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Within the neurosciences, it is natural to observe variability across time
in the dynamics of an underlying brain process. Wavelets are essential in
analysing brain signals because, even within a single trial, brain signals exhibit
nonstationary behaviour. However, neurological signals generated within an
experiment may also potentially exhibit evolution across trials (replicates) even
for identical stimuli. As neurologists consider localised spectra of brain signals
to be most informative, we propose the MULtiple-Trials Locally Stationary
Wavelet process (MULT-LSW) that fills the gap in the literature by directly
giving a stochastic wavelet representation of the time series of ordered repli-
cates itself. MULT-LSW yields a natural desired time- and trial-localisation
of the process dynamics, capturing nonstationary behaviour both within and
across trials. While current techniques are restricted by the assumption of
uncorrelated replicates, here we account for between-trial correlation. We
rigorously develop the associated wavelet spectral estimation framework along
with its asymptotic properties. By means of thorough simulation studies, we
demonstrate the theoretical estimator properties hold in practice. A real data
investigation into the evolutionary dynamics of the hippocampus and nucleus
accumbens during an associative learning experiment demonstrates the appli-
cability of our proposed methodology, as well as the new insights it provides.
Our model is general and facilitates wider experimental data analysis than the
current literature allows.

1. Introduction In an experimental setting consisting of repeated trials, inference is
typically carried out on the average dynamics of the underlying process over all trials. However,
a recent study on neurological signals (Fiecas and Ombao, 2016) suggests that this approach
is naive due to its failure to account for the possibility of a change in the process dynamics,
even for identical stimuli, over the course of the experiment. Their data example focusses
on the hippocampus (Hc) and the nucleus accumbens (NAc), both known to play important
roles in cognitive processing as they are individually associated with memory recall and the
processing of reward, respectively. Recordings of electrical activity (at approximately 1000Hz)
using local field potentials (LFPs) were obtained from the Hc and NAc of an awake behaving
macaque during an associative learning experiment. For each trial, the macaque was presented
with one of four pictures and was then tasked with associating this picture with one of the four
doors appearing on the screen. Upon making a correct association, the macaque was rewarded
with a small quantity of juice. Plots of the LFPs obtained from trials in which a correct
association was made are shown in Figures 1 and 2, where the experimental timeline was
ensured to match from trial to trial. Our focus here is to dynamically explore and characterise
the brain activity both within a trial and across ordered trials, as manifest at the level of Hc
and NAc and quantified by the spectral representations of these recorded complex time series
signals. Variability in neuronal activity within both brain regions has also been observed
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over the trials of a learning experiment in other recent studies, including Seger and Cincotta
(2006); Gorrostieta et al. (2012); Abela et al. (2015). Such traits present the challenge of
modelling time series that display potential nonstationary behaviour not only across time, but
also across the timeline of the temporally sequentially ordered trials. Additionally, analyses
undertaken so far on such data have been carried out under the simplifying assumption of trial
uncorrelation, an assumption that we absorb as a particular case of the proposed model. Our
aim is to identify the existence of activation windows through the experimental trials and to
directly connect these to the within-trial tasks, thus achieving an insight into the cognitive
learning process manifest during the experiment. In order to achieve a comparative analysis
into the working memory and reward mechanisms, the MULT-LSW framework departs from
previous approaches such as that of Fiecas and Ombao (2016) and separately consider the sets
of ordered correct and incorrect trials.

−
4

−
2

0
2

4

Replicates 1 to 7

0 2048 4096 6144 8192 10240 12288 14336

−
4

−
2

0
2

4

Replicates 111 to 117

225280 227328 229376 231424 233472 235520 237568 239616

−
4

−
2

0
2

4

Replicates 221 to 227

450560 452608 454656 456704 458752 460800 462848 464896

Time

R
ep

lic
at

e 
pr

oc
es

s

Fig 1: Concatenated series of the hippocampus (Hc) data in the correct response trials (replicates).
(Vertical lines denote breaks between trials. Concatenation is only used for meta-process visualisation.)

In the specific context of brain signals, the usefulness of time-scale decompositions that are
typical of wavelet constructions has already been established in the literature (Sanderson et al.,
2010; Park et al., 2014). For the purpose of quantifying meta-process variation across times
and trials, the ability of wavelet decompositions to extract localised information across dyadic
scales conveying ‘zoomed-in’ or ‘-out’ information is crucial. Via the process spectrum, this in
turn will allow for an explicit split of the process power across scales, times and trials. Our aim
is therefore to develop a wavelet-based model that directly gives a stochastic representation
to the meta-process of ordered trials and simultaneously captures, in a scale-dependent
manner, the evolutionary dynamics of the underlying brain process across time within each
trial and across the trials of the experiment. The multiscale insight afforded by the wavelet
decomposition offers an additional layer of information and contributes to the understanding
of the within-trial evolution. As already pointed out, an important assumption typically
undertaken is that of independent/ uncorrelated trials. However, some studies document
evidence of correlation across trials in an experiment (Arieli et al., 1996; Huk et al., 2018).
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Fig 2: Concatenated series of the nucleus accumbens (NAc) data in the correct response trials (repli-
cates). (Note each trial is a time series and concatenation is only used to aid meta-process visualisation.)

Thus, one important advantage of our model is that it accounts for the dependence between
trials by means of a coherence quantity that acts as a measure for cross-trial dependence.
Nevertheless, should trial uncorrelation be a reasonable assumption, our model is able to
flexibly incorporate it.

As time series data encountered in practice are often of a nonstationary nature and much re-
cent research has been concerned with developing statistical models that capture this behaviour
within the series, we limit our (brief) review to developments that can handle nonstationary
data. Priestley (1965) was first to study in detail nonstationary processes with time varying
spectral characteristics. Further models using Fourier waveforms have been developed by
Dahlhaus (1997) who introduced the methodology of locally stationary processes which
allowed for asymptotics to be established, and Ombao et al. (2002) whom utilise the SLEX
(smoothed localised complex exponentials) library of waveforms which give localisation
in both time and frequency. Similar representations have been developed using wavelets.
Approaches that use wavelet thresholding for smoothing the spectra of locally stationary time
series have been considered by von Sachs and Schneider (1996) and Neumann and von Sachs
(1997). While wavelets have long been used for nonparametric function estimation, they also
serve as building blocks for stochastic representation of nonstationary processes, starting with
the locally stationary wavelet framework developed by Nason et al. (2000). Their approach
used a set of discrete non-decimated wavelets to replace the Fourier exponentials used in
Dahlhaus (1997), and this in turn offered localisation in both time and scale. Extensions to the
multivariate setting appear in the work of Ombao et al. (2005), Sanderson et al. (2010) and
Park et al. (2014), where a coherence structure between channels is embedded in the model.

What is not well accounted for in the literature, is the statistical modelling of second
order nonstationarity across a collection of (constant mean) time series arising from the same
stimulus presented in a designed experiment. For stationary time series, Diggle and Al Wasel
(1997) accounted for the stochastic variation that arises across replicated time series via a
subject-specific realisation of a random process. They proposed a generalised linear mixed-
effects model for periodograms to estimate the population spectrum where the subject-specific
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random term in the model captures the cross-subject variation. Saavedra et al. (2000) extend
this work through the proposal of a kernel-based estimator and Krafty et al. (2011) introduce a
mixed effects Cramér representation, with both fixed and random effect components contained
within the replicate-specific transfer functions, both still under the confines of stationarity.
Extension to the nonstationary case has been addressed by Qin et al. (2009) whom, through
the locally stationary processes framework, developed a time-frequency functional model,
where the time-varying log-spectra determine the evolution of the stochastic variation. More
recently, Fiecas and Ombao (2016) proposed a model that captures the evolution in the Fourier
spectral characteristics (in particular, autospectra and cross-channel coherence) of dynamic
brain processes across a collection of trials in an associative learning experiment. The authors
refer to trials as replicates, a term we will also interchangeably borrow in our nomenclature,
while emphasizing that individual replicates (trials) are not to be understood as identical
realisations from the same process, i.e. the realisations from the same stimulus can still vary
from one trial to another.

Modelling replicate time series data is often framed as a functional regression problem (see
e.g. Morris (2015) for a review). In contrast to our approach that proposes to model the meta-
process itself, functional regression approaches often deal with the replicate data by projecting
it into the Fourier or wavelet domain, where the spectral representations become subject to
modelling (Martinez et al., 2013) and thus potentially embedding within- and between-trial
variability. A similar ethos is adopted by Gott et al. (2015), where the authors formulate a
random effects model for the wavelet spectrum. A possible avenue for future research might
be to indeed fuse the two lines of modelling in order to augment estimation. Additionally,
Chau and von Sachs (2016) stress the importance of allowing for correlation among replicates
and, in the spirit of Morris (2015) highlight the danger of arriving to misleading inferences
stemming from inefficiencies of estimators obtained under a blanket assumption of replicate
independence.

