
This is a repository copy of The application of digital twin technology in operations and 
supply chain management: a bibliometric review.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/183445/

Version: Accepted Version

Article:

Bhandal, R, Meriton, R, Kavanagh, RE et al. (1 more author) (2022) The application of 
digital twin technology in operations and supply chain management: a bibliometric review. 
Supply Chain Management, 27 (2). pp. 182-206. ISSN 1359-8546 

https://doi.org/10.1108/SCM-01-2021-0053

© 2022, Emerald Publishing Limited. This is an author produced version of an article 
published in Supply Chain Management. Uploaded in accordance with the publisher's self-
archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



1 
 
 

 

The application of digital twin technology in operations and supply chain management: A 

bibliometric review 

Rajinder Bhandal; Royston Meriton; Richard Kavanagh; Anthony Brown 

Abstract  

Purpose 

The application of digital twins to optimise operations and supply chain management 

functions is a bourgeoning practice. Scholars have attempted to keep pace with this 

development initiating a fast-evolving research agenda. The purpose of this paper is to take 

stock of the emerging research stream identifying trends and capture the value potential of 

digital twins to the field of operations and supply chain management. 

Design/methodology/approach  

In this work we employ a bibliometric literature review supported by bibliographic coupling 

and keyword co-occurrence network analysis to examine current trends in the research field 

regarding the value-added potential of digital twin in operations and supply chain 

management.  

Findings  

The main findings of this work are the identification of four value clusters and one enabler 

cluster. Value clusters are comprised of articles that describe how the application of digital 

twin can enhance supply chain activities at the level of business processes as well as the level 

of supply chain capabilities. Value clusters of production flow management and product 

development operate at the business processes level and are maturing communities. The 

supply chain resilience and risk management value cluster operates at the capability level, it 

is just emerging, and is positioned at the periphery of the main network.  

Originality/value  

This is the first study that attempts to conceptualise digital twin as a dynamic capability and 

employs bibliometric and network analysis on the research stream of digital twin in 

operations and supply chain management to capture evolutionary trends, literature 

communities and value-creation dynamics in a digital-twin-enabled supply chain. 

Keywords 

Digital twin, cyber-physical systems, operations management, supply chain management, 

bibliometric analysis, bibliographic network analysis, keyword co-occurrence network 

analysis  
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1. Introduction  

1.1 Background 

The strategic importance of supply chains has been growing in prominence in recent years 

with many scholars remarking that increasingly, market competition takes place no longer 

between individual companies but supply chains (Farahani et al., 2014). Indeed, the rapid 

evolution of supply chain management (SCM) as a sub-discipline within operations 

management (OM) provides strong evidence for this (Christopher, 1998). As such, there is 

widespread recognition of the supply chain as an increasingly important lever of value 

creation for firms in an ever more dynamic and unpredictable marketplace. The 

transformation of the operations and supply chain management (OSCM) field into a 

competitive necessity can be attributed in large parts to successive technological disruptions 

that have taken place over the years. Digital twin (DT) technology is the most recent 

instalment of Industry 4.0 technologies that promises to further exacerbate the ongoing 

trend.  

The notion of a DT is however not new, it was first introduced back in the 1960s, a practice 

established and developed by NASA for the Apollo 13 space program. NASA produced physical 

replicate versions of systems at ground level, which were exact mirror-images of the systems 

in space. Consequently, this DT technology enabled NASA to simulate and measure situations 

in the Apollo 13 spacecraft whilst in space (Miskinis, 2019). Thus, with its roots firmly fixed in 

aeronautics, the DT paradigm is arguably an early example of science and manufacturing 

fusing together (Barricelli, Casiraghi, and Fogli, 2019). 
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Although the first vision of a DT dates back more than a decade (Grieves 2002), it has only 

recently obtained increased research interest within multiple domains. The main reason for 

this lies in the fact that central technological enablers, such as the Internet of Things (IoT), 

have only recently reached the maturity to be deployed profitably in economic environments. 

Within the different interested communities, the term has evolved leading to at least two 

different viewpoints of a DT (Negri et al. 2017). The first defines the DT merely as the 

simulation of the physical asset itself and is mostly used by engineering scholars. However, 

beyond the scope of simulation, the second perspective refers to a DT as a model which 

constitutes the basis for simulations, analyses, and the like. The latter perspective is currently 

the most adopted view on DTs and thus the focused viewpoint of this work (Dietz and Pernul, 

2020). In the context of OSCM we thus define a DT as “a virtual replica of the real process 

operation, which is connected to the real world by sensor data and advanced big data 

analytical tools” (Verboven et al., 2020, p. 79). 

A variety of tools from different areas of technological development are currently being 

explored for such task. Internet of Things technologies facilitate transfer of data from and to 

different sensors, computers, and machines. Cloud Computing offers ways to store, share, 

and work with the data more effectively (Kavanagh et al., 2015). Data Mining and Artificial 

Intelligence allow to process the data in a smart and efficient way, more and more like the 

human brain does (Verboven et al., 2020). Other notable innovations associated with DT 

include Augmented Reality (AR), Robotics (R), Sensor Technology (ST), Omni Channel (OC), 

and 3D Printing (3DP), to name a few (Büyüközkan and Göçer, 2018).  
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These methods and innovations presented above are typically developed in the domain of 

information and communication technology (ICT) and use software tools for digital data 

handling, inherent to the strategic initiative Industry 4.0. Therefore, the application of these 

tools in the supply chain can also be referred to as the digitalization of the supply chain 

(Verboven et al., 2020). The term digital supply chain (DSC) has been coined to reflect the 

transformative influence of digital technologies such as DT in the operations of supply chain 

business processes. In fact, the DT has been argued to be a proactive digital approach 

introducing the next step in SC digitalization (Dietz and Pernul, 2020). A digital supply chain is 

defined as a smart, value-driven, efficient process to generate new forms of revenue and 

business value for organisations and to leverage new approaches with novel technological 

and analytical methods (Sanders and Swink, 2019; Misrudin and Foong, 2019).  

