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Proactive and reactive accumulation-to-bound
processes compete during perceptual decisions
Lluís Hernández-Navarro 1, Ainhoa Hermoso-Mendizabal 1, Daniel Duque 1, Jaime de la Rocha 1,4 &

Alexandre Hyafil 2,3,4✉

Standard models of perceptual decision-making postulate that a response is triggered in

reaction to stimulus presentation when the accumulated stimulus evidence reaches a deci-

sion threshold. This framework excludes however the possibility that informed responses are

generated proactively at a time independent of stimulus. Here, we find that, in a free reaction

time auditory task in rats, reactive and proactive responses coexist, suggesting that choice

selection and motor initiation, commonly viewed as serial processes, are decoupled in gen-

eral. We capture this behavior by a novel model in which proactive and reactive responses

are triggered whenever either of two competing processes, respectively Action Initiation or

Evidence Accumulation, reaches a bound. In both types of response, the choice is ultimately

informed by the Evidence Accumulation process. The Action Initiation process readily

explains premature responses, contributes to urgency effects at long reaction times and

mediates the slowing of the responses as animals get satiated and tired during sessions.

Moreover, it successfully predicts reaction time distributions when the stimulus was either

delayed, advanced or omitted. Overall, these results fundamentally extend standard models

of evidence accumulation in decision making by showing that proactive and reactive pro-

cesses compete for the generation of responses.
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Our brains must constantly make perceptual decisions in
the face of ambiguous and noisy stimuli. A very suc-
cessful framework in cognitive psychology and neu-

roscience suggests that, under free-response conditions, these
perceptual decisions follow an accumulation to bound policy:
sensory evidence is integrated over time until a given decision
criterion is met1–3. Computational models implementing this
idea, such as the drift-diffusion model (DDM) and race models,
provide a good quantitative account for reaction times (RTs) and
choices in humans, non-human primates, and rodents4–10. A
common assumption of the standard DDM and other accumu-
lation models is that perceptual decision-making is essentially a
serial process where the motor response is initiated reactively,
only once the evidence accumulation has reached the decision
boundary. Hence, choices and RTs are intrinsically coupled.

In real life, however, motor actions are not always triggered by
a stimulus or external event. Proactive responses are at play in
self-paced actions in the absence of stimuli11–13, like in foraging
decisions14, but they can also be particularly prevalent in sensory-
driven decisions when the stimulus onset can be anticipated15 or
under strong time pressure16–19. Proactive responses could also
be a convenient strategy if the response can be updated after it is
initiated to incorporate new sensory information. Moreover, even
when subjects accumulate a fixed amount of sensory evidence
before eliciting a response, reaching this criterion may at times
take too long20–22. In those circumstances, subjects may need to
proactively terminate the accumulation process and trigger a
response independently of the accumulated evidence. Therefore,
although previous studies characterizing proactive and reactive
responses have implicitly assumed that they represent distinct
response modes deployed in different contexts, the two may
actually coexist. The possible coexistence of proactive and reactive
processes remains unknown, and so are the mechanisms
describing their possible interactions.

To address these questions, we analyzed the RTs and choices of
rats in an auditory discrimination task23. Our results show that,
in addition to reactive responses triggered by sensory evidence
accumulation, animals exhibit informed proactive responses
whose timing is independent of the stimulus. This coexistence
was captured by a perceptual decision-making model where
responses can be triggered by either of two parallel dynamical
processes: Action Initiation, yielding proactive responses; or
Evidence Accumulation, yielding reactive responses. The model
correctly captured reaction times distributions and choices, and
their dependence on both stimulus characteristics as well as
internal variables such as satiety and fatigue. Overall, these results
extend standard models of decision-making by showing that, in
freely-timed paradigms, both evidence accumulation and action
initiation run in parallel and compete with each other to be the
triggers of our actions.

Results
Reaction time auditory task. We trained rats in two variants of a
reaction-time auditory discrimination task23 (Fig. 1). On each
variant, an acoustic stimulus was played after a 300 ms fixation
period at the center port, and interrupted once the animal
withdrew from the center port to make a response by poking at
one of the two side ports. Since the fixation period was constant,
animals could predict the time of the stimulus onset. Withdrawal
of the center port before stimulus onset, i.e., fixation breaks (FB),
led to trial abortion. The stimulus was a superposition of two
amplitude-modulated (AM) sounds and the animals were
rewarded for correctly discriminating the sound with the higher
average intensity. The two sounds were either two pure tones with
different frequency (frequency discrimination task, Group 1,

n= 10) or two noise bursts coming from the left and the right
speaker (laterality discrimination task, for Groups 2–4, n= 16).
The discrimination difficulty of each stimulus (i.e., stimulus
strength s) set the relative amplitude of each sound. Stimulus
sequences included serial correlations to study expectation-
mediated choice biases (see Supp. Methods). For our current
analysis, we focus however on trials following an error, where we
have previously shown that animals do not leverage on the serial
correlations to bias their choices (unbiased trials)23 (Supple-
mentary Fig. 1). The results obtained in this condition also held
for expectation-biased trials (see below).

Decoupling of reaction times and choices. Standard models of
evidence-to-bound integration predict that, as the stimulus strength
increases, accuracy also increases, while reaction time (RT)
decreases8–10. As expected, in the frequency discrimination task,
RTs did indeed decrease with stimulus strength s, indicating that at
least a fraction of responses were reactive, although the overall
mean modulation was weak (~2% FOV explained). Surprisingly,
however, RTs shorter than ~90ms were independent of stimulus
strength (Fig. 2a). To assess more precisely how stimulus strength
modulates RTs, we computed time delay curves, which measured
the advancement as stimulus strength increased of responses below
a given RT (Fig. 2b; “Methods” and Supplementary Fig. 2)24. The
time beyond which RTs showed a significant modulation with s was
consistent across rats (mean stimulus modulation onset M= 95ms,
SD= 20ms; vertical line in Fig. 2b). We called express responses the
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Fig. 1 Auditory discrimination task. a The initiation of each trial was cued
by a center port LED (yellow). Following the cue, rats poked in the center
port (C, gray) and the fixation period (300ms) started. At the end of the
fixation period, the stimulus was presented, consisting of a mixture of two
AM sounds, each of which is associated with reward in the Left (L, green)
or Right (R, purple) port. The two sounds differed in frequency (frequency
discrimination task) or in the location of the sound source (lateralization
discrimination task). After stimulus onset, the rats were free to withdraw
from the center port to elicit a response, causing the stimulus to stop.
Correct responses were rewarded with water and incorrect responses were
punished by a time-out. b Task temporal scheme: reaction time (RT)
denotes the time from stimulus onset to center poke withdrawal.
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responses occurring between stimulus onset and this modulation
onset, which accounted for 35% (SD= 25%) of all responses (Note
that the express responses in our task are not equivalent to express
saccades in oculomotor tasks25; see the “Discussion” section). We
wondered whether express responses corresponded to rushed
responses in which rats did not have time to process the stimulus,
and made a guess choice based on stimulus-independent factors.
We found, however, that categorization accuracy for express
responses was well above chance and increased with stimulus
strength in all animals, demonstrating that rats used the stimulus to
determine their choice even in express responses (Fig. 2c). This
dependence was well illustrated by the tachometric curve, repre-
senting how choice accuracy varies with RT (Fig. 2d)16. During the
interval of express responses, accuracy increased, starting at RTs <
10ms, until it reached a maximum and a relative plateau for non-
express responses. These results also hold for both expectation-
biased trials and for the laterality version of the task (Supplementary
Figs. 3 and 10).