Our approach acknowledges the work of Fiecas and Ombao (2016), who developed their
time–replicate model using Fourier waveforms, but the limitation of their work is the as-
sumption of uncorrelated replicates. This may be unrealistic since these signals are being
recorded from the same individual (human, animal or plant, as dictated by the experimental
field). Moreover, ignoring autocorrelation might produce misleading results from statistical
inference, e.g. through the use of incorrect confidence bands. Our work aims to fill this gap and
to the best of our knowledge, our proposed methodology is the first to directly give a stochastic
wavelet representation of the multiple-trial process itself while simultaneously allowing for
nonstationary behaviour and for cross-trial dependence. Nevertheless, despite the attractive
properties of wavelets, this work seeks to promote wavelet process modelling approaches for
time series that display nonstationary characteristics as complementary to Fourier-based tools.

Major advantages of our model are that (i) it offers the superior time-localisation typical
of wavelet constructions, and (ii) it takes into account the correlation of brain signals across
trials. Subsequent benefits amount to finer spectral characterisations of within- and between-
trial evolution. We propose to model the meta-process within a locally stationary wavelet
process paradigm that builds upon the framework introduced by Nason et al. (2000) for a
single process (here, replicate or trial). Our proposed general model allows for between-
trial correlation, and the constraint of uncorrelated replicates is tackled as a particular case.
This amounts to developing novel evolutionary wavelet quantities and associated estimation
theory that encompass variation across time and within- and between-trial. To obtain well-
behaved, consistent spectral estimates we propose to perform local smoothing of the raw
wavelet periodograms across trials, as opposed to employing the smoothing over time typically
undertaken in the locally stationary process context. Trial-coherence estimation theory is also
treated and is shown to provide novel, useful information about the process trial evolution.
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The article proceeds as follows. Section 2 (i) introduces our proposed meta-process model
that allows for correlation between trials while accounting for intra- and cross- trial nonsta-
tionarity, and (ii) develops its associated estimation theory. The generality of this new model
allows us to treat the absence of cross-trial dependence, a fundamental assumption under-
pinning previous work, as its particular manifestation. Section 3 details simulation studies
that showcase the practical behaviour of the proposed methodology and demonstrates its
advantages. Section 4 details the application of the proposed methodologies to a real data
study within neuroscience, where we crucially contrast the learning associations as evidenced
at the level of the correct and incorrect trials. Section 5 concludes the paper.

2. The proposed multiple-trials nonstationary model

Brief introduction of locally stationary wavelet processes Before we describe our proposed
framework, we recall some of the defining features of the locally stationary wavelet (LSW)
framework of Nason et al. (2000). The LSW model provides a time-scale representation
of nonstationary time series with time-varying second order structure, where the building
blocks are the discrete non-decimated wavelets (see Vidakovic (1999) or Nason (2008) for
an extensive introduction to wavelets). For T = 2J(T ), a sequence of stochastic processes
{Xt;T }t=0,...,T−1 is a LSW process if it admits the representation

Xt;T =

∞∑
j=1

∑
k∈Z

ωj,k;Tψj,k(t)ξj,k,

where for scale j and location k, ωj,k;T is the amplitude corresponding to the discrete non-
decimated wavelet ψj,k(t) and {ξj,k} are a set of orthonormal random variables. Modelling
under the concept of local stationarity means that the variation of the amplitudes {ωj,k;T }k,
happens slowly over time and this is controlled by a smoothly varying continuous Lipschitz
function Wj(k/T ), that can be thought of as a scale (j) and time (k) dependent transfer
function (Fryzlewicz and Nason, 2006). Nason et al. (2000) further propose the evolutionary
wavelet spectrum as a means to quantify the contribution to the overall process variance at
scale j = 1,2, . . . (corresponding to finest scale, second finest and so on) and rescaled time
z = k/T ∈ (0,1) and define this as Sj(z) = |Wj(z)|2. The raw wavelet periodogram is used
for estimation of the spectrum and is defined as Ij,k;T = |dj,k;T |2 where dj,k;T denotes the
wavelet coefficient at scale j and time k associated to a discrete non-decimated family of
wavelets as defined in Nason et al. (2000).

The original LSW formulation is for a single-replicate. Its multivariate extension, the
MV-LSW process of Park et al. (2014) can deal with a finite number of replicates but does
not require, nor can it account for, the ordering of replicates. Thus, these modelling tools
cannot capture the dynamics of time series data recorded for several trials over the course
of an entire experiment, nor can they account for the potential dependence across trials. Our
setting here presents additional challenges, notably the fact that these signals behave in a way
that is nonstationary at multiple scales, (i) within the signal in each trial, and (ii) across trials
over the course of the entire experiment.

2.1. MULtiple-Trials Locally Stationary Wavelet (MULT-LSW) process A serious limita-
tion of previous work is the assumption that the replicate time series are uncorrelated. We now
develop the theory to allow for cross-trial dependence by means of a between-trial coherence
structure. This is a major innovation of this work, as to the best of our knowledge this is the
first paper that simultaneously accounts for correlation across trials while also embedding
potential nonstationarity in multiple time scales: locally within a trial and globally across
trials in the entire experiment. However, the lack of trial dependence can also be naturally
incorporated by our proposed framework, as a particular case.
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DEFINITION 1. We define a sequence of stochastic processes {Xr;R
t;T }, with time t =

0, . . . , T − 1 where T = 2J(T ) and trial r = 0, . . . ,R− 1 where R= 2J(R) to be a multiple-
trials locally stationary wavelet (MULT-LSW) process if it admits the following representation

(1) Xr;R
t;T =

∞∑
j=1

∑
k∈Z

ωr;Rj,k;Tψj,k(t)ξ
r
j,k.

For each trial (or replicate) r and within-trial time k, ωr;Rj,k;T are the amplitudes associated to
the discrete non-decimated wavelets ψj,k(t) at scale j ≥ 1. Assume that within each replicate
r, the innovations {ξrj,k}j,k are a set of orthonormal random variables. Letting ν = r/R denote
rescaled trial and z = k/T denote rescaled within-trial time, the quantities in (1) possess the
following properties:

1. For all j, k and r, E[ξrj,k] = 0 (⇒E[Xr;R
t;T ] = 0).

2. In addition to {ξrj,k}j,k being orthonormal within trial r, we have E[ξrj,kξ
r′

j′,k′ ] =

δj,j′δk,k′ρ
r,r′;R
j,k;T , where {ρr,r

′;R
j,k;T }k determine the dependence structure between trials r

and r′, at each scale j. Note that the within-trial orthonormality induces
∣∣∣ρr,r′;Rj,k;T

∣∣∣≤ 1 for

all j, k,r, r′, with equality when r = r′. The assumption of uncorrelated trials amounts to
ρr,r

′;R
j,k;T = δr,r′ for all j, k.

3. For each scale j ≥ 1, there exists a Lipschitz continuous function in both rescaled time (z)
and rescaled trial (ν), denoted by W̃j(z, ν) with the following properties
a)

∞∑
j=1

∣∣∣W̃j(z, ν)W̃j(z, ν
′)
∣∣∣<∞ uniformly in z ∈ (0,1), ν, ν ′ ∈ (0,1).(2)

b) Let Lνj denote the bounded Lipschitz constant corresponding to the time dimension at a
particular rescaled trial ν and scale j. Similarly, denote by N z

j the bounded Lipschitz
constant corresponding to the trial dimension at a particular rescaled time z and scale
j. Denote Lj = supν∈(0,1)L

ν
j and Nj = supz∈(0,1)N

z
j and assume they are uniformly

bounded in j. Further assume that

(3)
∞∑
j=1

2jLj <∞ and
∞∑
j=1

2jNj <∞.

c) There exist sequences of bounded trial-specific constants {Crj }r and time-specific
constants {Dk

j }k, such that for each T and R respectively, the amplitudes are forced to
vary slowly across time within a trial and across trials, in the sense that

sup
k=0:T−1

∣∣∣∣ωr;Rj,k;T − W̃j

(
k

T
,
r

R

)∣∣∣∣≤ Crj
T
, ∀j, r,(4)

sup
r=0:R−1

∣∣∣∣ωr;Rj,k;T − W̃j

(
k

T
,
r

R

)∣∣∣∣≤ Dk
j

R
, ∀j, k.(5)

Denote Cj = suprC
r
j and Dj = supkD

k
j and assume the sequences {Cj}, {Dj} fulfill∑∞

j=1 2jCj <∞ and
∑∞

j=1 2jDj <∞.
4. For each scale j ≥ 1, there exists a Lipschitz continuous function in rescaled time z and

rescaled trial arguments ν and ν ′, denoted by ρj(z, ν, ν ′), which constrains the innovation
covariance structure and fulfills the assumptions below, as follows
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a) Let Qν,ν
′

j denote the bounded Lipschitz constant corresponding to the time dimension
at particular (rescaled) trials ν and ν ′, at scale j. Similarly, denote by P zj the bounded
Lipschitz constant corresponding to the trial dimension at a particular (rescaled) time
(z), at scale j. Denote Qj = supν,ν′∈(0,1)Q

ν,ν′

j , Pj = supz∈(0,1)P
z
j and assume they

are uniformly bounded in j. Further assume that

(6)
∞∑
j=1

2jQj <∞ and
∞∑
j=1

2jPj <∞.

b) There exist sequences of bounded trial-specific constants {C̃r,r
′

j }r,r′ and time-specific
constants {D̃k

j }k , such that for each T and R respectively, the covariances are forced to
vary slowly, in the sense that

sup
k=0:T−1

∣∣∣∣ρr,r′;Rj,k;T − ρj
(
k

T
,
r

R
,
r′

R

)∣∣∣∣≤ C̃r,r
′

j

T
, ∀j, r, r′(7)

sup
r,r′=0:R−1

∣∣∣∣ρr,r′;Rj,k;T − ρj
(
k

T
,
r

R
,
r′

R

)∣∣∣∣≤ D̃k
j

R
, ∀j, k.(8)

Denote C̃j = supr,r′ C̃
r,r′

j and D̃j = supk D̃
k
j and assume the sequences {C̃j}, {D̃j}

fulfill
∑∞

j=1 2jC̃j <∞ and
∑∞

j=1 2jD̃j <∞.