DSC is not about whether goods and services are digital or physical, rather, it is about the way 

in which OSCM processes are managed employing a wide variety of innovative technologies 

(Büyüközkan and Göçer, 2017). A key value of a DSC is the ability to extract intelligence and 

optimal decisions from large amounts of real-time data quickly by applying machine learning 

algorithms to those data streams (Moufaddal et al., 2019). Consequently, under the auspices 

of IT-enabled supply chain management, the emerging literature concerning the DSC 

examines how digital technologies such as DT create value in supply chains, and in turn how 

DSC can add value to firms. Early indications reveal the huge potential of DT to enhance 

numerous performance metrics at varying levels of OSCM abstractions.  

1.2 Value creation in SCM and DT 
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According to Borys and Jemison (1989), value creation is the process whereby the capabilities 

of partners in a supply chain are combined such that the competitive advantage of one or 

more of the partners is improved. However, the notion of value has emerged to be much 

wider than just economic implications (Pal and Sandberg, 2017). Indeed, with the emergence 

of the new service and knowledge-based economy, Letaifa (2014) has noticed a shift away 

from a post-industrial economic understanding of value (cost, efficiency, customer 

expectations) towards a more knowledge-based, social, subjective, intangible, and complex 

perspective. According to a comprehensive review by Schenkel et al. (2015), value 

manifestations of four types of value, namely economic, environmental, information, and 

customer value, can be identified in the literature. 

In the literature, value creation has typically been characterized as either exogenous spanning 

organisations or endogenous focussing on internal efforts to improve supply chain 

performance (Jayaram at al., 2004). At the empirical level, research has tended to focus on 

the intra-and-extra organisational generative mechanisms of value (Meriton et al., 2020) and 

in establishing a link between those and value manifestations. It is also worth noting however 

that the supply chain makes up a quasi-organisation where interdependencies, time, and 

shifting boundaries impose on firms the imperative of efficient management of relationships 

of supply chain actors to successfully achieve value objectives of the focal firm.  

In this context, one of the key research strands in the supply chain value creation literature 

focusses on the dynamics of relational capital (Cousins et al., 2006) variously operationalised 

as relationship management (Kähkönen and Lintukangas, 2018), cooperation (Sousa et al., 

2012), collaboration (Fu and Piplani, 2004) or co-creation (Letaifa, 2014). Employing a sample 
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of Finnish companies, Kähkönen and Lintukangas (2018) show that supplier relationship 

management (SRM) capabilities can be a supply management factor that significantly 

influences its ability to create value. Sousa et al., (2012) show that greater levels of 

cooperation with customers have a significant impact on the intensity of lean production 

adoption, which is considered an important value creation lever. Employing a series of 

numerical experiments, Fu and Piplani (2004) show that the supply-side collaboration can 

improve the supply chain performance in terms of better stabilizing effect and service level.  

Research shows the important enabling role of IT, or rather IT capabilities, in enabling and 

maintaining relational capital in supply chains. IT capability is defined as technological 

capability used to acquire, process, and transmit information to support organisational 

decision-making (Grover and Malhotra, 1999) and to facilitate communication, coordination, 

and collaboration between multiple parties along the supply chain. Capability here 

emphasises the fact that technology is not inherently valuable, rather, value is incumbent on 

how it can be exploited to transform SC operations and relationships (Wu et al. 2006). In the 

research conducted by Fawcett et al. (2011), the authors draw on the resource-based view 

(RBV) paradigm to describe how IT capabilities could be leveraged to create a higher order 

collaboration capability. The dynamic collaboration capability is shown to have a positive 

influence on operational performance and customer satisfaction. An important take-away 

from this study, besides the obvious, concerns the ontological status of value in supply chains. 

It can be observed that value manifests at different levels of abstraction, in other words, value 

could be argued to have emergent properties embedded in processes, capabilities, and 

performance outcomes.  
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More recent examples of IT-enabled value creation in supply chains can be found in the 

literature concerning the intersection of big data analytics (BDA) and supply chain 

management. An interesting study to this effect by Chen and Preston (2015) conceptualises 

the use of BDA as a dynamic capability. The notion of dynamic capabilities describes how firms 

integrate, build, and reconfigure internal and external competences to address rapidly and 

unpredictably changing environments (Teece et al., 1997). The authors reason that BDA can 

be considered as a dynamic capability due to its organisational information processing 

capability that reduces uncertainty by stimulating insights and knowledge creation and 

increases organisational capability for strategic decision. Against this backdrop and employing 

a survey approach, the authors show that the use of BDA in supply chains can indeed lead to 

value creation measured as asset productivity and business growth.  

Here we wish to argue that DTs can be viewed through the same lens as an IT capability given 

the above definition of the latter. Furthermore, according to Qi and Tao (2018) value creation 

based on data and analytics is very similar to that based on the DT. As we have already 

explained, data and analytics are indeed an enabling part of the DT. As such and drawing on 

Chen and Preston’s (2015) argument in favour of BDA as a dynamic capability, we can similarly 

come to the same conclusion with respect to a DT. Chen and colleague also reinforce our 

position with respect to IT-enabled value creation noting that the value contribution of BDA 

is incumbent on its embeddedness into and assimilation with supply chain processes. This 

therefore opens up the potential of BDA-enabled value creation across the landscape of SC 

business processes.  
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A comprehensive review of BDA-inspired value creation in the supply chain Meriton et al. 