Overall, the timing of rat responses seemed to follow two
modes: express responses, where the timing was independent of
evidence accumulation but the choice did depend on the
stimulus; and slower responses, where both the timing and the
choice accuracy depend on the stimulus. Express responses are
incompatible with standard models of evidence accumulation and
their extensions because these models inherently rely on evidence

bounding to trigger the response, and therefore they invariably
predict (1) that if the stimulus impacts the choice, it should also
impact reaction times20,21,26, and (2) that the stimulus can only
impact the choice after the non-decision time, which includes
sensory and motor delays. Slower responses in contrast, could in
principle be triggered by the same evidence accumulation process
giving rise to choice selection, and thus seem compatible with
standard models of evidence accumulation. Because of this
dichotomy, we next developed a general model for perceptual
decision-making that could account for the full spectrum of rats’
responses found in our task.

A parallel model of action initiation and sensory evidence
integration captures rats responses. To capture express
responses, we introduced the Parallel Sensory Integration and
Action Model (PSIAM) composed of: (1) a standard Evidence
Accumulation process (EA) that integrates stimulus evidence over
time and that is bounded by left and right decision bounds, i.e., a
standard DDM (Fig. 3b, top)8–10; (2) an independent Action
Initiation process (AI) which reflects the preparation of a
response. Because the fixation period preceding the stimulus was
fixed, rats could prepare the motor action during this period in
order to respond rapidly after stimulus onset, while maintaining a
reasonable accuracy. The AI process represented this proactive
timing signal27, and was implemented as a single-bounded
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Fig. 2 Decoupled reaction times and choices for express responses. a RT cumulative distribution function (RT cdf) for different values of stimulus
strength for an example animal (rat #11) in unbiased trials. Vertical line indicates the onset of the stimulus modulation on RT cdf computed for this rat (see
“Methods”). b Mean time delay curves for RT cdf in the frequency discrimination task, averaged across rats (Group 1, n= 10). Trials with uninformative
stimulus (stim. strength s= 0) are used as reference (i.e. time delay Δt= 0 for s= 0). Vertical line represents the mean modulation onset time (95ms).
Shaded areas: standard error of the mean (s.e.m). c Accuracy on trials with RTs shorter than 50ms as a function of stimulus strength s. Thick line denotes
the group average across the same rats as in panel (b); thin lines represent individual rats. Error bars represent s.e.m. d Tachometric curves, i.e., accuracy
as a function of reaction times16, for different stimulus strength s values, averaged across rats. Reaction times were binned in windows of 10 ms. Vertical
line: mean RT-stimulus modulation onset. Shaded areas: s.e.m. Source data are provided as a Source data file.
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diffusive process that ramped until it reached the Go bound,
independently of stimulus. The PSIAM can generate two types of
responses, proactive or reactive, depending on which of the two
processes, the AI or the EA, reaches a bound first. If the AI
process hits the Go bound first (proactive response; Fig. 3a,
bottom) a response is triggered, and the choice is given by the
sign of the final accumulated evidence, i.e., the sign of the EA
process after the stimulus, which is interrupted when the rat
withdraws from the center port, is fully integrated (Fig. 3a, top).
This procedure is equivalent to an instantaneous collapse of EA
bounds (Fig. 3a). In proactive responses, the timing of the

response is thus completely independent of the stimulus strength.
Conversely, if EA reaches a decision bound first (reactive
response), it sets both RT and choice, and AI plays no role, as in a
standard DDM (Fig. 3b). In this framework, express responses
correspond to proactive responses that took place before the EA
could start triggering any response: this time corresponds to the
sum of EA latency tE and the minimal EA integration-to-bound
time (Fig. 3a).

We assessed the capacity of the PSIAM to quantitatively
capture rat behavior by fitting the model to the RTs. The model
nicely captured the shape of the RT distributions for each animal
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Fig. 3 Parallel Sensory Integration and Action model. a Example proactive response generated by the PSIAM. The action initiation process (AI, red trace)
starts ramping up with afferent latency tAaff after the fixation onset, with mean drift νA, until it hits the Go bound θA. The evidence accumulation process
(EA, black trace) starts in response to the stimulus onset and after an afferent, sensory latency tEaff, with a stimulus-dependent mean drift νE, and
symmetric decision bounds ±θE. RT is determined by the first of the AI and EA processes reaching a bound. Here, AI reaches the Go bound first, triggering a
proactive response after a motor latency tmotor. The stimulus is stopped at the response time (middle scheme). The choice is then determined by the final
sign of the EA process, after the full stimulus has been integrated. This read-out is illustrated by an instantaneous collapse of the decision bounds.
b Example reactive response, where the EA process reaches a decision bound first, setting both RT and choice; the AI process plays no role. c RT
distribution for an example rat (gray bars; rat #12) and model fit (blue line) for maximum stimulus strength s= 1. The distributions of proactive (red) and
reactive (green) RTs generated by the AI and EA processes working in isolation are also shown. Triangles correspond to example responses shown in
panels a-b. d Simulated time delay curves, generated from the PSIAM fit to RTs for each animal, averaged across rats (Group 1, n= 10). Shaded areas:
s.e.m. e Simulated tachometric curves, predicted from fitting the PSIAM to each animal RTs, averaged across rats. RT bin width: 10 ms; shaded areas: s.e.m.
f Accuracy on express response trials with RTs shorter than 50 ms as a function of stimulus strength s (gray), and for model predictions from the PSIAM
(blue) and the extended DDM (black), both fitted to individual rat RTs. Dots show average across rats. Error bars: s.e.m. g, h Same as in panels d, e for the
eDDM. Lines: median across rats. Shaded areas: median absolute deviation. Source data are provided as a Source data file.
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by identifying the two underlying components, i.e., the proactive
and reactive responses (Fig. 3c; Supplementary Fig. 4). This
separation allowed the model to readily account for the fixation
breaks (FBs), interpreted as proactive responses occurring before
stimulus onset (Fig. 3c). The model also captured how the
upward deflection in the RT distributions, reflecting the earliest
reactive responses, increased with stimulus strength (Supplemen-
tary Fig. 4, last column). The agreement between data and model
in the RT pdfs is also visible in the time delay curves, which, as
previously shown for the data (Fig. 2b), were all collapsed at zero
for express RTs, and displayed increasing modulation by stimulus
strength afterward (Fig. 3d). Furthermore, the model also
captured the shape of the experimental tachometric curves
(Fig. 3e). Note that animal choices were not used to estimate the
parameters of the model, so the tachometric curves are direct
predictions from the model (see “Methods”). The model captured
the increase in accuracy for fast RTs (RT < 100 ms), followed by a
relatively flat plateau for intermediate RTs (from 100 to 300 ms).
More importantly, the model provided an explanation for the
shape of the tachometric curves: for express responses, where the
time of integration of the EA process is set by the AI process,
longer RTs allow for longer integration of stimulus evidence,
leading to higher accuracy. Intermediate RTs were dominated on
the other hand by reactive responses caused by the EA reaching a
decision bound. For such responses, the PSIAM is equivalent to
the standard DDM with constant bounds, where the accuracy is
independent of RT8–10. This accounts for the relatively flat
tachometric curves at each stimulus strength s for these
intermediate RTs. Of note, the PSIAM also captured the RT
distributions and reproduced the time delay and tachometric
curves for biased trials (Supplementary Figs. 5 and 6a-b). Overall,
the PSIAM successfully captured rats’ complex patterns of RTs
and choices by stipulating that response times were controlled by
parallel, independent evidence accumulation and action initiation
processes.