REMARK 1 (rescaled time and trial evolution). Within each scale j, the transfer func-
tion W̃j(z, ν) controls the (non-stochastic) evolution of the amplitudes, forcing them to vary
slowly over both rescaled time (z) and trial (ν) dimensions. At the heart of it, this assumption
is enabled by the ordered nature of the experiment, not only through time within each trial,
but also across trials. The evolution of the amplitudes over time within each trial (replicate)
happens in a smooth manner. The evolution across trials is such that while the spectral proper-
ties of different replicates may also be different, however it is reasonable to assume that the
spectral properties of neighboring trials are similar. Nevertheless, further apart replicates may
display different traits. Such a meta-process evolution appears later in Figure 4 (Section 3.1).

REMARK 2 (rescaled trial dependence). Note that from equations (7) and (8) we
directly obtain for each T and R

sup
r,r′=0:R−1

sup
k=0:T−1

∣∣∣∣ρr,r′;Rj,k;T − ρj
(
k

T
,
r

R
,
r′

R

)∣∣∣∣=O(C̃jT
−1) +O(D̃jR

−1).

Hence for some rescaled time z and rescaled trials ν and ν ′, we have in the limit

ρj(z, ν, ν
′) = lim

T→∞
R→∞

(
ρ
bνRc,bν′Rc;R
j,bzT c;T

)
,

where bzT c and bνRc denote the largest integer less than or equal to zT and νR, respectively.
For a scale j and (rescaled) time z, the quantity ρj(z, ν, ν ′) thus gives a measure of the

dependence between (rescaled) trials ν and ν ′, and it is zero for uncorrelated trials. We
remind the reader that previous methodology was developed under the working assumption of
uncorrelated trials.
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2.2. Trial evolutionary wavelet spectrum and coherence As is common in spectral domain
analysis (both Fourier and wavelet-based), we do not work directly with the time- and trial-
specific multiscale transfer functions {W̃j(· , · )}j , but instead we define a scale-dependent
measure for the time and (cross-)trial contribution to the overall process variance.

As noted, the current LSW model quantities are not capable of capturing the multiscale
evolution of brain signals along trials. Next, we develop a novel evolutionary wavelet spectrum
capable to extract nonstationarity both in time and within- and between- trials.

DEFINITION 2. For a MULT-LSW process {Xr;R
t;T } as in Definition 1, we define its trial

evolutionary wavelet spectrum as follows.

1. The within-trial evolutionary wavelet spectrum at scale j, rescaled trial ν, rescaled within-
trial time z is given by

(9) Sj(z, ν) =
∣∣∣W̃j(z, ν)

∣∣∣2 = lim
T→∞
R→∞

(∣∣∣ωbνRc;Rj,bzT c;T

∣∣∣2) .
2. The between-trial evolutionary wavelet spectrum defined at scale j, rescaled time z within

rescaled trials ν and ν ′ is given by

Sj(z, ν, ν
′) = W̃j(z, ν)W̃j(z, ν

′)ρj(z, ν, ν
′).

Note in the above notation that the spectrum corresponding to any rescaled trials
ν = ν ′ is the within-trial spectrum, ı.e. Sj(z, ν, ν) = Sj(z, ν). (Alternatively, |W̃j(z, ν)| =
(Sj(z, ν, ν))1/2.) Also note that under the assumption of uncorrelated trials of Fiecas and
Ombao (2016), the between-trial spectrum is zero, ı.e. Sj(z, ν, ν ′) = 0,∀ν ′ 6= ν.

From equations (4) and (5) we directly obtain that for each T and R we have

sup
r=0:R−1

sup
k=0:T−1

∣∣∣∣ωr;Rj,k;T − W̃j

(
k

T
,
r

R

)∣∣∣∣=O(CjT
−1) +O(DjR

−1),(10)

hence the right-hand equality in equation (9).
In the MULT-LSW setup, we thus quantify the between-trial dependence by means of

(11) ρj(z, ν, ν
′) =

Sj(z, ν, ν
′)

{Sj(z, ν)Sj(z, ν ′)}1/2
,

and we shall refer to it as the locally stationary between-trial coherence, with values ranging
from −1, indicating an absolute negative correlation, to 1 indicating an absolute positive
correlation. Uncorrelation across trials amounts to ρj(z, ν, ν ′) = 0,∀ν ′ 6= ν.

REMARK 3 (MULT-LSW versus LSW processes). An innovation of the proposed MULT-
LSW model is to impose within each scale not only a smooth spectral behaviour across each
(replicate) time series, but also to constrain the ‘meta’-spectral evolution across replicates
to happen in a smooth manner, as detailed by the conditions in Definition 1. Note that a
MULT-LSW process is thus not to be understood only as a collection of locally stationary
wavelet (LSW) processes that happen to be observed across several replicates, as this would
limit its capacity to represent multiscale behaviour across trials.

For completeness and in order to aid our theoretical developments (and proofs), below we
also introduce the local covariance functions associated to a MULT-LSW process, but note
that as brain signals are evaluated in the spectral domain, in practice we will not extensively
pursue these quantities here.
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DEFINITION 3. For a MULT-LSW process {Xr;R
t;T } as in Definition 1, we define its local

autocovariance functions as follows.

1. The within-trial local covariance at some rescaled time z ∈ (0,1) within rescaled trial
ν ∈ (0,1), at time-lag τ ∈ Z is given by

c(z, ν;τ) =

∞∑
j=1

Sj(z, ν)Ψj(τ),

where Ψj(τ) =
∑

k∈Zψj,k(0)ψj,k(τ) denotes the scale j autocorrelation wavelet.
2. The between-trial local covariance at rescaled time z ∈ (0,1) within rescaled trials ν and
ν ′, both in (0,1), at time-lag τ ∈ Z is given by

c(z, ν, ν ′;τ) =

∞∑
j=1

Sj(z, ν, ν
′)Ψj(τ).

Observe that c(z, ν, ν;τ) = c(z, ν;τ),∀ν, and under the assumption of uncorrelated trials,
c(z, ν, ν ′;τ) = 0,∀ν ′ 6= ν.

Note that |c(z, ν, ν ′;τ)|<∞ follows directly from the coherence range between −1 and 1,
and from the uniform bounds in lag (τ) and rescaled replicates (ν, ν ′) for both the limiting
amplitudes and the autocorrelation wavelets (see equation (2)).

The local covariance defined above can be shown to be an approximation of the process
covariance corresponding to particular rescaled replicate(s), as follows.

PROPOSITION 1. For a MULT-LSW process {Xr;R
t;T } with properties as in Definition 1,∣∣∣cov(X

bνRc;T
bzT c;T ,X

bν′Rc;T
bzT c+τ;T )− c(z, ν, ν ′;τ)

∣∣∣=O(T−1)+O(R−1), uniformly in τ at (rescaled)

time z and trials ν, ν ′.

PROOF. The proof appears in Section G of the Supplementary Material (Embleton et al.,
2021) and uses the approximation properties in the definition of the MULT-LSW process.

2.3. Estimation theory We start our proposed estimation procedure for the spectral quan-
tities, by first computing the raw wavelet periodogram and exploring its asymptotic properties
as an estimator for the true, unknown spectrum. We note here that a well-behaved spectral
estimator can then be used to construct an estimator for the meta-process local autocovariance,
both within- and between-trials, by directly replacing the unknown spectrum in Definition 3.
However, the development and investigation of the local covariance, potentially along with
the partial covariance and their estimators for MULT-LSW processes are beyond the current
interest of this work and are left as further research (see Killick et al. (2020) for the local
partial autocorrelation function in LSW processes).

DEFINITION 4. For a scale j and time k, we define the raw wavelet periodogram between
trials r and r′ of a MULT-LSW process to be

I
(r,r′);R
j,k;T = dr;Rj,k;Td

r′;R
j,k;T ,

where dr;Rj,k;T =
∑T−1

t=0 X
r;R
t;T ψj,k(t) are the process empirical wavelet coefficients constructed

using a family of discrete non-decimated wavelets, {ψj,k(t)}j,k.
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Note that when r = r′, the above becomes the within-trial raw wavelet periodogram and
we simplify notation as

Ir;Rj,k;T =
∣∣∣dr;Rj,k;T ∣∣∣2 .