(2020) has revealed a multilevel framework of value creation across the supply chain. They 

show that value is a nested concept and can manifest at different levels, such as the business 

processes level, the supply chain level, as well as the firm level. Drawing on Croxton et al.’s 

(2001) conceptualisation of supply chain management in terms of a series of interrelated 

business processes, the authors show that big data analytics could be leveraged to enhance 

business processes such as demand management, order fulfilment, product management, 

production management, supply management, and customer services management. In turn, 

enhanced processes could lead to capabilities such as agility, flexibility, and collaboration at 

the supply chain level with a knock-on effect on firm performance. In this work, we seek to 

draw on the notion of supply chain as business processes to examine the dynamics of value 

at the digital twin and supply chain interface. It is our contention that the influence of DT in 

supply chains could follow a similar trajectory, however, these dynamics are yet to be 

captured in a structured and systematic way in the academic literature. We specifically survey 

the state-of-the-art concerning the value creation potential of DT in OSCM. We recognise that 

this is a fairly nascent sub-field of the DSC literature where most of the potential of DT for 

value creation may still be unclaimed, however it is growing in importance and stature 

warranting a synthesis of the emerging knowledge domains. The study discusses the value-

added potential of DT in OSCM to guide researchers and industry experts in organising, 

conceptualising, and conducting their research on DT of the future. 

1.3 Previous literature reviews  
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The fast-developing research stream on the application of digital twin in operations and 

supply chain context has prompted a growing number of literature reviews. However, most 

of these reviews are narrative (see Table 1). A systematic literature review is preferred to the 

traditional approach as it is replicable, scientific, evidence-based, and transparent (Tranfield, 

Denyer, and Smart, 2003). Earlier reviews on the application of digital twin in operations and 

supply chain management (DT-OSCM) have focused on enabling technologies (f = 22), 

manufacturing (f = 18), supply chain management (f = 4), product design (f = 3), additive 

manufacturing (f = 3), sustainable business model (f = 1), and logistics (f = 1). To address this 

research gap, we present a systematic and bibliometric literature review of the application 

digital twin technologies in operations and supply chain management (DT-OSCM) based on 

bibliographic coupling analysis. A total of 1856 research articles, published from 2011 to 2021 

were collected, and 234 articles met our inclusion criteria for the review. The main objectives 

of the review are to (i) identify the major trends in DT-OSCM research (ii) identify the major 

research fronts in DT-OSCM and (iii) identify value potential of DT, and (vi) set a research 

agenda.  

[Insert Table 1 here] 

The remainder of this paper is organised as follows. In Section 2, we discuss our research 

methodology along with some initial statistics regarding recent trends in the output of DT-

OSCM research. In Section 3 we present our initial bibliometric analysis resulting in additional 

author and affiliation statistics. Section 4 presents a detailed network analysis including a 

bibliographic coupling of citing articles and a co-occurrence network analysis of influential 

keywords which leads to the identification of key communities of primary research streams 
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areas and subsequent discussions in Section 5. We conclude this paper in Section 6 with 

implications for practice, theory, and future research. 

2. Methodology 

Literature reviews aim to summarize and synthesize earlier studies to illuminate what has 

been done regarding a particular research problem (Boell and Cecez-Kecmanovic, 2014) and 

identify potential avenues for further research highlighting the boundaries of existing 

knowledge (Tranfield et al., 2003). Systematic literature reviews aim to summarize research 

studies related to a specific research question in a way that is fair, rigorous, and auditable. 

Systematic reviews are different from traditional narrative reviews in many ways. Narrative 

reviews tend to be mainly descriptive, lacks a systematic search of the literature and thereby 

often focus on a subset of studies in an area chosen based on availability or author selection 

(Uman, 2011). Thus, while informative, narrative reviews, can often include an element of 

selection bias (Srivastava, et al., 2018). They can also be confusing at times, particularly if 

similar studies have diverging results and conclusions (Evangelista and Durst, 2015).  

Systematic reviews, as the name suggests, typically involve a detailed and comprehensive 

plan and search strategy derived a priori, with the goal of reducing bias by identifying, 

appraising, and synthesizing all relevant studies on a particular topic (Uman, 2011). Rowley 

and Slack (2004) provide guidance for a structured methodology involving scanning resources, 

designing the mind map to structure the literature review, writing the study, and building the 

bibliography. Following in their footsteps, we adopt a five-step methodology for data 

collection and comprehensive evaluation of the field aiming to identify the most influential 
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studies, determine the topical areas of research and provide insights for current research 

interests and directions for future research in the field. 

2.1 Defining the search terms 

Keywords used for data collection include “Digital Twin”, “Virtual Twin”, “Digital Shadow”, 

and “Evaluation Twin”. To arrive at these keywords, we scour practice-based articles 

published on the internet as well as academic literature on digital twin to capture the 

nomenclature employed by authors in discussions on digital twin. While digital and virtual 

twin are used interchangeably, digital shadow is a closely related concept. A digital shadow is 

a replica of all processes instantiated within a physical system such as a production system 

(Ehrhardt and Hoffmann, 2020). While a digital twin can be used for simulations, a digital 

shadow is exclusively descriptive. The use of a digital shadow promises to offer potential in 

the application of predictive analytics. Not only is a digital shadow a vital component of a 

digital twin, but it is also increasingly being discussed as a more cost-effective representation 

of physical systems without the need for complex simulations. The term evaluation twin has 

been used to emphasise a digital twin designed to solely perform evaluative tasks (Zhang et 

al., 2020). The list of keywords generated was validated with the help of an expert digital twin 

practitioner engineer. 