The existence of stimulus-informed express responses is
incompatible with a decision mechanism where the timing of
the response relies only on the accumulated evidence reaching a
decision boundary. Although such a mechanism can generate
noise-triggered express responses, choices are only influenced by
the stimulus for RTs larger than the non-decision time, which is
typically at least 50 ms. We confirmed this by fitting an extended
DDM (eDDM), featuring integration of internal noise prior to
stimulus onset28, to individual rat RTs. Pre-stimulus noise
integration produced anticipatory responses as those seen in
rats, although a formal model comparison showed that the
PSIAM captured the overall RT distribution much better
(ΔBIC > 100 for any rat in Groups 1 and 2, n= 16; Supplemen-
tary Figs. 7j-k and 12a; see Supp. Methods). Crucially, the eDDM
consistently predicted chance performance for express responses
(< 50 ms, Fig. 3f–h, Supplementary Fig. 7f), unlike what we
observed in animals. The limitation to generate informed choices
earlier than sensorimotor delays is general to the joint RT-and-
choice decision mechanism: it also applies if the DDM bounds
change in time20 or in the accelerated race-to-threshold model16,
where the stimulus modulates a race-to-threshold between
anticipatory signals (Supplementary Fig. 7g-h,l; see Supp. Meth-
ods). In conclusion, the influence of stimulus on choice in express
responses was very well captured by the PSIAM but was
fundamentally at odds with standard models of decision-
making relying on a single boundary mechanism for response
initiation and choice selection.

Proactive responses prevent longer reaction times. While our
AI process can be thought of as an independent urgency signal,

urgency signals have been mostly hypothesized to play a role in
avoiding very long reaction times, rather than promoting very fast
responses20–22. We thus wondered whether the AI could play a
role beyond express responses, at long RTs. By construction,
PSIAM responses are faster when both EA and AI processes are
taken into account than when EA is considered in isolation
(Fig. 4a, blue and green curves, respectively; Supplementary
Fig. 8). Proactive responses dominated fast RTs, whereas reactive
responses took over for intermediate RTs; however, proactive
responses contributed as much as reactive responses at long RTs
(Fig. 4b; Supplementary Fig. 9). These long proactive responses
imply that, in those trials, the EA process had still not reached the
decision bound, and thus the AI process acted as an urgency
signal that prevented very slow reactive responses. Moreover,
because in those trials the evidence level is lower than the decision
bound, their associated accuracy should also be lower than for
reactive choices with the same RT. Contaminant responses,
included in the model as rare responses that occur at an
approximately constant rate independently of the AI or EA
processes, also increase in relative frequency at long RTs (black
lines in Fig. 4a, b; Supplementary Figs. 8 and 9; see “Methods”);
and because they yield random choices, their occurrence also
predicts lower accuracy. Hence, the increase in the fraction of
both proactive and contaminant responses should thus be
accompanied by a reduction in categorization accuracy. We tested
this prediction by examining tachometric curves at these very
long, infrequent RTs and found a significant decrease in accuracy
for long RTs (Fig. 4c, d). Although contaminants alone could also
produce a decay of the tachometric curves at long RTs, proactive
responses in the PSIAM contributed significantly to accentuate
and advance this decrease (Fig. 4d). In sum, AI did not only
promote express responses but it also shaped slow responses,
hindering their occurrence at the expense of reduced accuracy for
long RTs.

Manipulating stimulus presentation uncovers proactive and
reactive responses. The PSIAM core hypothesis is that, on each
trial, animals prepare a proactive response which is initiated
independently of the presentation of the stimulus, unless a
reactive response is triggered first. The model then predicts that,
if the stimulus is removed, animal responses should all be
proactive responses triggered by the AI process. We tested this in
a second group of rats (Group 2, n= 6; laterality discrimination
task) where we omitted the presentation of the stimulus in a
subset of trials but still rewarded one of the two responses (silent
catch trials, 10%). In such trials, animals made choices using
internal estimates instead of the stimuli. The stimulus was nor-
mally played in the rest of the trials of the session (standard trials,
90%) (Fig. 5a, middle and top). The RT distributions for standard
trials were very similar to those observed in Group 1 (Fig. 5b;
Supplementary Figs. 11 and 12a). Crucially, the distribution of
RTs in silent trials was accurately predicted by the distribution of
proactive responses alone obtained from fitting the full PSIAM in
standard trials (Fig. 5c; Supplementary Figs. 11 and 12b). By
contrast, the extended DDM failed to capture the distribution of
RTs in silent trials (ΔLLH <−25 for all rats; Supplementary
Fig. 12b; see Supplementary Methods). Hence, removing the
stimulus fully unveiled the RT distribution of proactive responses
that was mixed with RTs from reactive responses in standard
trials, providing evidence that within each trial the AI process
evolves independently of the presentation of the stimulus.

The second basic hypothesis of the PSIAM is that proactive
responses are triggered by a process initiated with fixation onset,
while reactive responses are triggered by a process locked to
stimulus onset. The model predicts that varying the interval
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between fixation onset and stimulus onset should affect response
timings by favoring one process over the other. In a second set of
experiments, the stimulus was either advanced (advanced
stimulus trials, Δ=−250 or −150 ms for Groups 2 or 3,
respectively; 5% of trials), or delayed (delayed stimulus trials,
Δ=+50 or +150 ms, Groups 2 or 3; 5% of trials) with respect to
the standard condition (Δ= 0, standard trials, 90% of trials)
(Fig. 5a, bottom). We tested whether, in advanced and delayed
stimulus trials, the RT distributions could be simply derived from
the model fitted to standard trials but only shifting the onset of
the EA process by the same amount Δ. For delayed stimulus trials,
the model with a shifted EA captured the RT distribution well:
most responses were proactive, and the late stimulus onset caused
a small bump of reactive responses at the tail of the RT
distribution (Fig. 5e; Supplementary Figs. 13 and 14, right
columns). This small impact of delayed stimulus was clearly
visualized in the experimental time delay curves which showed
that the RTs in delayed stimulus trials were significantly advanced
with respect to silent trials as predicted by shifting the time delay
curve of standard trials by 150 ms (Fig. 5f; p-value= 0.007 for
delayed vs silent time delay curves at RT= 300 ms, one-sided t-
test, Group 2). In contrast, for advanced stimulus trials, simply
advancing the EA by Δ predicted faster responses than those
observed in the rats (Fig. 5d, solid blue curve; Supplementary

Figs. 13 and 14, left columns). This suggests that, when stimulus
is presented ahead of the expected time, the EA process takes
longer to reach the decision bounds than in standard trials.
Indeed, simply allowing the latency tE to be longer in these
advanced trials provided a much better fit of the RT distribution
(Fig. 5d, dashed blue curve; Supplementary Figs. 13 and 14, left
columns). This additional delay, which increased with the
magnitude of the advancement Δ (Fig. 5g), could reflect
attentional delays related to the unexpected timing of the
stimulus onset29,30, or a signature of more complex interactions
between AI and EA (see “Discussion”). Finally, adjusting the EA’s
drift vE instead of tE did not provide a better fit, and adjusting the
two parameters together only caused a marginal average
improvement (Fig. 5h; Supplementary Fig. 15). Overall, these
experiments revealed that the PSIAM could account for how RT
distributions are affected by changes in stimulus timing, and
showed that EA latency is increased when stimulus timing is
unexpected.