On a practical note, issues occur during the construction of the wavelet coefficients, dr;Rj,k;T ,
when the support of the wavelet filter extends beyond the sequence boundary. Periodic
bounding and reflection at the boundary are common options to tackle this problem (see Nason
and Silverman (1994)), and we utilise the former in this work.

For reasons that will become obvious next, we also define a transformed spectral quantity
βj(z, ν, ν

′) =
∑∞

l=1Aj,lSl(z, ν, ν
′), where Aj,l = 〈Ψj ,Ψl〉=

∑
τ∈Z Ψj(τ)Ψl(τ) is the inner

product matrix of the autocorrelation wavelets. When the (rescaled) replicates ν and ν ′

coincide, we simplify the notation and we equivalently refer to βj(z, ν) := βj(z, ν, ν). The
invertibility of the matrix A and boundedness of its inverse norm (Nason et al., 2000) ensure
that finding a well-behaved estimator of the meta-process wavelet spectrum S is equivalent
to finding a well-behaved estimator for the spectral quantity β. Hence we next focus on
estimating β and note that the theoretical results below are derived under the Gaussianity
assumption.

REMARK 4 (Normality assumption). Constrained by theoretical arguments, the results
below hold under the assumption that the innovations follow a Gaussian distribution, a
commonplace assumption in time series analysis in general and in LSW modelling in particular,
e.g. Oh et al. (2003); Van Bellegem and von Sachs (2008). The previous Fourier-based meta-
process modelling under the restriction of uncorrelated trials (Fiecas and Ombao, 2016) also
relies on the Gaussianity assumption applied to the neurological data. Gaussianity is shown
to hold for data arising from other fields, e.g. for experimental circadian data (Hargreaves
et al., 2019). In Appendix B and Supplementary Material (Embleton et al., 2021) Section B
we discuss the robustness of our approach to departures from normality and show that the
normality assumption is mostly tenable for our neurological experimental data pertaining to
the correct trials, while the incorrect trials display some departures from these assumptions.
As we shall see, these findings are in-line with the stronger evidence of learning displayed
across the correct trials.

PROPOSITION 2. For a MULT-LSW process {Xr;R
t;T } as in Definition 1, the trial raw

wavelet periodogram has the following asymptotic properties for any fixed scale j and
rescaled time z, within rescaled trials ν and ν ′:

Expectation

(12) E
[
I
(bνRc,bν′Rc);R
j,bzT c;T

]
= βj

(
z, ν, ν ′

)
+O(2jT−1) +O(R−1),

Variance

var
(
I
(bνRc,bν′Rc);R
j,bzT c;T

)
= βj (z, ν, ν)βj

(
z, ν ′, ν ′

)
+ β2j

(
z, ν, ν ′

)
+O(22jT−1) +O(2jR−1).

PROOF. The proof appears in Section E.1 of the Supplementary Material (Embleton et al.,
2021).

From Proposition 2, we see that the raw periodogram is asymptotically unbiased for β, but
inconsistent due its asymptotically non-vanishing variance. Thus we next propose to smooth
the raw periodogram in order to obtain consistency, and then we will correct for bias to obtain
an asymptotically unbiased estimator for S.
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DEFINITION 5. We define a trial-smoothed estimator for the rephrased spectral quantity
βj(

k
T ,

r
R ,

r′

R ) to be

(13) Ĩ
(r,r′);R
j,k;T = (2M + 1)−1

M∑
s=−M

I
(r+s,r′+s);R
j,k;T ,

where (2M + 1) is the length of the smoothing window and M is an integer such that as
T,R→∞, we have that M →∞ and M/R→ 0.

REMARK 5 (smoothing across trials). Unlike for the usual locally stationary processes
where the periodogram is smoothed over time (and over frequency for the classical Fourier-
based models) in order to achieve consistency, here we propose a smoothing procedure
that operates over trials by locally averaging the spectral estimates across a window of
neighbouring replicates. This approach is indeed theoretically justified by the assumption of
spectral smoothness across the trial-dimension. In practice, these assumptions will have to be
verified in order to determine some empirically guided choice of M , as seen in the simulation
study (Section 3.1).

PROPOSITION 3. Under the properties of Definition 1 and the additional assumption
supz,ν∈(0,1)

∑
η∈Z
∣∣c(z, ν, ν + η

R ;τ)
∣∣=O(1) for any time lag τ, the trial-smoothed wavelet

periodogram in equation (13) has the following asymptotic properties for any fixed scale j
and rescaled time z within rescaled trials ν, ν ′:

Expectation

E
[
Ĩ
(bνRc,bν′Rc);R
j,bzT c;T

]
= βj

(
z, ν, ν ′

)
+O(MR−1) +O(2jT−1),

Variance

var
(
Ĩ
(bνRc,bν′Rc);R
j,bzT c;T

)
=O(22jM−1) +O(2jR−1) +O(M2R−2).

Additionally, under the assumption of uncorrelated trials, the within-trial variance satisfies

var
(
Ĩ
(bνRc,bνRc);R
j,bzT c;T

)
=O(22jM−1) +O(2jR−1) +O(MR−2).

PROOF. Section E.2 of the Supplementary Material (Embleton et al., 2021) contains the
proof which manipulates the amplitude properties across trials as opposed to those across
time, both in the absence and in the presence of cross-trial dependence.

Note that as T , R and M →∞ and using the condition M/R→ 0, the bias of the smoothed
periodogram becomes asymptotically negligible, while its variance tends to zero for any fixed
fine enough scale j (with 2j = o

(
min

{
T,R, (2M + 1)1/2

})
). The usual bias–variance trade-

off here is manifest through the increase of M resulting in a decrease of the variance at the
price of an increase in the bias. As the trial-smoothed periodogram proposed above is an
asymptotically unbiased and consistent estimator for the true β, the relationship between the
true spectral quantities β and S suggests a natural way of constructing a well-behaved spectral
estimator for the unknown S.

PROPOSITION 4. Under the assumptions of Proposition 3, the following is an asymptoti-
cally unbiased and consistent estimator for the unknown wavelet spectrum for each fixed scale
j and rescaled time z within rescaled trials ν, ν ′

(14) Ŝj(z, ν, ν
′) =

J∑
l=1

A−1j,l Ĩ
(bνRc,bν′Rc);R
l,bzT c;T ,
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where A−1j,l is the (j, l) entry of the inverse of the inner product matrix A of the autocorrelation
wavelets and J = bαJ(T )c with α ∈ (0,1), provided that M/R→ 0 as T,R and M →∞.

PROOF. Section E.3 of the Supplementary Material (Embleton et al., 2021) contains the
proof which hinges on the properties of the trial-smoothed periodogram shown in Proposition 3
above.

This paves the way towards proposing the between-trial coherence estimator

(15) ρ̂j(z, ν, ν
′) =

Ŝj(z, ν, ν
′){

Ŝj(z, ν)Ŝj(z, ν ′)
}1/2

,

where the involved spectral quantities are consistently estimated as proposed in Proposition 4
and the use of the same smoothing windows guarantees that the values of the resulting
coherence estimator are indeed quantities between −1 and 1 (see proof in Section H of the
Supplementary Material (Embleton et al., 2021)). The following proposition shows that the
step of examining ρ̂j(z, ν, ν ′) is theoretically justified.

PROPOSITION 5. Under the assumptions of Proposition 3, the coherence estimator in (15)
is asymptotically consistent for the true coherence ρj(z, ν, ν ′) at each fixed scale j and
rescaled time z within rescaled trials ν, ν ′.

PROOF. See Section E.4 of the Supplementary Material (Embleton et al., 2021).

REMARK 6 (smoothing across trials; and within-trial). The results in Proposition 3
highlight the small sample dependence of the bias and variance of the smoothed periodogram
on the number of trials R, on the time series length T and on the smoothing window (2M +1),
as well as well as on the ratio of (replicate) smoothing window to the total number of trials.
While still having a bias–variance tradeoff, the variance can be further improved by additionally
smoothing across the time-dimension.

Specifically, using a within-trial (time-)smoothing window of length (2MT + 1) such that
MT →∞ and MT /T → 0 (the reader may also refer to Park et al. (2014)) and chosen as
usual under LSW modelling (see e.g. Nason (2013)), and preserving the previous notation of
(2M + 1) for the trial-smoothing window, we define the trial- and time-smoothed periodogram

(16) ˜̃I
(r,r′);R
j,k;T = (2M + 1)−1(2MT + 1)−1

M∑
s=−M

MT∑
t=−MT

I
(r+s,r′+s);R
j,k+t;T

to act as an estimator for the transformed spectral quantity βj( kT ,
r
R ,

r′

R ). We next show that
this estimator has desirable asymptotic properties, leading to faster convergence than its
counterpart involving only trial-smoothing.