2.2 Initial search results  

Using the “title, abstract, keywords” search in the Scopus database, publication with the 

keywords discussed above were downloaded and stored. Scopus is now considered the 

largest searchable citation and abstract source of searching literature which is continually 

expanded and updated (Rew et al., 2009). Comparisons are often drawn between Scopus and 
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Web of Science (WOS) in discussions regarding the most suited database for a particular 

study. One of the main differences between Scopus and WOS databases is the breadth of 

coverage. In a comparative study Vieira and Gomes (2009) found that Scopus provides 20% 

more coverage than WOS. Their results reveal that 2/3 of these records can be found in both 

databases but 1/3 of the records are only in one database (Aghaei et al., 2013). Furthermore, 

in a recent systematic review on blockchains application in supply chains, Pournader et al., 

(2020) decided to retain Scopus as the main search database following comparative searches 

which yielded Scopus search results that completely covered the WOS search outcomes whilst 

introducing more academic resources. The initial search in Scopus was conducted on 12 

January 2021 and it returned a total of 1856 resources, see Table 2 for details. By further 

limiting the search to articles and reviews written in English the sample was reduced to 652. 

In the next step, two of the authors independently reviewed all the titles and abstracts to 

ensure that the papers meet with our inclusion criteria. The final lists of included articles were 

verified by another author and any discrepancies were resolved during an online meeting 

involving all the authors. The main inclusion criteria were designed to capture the modalities 

of value-creation by digital twins in operations and supply chain management. Thus, during 

the screening process colleagues were guided by the following criteria:   

• Conceptual, empirical, and modelling studies on implementation of digital twin at 

various supply chain levels including, supply chain business processes, emergent 

supply chain capabilities, and other related operations. 

• Studies that could be downloaded as full text. 
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Application of this inclusion criteria produced a final sample of 234 papers which served as 

the primary data source for the literature analysis. The final agreed sample was stored in RIS 

format to include all the essential paper information such as paper title, authors’ names, and 

affiliations, abstracts, keywords, and references (Fahimnia et al., 2015).  

[Insert Table 2 here] 

2.3. Initial data analysis 

Figure 1 illustrates the trend in publishing from 2011 to 2021 suggesting DT-OSCM to be a 

fairly nascent field of study, barely 10 years old. A constant growth in the number of 

publications can be observed with a particularly significant increment between 2019 and 

2020. The initial statistics also show that 99 journals have contributed to the publication of 

those 234 papers. Those journals appear to represent the engineering and manufacturing 

fields more substantially. Table 3 shows the contribution of journals in which at least four of 

the DT-OSCM papers have featured.  

[Insert Figure 1 here] 

[Insert Table 3 here] 

 

3. Data analysis  

There are two parts to data analysis, and these include ‘bibliometric analysis’ and ‘network 

analysis’. A bibliometric analysis provides summaries of data, which provide a broad 

perspective on the activities and impact of research, especially in terms of most cited 
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researchers, articles, keywords, countries, and universities (Ferreira et al., 2020). We employ 

BibExcel for the bibliometric analysis due to its capability to handle large data sets and its 

compatibility with different computer applications including Excel, Pajek and Gephi (Persson 

et al., 2009). BibExcel is also used to prepare the input data for a detailed network analysis 

(Fahiminia et al., 2015). The network analysis part uses an open-source visualisation tool 

called Gephi to perform topical content-based classification of the existing DT-OSCM 

research. Gephi is preferred over other existing network analysis software such as Pajek 

(Batagelj and Mrvar, 2011) and VOSviewer (van Eck and Waltman, 2013) due to its capability 

to work efficiently with large data sets, and its flexibility to develop a wide range of innovative 

analysis and investigation options.  

3.1 Bibliometric analysis 

The initial author and affiliation statistics obtained from our initial bibliometric analysis are 

presented and discussed this section. Identifying the key researchers and universities in 

different geographical regions can help scholars and students who are interested in 

conducting research of digital twin in OSCM with researchers from other universities. 

BibExcel, an open-source bibliometric toolbox was employed to perform the initial 

bibliometric and statistical analyses and to prepare the raw data for additional network 

analysis. BibExcel is a tool for analysing bibliographic data, or any data of a textual nature 

formatted in a similar manner (Persson et al., 2009). A default input file contains data fields 

that can be reformatted into other formats to retrieve bibliometric information. The data 

output can be exported to Excel or any program that takes tabbed data records. Fahimnia et 

al. (2015b) observe that this high degree of flexibility makes BibExcel a powerful tool, 
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however, relatively difficult to work with especially in performing the initial setup. RIS format, 

Scopus output, was used as input for BibExcel.  

3.1.1 Author influence  

We extracted the author field from the Bibexcel doc file and recorded the frequency of 

appearance of all authors associated with the sample of 234 articles. Most of the contributing 

authors appeared in only a single paper. Only 18% of 699 contributing authors have 

contributed to more than one paper, leaving 576 authors appearing in only one paper. In 

Table 4, the key contributing authors based on the number of published articles, are listed. 

We also performed an analysis to capture key collaborating authors. Table 5 shows 

collaborating authors outcomes with the majority of authors listed in both tables. This is 

somewhat encouraging suggesting active collaboration between researchers in the early 

stages in the development of the field. Active collaboration between researchers can have a 

significant impact on productivity and is critical to the development and establishment of a 

new knowledge domain. 

[Insert Tables 4 and 5 here] 

 

3.1.2 Affiliation statistics  

The address field containing the affiliations information for the authors were extracted from 

the RIS file in BibExcel. For each affiliation, the city where the institution is located was 

obtained. The coordinates of these cities were obtained from gpsvisualizer.com to plot the 

geographical locations of institutions contributing to the literature as shown in Figure 2. Each 
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red circle represents one institution. Greater density of contributing institutions can be found 

in Europe, Germany in particular, in spite of China boasting the largest number of contributing 

institutions as a single country. The figure also summarises the top contributing countries.  