Slowing of the responses along the session is mediated by a
decrease in AI speed. The existence of the dual mechanism for
response timing in the PSIAM offers two possible mechanisms to
account for changes in response speed: by a change in the
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Fig. 4 Reaction times and accuracy for long responses. a RT distribution for an example animal (gray bars; rat #15) and model fit (PSIAM, blue line) for
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decision bounds of the EA process, as classically reported31; or by
a modulation of the speed of the AI process, taking place inde-
pendently of evidence accumulation. We assessed whether the
systematic slowing of the RTs observed within each session in
almost every animal (Fig. 6a) was mediated by the modulation of
AI, at odds with the classical account of slowing based on changes
in the evidence accumulation process. Cumulative RT distribu-
tions sorted by trial index showed that there were fewer fixation
breaks and fewer express responses at the end compared with the
beginning of the session (Fig. 6b). In other words, the slowing
already occurred for responses triggered even before any reactive
response could be performed (Fig. 6c). This suggested that the
slowing was due at least in part to changes in the AI. We thus
incorporated within-session slowing in the model by allowing the
drift of the AI to decrease linearly with trial number within each
session, while keeping the EA parameters constant across the
session. Remarkably, this simple modification captured quanti-
tatively the change in time delay curves observed within the
session (Fig. 6d). The model reproduced the non-monotonicity of
the curves with a dip around 130 ms, indicating that the slowing
in RTs was not as severe in that range of reaction times. In the

PSIAM, this corresponded to the range where reactive responses,
which remained unchanged throughout the sessions, dominated
over proactive responses (Fig. 6d, top inset; Supplementary
Fig. 9). Overall, the analysis suggests that the AI process, but not
the EA, was affected by internal factors that changed consistently
within each session, mediating a gradual slowing of responses.

Fatigue and satiety cause within session slowing by modulating
AI speed. The observed slowing of responses along the session
could be linked to a change in two distinct internal variables of
the animal32–35 that increased as the session progressed: physical
fatigue and satiety (Fig. 7a, center and right). The number of
completed trials and the amount of consumed reward since the
beginning of the session provided proxies for fatigue and satiety,
respectively. In order to disentangle the contribution of each of
these factors, we performed additional experiments where the size
of the reward was varied across sessions (Group 4, n= 4; later-
ality discrimination task; see “Methods”). The proportion of fast
proactive responses (RT < 50 ms) steadily decreased with trial
index for all reward conditions, but the impact of reward size on
RTs switched gradually along the session: while at the start of the
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session, a larger reward lead to a larger fraction of fast responses,
the effect vanished at the end of the session (Fig. 7b). To explain
this, we incorporated fatigue and satiety in the model by allowing
the drift of the AI process to change linearly with trial number
and with the amount of consumed reward within the session
(Fig. 7a, top row). Moreover, since the reward size, fixed within a
session, could also affect the rats’ overall motivation and speed,
we also let AI drift depend linearly with the reward size (Fig. 7a,
left column). This extended model captured the impact of reward
size on how the proportion of fast responses changed throughout
the session (Fig. 7c). Trial index and consumed reward were
found to have a negative impact on AI drift, i.e., slowed the AI
process, whereas larger reward size had a positive impact, i.e.,
sped up the AI process (Fig. 7d). Thus, the gradual decay of the
reward size dependence along the session arose from the opposite
contributions of reward size and reward consumption: while at
the start of the session, animals in large reward sessions were
faster because they were more motivated, at the end of the session
the effect vanished because they were also more satiated. In sum,
the analysis shows that the AI process was subject to systematic
variations within and across sessions by means of changes in
three factors: while larger reward sped up the AI process, fatigue
and satiety slowed it down.

Discussion
We used an acoustic discrimination task to characterize the
mechanisms underlying the timing and choices of rats’ perceptual
decisions. We found that the pattern of responses could not be
solely explained by traditional models of perceptual decision

making whereby responses are triggered in reaction to the
accumulated evidence crossing the bound20,25,36. In addition to
such reactive responses, animals generated proactive responses in
which the timing was stimulus-independent but the choice was
stimulus-dependent (Fig. 2). We developed the PSIAM, a model
proposing that each response type is triggered by one of two
parallel processes: the Action Initiation (AI), a proactive timing
process that starts in anticipation of stimulus onset and ramps up
until reaching a Go bound; and the Evidence Accumulation (EA),
a process initiated by the stimulus presentation that integrates
sensory evidence until reaching one of the decision bounds
(Fig. 3). The two processes run in parallel and race to induce a
response, which is triggered as soon as one of the two reaches its
respective bound. The Action Initiation process not only medi-
ated premature responses but also generated slow responses,
effectively implementing an urgency to respond when the EA
process took too long to hit a decision bound (Fig. 4). As pre-
dicted by the model, proactive and reactive responses, which are
locked respectively on the fixation onset and the stimulus onset,
were dissociated in a second set of experiments where stimulus
onset was perturbed (Fig. 5).

The express responses exhibited by our rats should not be
confused with the so-called express saccades25. Express saccades
occur at least 80 ms after stimulus onset, around 50 ms before the
standard saccades, in conditions when subjects are pre-cued
about the onset of the target stimulus (e.g., the gap paradigm)37.
Despite strong debate about their underlying nature37–39 it is
generally accepted that they are triggered by the onset of the
target stimulus38 and hence they are reactive responses. The
express responses made by our rats are what in psychophysics is

1 250 500

Trial index

100

150

200

250

M
ea

n 
R

T
 (

m
s)

-100 0 100 200 300

RT (ms)

0

0.25

0.5

0.75

1

R
T

 c
.d

.f.

0

500

T
ria

l i
nd

ex

-100 0 100 200 300

RT (ms)

0

25

50

T
im

e 
de

la
y 

t (
m

s)

Rats

-100 0 100 200 300

RT (ms)

Model

 50%

100%

F
ra

ct
io

n
pr

oa
ct

iv
e

A
.I.

a b

c d

Fig. 6 Within session slowing of responses. a Mean RT as a function of trial position within the session. Thick black line: group average (Group 1, n= 10),
thin gray lines: individual rats. Trials were grouped in 50 trial blocks. Error bars: s.e.m. b RT cumulative distribution for different trial blocks for an example
animal (rat #14). Color code in panels (b–d) indicates trial block. Vertical dashed line in (b–d) indicates stimulus onset. c Time delay curves averaged
across rats. Trial block 351–400 was taken as reference (i.e., corresponded to time delay Δt= 0). d Time delay curves simulated using the PSIAM fitted to
the RTs for each animal, averaged across rats. Top inset: proportion of proactive vs reactive responses with RT as estimated by PSIAM for each animal,
averaged across rats; shaded area: s.e.m. Left inset: sketch of the impact of trial index on AI’s drift. Source data are provided as a Source data file.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27302-8

8 NATURE COMMUNICATIONS |         (2021) 12:7148 | https://doi.org/10.1038/s41467-021-27302-8 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


called anticipatory responses, i.e., responses which are too fast to
be triggered by the stimulus (see e.g., ref. 28). They are usually
considered as random responses and removed from subsequent
analysis. Here we showed compelling evidence that, in our task,
those anticipatory responses represented the lower tail of a wide
distribution of proactive responses, whose timing was indepen-
dent of the stimulus but whose choices were not random. For
intermediate RTs, these proactive responses were present but they
were mingled with reactive responses (Fig. 3c), as confirmed by
experiments in which we omitted or shifted stimulus onset
(Fig. 5).

Three factors in our task could be promoting the anticipation
of the Action Initiation process leading to a large fraction of
proactive responses. First, the stimulus onset occurred at a fixed
time interval after fixation onset (i.e., a fixed foreperiod), so that
the rats could reliably time their withdrawal from the central port
right after stimulus onset15. A random fixation period40 would
probably lead to a more conservative strategy where the proactive
process is slowed to avoid too early responses. Of note, temporal
expectations also led to a reduction of the non-decision time of
the EA process when the stimulus appeared at the predicted time
in comparison to when it appeared earlier or later (Fig. 5g), in
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agreement with a recent observation41. Second, because of sen-
sory delays, and because the response involves an orienting body
movement lasting around 300 ms, the rat had time for finishing
stimulus integration between leaving the central port (which
interrupts the stimulus) and poking at one of the lateral ports.
This makes express responses a viable strategy in which subjects
leave the port right after stimulus onset, before stimulus can
influence the motor plan, and integrate the sensory information
while executing the orienting movement. Preliminary analysis of
the orienting trajectories reveals that the integration of the sti-
mulus information is extremely fast, with the trajectories being
updated in less than 90 ms after stimulus onset. The same type of
online updating strategy could be applied for responses per-
formed by arm or body movements, which can be swiftly adjusted
en route to the target point42; but perhaps not for more ballistic
responses such as saccades or button presses (but see ref. 43). And
third, the structure of the trial sequence allowed rats to partially
predict the category of the upcoming stimulus based on previous
trials’ responses and rewards23. This partial predictability allowed
animals to reach ~65% accuracy for minimal stimulus durations
in biased trials (Supplementary Fig. 3; note however that most of
our analyses were performed on unbiased analyses, where rats did
not use trial history to predict the next stimulus category). These
features allow achieving both very fast and accurate responses,
especially for high stimulus strength where short stimuli provide
enough evidence to reach high levels of accuracy16 (Fig. 2d). In
other words, animals are fooling the speed-accuracy trade-off44.