PROPOSITION 6. For a MULT-LSW process as in Definition 1 and satisfying the additional
assumption of autocovariance summability, supz,ν∈(0,1)

∑
n∈Z

∑
η∈Z
∣∣c(z, ν, ν + η

R ;n)
∣∣ =

O(1), the smoothed trial- and time-specific wavelet periodogram defined in equation (16) has
the following asymptotic properties for any fixed scale j and rescaled time z within rescaled
trials ν, ν ′:

Expectation

E
[

˜̃I
(bνRc,bν′Rc);R
j,bzT c;T

]
= βj(z, ν, ν

′) +O(MTT
−1) +O(MR−1) +O(2jT−1),



MULTISCALE SPECTRAL MODELLING WITHIN A MULTIPLE-TRIAL EXPERIMENT 13

Variance

var
[

˜̃I
(bνRc,bν′Rc);R
j,bzT c;T

]
=O(22j(MTM)−1) +O(22jM−1T M2R−2).

Additionally, under the assumption of uncorrelated trials, the within-trial variance satisfies

var
[

˜̃I
(bνRc,bνRc);R
j,bzT c;T

]
=O(22j(MTM)−1) +O(22jM−1T MR−2).

PROOF. Section E.5 of the Supplementary Material (Embleton et al., 2021) contains the
proof which makes use of the smoothing in both directions.

The trial- and time- smoothed periodogram can then be used to further build a well-behaved
estimator of the unknown trial wavelet spectrum S by means of

ˆ̂
Sj(z, ν, ν

′) =

J∑
l=1

A−1j,l
˜̃I
(bνRc,bν′Rc);R
l,bzT c;T .

It is straightforward to show that this is also asymptotically unbiased and consistent for
Sj(z, ν, ν

′), in the same manner as in the proof of Proposition 4.

3. Simulation Study This section explores through simulation the behaviour of our
proposed methodology, first in the setting where the time series across trials are uncorrelated,
and second where the dependence is taken into account.

3.1. Simulation study under the assumption of uncorrelated trials Here we aim to assess
the behaviour of our proposed MULT-LSW methodology as well as compare it to a classical
approach involving the LSW methodology (Nason et al., 2000). Specifically, we evaluate
(i) the classical approach where one would independently estimate the spectrum for each
replicate using a localised time smoother and then average over all trials (‘LSW’), (ii) our
proposed methodology involving localised trial smoothing (‘MULT-LSW1’), and (iii) our
proposed methodology involving localised trial and time smoothing (‘MULT-LSW2’). In order
to match the current practice for LSW estimation, e.g. Nason et al. (2000); Park et al. (2014),
we have set J = J(T ) (corresponding to α= 1), although in a bivariate spectral estimation
context Sanderson et al. (2010) set a similar measure to α= 0.7 and remark on its improved
results when compared to α= 1. We carry out simulations over N = 100 runs and explore
performance across a range of time series lengths T from 128 to 1024, number of trials R
from 64 to 512 and smoothing windows (2M +1) from 9 to 25. We explore spectral structures
pertaining to high- and low- frequency behaviour as well as combinations across scales (see
also Embleton et al. (2020)). We report the mean squared errors (MSE) and squared bias
results, and note these also implicitly infer the variance across simulations.

Overall, based on our findings, we recommend the use of trial and time smoothing method-
ology (MULT-LSW2) with a window length of (2M + 1) guided by the choice of M = 3

4

√
R,

thus ensuring that M/R→ 0.
Illustrative example. We choose to present here the behaviour of our proposed methodology
on a process with a challenging spectral structure, as shown in Figure 3 and mathematically
defined in Section C.1 of the Supplementary Material (Embleton et al., 2021). Further simula-
tion setups are detailed in Section C.2 of the Supplementary Material (Embleton et al., 2021),
including MSE and squared bias tables.

For R= 256 trials each of length T = 256 (J(T ) = 8), the process places spectral content
at level j := J(T )− 3 = 5, manifest through a decreasing amplitude of the cosine across
the last 192 trials within the third finest scale, and at level j := J(T ) − 2 = 6, where the
periodicity of the cosine increases across the first 128 trials within the second finest scale.
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Fig 3: True evolutionary wavelet spectra plots for trials (replicates) 40, 128 and 200, depicting within-
trial nonstationarity and evolution in the statistical characteristics across the trials. The plots use the
resolution level notation j := J(T )− j for the jth finest scale.

A concatenated realisation of this process is shown in Figure 4. Note however that this is
an abuse of representation, since each trial is a time series of its own, and the sole purpose of
this visualisation is to highlight the evolution of the meta-process. Furthermore this process
departs somewhat from the requirement that the amplitudes evolve slowly over both rescaled
time (z) and replicate (ν) dimensions, however we show that despite this the methodology
still performs well.
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Fig 4: Realisation of a MULT-LSW process with spectra as in Figure 3. (Vertical lines denote breaks
between trials. Concatenation is only used for meta-process visualisation.)

Spectral estimates have been computed using discrete non-decimated wavelets built by
means of Daubechies Least Asymmetric family with 6 vanishing moments (Daubechies, 1992).
For the MULT-LSW method, local averaging involved windows of 9 trials corresponding to
M = 4 and we note that numerical MSE results in Appendix A.1 highlight that we chose
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to visually present here some of our least performant results. The LSW and MULT-LSW(1)
spectral estimates appear in Figure 5, along with the truth.

From the figures we get a visual clarification that the MULT-LSW model is doing a good
job at capturing the evolving characteristics of the spectra across trials and the leakage across
the neighbouring levels j = 5 and 6 is minor. They also highlight that when neglecting the
possibility of evolutionary behaviour over replicates, when it is in fact present as seen for
levels 5 and 6 in the top row plots of the true spectrum, the LSW model struggles to reflect this
and either under or over-estimates, as seen in the middle row plots. The bottom row plots show
that the MULT-LSW1 estimates do indeed pick up the evolution over trials. Figure 6 provides
‘single-shot’ estimates of the spectrum to give evidence for the potential level of noise a user
might experience in practice, while Figures 8 and 9 in Section C.1 of the Supplementary
Material (Embleton et al., 2021) further support the evidence for evolutionary behaviour of
the spectral quantities both across time and trials.
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Fig 5: Time-scale plots for trials (replicates) 40, 128 and 200, respectively the first, second and third
columns. Estimates are averaged over 100 realisations. Top: true spectra; Middle: estimates from
the LSW method averaged over all replicates; Bottom: estimates using MULT-LSW(1). Plots depict
multiscale within-trial nonstationarity and evolution in the statistical characteristics across the trials.

Histograms of the MSEs over the 100 simulations are shown in Section C.1 of the Sup-
plementary Material (Embleton et al., 2021) and highlight not only how the increase in
M improves performance but also how the increase in R and T reduces the MSEs, thus
demonstrating the expected asymptotic behaviour of our smoothed estimator. To numerically
strengthen our visual inference, we examine the MSEs and squared bias results in Table 1
(Appendix A.1). Note these results implicitly also provide evidence for the variance across
the simulation runs. The best results in terms of lowest MSEs are obtained by MULT-LSW2,
despite MULT-LSW2 incurring a somewhat higher bias than MULT-LSW1. Both our methods
have a substantially lower bias than the LSW. The higher bias of the LSW estimates is unsur-
prisingly resulting from averaging over all the replicates and thus failing to account for the
evolutionary behaviour through trials. The benefit of taking a local smoothing approach over
both time and trials is that it always results in spectral estimates with lower bias and MSE when
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Fig 6: Time-replicate spectral plots with replicate smoothing window of 25 (M = 12) for levels 5 (top
plot) and 6 (bottom plot). Estimates are for a single realisation. Within each plot, top: true spectra;
middle: estimated spectra from the LSW method averaged over all replicates; bottom: estimates using
MULT-LSW(1).

compared to LSW, although it is worth pointing out that taking a local smoothing approach
over trials only, while yielding lower bias, might increase the MSE for inappropriately small
windows.

Asymptotically, the MSEs associated to our methods decay much faster than for the
LSW and as we increase the local averaging window length (2M + 1), the performance of
our the MULT-LSW methodology improves. A replicate rectangular window with length
determined by the choiceM = 3

4

√
R appears to work well across all our investigations. Killick
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et al. (2020) illustrate the robustness of LSW estimation to window width choices and form.
However, we note the discussion in (Cryer and Chan, 2008, §14.2) and suggest that for a
deeper understanding of the spectral characteristics, a user might wish to obtain estimates over
a range of M , e.g. M = 1

2

√
R, 34
√
R,
√
R.

3.2. Coherence illustration via simulation We shall now investigate through simulation
the performance of our proposed methodology for coherence estimation. We use the mean
squared error (MSE) and squared bias of the estimates ρ̂, averaged over all time-scale points
and trials, as detailed in Appendix A.2. Note these also allow us to infer the variance across
simulations. We display the behaviour of our estimators on a simulated example below, and
provide a further simulation study in Section D of the Supplementary Material (Embleton et
al., 2021).
Illustrative example. We simulate a MULT-LSW process with R = 256 trials that feature
dependence, measured at T = 512 = 29 time points. The within-trial wavelet spectra are
defined by a sine wave whose periodicity and magnitude evolve slowly over the trials in such
a way that the spectral characteristics of neighbouring replicates do not look too dissimilar
whilst there is a noticeable difference between replicates further apart (for their mathematical
expression, see Simulation 1, Section C.2 of the Supplementary Material (Embleton et al.,
2021)). Here we have J(T ) = 9 (in short, J ) and the spectral characteristics are placed in
level j = J(T )− 4 = 5. In addition to the within-trial spectral characteristics, we also define
a challenging between-trial spectral structure by means of defining their (true) coherence at
each level j and location k. For level j = 5 and time k = 1, . . . ,256 we define the non-zero
trial coherence matrices as follows: the first 128 trials have a strong positive coherence (0.99)
with one another, however this coherence becomes negative (-0.71) with the last 128 trials.
A (weaker) positive coherence (0.5) also exists between the last 128 trials. Over the last
256 locations, we set the coherence to be zero. The expressions of the non-zero coherence
matrices appear in Section C.2 of the Supplementary Material (Embleton et al., 2021) and the
illustrative true coherence structures for replicates 50 (top row) and 200 (bottom row) can be
visualised in Figure 7 (left panels).