[Insert Figure 2 here] 

The top contributing institutions, their geographical locations and the quantity of published 

papers are shown in Table 6. The geographical dispersion of these institutions demonstrates 

that digital twin in OSCM research has attracted institutions from around the globe. 

Surprisingly, none of the top institutions in Table 5 are located in North America (USA more 

precisely). The effort to establish a research agenda around digital twin application in OSCM 

in the US appears still fragmented compared to Europe and parts of Asia. While there is clearly 

an appetite, evidenced by the large cohort of participating institutions, leading research 

centres are yet to take root US. This is however an assumption and additional research would 

be needed to determine the veracity of this initial supposition. 

[Insert Table 6 here] 

We performed an additional analysis to capture international collaborations between authors 

from different institutions. International research collaborations can help elevate an 

institution’s international ranking and reputation and can also boasts its ability to attract 

research funding. The results displayed in Table 7 show China leading the way, collaborating 

with 7 other countries on a total of 38 papers followed by the US also collaborating with 7 

other nations but on fewer publications. It can also be observed from Table 7 the significant 

contributions of developing countries such as China, Russia, India, Hong Kong, and Singapore 

being active internationally.  
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[Insert Table 7 here] 

3.2 Network analysis and literature clustering  

A network analysis and graphical investigation followed for the selected sample. “Gephi”, an 

open-source software package for graph and network analysis (Bastian et al., 2009) was 

employed for this purpose. Gephi uses a 3D render engine to develop illustrations of large 

networks in real-time and assist in speeding up the exploration process (Gephi, 2013) 

(Cherven, 2013). The flexible and multi-task architecture facilitates innovative approaches to 

work with complex data sets and produce insightful visual aids (Fahimnia, 2015b). Gephi 

provides easy and broad access to network data and assist in specializing, filtering, navigating, 

manipulating, and clustering of data (Bastian et al., 2009). A graph dataset is needed to be 

generated to enable Gephi to map and visualize literature networks (Fahimnia et al., 2015a) 

in which published papers are shown as nodes and relationships, such as citations or 

couplings, are represented by the arcs/edges between the nodes (Grandjean, 2015). The 

bibliographic data obtained from Scopus (in RIS format) was reformatted into a graph dataset. 

BibExcel was used to transform the raw data into useable data for Gephi. Gephi accepts 

various graph data formats including ‘.NET’ that BibExcel can generate.  

 

3.2.1 Citation analysis 

Different approaches have been employed to examine the significance of a publication. A 

citation analysis is most commonly employed for this purpose which aims to establish the 

popularity of a publication by establishing the frequency a publication is cited by other 
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publications (Ding and Cronin, 2011). Compared to other approaches such as expert surveys, 

a citation analysis has an advantage in how it achieves an inter-subjectively testable result as 

its findings are independent of the subjective viewpoints and opinions of the interviewed 

experts (Kraus et al., 2012). A further advantage of this approach is that it presents a “real 

time” state of current research (Tahai and Meyer, 1999). Table 8 shows the top 10 papers 

based on their number of local and global citations. The local citations reflect the total number 

of citations an article has received within the sample of 234 articles whereas the 

global citations provide the overall number of citations in the Scopus database that are 

related to other research fields. 

[Insert Table 8 near here] 

3.2.2 Eigenvector centrality 

“Prestige” is another indicator of importance besides citation counts (Ding et al., 2009). 

Prestige can be measured as the number of times a paper is cited by other highly cited papers 

(Fahimnia et al., 2015a). A highly cited paper may not necessarily entail prestige, although in 

some cases there might be a strong positive correlation between the two (Fahimnia, 2015b). 

Eigenvector centrality has been argued as a more preferred metric to identify the influential 

papers in a bibliographic network considering the entire network pattern (Bonacich, 2007; 

Borgatti, 2005). Eigenvector centrality premises that a node’s importance in a network may 

increase by having connections to the other nodes that are themselves important and it is 

calculated by giving each node a relative score proportional to the sum of the scores of its 

neighbours (Bonacich, 2007). Eigenvector centrality 𝑥 can be defined in two equivalent ways 

via a matrix equation and a sum as:  
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𝐴𝑥 =  𝜆𝑥 𝑎𝑛𝑑 𝜆𝑥𝑐 = ∑ 𝑎𝑐𝑣𝑥𝑣𝑉𝑉=1  respectively,  

where 𝜆 is the largest eigenvalue of 𝐴 (Bonacich, 1987). According to Rajagopal et al. (2017) 

the eigenvector centrality can be large either because a node has many neighbours or 

because it has important neighbours (or both). This suggests that eigenvector centrality can 

be treated as a measure of both popularity and importance of a paper in a bibliographic 

network. Table 9 shows the top 10 papers based on an eigenvector centrality measure. For 

this study’s 125-node network, eigenvector centrality values vary between 0.0011 and 1. It 

can be observed that a higher number of global citations cannot guarantee the ‘prestige’ of a 

paper in a bibliographic network. In fact, the different rankings produced very different results 

for our sample. 

[Insert Table 9 near here] 

3.2.3 Bibliographic coupling  

Bibliographic coupling was chosen as the network structure to be analysed over others such 

as co-authoring and co-citation. Two documents are said to be co-cited when they both 

appear in the reference list of a third document (Egghe and Rousseau, 2002). Small (1973) 

argues that the frequently co-cited papers represent the key concepts, methods, or 

experiments in a field. Osareh (1996a; 1996b) and Cawkell and Newton (1976) also observe 

that co-cited papers are significant and related in subject to each other. As such, it has been 

argued that the clusters of cited documents that make up a co-citation network comprise the 

intellectual base of the field (Persson, 2010). Bibliographic coupling is premised on the 

concept that two documents are related if they share the same sets of citations (Small, 1973). 
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In other words, a coupling unit between two documents is an item of reference used by these 

two documents (Jarneving, 2007).  