The AI process allows modulating RTs not only based on the
structure of the task, but also depending on motivational factors.
We found that RTs slowed down within the session in all our
animals (Fig. 6)45. Previous literature has investigated whether
the impact of session time on RTs reflects the accumulated fatigue
(physical and/or cognitive) or the increase of satiety. One study
found that, in a delay discounting task, the increase in uncom-
pleted trials observed during the session was larger for aged rats
compared to young animals32. Since food consumption did not
differ between the two age groups, the authors argued that the
main driving factor was fatigue rather than satiation. In humans
too, responses slow down when the subject is fatigued46,47. On
the other hand, other studies have found that food or water
satiety increases the latency of responses in rats and pigeons33,34.
We disentangled the effect of fatigue and satiety by varying the
reward size across sessions in additional experiments, and
found that both factors contributed to within-session slowing
(Fig. 7). Furthermore, our model-based approach allowed us to
identify one possible cognitive mechanism underlying this
effect: both fatigue and satiety impact the drift of the AI process,
i.e., slow down the initiation of proactive responses. On the
contrary, increasing reward size led to higher AI drift, and thus
faster responses. This shows that internal states can modulate
decision-making through the AI, without modulating Evidence
Accumulation.

The idea that the timing of perceptual decisions depends on an
internal sense of time pressure is not novel20–22,26,48–50. Several
studies have proposed the existence of an urgency signal that
interacts with the integration of sensory evidence in order to
avoid slow responses. A popular idea is to incorporate urgency
directly into the DDM, while keeping decision-making as a serial
process where action initiation follows evidence integration. This
can be done by gradually collapsing the decision bounds20,26, or
by a ramping evidence-independent signal that either increases
the gain of evidence accumulation21,50 or adds a non-specific
input to all possible response activations, promoting motor
actions22,48,49,51,52. All these mechanisms account for the fact that
very slow responses are usually less frequent in participants than
predicted by the DDM with fixed bounds. However, in all these

extensions of the DDM, RTs always depend on the evidence
accumulation since all responses are triggered after reaching a
decision bound, so these models cannot explain express respon-
ses, where RT is independent of stimulus strength whereas choice
is contingent on stimuli (35% of all responses in our dataset,
SD= 25%; Fig. 2). Extensions to the DDM where the integration
process starts prior to stimulus onset can produce anticipatory
responses (Supplementary Fig. 7j). However, they inherently
predict that if the RT is faster than the non-decision time, and
thus independent of the stimulus evidence, then choice should
also be independent of the stimuli (Fig. 3f–h and Supplementary
Fig. 7e, f).

By contrast, the PSIAM provides an alternative approach
where a single mechanism, i.e., proactive responses, can (1)
account for express responses yielding stimulus-independent RTs
and stimulus-dependent choices (Fig. 3d, e), and (2) contribute to
the decrease of the probability of very slow responses (Fig. 4a).
The PSIAM captured rat RT distributions better than an extended
DDM (Supplementary Figs. 9j-k and 12a), and it parsimoniously
predicted rat RTs in silent trials with remarkable accuracy (Fig. 5c
and Supplementary Figs. 11 and 12b). In the PSIAM, AI sets a
stimulus-independent internal deadline for triggering the
response, avoiding long accumulation-to-bound processes in EA.
As such, the action of the AI can be viewed as provoking the
instantaneous collapse of decision bounds on the EA at a sto-
chastic time defined by the AI bound crossing. While in our task
the AI most often reached the Go bound shortly after stimulus
onset, under other circumstances, a slower AI drift could be used
to trigger proactive responses after a longer stimulus duration.
Indeed, a slower and more precise AI process can shift the timing
of proactive responses, from early to late responses, i.e., from
causing express responses to ensuring an upper bound on inte-
gration time (Fig. 8a). Such a change also leads to a larger drop in
accuracy associated with long RTs (Fig. 8b), an effect that is
commonly observed in the decay of tachometric curves51,53, but is
usually attributed to either the variability in the drift of the evi-
dence accumulation process or the gradual collapse of the deci-
sion bounds. Adjusting AI parameters in the PSIAM provided a
more flexible way to set the speed-accuracy trade-off compared to
modulating the decision bounds of the EA process54,55. Hence,
while rats may lay on the impatient side of AI, AI in humans and
non-humans primates performing classical perceptual tasks may
primarily be used to prevent very long reactive responses51.
Indeed, a model very similar to PSIAM (featuring a race between
a timing process and an evidence accumulation process) was
recently and independently proposed, providing a better account
of human behavior than generalized DDMs in a variety of
decision-making tasks56. This convergence of findings between
species provided compelling evidence overall in favor of parallel
proactive and reactive processes in the mammal brain.

The PSIAM is also related to previous models of sensory gui-
ded responses with a proactive component. In a classic
mechanistic model of saccade initiation, Trappenberg and col-
leagues presented a circuit model of the superior colliculus where
exogenous visual signals and endogenous preparatory signals are
combined to generate target-directed saccades with variable
RTs39. The model elegantly reproduces the impact of distractors
and target location biases on saccade RTs, and generates express
saccades when the target onset is cued (see above). However,
despite the parallelism between proactive/reactive and endogen-
ous/exogenous processes, this model exclusively generates either
reactive responses or proactive random guesses. Reactive
responses’ latency can indeed be modulated by endogenous sig-
nals, but they are ultimately triggered by the visual input. In a
different study, human subjects were forced to respond “earlier-
than-normal” in a visually guided reaching task18. A simple
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model separating the when and what decisions into two separate
processes could nicely explain RTs and choices: the Action
Initiation process always determined the timing of response,
whereas a second stimulus-dependent Action Preparation process
determined the choice but never the timing17,18. While this
model, like the PSIAM, can generate proactive responses where
the choice is informed by the Evidence Accumulation process, it
cannot explain that some reaction times depend on stimulus
evidence, a clear signature of reactive responses present in our
data (Figs. 3 and 5) and in many other studies24,40.

An alternative model, based on data from monkeys performing
an oculomotor visually-guided task under strong external time
pressure, proposes a race between choice-selective Action Initia-
tion processes which are accelerated or decelerated by the pre-
sence of a stimulus16,57,58. By combining proactive and reactive
processes into a single stimulus-dependent race-to-bound pro-
cess, the model can capture the existence, like in our data, of two
underlying components of the RT distribution: responses that are
time-locked to the onset of the foreperiod (the fixation onset in
our task) and responses that are time-locked to the stimulus
onset16. The PSIAM differs however from this model in two
important aspects. First, the PSIAM incorporates the classical
mechanisms of Evidence Accumulation, which captures the
dependency of RTs on stimulus strength in standard free-
response paradigms, something not present in the accelerated
race model of ref. 16. Second, the PSIAM grounds on separate
accumulation-to-bound EA and AI processes, whereas the
accelerated race model features proactive and reactive mechan-
isms in a single accumulation-to-bound process. A single
accumulation-to-bound process is incompatible with responses
where the stimulus impacts choice but not RT, such as express
responses in our rats. Thus, our data support that reactive
responses are mediated by a separate accumulation-to-bound
process independent from the proactive AI process. As expected,
the accelerated race model displayed chance-level performance
for responses faster than non-decision time, which contradicts the
observed behavior for rats (Supplementary Fig. 7g-h,l and Sup-
plementary Methods). A direct extension of the PSIAM, inspired
by the accelerated race model, is to assume that EA does not
trigger responses when reaching bound but rather accelerates the

ongoing AI process toward the Go bound16. This extension of
PSIAM would reconcile the two models, and could account for
the increased EA latency found in advanced trials (Fig. 5d, g).