Coherence estimates obtained using the methodology proposed in Section 2.3 are repre-
sented in Figure 7 (right panels) for trials 50 (top row) and 200 (bottom row). Non-decimated
discrete wavelets built using Daubechies least asymmetric family with 10 vanishing moments
and local averaging over a window of 9 trials were employed.

In terms of correctly estimating the coherence structure switch over times and trials, as well
as identifying the positive or negative character of the coherence, the proposed estimation
procedure does a good job. We do however note that the estimated coherence intensity does
exhibit some bias, which we may attribute to the smoothing performed in order to address
the practical computation considerations (see the remark in Appendix A.2). Nevertheless,
we could argue that the model does give a good indication for the degree of the positiveness
of the coherence, approximately 0.99 and 0.5 for replicates 50 and 200 respectively (right
panels of Figure 7). Recall that this dependence structure would otherwise be invisible to
previous approaches (Fiecas and Ombao, 2016), with consequent implications of decreased
spectral estimation precision when compared to estimation that takes into account cross-trial
dependence.

Tables 2 (Appendix A.2) and 4 (Section D in the Supplementary Material (Embleton et al.,
2021)) illustrate MSE results for two smoothing approaches: the first involves smoothing only
over a window of trials; the second involves local averaging through trials and time. For both
simulations, the results paint the same picture. As we increase the trial smoothing window
(such that M/R→ 0) the performance of our models improves in terms of MSEs, and the
double smoothing over trial and time further reduces the MSEs. The price to pay for double
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Fig 7: Coherence plots for replicates 50 (top row) and 200 (bottom row) over rescaled time and
replicates in level 5. Left: true coherence; Right: coherence estimates averaged over 100 simulations.
The horizontal line indicates an autocoherence value of 1.

smoothing as usual is a slightly higher bias (than when using averaging over trials only). In
order to ensure that our spectral estimates are positive, our correction procedure uses the
correction matrix A−1 truncated at zero. Inevitably this introduces bias, evident through the
increasing MSEs as R and T increase. In their work on bivariate channel coherence estimation,
Sanderson et al. (2010) reported better results when additionally employing smoothing over
scales. We conjecture that this is also applicable for our work, but leave the further numerical
treatment for future research.

4. Analysis of Macaque Local Field Potentials We perform our MULT-LSW spectral
analysis on the correct and incorrect trial datasets of local field potentials (LFPs) from
the hippocampus (Hc) and nucleus accumbens (NAc) over the course of an associative
learning experiment involving a single macaque monkey in a neurobiology laboratory at the
Massachusetts General Hospital. Due to their roles in the consolidation of memory information
and the processing of rewarding stimuli, the Hc and NAc have been studied in relation to
learning tasks for monkeys, rats and humans (Wirth et al., 2003; Abela et al., 2015; Seger
and Cincotta, 2006). Our analysis yields new evidence for the different learning associations
exhibited across the correct versus incorrect trials, thus offering not only confirmations to the
results of previous studies, but also providing additional insights to the understanding of the
dynamics of the LFPs. This is achieved by capturing the evolutionary characteristics of brain
processes within and across the trials of the experiment, in a scale-dependent manner, through
the use of the wavelet transform. Notable benefits of our model in contrast to previous Fourier-
based methodology (Fiecas and Ombao, 2016) are (i) its flexibility to represent potential
between-trial dependence, (ii) its superior time-localisation and (iii) further understanding of
the within-trial variation attained through the multiscale decomposition in the (within-trial)
time direction, as we will see next.

Each trial consists of T = 2048 time points, corresponding to approximately 2 seconds of
data. The design splits each trial into four time blocks of 512 milliseconds each and it is in the
final time block that the macaque was tasked with associating one of four doors (appearing on
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a screen) with the picture visual presented in the second time block. The macaque had to learn
the associations through repeated trials and the macaque is given the message that the selected
association was correct through a juice reward. Further details are given in Section A of the
Supplementary Material (Embleton et al., 2021). We carry out the analysis on R= 256 trials
(replicates). The data has been grouped into sets of “correct” and “incorrect” responses. This
approach departs from the global trial approaches of Chau and von Sachs (2016); Fiecas and
Ombao (2016) in order to additionally investigate how the contributions of the Hc and NAc
to the learning process differ between these groups (Gorrostieta et al., 2012). A more subtle
implication is the fact that local averaging is carried out in this context across like-for-like
trials, rather than both correct and incorrect trials potentially contributing to the final spectral
estimate.

To ensure comparability of the wavelet spectra across trials, each trial is standardised
to have mean zero and unit variance. Plots for the correct responses appeared in Figures 1
and 2 (Section 1) and for the incorrect responses in Figures 1 and 2 (Supplementary Material
(Embleton et al., 2021) Section A). Appendix B and Supplementary Material (Embleton et
al., 2021) Section B provide evidence that the Gaussian assumption is mostly tenable for the
macaque correct trials and presents occasional departures for the incorrect trials, while also
empirically discussing robustness to departures from normality.

REMARK 7 (bootstrapped confidence intervals.). As means to quantify the validity of
our results, we construct pointwise in time (for each level j) confidence intervals for the
wavelet spectrum and coherence via bootstrap sampling. In this context, it is vital to allow for
the potential cross-trial dependence in order to avoid subsequent inference using erroneous
confidence bands, as also strongly argued by Morris (2015); Chau and von Sachs (2016) in a
functional context. In brief, the procedure uses our proposed MULT-LSW(2)-spectral estimates
as proxy for the true, unknown spectral structure that embeds cross-trial dependence. These
estimates are used for simulating B bootstrap sampled MULT-LSW processes. Using our
spectral estimation procedure for each of theB samples, we then obtain a bootstrapped spectral
estimate. This yields a bootstrapped distribution, from which pointwise confidence intervals for
the spectrum and coherence are constructed. We expect that on average (over the bootstraps)
the true spectral evolutionary characteristics are captured and that these characteristics are
displayed in the lower and upper confidence bootstrap bounds, thus validating the identified
spectral patterns of process evolution. Further details are given in Appendix C.

4.1. Results Hippocampus. The proposed spectral estimates for the correct and incorrect
sets of trials appear in Figures 8 (below) and 3 (Section A, Supplementary Material (Embleton
et al., 2021)), respectively. The bottom row plots show the MULT-LSW(2)-spectral estimates
averaged across 30 replicates to illustrate the process behaviour in the beginning, middle
and end of the experiment. These demonstrate (i) the sequenced activation of within-trial
time blocks and (ii) the evolutionary behaviour of the wavelet spectrum along the course
of the experiment. These features are also captured by the lower and upper 95% bootstrap
confidence bounds for the spectral characteristics, as illustrated by Figure 14 in Appendix C,
thus rendering further confidence in the results that follow. Note that crucially these bounds
incorporate the between-trial dependence, and thus differ from those obtained under the
assumption of uncorrelated trials.

For both correct and incorrect datasets, the “activity” is primarily captured within the coarser
levels 3 and 4 of the wavelet periodograms, approximately corresponding to frequencies 2-
8Hz. Of these, the theta band frequencies 4-8Hz are typical of slow activity, known for
their association to hippocampal activity in mammals and to promote memory (Buzsaki,
2006). Fiecas and Ombao (2016) report the low frequency range 1-12Hz to account for most
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variability in the Hc data. Our analysis offers a finer characterisation that does not fully support
activation of low delta waves (under 2Hz), known to be typical of deep sleep, and shows
weak alpha band (8-12Hz) and low beta band (12-16Hz) alertness at certain time blocks
within each trial. Due to its construction, the MULT-LSW model was able to capture the
process evolutionary behaviour across trials, and thus overcomes the limitations of analyses
using the standard LSW model. The LSW-based estimates do capture the evolution of the
statistical properties within a trial but cannot characterise these changes across trials in the
entire experiment. The MULT-LSW estimates have the capacity to highlight the individual
time blocks as they activate through the course of the experiment, an insight invisible to LSW
and weakly represented in the Fourier approach of Fiecas and Ombao (2016). Note that this
activation could also be visualised by plotting spectral differences instead.
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Fig 8: Time-scale hippocampus (Hc) plots for the correct trials. Spectral estimates are shown for the
average over 30 replicates in the beginning, middle and end of the experiment. Top: estimates from the
LSW method averaged over all replicates; Bottom: MULT-LSW method with smoothing over time and
replicates.