Therefore, in bibliographic coupling mapping, clusters of citing papers largely founded on the 

same intellectual base are produced. Such clusters make up the current research trends 

(Jarneving, 2005) that comprise of the field of enquiry often representing topical or emerging 

areas of research (Bornmann and Marx, 2012). Owing to its reliance on cited documents, 

bibliographic coupling is criticised for being fixed and retrospective, while co-citation analysis 

is viewed as dynamic and forward looking (Surwase et al., 2012) for its dependence on citing 

documents. Nevertheless, while facilitating the construction of the intellectual base of the 

field, co-citation analysis cannot be used to establish current research trends or research 

authors (Ibekwe‐SanJuan, 2009). This led us to capture the dynamics of the fast-evolving 

DT-OSCM research through the lens of bibliographic coupling which is able to cluster very 

recent papers (Boyack and Klavans 2010).  

The initial bibliographic coupling mapping with Gephi revealed that 159 articles out of a total 

of 234 have co-cited another paper either internal or external to the sample. A raw network 

of nodes and edges was generated by the software with a random positioning of the nodes 

when the ‘.NET’ file was first opened in Gephi. It is difficult to interpret this layout due to a 

lack of a discernible pattern. The Force Atlas layout (Jacomy, 2009) was then applied to the 

raw network. The Force Atlas algorithm works in such a way that linked nodes attract and 

non-linked nodes repulse each other. It also permits the manual adjustment of the repulsion 

strength, gravity, speed, node size, and other characteristics (Bastian et al., 2009). With this 
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algorithm the most connected nodes gravitate towards the centre of the network and the 

lesser connected nodes away from it. 

The Force Atlas layout of the proposed 159-node bibliographic coupling map is shown in 

Figure 3. Co-citing papers (shown by nodes) are well-connected, least connected nodes are 

positioned more remotely from the centre. To develop meaningful clusters that correspond 

to a specific theme in the bibliographic network, we first had to filter the network and limit 

the degree feature of the network to a minimum of 2 to eliminate weakly connected nodes 

(i.e., papers that were weakly connected to the network due to low co-citing frequency). 

Excluding weakly connected nodes resulted in a network with 135 nodes and 1634 edges as 

shown in Figure 4.  

[Insert Figure 3 and Figure 4 here] 

 

3.2.4 Literature Clustering 

In a bibliographic network each node relates to a given article and the links represent the 

presence of one or more citations between two publications. The network is represented by 

the adjacency matrix A of elements 𝑎𝑖𝑗. The elements 𝑎𝑖𝑗 are set equal to 1 when publication 𝑖 cites publication 𝑗 while elements on the principal diagonal (𝑎𝑖𝑖) are set equal to 0, since a 

publication cannot cite itself (Caschili et al., 2014). Data clustering (also termed modularity) 

has been used in the past as a classification tool for grouping of a set of given publications 

(Radicchi et al., 2004). In bibliographic networks, data clustering is employed to examine the 

local interconnections among nodes. This analysis can be used to understand if publications, 
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directly connected to a given publication, cite with each other and if they tend to form local 

highly interconnected clusters of publications (Caschili et al., 2014). A high propensity to 

clustering might point out tight groups of publications belonging to the same research area 

or have similar research focus (Caschili et al., 2014). These help to gain an insight with regards 

to the current status of a research front such as DT-OSCM. 

Gephi uses the Louvain algorithm as the default clustering tool, this is an iterative 

optimization model that aims to determine the optimal number of partitions that maximize 

the modularity index (Blondel et al., 2008). Modularity, which measures the density of links 

inside communities versus the links between communities, is gaining attention in the research 

community (Mishra et al., 2017). The modularity index of a partition is a scalar value between 

−1 and +1 that measures the density of links inside communities versus the links between 

communities (Fahimnia, 2015a). For a weighted network (i.e., networks with weighted links, 

such as the number of co-citing articles), the modularity index 𝑄 can be calculated as:  

𝑄 =  12𝑚 ∑ [𝐴𝑖𝑗 −  𝐾𝑖 𝐾𝑗2𝑚 ]𝑎𝑗 𝛿(𝐶𝑖, 𝐶𝑗), 
where 𝐴𝑖𝑗 represents the weight of the edge between nodes 𝑖 and 𝑗, 𝑘𝑖 is the sum of the 

weights of the edges attached to node 𝑖 (𝑘𝑖 =  ∑ 𝐴𝑖𝑗𝑗 ), 𝑐𝑖 is the community to which node 𝑖 

is assigned, 𝛿 (𝑢, 𝑣) equals 1 if 𝑢 =  𝑣; and equals 0, otherwise, and finally 𝑚 =  12 ∑ 𝐴𝑖𝑗𝑖𝑗  

(Blondel et al., 2008). 

Eight clusters were created by the application of this algorithm to the 135-node bibliographic 

network in Gephi. The size of each cluster varied from 1 for cluster 6 to 44 for clusters 1 and 

3 respectively. Clusters 5, 6, and 7 containing only 5, 1, and 4 articles respectively were 
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dropped from further analysis as they did not appear to be significant to be considered as 

major literature clusters. This resulted in a 125-node network comprising of 5 clusters. 

Employing the partitioning function, a colour template was applied to the 125-node network 

to distinguish between the clusters. Figure 4 illustrates the positioning of and interaction 

among the five clusters. An edge between two nodes indicates they have a at least one 

bibliographic coupling count, meaning that the two articles represented by the nodes have 

one or more articles they cite in common (Hosoya et al., 2017). The modularity index for this 

network is equal to 0.366 which indicates strong relationship between the nodes within each 

cluster and yet a relatively strong relationship between the nodes of different clusters.  