Based on the large body of existing mechanistic network models,
an implementation of the PSIAM can be readily foreseen. The
network would consist of two circuits: a standard circuit carrying
out Evidence Accumulation based on inhibition-mediated compe-
tition between excitatory populations representing each of the
alternatives59–62; and a circuit generating stochastic ramping
activity which performs the motor timing part of the task27,63,64.
Coupling between the two circuits could implement the instanta-
neous collapse of the bounds in the EA circuit when the AI circuit
reaches a certain level of activity. Various modulations of the EA
circuit may affect the speed of the decision dynamics, such as
stronger external feedforward excitation51,60,65–67, increased top-
down modulatory inputs61,68, a change in the balance between
recurrent excitation and inhibition69 or the impact of different
neuromodulators70,71. A sudden and large acceleration of the
winner-take-all dynamics through either of these mechanisms could
terminate the accumulation and categorize the evidence accumu-
lated so far: for example, an all-or-none population burst generated
by the AI circuit upon threshold-crossing72 could generate a strong
and fast boost to the competition that would cause the population
with higher firing to rapidly increase its rate until reaching the
decision threshold. Hence, the rate of the winning population would
always be reaching the same decision threshold, as consistently
found across multiple brain areas4,40,73–77, in both proactive and
reactive responses.

Where in the brain could these circuits be located? Activity in
several brain areas shows correlates of processes like the AI or EA
of the PSIAM. Neurons showing slow ramping activity preceding
proactive responses have been found in several brain areas such
as the cortical supplementary motor area12, the frontal eye field16,
the secondary motor cortex11, the lateral intraparietal area78, and
the basal ganglia13,79. Interestingly, some neurons showed
ramping activity specifically before proactive but not reactive
responses12,78. Similarly, a large number of cortical and sub-
cortical areas has been suggested to encode accumulated stimulus
evidence4,40,73–77. There is conflicting evidence regarding whe-
ther neural markers of accumulated evidence are influenced by
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the level of urgency22,77,80,81. Thus, despite being a phenomen-
ological model aimed to describe behavioral responses, by pos-
tulating the existence of race dynamics between proactive and
reactive processes, the PSIAM model may become an instru-
mental tool to identify the underlying mechanisms of neural
ramping dynamics during perceptual decisions.

In conclusion, our analyses support a model where decision-
making is mediated by two separate processes, Action Initiation
and Evidence Accumulation, which race to trigger a behavioral
response. They also point to the AI process as a flexible
mechanism allowing strategic and idiosyncratic adjustments of
the action timing to multiple factors, such as temporal and choice
predictability, motivation, and urgency.

Methods
This study complies with all relevant ethical regulations for animal testing and
research. All experimental procedures were approved by the local ethics committee
(Comité d’Experimentació Animal, Universitat de Barcelona, Spain, Ref 390/14).

Animal subjects. Animals were male Long-Evans rats (n= 26, 350–650 g; Charles
River), pair-housed during behavioral training and kept on stable conditions of
temperature (23 °C) and humidity (60%) with a constant light-dark cycle
(12 h:12 h, experiments were conducted during the light phase). Rats had free
access to food, but water was restricted to behavioral sessions. Free access to water
was provided on days with no experimental sessions.

Task description. Rats in Group 1 (n= 10) performed an auditory reaction-time
two-alternative forced-choice task. Specifically, this group of rats performed a
frequency discrimination version of the task23. Briefly, at each trial, an LED on the
center port indicated that the rat could start the trial by poking in (Fig. 1). After a
fixation period of 300 ms, the LED switched off and an acoustic stimulus consisting
of a superposition of two amplitude-modulated frequencies was presented (see
details below). Each frequency was associated with a specific side and reward was
available at one of the two lateral ports, depending on the dominant frequency.
Stimulus sequences were structured in trial blocks with either a Repeating tendency
(prob. repeat previous stimulus category= 0.7–0.8) or an Alternating tendency
(prob. repeat= 0.2) (see Supp. Methods). Animals developed expectation-mediated
choice biases reflecting this structure but only after correct trials (biased trials).
After error trials (unbiased trials), their choices were not influenced by the block23.
Animals could respond any time after stimulus onset. Correct responses were
rewarded with a 24 µL drop of water and incorrect responses were punished with a
bright light and a 5 s time-out. Trials in which the rat did not make a side poke
response within 4 s after leaving the center port were considered invalid trials and
were excluded from the analysis (average of 0.4% invalid trials per animal).
Withdrawal from the center port before stimulus onset canceled stimulus pre-
sentation (Fixation Break, FB). After a FB, rats were allowed to initiate fixation
again, with no time-out, and as many times as necessary until fixation was com-
plete (indicated by center LED offset). Rats performed an average of 694 trials
per session (range: 335–1188), one session per day lasting 60–90 min, 6 days per
week, during 9 months. The data presented in this study was taken from the period
after training yielding an average of 56,506 valid trials per rat.

Rats in Group 2 (n= 6), Group 3 (n= 8), and Group 4 (n= 4) performed an
intensity level discrimination version of the task23,24. In this task, two speakers
positioned at both sides of the box played simultaneously an amplitude-modulated
white noise. Rats had to discriminate the side with the loudest sound (right or left)
and seek reward in the associated port. The details of the task are exactly the same
as in the previous one, but in these groups the time-out after error responses was of
2 s and was not associated with bright light. Rats in Group 2 performed sessions
with silent catch trials (random 10% of trials without sounds; range: 45–50
consecutive sessions) in which they could respond any time after the 300 ms
fixation offset, as in standard trials. The correct response side for silent trials was
determined by the stimulus category sequence, which was predetermined
irrespective of the presence or absence of sound (see Supplementary Methods).
Rats in Groups 2 and 3 performed sessions with advanced/delayed stimulus catch
trials (random 10% of trials varying sound onset; 45–50 consecutive sessions). For
5% randomly selected trials, the stimulus onset time was advanced by Δ=−150 ms
for animals in Group 2 and by Δ=−250 ms for rats in Group 3 (Fig. 5a, advanced
stimulus trials); and for another 5% of trials, it was delayed by Δ=+150 ms for
Group 2 and by Δ=+50 ms for Group 3 (Fig. 5a, delayed stimulus trials). For
these advanced/delayed catch trials, stimulus strength was always set to maximum
(s= 1) to gain statistical power, and to enhance evidence-triggered, reactive
responses. In advanced stimulus and standard trials, rats could respond any time
after fixation offset (either at 150 or at 50 ms, and at 300 ms, respectively), which
coincided with stimulus onset. In delayed stimulus trials, rats could respond any
time after fixation offset (300 ms), which was dissociated from stimulus onset
(either at 450 or at 350 ms). For rats in Group 2, which participated in silent and

advanced/delayed stimulus sessions, the order of the sessions was balanced across
animals, with 3 rats starting with the advanced/delayed catch trials sessions and
3 starting in the silent catch trials sessions. The overall fraction of catch trials was
maintained low at 10% to avoid animals modifying substantially their original
behavior during these sessions.