For the correct Hc trials, the MULT-LSW model captures the bulk of “activity” in frequen-
cies 2-8Hz. In early replicates this is fairly even through time, while for middle replicates
the bursts of activity shift centrally within time, thus coinciding with the second block of the
macaque being shown the visual stimulus and possibly with the expectation of the picture to
continue being shown. For the final trials, the activity is clearly localised around time-point 500
(corresponding to the visual exposure) and towards the final quarter of time (corresponding
to the time when the macaque made the correct association). When compared to a Fourier
approach, our wavelet-based analysis thus brings to the fore novel information that links
the experimental time blocks to Hc activation. Specifically, as the correct trials progress, the
activity in the Hc is evident at the visual cue time and also at the selection task time, thus
suggesting learning of the picture associations.

The incorrect trials still display evidence of evolutionary behaviour. However, as the
experiment progresses, there is evidence of less spectral activity across these trials, with a brief
Hc activation in the visual exposure block for the middling trials, and a burst of Hc activity
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localised in the last time block, when the task is carried out, for the end trials. The spectrum
suggests that whereas the Hc displays prolonged activity in the second time block for the
correct trials (corresponding to the picture being presented), this feature is not as marked in
the incorrect trials and thus the macaque is not making the association between the picture
presented and the selection task. Scientific literature has shown (Seger and Cincotta, 2006) that
during a learning experiment, activity in the Hc decreases as associations/rules are learned but
would spike upon their application. The capacity of our model to extract localised information
in time and within/ between-trial, thus highlights novel traits that suggest that the macaque in
this experiment has not yet fully learned the associations, but evidence of learning is indeed
present.

Figure 9 further illustrates that spectral evolution through time in scales 3 and 4 is captured
by both the LSW and MULT-LSW models. As the experiment progresses, the MULT-LSW
model identifies that across the correct trials the Hc displays (within-trial) time dependent
peaks of activity that gradually span the course of the experiment. As we previously noted,
the final trials display more Hc activity towards the visual exposure (time-point 500) and task
times of the experiment, than the starting trials do, again indicating a learning process. In
contrast, the incorrect trials display a much less structured behaviour, with time-dependent
activity distributed more evenly across the replicates.
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Fig 9: Time-replicate plots of the hippocampus (Hc) average spectra across 2-8Hz for the correct (Top)
and incorrect (Bottom) trials. Left: estimates from the LSW method averaged over all replicates; Right:
estimates from the MULT-LSW method with smoothing over time and replicates.

Nucleus accumbens. The resulting (MULT-)LSW spectral estimates appear in Figures 10
(below) and 4 (Section A, Supplementary Material (Embleton et al., 2021)) for the correct
and incorrect sets of trials, respectively. These plots are to be understood in the same manner
as those for the hippocampus, with activation scales now 6 and 7. Reassuringly, the estimated
spectral characteristics are also rendered by the lower and upper 95% bootstrap confidence
bound plots, here omitted for brevity. Fiecas and Ombao (2016) find that the bulk of variability
in the NAc is accounted for by (high) beta band frequencies (20-30Hz), while for both the
correct and incorrect trials we place this in the wider range of beta band waves 16-30Hz,
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associated to focussed activity. Our analysis also offers evidence for low gamma frequency
waves (31-60Hz), typical of working memory activation (Iaccarino et al., 2016). Additional to
Fourier analysis, the MULT-LSW model also shows that nonstationarity across time is clearly
present, as well as some spectral evolution across the trials. Although not as obvious as for
the Hc, for the beginning and middle replicates of the correct group, NAc activity is manifest
towards the trial start and end, while for the final replicates activity is captured in the final
quarter of time. Also note that the NAc activity decreases in intensity from the beginning to
end replicates for both groups. However, the patterns of behaviour in the beginning incorrect
and correct trials are similar, but then gradually diverge as the experiment progresses.
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Fig 10: Time-scale nucleus accumbens (NAc) plots for the correct trials. Spectral estimates are shown
for the average over 30 replicates in the beginning, middle and end of the experiment. Top: estimates
from the LSW method averaged over all replicates; Bottom: MULT-LSW method with smoothing over
time and replicates.

The NAc is part of the ventral striatum and plays a role in the processing of rewarding
stimuli. The activity seen in the final 512 milliseconds can be attributed to the macaque
expecting and receiving the juice reward in the correct trials, or expectation of reward in
the incorrect trials. The impact of reward expectation (Schultz et al., 1992; Hollerman and
Schultz, 1998; Mulder et al., 2005) could also explain the activity we see at the trial start for
the beginning replicates and its observed periodicity across the experiment. Upon receiving
no reward in an incorrect trial, the NAc activity decreases and with it the reward expectation
falls for the next trial. Our analysis reflects the results of other studies on learning experiments
(Hollerman and Schultz, 1998; Fiecas and Ombao, 2016) that highlight that the activity in the
ventral striatum decreases as the stimuli are learned.

Figure 11 also reinforces our previous comments. Evolution in the spectra across time in
scales 6 and 7 is captured by both models, with the NAc activity displaying periodic patterns,
while the MULT-LSW estimation highlights a decrease in NAc activity along both the correct
and incorrect trials of the experiment, with a more pronounced character for the incorrect
trials.
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Fig 11: Time-replicate plots of the nucleus accumbens (NAc) average spectra across 16-60Hz for the
correct (Top) and incorrect (Bottom) trials. Left: estimates from the LSW method averaged over all
replicates; Right: estimates from the MULT-LSW method with smoothing over time and replicates.

REMARK 8. Our analysis demonstrates how the simplifying assumption of trials that are
identical realisations of the same process, leading one to draw conclusions solely based on
averaging across all replicates, could cause an important understanding in the process evolution
through the experiment to be missed. Our proposed MULT-LSW methodology captures the
spectral time and within- and between-trial evolutionary behaviour, thus yielding new scale-
based results and advancing the findings of Fiecas and Ombao (2016) in the Fourier domain.
We next explore the existence and strength of between-trial dependencies, and demonstrate
the untenable position of the trial uncorrelation assumption.

4.2. Capturing between-trial dependence Let us now investigate between-trial dependen-
cies, which under the MULT-LSW framework are readily quantified by the locally stationary
between-trial coherence, a quantity defined in (11).

For the Hc activity, the MULT-LSW 95% bootstrap confidence bounds indicate that the
presence of coherence across trials cannot be discounted, for both correct and incorrect groups.
Moreover, our analysis finds evidence of a moderate dependence across neighbouring trials in
the NAc at the beta band frequencies (16-30Hz), known to be responsible for brain activity
related to reward feedback mechanisms. The estimated NAc trial coherence (absolute value) is
shown in Figure 12 at level 6 for trials 20, 100 and 200 in the incorrect group and for correct
trial 200, depicting typical behaviour. Some burst areas are present, indicating a moderate
neighbouring trial coherence, with most meaningful values either side of 0.4 and a few above
0.5. For the beginning and middling incorrect trials, this is apparent in the time periods leading
up to and inclusive of the trial task phase, upon which the macaque would receive a juice
reward if the task was done correctly. The 95% bootstrap confidence bounds for the trial
coherence characteristics (exemplified in Figure 5, Section A of the Supplementary Material
(Embleton et al., 2021)) indeed reinforce the presence of between-trial dependence.

REMARK 9. For this particular data, Chau and von Sachs (2016) illustrate the presence of
between-trial correlation, with a stronger structure identified between neighbouring replicates
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Fig 12: Level 6 absolute value coherence for NAc incorrect trials: 20 (top left), 100 (top right) and 200
(bottom left); and for NAc correct trial 200 (bottom right). The horizontal line indicates an autocoherence
value of 1.

in the beginning and end of the experiment, but amassing individual trial timelines and
frequencies of interest. Our analysis provides additional novel evidence in the temporal and
scale (frequency)-dimensions that mild to moderate dependence is exhibited in both the
correct and incorrect trials. This is primarily evident in the final correct trials, potentially as
the manifest result of learning, and at the onset of the incorrect trials as the likely result to
the expectation of reward. This finding, entirely invisible through the work of Fiecas and
Ombao (2016), impacts our understanding of the experiment, and should not be ignored or
assumed inexistent from the onset of the analysis. Indeed, being able to identify and quantify
the extent of changes across trials in the entire experiment, not only has a qualitative impact
on our understanding of the meta-process evolution, but also carries a substantive quantitative
impact through e.g. producing incorrect spectral estimates and confidence bands (Chau and
von Sachs, 2016), and thus potentially yielding misleading results (Morris, 2015).

5. Concluding remarks Our work proposed a novel wavelet-based methodology that
successfully captures nonstationary process characteristics for time series collected across
trials of a designed experiment. Its desirable properties were evidenced by simulation studies
and through a real data application from the neurosciences. However, the methodology itself is
not restricted to use within this field, and the authors envisage its utility in other experimental
areas where wavelet spectral analysis has proved to be ideally suited, e.g. circadian biology
(Hargreaves et al., 2019). Nevertheless, we point out that the practitioner should exhibit care
in their approach and ensure that indeed a natural trial ordering is present in their experiment.
Should this not be the case, clustering and then averaging within each cluster might still be
the preferred, appropriate approach (Hargreaves et al., 2018; Ting et al., 2018).