3.2.5 Keywords co-occurrence analysis and research concepts identification 

To determine the area of research focus for each cluster we performed a keyword co-

occurrence analysis. Keywords have the potential to effectively describe the contents of a 

paper (Rajagopal et al., 2017). Co-occurrence analysis is built on the assumption that a group 

of keywords could indicate the underlying themes and that the co-occurrences of keywords 

could reveal the association with the underlying themes (Hu and Zhang, 2015). If two 

keywords occur simultaneously in an article, then they have a semantic relationship. The 

higher the co-occurrence frequency of two keywords, the greater is the correlation (Liu et al., 

2012). Studies have used co-occurrence analysis to determine the knowledge structure in 

various research fields (Ravikumar et al., 2015; Stegmann & Grohmann 2003).  

In the first instance we extracted the keywords from all the 234 papers in our sample 

producing a list of 501 keywords. Table 10 shows the top 20 keywords by frequency of 

occurrence while Table 11 shows the top 20 keywords by eigenvector centrality. It comes as 
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no surprise that the term “digital twin” (f = 111, EVC = 1) sits at the top of both tables. This 

also means that from the search terms employed, digital twin is by the far the most prominent 

term used in academic research. Most of the top keywords from both lists are either related 

to manufacturing or technology, this may infer as to the focus of most research in our sample. 

Indeed, the top co-occurring pair of keywords is digital twin and manufacturing (f = 55) as can 

be observed in Table 12, this is followed by digital twin and industry 4.0 (f = 37). 

[Insert Table 10, 11, 12 near here] 

We employed the eigenvector centrality measure to identify the 10 most influential papers 

(Fahimnia et al, 2015a; Hosoya et al., 2017) in each of the 5 literature clusters to identify the 

research themes. This is, with the exception of cluster 2 comprising of only 6 articles (see 

Table 13), inclusion of which was based on the strong interconnection between the articles, 

they all appear to be related to the same topic. VOS viewer (Van Eck and Waltman, 2013) was 

used to extract the keywords and perform the network mapping of keywords co-occurrence 

for each cluster. VOS viewer is a very useful tool for collecting bibliographical material, 

providing visualizations of the bibliographic connections of documents, journals, authors, as 

well as keywords by using a wide range of techniques including bibliographic coupling 

(Kessler, 1963) and co-occurrence analysis (Cancino et al., 2019).  

[Insert Table 13 near here] 

In VOS, network analysis is achieved by employing a unified framework that brings together 

the well-known technique of multidimensional scaling (van Eck et al., 2010) for mapping and 

a variant of modularity-based clustering (Newman and Girvan, 2004). This ensures that small 

clusters can always be identified by choosing a sufficiently large value for the resolution 
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parameter (Waltman et al., 2010), making VOS viewer a powerful tool for analysing the 

keywords co-occurrence network of each literature cluster. Each cluster was labelled 

subjectively based on the popular keywords within the cluster.  

The significance of a keyword can be assessed by its frequency count or total link strength 

(TLS) in VOS. In a keyword co-occurrence network the TLS attribute indicates the total 

strength of the co-occurrence links of a given keyword with other keywords (van Eck and 

Waltman, 2020). Thus, the more important and influential keywords tend to have higher TLS. 

VOS retrieved the keywords of all the papers in each cluster, the top 15 keywords for each 

literature cluster based on TLS are shown in Table 14. Figures 6-10 represent the keywords 

co-occurrence networks of Clusters 1, 2, 3, 4, and 5 respectively. The sizes of the nodes are 

proportional to their weights measured in TLS, the higher the TLS of a keyword the larger the 

node. Lines between keywords represent links, the keywords central to the network with 

thicker edges denote the major research area of that cluster.  

[Insert Table 14 near here] 

4. Discussion: Analysis of research clusters 

Analysis of the research clusters reveal broadly four value clusters and one enabler cluster. 

The value clusters include articles that help to illustrate how DT can be used to enhance supply 

chain activities at the level of supply chain processes as well as at the level of supply chain 

capabilities. The business processes value clusters are comprised of alternative 

manufacturing, smart manufacturing, product development, and life-cycle management. In 

line with Croxton et al.’s (2001) categorisation of supply chain business processes it can be 

argued that alternative manufacturing and smart manufacturing are aligned with the 
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manufacturing flow management process. According to Croxton et al. (2001), the 

manufacturing flow process is tasked with making the products and instilling the 

manufacturing flexibility needed to serve the target markets. The process comprises all 

activities necessary for managing the product flow through the manufacturing facilities and 

for obtaining, realising, and managing flexibility.  

In a similar vein, arguably, product development and life-cycle management could be 

attributed to the product development and commercialisation process. Croxton and 

colleagues recognise the criticality of product development to the ongoing success of the firm. 

They thus view supply chain management as including integrating customers and suppliers 

into the product development process with the aim of reducing time to market. The 

discussions below begin to shine a light as to the potential of digital twin to optimise those 

supply chain business processes. 

Supply chain capability value cluster is made up of supply chain resilience and risk 

management. As such, the value proposition of digital twin is directed at a more abstract level 

as compared to the business processes discussed above. The enabler cluster is made of 

articles that broadly discuss technologies that can play a supportive role in the application of 

DT. 

4.1 Alternative manufacturing 

Cluster 1 is among the largest cluster comprising of 44 nodes and centrally located as can be 

observed in Figure 5. We have labelled this cluster as alternative manufacturing based on the 

most prominent keywords being additive manufacturing and remanufacturing. On close 
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inspection of the co-occurrence network in Figure 6 we can also discerned the strong links 

between these terms and digital twin.  