Rats in Group 4 performed sessions with a modified water reward size. In small-
reward sessions, the amount of water obtained in each correct response (12 μl) was
half of the reward in standard sessions. In large reward size sessions, the amount of
water obtained (48 μl) was double the amount in standard sessions (Fig. 7a, left).
The three types of sessions were randomly interleaved.

For Group 1, the behavioral setup (Island Motion, NY) was controlled by a
custom software developed in Matlab (Mathworks, Natick, MA), based on the
open-source BControl framework (http://brodylab.princeton.edu/bcontrol). For
Groups 2-4, the behavioral setup was controlled by BPod electronic boards (by
Sanworks) and the task was run using the Python-based open software package
PyBPod (http://pybpod.com/).

Additional details on the acoustic stimulus and the stimulus sequence are
provided in the Supplementary Information Methods.

Reaction times. The reaction time (RT) was defined as the time elapsed from
stimulus onset to center port withdrawal (Fig. 1b). For standard trials, the RT
matched the stimulus duration, as the stimulus was switched off at center port
withdrawal. For silent, advanced stimulus and delayed stimulus trials, the RT was
measured with respect to standard stimulus onset. Fixation breaks (FBs; 16 ± 5% of
total withdrawals, mean ± standard deviation) were defined as withdrawals from
the center port during the fixation period (300 ms for standard, silent and delayed
stimulus trials; either 150 or 50 ms for advanced stimulus trials). Only the first
center port withdrawals of each trial, either FB or RT, were analyzed: after a FB,
further FBs and the subsequent valid response were discarded to remove possible
serial effects within a single trial. Trials with RTs longer than 1s were removed
from the analysis (0.5 ± 0.6% of total withdrawals).

RT-evidence modulation onset. The onset times for the modulation of the RT
distributions by the stimulus strength (Fig. 2a, b) were computed similarly as in
Supplementary Fig. 2b of24. For each time t, we computed a one-tailed
Kolmogorov–Smirnoff test comparing the RT cumulative distributions for trials
with strongest and weakest stimulus evidence (stimulus strength s= 1 versus sti-
mulus strength s= 0), including both biased and unbiased trials, and excluding all
reaction times larger than t. For each rat, we defined the modulation onset as the
minimal value of t at which this comparison became significant (p < 0.05).

Time delay curves. Time delay curves assess how much faster or slower is a given
stochastic time variable with respect to a reference distribution; see Supplementary
Fig. 3 of ref. 24. Intuitively, it represents the horizontal distance at any time point
between a given cumulative distribution and a reference cumulative distribution
(Supplementary Fig. 2). At a given time point T, the time delay value is defined as
the time difference Tr−T, where Tr is the time at which the value of the reference
cumulative matches the value of the cumulative of interest at T, i.e., C(T)= Cr(Tr).
Positive time delay means that, at time T, there is a larger proportion of RTs lower
or equal to T in the condition of interest than in the reference condition.

Parallel Sensory Integration and Action Model (PSIAM). In order to char-
acterize the patterns of rat RTs and choices, we built the PSIAM by combining a
standard DDM with constant bounds10 (i.e., Evidence Accumulation process or EA
process) with a second drift diffusion process modeling the timing of proactive
responses (Action Initiation process or AI process; Fig. 3a, b, bottom red traces).
EA is a Wiener process which integrates the evidence provided by the stimulus over
time, following:

dxðtÞ
dt

¼ VE þ σE � ξðtÞ; for x 2 ð�θE;þθEÞ ð1Þ

dxðtÞ
dt

¼ 0; for x ¼ ± θE

where x(t) is the EA process representing the instantaneous accumulated evidence.
The parameter VE is the drift which only depends on the stimulus evidence (see
below); σE2 is the noise variance, set to 1 to make the model identifiable; and ξðtÞ is
a white noise stochastic process which represents the stimulus temporal fluctua-
tions as well as the internal noise associated with the accumulation process. The EA
process is initiated at value x= zE (starting offset) with a delay of tEaff with respect
to stimulus onset tstim (afferent latency); x= ±θE are the two symmetric decision
bounds (Fig. 3a, b, and see below). The model did not include variability in the
starting offset when capturing the distribution of RTs for analytical tractability. To
predict choices, however, we included a small initial variability in biased trials to
capture the fact that the magnitude of the bias was not fixed across all the trials
within a block (i.e., the repeating bias fluctuated in magnitude across trials of the
Repeating block; see “Model prediction of choice data” section below).
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Action Initiation represents the preparation of a commitment to take a decision;
it is modeled as an independent, one-bound DDM1:

dyðtÞ
dt

¼ VA þ σA � ξðtÞ; for y < θA ð2Þ

dyðtÞ
dt

¼ 0; for y ¼ θA

where the parameter VA is the drift of the AI; σA2 is the noise variance (set to 1);
and ξðtÞ is a white noise stochastic process representing the internal variability
associated with the precise timing of the Go action. The AI process is initiated at
fixation onset with a delay of tEaff (afferent latency); and θA is the action bound
(Fig. 3a, b).

The PSIAM model distinguishes two types of responses, proactive and reactive,
depending on the outcome of the race between the AI and the EA processes, i.e.,
depending on which process reaches the bound first. Reactive responses are
generated when either of the two EA boundaries is reached first; the choice is then
defined by which bound is hit (by convention, the upper bound corresponds to the
rightwards choice, and the lower bound to the leftwards choice). Proactive
responses are generated when the AI threshold is reached first; the choice is then
defined as a direct read-out of the sign of the EA process xðtÞ after the interrupted
stimulus is integrated. This is equivalent to an instantaneous collapse of both EA
decision thresholds, i.e., a vertical bound in the EA (Fig. 3a). The RT at each trial is
thus set by the first of the two processes to reach the bound, and corresponds to the
time elapsed from stimulus onset to first bound hit, with an additional efferent
delay tmotor representing motor latency. The probability density function (pdf) p(t)
and the cumulative distribution function (cdf) c(t) of the RTs depend on the pdf
and cdf of the RTs that would be generated by either the AI (pA(t) and cA(t)) or by
the EA (pE(t) and cE(t)) in isolation, through82:

p ¼ pA � ð1� cEÞ þ pE � ð1� cAÞ ð3Þ

c ¼ cA þ cE � cA � cE ð4Þ
where we have dropped the dependence on t to ease the notation. The distribution
of the RTs generated in isolation by the AI is an inverse Gaussian (IG) distribution
(a.k.a. Wald distribution), so that the pdf and cdf for AI1,83 are:

pAðtjVA; θA; tAÞ ¼ θA � 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π � ðt � tAÞ3
q � exp �V2

A

2
� ½ðt � tAÞ � θA=VA�2

ðt � tAÞ

� �

ð5Þ

cAðtjVA; θA; tAÞ ¼Φ VA � ðt � tAÞ � θA=VA
ffiffiffiffiffiffiffiffiffiffiffiffi

t � tA
p

� �

þ exp �2 � VA � θA
� � �Φ �VA � ðt � tAÞ þ θA=VA

ffiffiffiffiffiffiffiffiffiffiffiffi

t � tA
p

� � ð6Þ

where the parameter VA is the reduced drift (σA= 1) of the AI; θA is the reduced
single-threshold height from the starting value of the AI process; and
tA= tAaff+ tmotor is the total AI latency, summing afferent and motor latencies.
The independent RT pdf for the EA alone corresponds to that of the standard
DDM with two constant bounds1,84:

pEðtjVE; θE;ZE; tEÞ ¼ pþE þ p�E ¼ p�E ðtj � VE; θE;�ZE; tEÞ þ p�E ðtjVE; θE;ZE; tEÞ
ð7Þ

p�E ðtjVE; θE;ZE; tEÞ ¼
π

ð2θEÞ2
� exp �VE � ðZE þ θEÞ �

V2
E

2
� ðt � tEÞ

� �

� ∑
1

k¼1
k � sin k � π � ZE þ θE

2θE

� �

� exp � k2π2

2 � ð2θEÞ2
� ðt � tEÞ

� �	 


ð8Þ

where pE± are the joint pdfs for RT and choice, with + and − for choice
corresponding to upper bound and lower bound, respectively. The parameter VE

represents the reduced drift (σE= 1); ±θE represent the reduced upper and lower
threshold values; ZE represents the reduced starting offset or bias; and
tE= tEaff+ tmotor represents the total response latency time for the EA, summing
afferent and motor latencies. The corresponding cumulative distribution cE is
obtained by integrating Eq. (7) analytically over t.