This work demonstrates the dangers of approaching experimental trial series as identical
process realisations and the misleading results this can yield when studying the process
dynamics along the course of the experiment. Notably, the proposed statistical model and
associated estimation theory encompass meta-processes that feature dependence between
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trials, and the assumption of trial uncorrelation, if appropriate, is dealt with by the proposed
methodology as a particular case. A next natural step would be to investigate the MULT-
LSW local (partial) autocorrelation function (for the LSW setup, see Killick et al. (2020)).
A different avenue for research would be to investigate a flexible MULT-LSW construction
hinged upon a trial-adaptive wavelet construction, which would in turn further tune the spectral
and coherence estimates.

APPENDIX A: SUPPORTING EVIDENCE FOR SIMULATION STUDIES

A.1. MSE and squared bias tables for Section 3.1 As means to quantify the perfor-
mance of the models, we employ the mean squared error (MSE) and squared bias, calculated
as the average over all time-scale points and trials as follows
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∑
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Note that although not explicitly calculated, the variance in estimates across simulations can
thus be implicitly obtained from the above measures.
Remarks on estimates at the boundaries. We do not assess edges that involve local averaging
over the first and last (M − 1) replicates. This has also been accounted for when calculating
the MSE and squared bias. As a result, the reported measures whose values correspond to
modelling via LSW will appear to change (in a very minor way), when in fact they should be
the same for all choices of M at fixed R and T .

TABLE 1
MSE and squared bias results, averaged over all time-scale points and trials for the simulation in

Section 3.1 and N = 100 runs. ‘LSW’ denotes the classical approach of averaging over the replicates.
‘MULT-LSW1’ denotes our proposed approach using localised trial smoothing. ‘MULT-LSW2’ denotes

our proposed approach using localised trial and time smoothing. Our proposed methods
‘MULT-LSW1’and ‘MULT-LSW2’ use a trial smoothing window of length (2M + 1), while the

time-smoothing window for ‘LSW’ and ‘MULT-LSW2’ is automatically chosen.
Mean squared errors (×100)

LSW MULT-LSW1 MULT-LSW2

R T M mse bias2 mse bias2 mse bias2

256 128 4 17.55 17.27 22.31 2.53 11.52 3.88

12 16.74 16.46 9.45 2.40 6.54 3.82

256 4 14.21 13.95 19.62 1.04 8.46 1.29

12 13.48 13.22 7.58 0.92 3.83 1.23

512 4 12.25 12.01 17.59 0.53 7.15 0.52

12 11.59 11.35 6.51 0.42 2.85 0.48

Mean squared errors (×100)

LSW MULT-LSW1 MULT-LSW2

R T M mse bias2 mse bias2 mse bias2

512 256 4 14.29 14.14 19.68 1.05 8.49 1.28

12 13.89 13.76 7.62 0.92 3.81 1.22

512 4 12.30 12.18 17.61 0.53 7.15 0.52

12 11.96 11.84 6.54 0.42 2.85 0.48

1024 4 10.92 10.81 15.83 0.32 6.29 0.25

12 10.61 10.50 5.78 0.22 2.38 0.21
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A.2. MSE and squared bias tables for Section 3.2 As numerical tools that quantify the
performance of an estimate ρ̂j(z, ν) across all time points z = k/T with k = 0, . . . , T − 1,
trials (replicates) ν = r/R with r = 0, . . . ,R − 1 and scales j = 1, . . . , J , we will use the
mean squared error and squared bias, defined in this context as
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∑
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where due to the symmetry of the coherence matrix, we have used R∗ = R(R+ 1)/2 and
r∗ = r′ ≥ r, and N denotes the number of simulation runs. As in Section 3.1, we also adopt
here J = J(T ).
Remarks on implementation. From the theoretical model construction, the within-trial spectra
are positive quantities. However, our spectral estimates may take values that are negative
or close to zero after correction, and this in turn can cause problems when normalising for
coherence estimation. In order to bypass this issue, we choose to correct our raw wavelet
periodogram estimates before smoothing. The theoretical properties of the coherence estimator
show that using trial-smoothing does yield an estimator with good properties, albeit its rate
of convergence is dependent on the smoothing window width (2M + 1). A local averaging
window over time for smoothing each replicate before applying smoothing over replicates
could also be employed, just as proposed for spectral estimation in Section 2.3. A possible
further step, to be done after smoothing through time, is to smooth over scales as proposed
by Sanderson et al. (2010) for estimating the linear dependence between bivariate LSW time
series. However, we do not pursue this approach here.

TABLE 2
MSE and squared bias (×100), averaged over all time-scale point and trials for the simulation in

Section 3.2 and N = 100 runs. Subscripts 1 and 2 denote the models with smoothing over trials only
and trial-time smoothing, respectively.

R T M mse1 bias2
1 mse2 bias2

2

128 256 7 18.10 9.02 15.50 10.71

12 14.53 8.22 13.05 9.64

128 512 7 18.91 10.56 16.72 12.37

12 15.10 9.40 13.95 10.92

256 512 7 20.82 11.58 18.40 13.60

12 17.78 10.93 16.43 12.81

APPENDIX B: SUPPORTING EVIDENCE FOR NORMALITY OF MACAQUE DATA

In what follows we explore the tenability of the Gaussian assumption, as suggested by Fry-
zlewicz (2005) and also demonstrated by Hargreaves et al. (2019). For each trial, we propose
to standardise the (zero-mean) process using a localised estimate of the standard deviation. The
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estimate was obtained by means of taking the square root of the estimated lag zero localised
autocovariances (Nason, 2013). Further, we have found similar results when obtaining the
estimate by means of a localised Gaussian kernel with bandwidth chosen using the methods
of Fryzlewicz (2005). For the correct and incorrect trials respectively, in Figures 13 and 6 (Sec-
tion B, Supplementary Material (Embleton et al., 2021)), we report Q–Q plots of standardised
series against the normal quantiles. These correspond to trials displaying typical behaviour for
Hc and NAc series, both from the correct and incorrect sets. The plots show that the normality
assumption mostly holds, with some slight departures for NAc records.
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Fig 13: Q-Q plots of the Hc (top row) and NAc (bottom row) data in the correct trials (replicates). Left
column: replicate 121; Right column: replicate 231. 95% confidence bounds are given by the dashed
grey lines.

APPENDIX C: CONSTRUCTION OF THE BOOTSTRAPPED CONFIDENCE
INTERVALS

To construct pointwise confidence intervals, we use the MULT-LSW process Definition 1

and take the square root of our MULT-LSW(2)-spectral estimates, ˆ̂
Sj(

k
T ,

r
R) to replace the

within-trial amplitudes ωr;Rj,k;T of the non-decimated wavelets ψj,k(t) (see equation (9)) for each
trial r, within-trial time k and scale j. Furthermore, to allow for cross-trial dependence (see
property 2 of Definition 1) we obtain estimates, ρ̂j( kT ,

r
R ,

r′

R ), of the innovation dependence
structure between trials r and r′.

Then for each b= 1, . . . ,B bootstraps, we simulate a bootstrapped sample MULT-LSW
process {X(b);r;R

t;T } following Definition 1

X
(b);r;R
t;T =

∞∑
j=1

∑
k∈Z

ˆ̂
Sj

(
k

T
,
r

R

) 1

2

ψj,k(t)ξ̃
(b);r
j,k ,
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with r = 0, . . . ,R− 1 trials across time t= 0, ..., T − 1. Within each trial r, the innovations
{ξ̃(b);rj,k }j,k are assumed to be a set of orthonormal random variables, while the between-trial
innovation dependence is established through the estimated coherence ρ̂j above.

For each bootstrap b = 1, . . . ,B, we obtain a bootstrapped MULT-LSW(2) estimate,

{ ˆ̂
S
(b)
j ( kT ,

r
R ,

r′

R )}, of the spectral quantities underlying the simulated process {X(b);r;R
t;T }. Re-

peating this for B bootstraps will then yield a bootstrap distribution for the smoothed wavelet
periodograms, from which pointwise confidence intervals for the spectrum can be constructed
in the usual manner by taking the respective quantiles, as illustrated below in Figure 14.
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Fig 14: Time-scale 95% bootstrap confidence bounds for the hippocampus (Hc) spectrum for the correct
trials. Spectral estimate bounds are shown for the average over 30 replicates in the beginning, middle
and end of the experiment. Top: upper bound; Bottom: lower bound. Estimation is via the MULT-LSW
method with smoothing over time and replicates, and takes into account across-trial correlation.

SUPPLEMENTARY MATERIAL

Supplementary material for “Multiscale spectral modelling for nonstationary time
series within an ordered multiple-trial experiment”
The supplementary material contains a description of the experimental data, further details
and figures for the macaque data study, additional simulation studies and all proofs. (pdf file)
An associated R-package will be released on the Comprehensive R Archive Network (CRAN)
in due course. The real data can be made available upon request.
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