❨❙ ❲♦r❦❜❡♥❝❤ ❛♥❞ ✭❜✮ ❢❛t✐❣✉❡ ❧✐❢❡✲❝②❝❧❡ ❛♥❛❧②s✐s
♦❢ t❤❡ ✢❡①✉r❡ ♥♦t❝❤ ❢♦r t❤❡ r❡❧❛t✐✈❡ ❞✐s♣❧❛❝❡♠❡♥t ❜❡t✇❡❡♥ t❤❡ t❡r♠✐♥❛❧s ♦❢ t❤❡ ✐♥❡rt❡r ❞❡✈✐❝❡ ❢♦r 𝜎𝑚 = 0 ❛♥❞ 𝜎 = 50 ▼P❛✳
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It can be assumed that the flexural notches with a thickness of 0.5 mm can safely operate until 100 million cycles✺✽✵

under relative displacement of the terminals of the inerter of 410 𝜇m. For inerters that have higher relative displace-✺✽✶

ments between their terminals, the notch thickness can be decreased, or the distance between the terminals can be✺✽✷

increased as the maximum stress 𝜎𝑚𝑎𝑥 is inversely proportional to the distance between the terminals i.e. 𝜃 =
𝑥1−𝑥2
𝑙𝑏𝑎𝑟∕2

✺✽✸

as presented in Equation 14. Alternatively, a different material such as steel could be used instead of aluminium to✺✽✹

increase the fatigue life but it should be considered that the high Young’s Modulus of the steel will increase the stiffness✺✽✺

of the flexural notch. This will shift the effective working frequency of the inerter design to the higher frequencies as✺✽✻

explained in Figure 8.✺✽✼
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