Model fit to reaction times data. The fit of the PSIAM to the experimental RTs
data was performed under maximum likelihood estimation (MLE), using simplex
method (Matlab function fmincon) with 20 random initial points in bounded
parameter space to avoid local minima. Model parameters were estimated for each
animal only based on RTs for all trials including FBs. The value of the EA starting
point, EA drift and AI drift depended on trial conditions. EA drift VE scaled
linearly with signed stimulus strength S (positive/negative sign for rightward/left-
ward evidence), and we fitted the proportionality parameter νE, i.e., VE= νE·S. For a
given trial k, the signed stimulus strength Sk was computed as the instantaneous
evidence Sk,f averaged across frames presented in this trial, i.e., < Sk,f>f . To account
for the slowing of the responses within each session (Fig. 6a, b), AI drift scaled
linearly with trial index k as VA,k= νA0+ νtrial·k, and we fitted the parameters νA0
and νtrial. EA initial offset ZE captured the animal’s expectation of which response

will be rewarded in the next trial. For unbiased trials, this offset was set to 0, i.e., no
expectation. For biased trials (Supplementary Figs. 3 and 5), the value of the
starting point was signed depending on the trial-dependent expectation of
rewarded side bk= ±1 (see Supplementary Methods), so that ZE= zE·bk, where we
fitted the parameter zE representing the magnitude of the animal’s expectation. The
rest of the parameters of the PSIAM were constant for each animal. Additionally,
we included contaminants in the form of a Huber’s ε-contamination model for
MLE robustness85. Contaminant responses were included to avoid estimation
parameters to be biased by very early FBs (especially numerous after error trials)
and very late RTs86. Contaminant responses were modeled from the mixture of a
decaying exponential distribution and a uniform distribution as:

p ¼ c � pC þ ð1� cÞ � pmodel ð9Þ

pCðtjd; βÞ ¼ d � β � exp ð�β � tÞ þ ð1� dÞ � ctt ð10Þ

where p, pC, and pmodel are the final, contaminant, and PSIAM densities respec-
tively; the parameter c is the proportion of contaminant responses; d is the
exponential-uniform mixture parameter; β is the inverse of the exponential time
constant; and ctt is the normalization constant for the uniform density alone. The
PSIAM with contaminants has a total of 11 parameters: 4 for the AI (drift intercept
νA0 and trial-index weight νtrial, threshold θA, and response latency time tA); 4 for
the EA (drift stimulus weight νE, threshold θE, response latency time tE, and
starting offset zE); and 3 parameters for the contaminant distribution (proportion
of contaminant responses c, the exponential-uniform mixture parameter d, and the
inverse of the exponential time constant β). We added lower and upper bounds in
the parameter search, both to speed up the optimization algorithm and to confine
the search within a range of a priori defined values. The bounds in parameter space
set for MLE were: [0,12] s−1 for νA0; [−2,1] × 10−2 s−1·trial−1 for νtrial; [0.1,10] for
θA; [−600,300] ms for tA; [2,10] s−1 for νE; [0.1,1.2] for θE; [35,75] ms for tE; [−1/
2,1/3] for zE; [0,0.5] for c; [0,1] for d; and [0,50] s−1 for β. There was one less
parameter to fit for unbiased trials as we set zE to 0. The infinite series in the EA
independent RT pdf (Eq. 8) and cdf were approximated numerically87–89.

Model prediction for choice data. The PSIAM choice (Right/Left) corresponds to
the sign of the final value of the EA process (Fig. 3a, b). For each rat, we computed
the choice prediction (Figs. 3e and 4d) by simulating the PSIAM (Eqs. 1–2) using
MLE parameter values. It should be stressed that parameter MLE values were
obtained using RTs data only, and not choices. We also included a small trial-to-
trial variability in the EA starting offset when predicting choices in biased trials
only (see Supplemental Methods). Had we not included this initial variability,
choices at very short RT would always be determined by the side of ZE, i.e., the
expectation, without any choice variability (i.e., in a Repeating block, the model
would always repeat its previous choice). This is at odds with rats’ behavior which
at very short RTs shows choice variability independently of their expectation bias.
For unbiased trials after error responses, because ZE= 0, there was no need to
include variability in the EA starting offset to generate choice variability at any RT.
Simulations were run by discretizing differential equations (Eqs. 1–2) using Euler
method with a time step of 0.1 ms. We performed a total of 107 trial simulations
per rat.

Model prediction for reaction times in catch trials with manipulated stimuli.
The density psilent of RTs in silent catch trials was predicted from the PSIAM using
parameters fitted to the standard trials from the same sessions (Fig. 5b; Supple-
mentary Figs. 11, left column and 12a, blue lines). Since no stimulus was presented
in silent trials, the prediction was that psilent= pA (Eq. 5), because responses were
all proactive, i.e., were generated from the AI process operating in isolation (AI
alone in Fig. 5b; red lines in Supplementary Fig. 11 and blue lines in Supplementary
Fig. 12b).

For advanced/delayed trials, where the stimulus onset was advanced or delayed
by Δ, we first tested the prediction obtained from simply advancing or delaying the
EA onset time tstim by Δ. In a second analysis we fitted the value of the latency time
tE and/or EA drift νE separately for each delay condition, leaving other parameters
unchanged (Fig. 5d, e, g, h; Supplementary Figs. 13 and 14, dashed blue curves,
and 15).

Extended drift-diffusion model. We constructed an extended version of the
classic DDM where the integration of evidence started before stimulus onset, in
order to account for very fast reaction times and fixation breaks28. The eDDM is
initiated at fixation onset with an afferent delay tIaff and integrates internal noise of
variance σI2 with drift zero prior to stimulus onset. Following stimulus onset with
an afferent delay tEaff, eDDM is driven by stimulus evidence: the drift changes to VE

while noise variance changes to σS2 as both external and internal sources contribute
to the accumulation noise. The integration continues until the decision variable
reaches a bound at ±θ. The choice is then defined by which bound is hit, and the
response is initiated after an efferent delay tmotor representing motor latency.
Additionally, we incorporate the same structure of contaminant responses as in
PSIAM (see Eqs. 9 and 10) to avoid biases in parameter estimation and improve
model comparison.
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The model was fit to individual rat RTs in unbiased trials using the PyDDM
package90, under the method of differential evolution. We fitted a total of 8
parameters: pre-stimulus internal noise variance σI2 and response latency
tlatency= tIaff+ tmotor, drift stimulus weight νE, non-decision time tE= tEaff+ tmotor,
threshold θ, proportion of contaminants c, contaminant exponential-uniform
mixture parameter d, and the inverse of the exponential time constant β. σS2 is set
to 1 to make the model identifiable.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All the data generated in this study have been deposited in the Open Science Foundation
database. Data and Source data are publicly available at https://osf.io/3qe59/. Source data
are provided with this paper.

Code availability
All custom code and software in this study (Matlab R2019a, Spyder: Python 3.7) have
been deposited in the Open Science Foundation database, and are publicly available at
https://osf.io/3qe59/.
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