[Insert Figure 5 and Figure 6 near here] 

The field of additive manufacturing has seen an explosive growth in recent years, due to 

renewed interest in manufacturing in the United States, and other parts of the world 

(Bandyopadhyay and Bose, 2019). Additive manufacturing is a suite of emerging technologies, 

that fabricates three-dimensional objects directly from digital models through an additive 

process, typically by depositing and “curing in place” successive layers of polymers, ceramics, 

or metals. Unlike traditional manufacturing processes involving subtraction (e.g., cutting and 

shearing) and forming (e.g., stamping, bending, and molding), additive manufacturing joins 

materials together to build products (Ford, 2014). These technologies have been widely 

researched and implemented to produce homogeneous and heterogeneous products with 

complex geometries (Butt, 2020). Properties and serviceability of additively manufactured 

components are affected by their geometry, microstructure, and defects. These important 

attributes are now optimized by trial and error because the essential process variables cannot 

currently be selected from scientific principles (Knapp et al., 2017).  

In this research stream authors explore how the digital twin technology could be leveraged 

to help reduce the flaws in the additive manufacturing process. For example, Gaikwad et al. 

(2020) combine predictions from a physical model with in-situ sensor signatures in a machine 

learning framework to show improved detection of flaws in the manufacturing of thin-wall 

titanium alloy part. Another way to eradicate flaws in the additive manufacturing process is 

through proactive maintenance. The research by Cahyati and Achdianto (2019) describes the 
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prototyping of an additive manufacturing process with cyber-physical system enabling the 

creation of a virtual twin. In turn this allowed a virtual maintenance program to be made for 

the system.  

A further issue associated with additive manufacturing besides defects, is the slow 

manufacturing pace given that the filling of solid contours takes place with mere single 

deposition lines of material. In this context, Cai et al. (2020) demonstrate how a digital twin 

methodology could be developed to allow concurrent deposition of materials without 

collision among them. Similarly, Nagar et al. (2020) show how a digital twin system for 

additive manufacturing could be used to optimise the process through reduced downtime 

and larger productivity. As such, it could be argued that digital twin could be used to add value 

to varying processes resulting in improved speed, quality, efficiency, and productivity, these 

are key ingredients in achieving an effective and efficient manufacturing flow process for 

additive manufacturing. 

Remanufacturing is the subject of the other subcluster. As an industrial process, 

remanufacturing concerns the restoration of products to useful life. It is often considered as 

an environmentally preferable choice of end-of-life option in comparison to material recycling 

or manufacturing new products (Sundin and Lee, 2012). However, the major problems in 

implementing a remanufacturing strategy result from the extreme uncertainty and variability 

of the remanufacturing environment (Ijomah et al., 1999). Wang et al. (2020) also observe 

the lack of product multi-life-cycle remanufacturing process tracking management as 

particularly problematic. In this subcluster authors (e.g., Wang and Wang, 2019; Wang and 

Wang, 2020) approach solutions to the ongoing problems from a product lifecycle 
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management perspective, discussing different permutations as to how this is achievable by 

employing disruptive technologies such as cyber-physical systems and digital twins.  

 

4.2 Smart manufacturing 

Cluster 5 is the second smallest cluster comprising of 14 articles. Whilst the concept of smart 

manufacturing transcends all the clusters, it takes on a more prominent role in this cluster, 

Figure 7 displays a strong link between smart manufacturing and digital twin. Smart or 

intelligent manufacturing is an emerging form of production integrating manufacturing assets 

of today and tomorrow with sensors, computing platforms, communication technology, 

control, simulation, data intensive modelling, and predictive engineering (Kusiak, 2018). The 

essence of smart manufacturing is the connection of all systems, in the factory setting to 

create a federated digital twin and this would include logistics, supply chain, building services, 

and other systems (O’Sullivan et al., 2020). In this cluster authors investigate different 

permutations, as to how the application of digital twin and cyber-physical systems could make 

manufacturing truly smart or intelligent. 

[Insert Figure 7 near here] 

Research by Shahidi et al. (2021), Tan et al. (2019), and Zhang et al. (2019) focus on smart 

factories. Shahidi and colleagues discuss the enablers of smart factories particularly focusing 

on a big data architecture for digital twin application. They come up with the concept of 

decentralized Digital Shadows (dDS) which is essentially a digital architecture which promises 

optimal space allocation for big data and fast response to modelling. Tan and colleagues are 

also concerned with data integration in a smart factory digital twin approach proposing a 
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digital twin construction framework and scheme for inputting data derived from the Internet 

of Things (IoT) into a simulation model. Zhang and colleagues are primarily interested in how 

to realize the interconnection and interoperability of shop-floor elements between the 

physical space and the virtual space. As such, the main focus of this paper concerns the 

implementation approach of digital twin-driven cyber physical production system (CPPS), 

towards smart shop floor particularly for the production phase. To achieve this, the authors 

propose and validate a digital architecture solution. 

Works by Söderberg et al. (2017) and Schleich (2017), examine the issue of quality assurance 

in the context of smart manufacturing. Söderberg and colleagues’ paper specifies and 

highlights functionality and data models in a digital twin environment necessary for real-time 

geometry assurance for production systems. Schleich and colleagues recognise the need for 

more realistic virtual models of manufactured products in order to bridge, what they assessed 

as a gap between design and manufacturing. As such, they propose a comprehensive 

reference model based on the concept of Skin Model Shapes, which serves as a digital twin of 

the physical product in design and manufacturing. Such a framework could also be used to 

address quality issues in production and design. Measuring performance is an important 

element of the manufacturing flow process. Croxton et al. (2001) argue that at the core of 

performance management includes the analysis of product quality and an examination of the 

root causes of quality problems. In this light, it can be argued that a digital twin solution could 

add significant value to the manufacturing flow process. 

4.3 Product development and lifecycle management 
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Cluster 3 is the joint largest community also comprising of 44 articles. As can be observed in 

Table 14, most of the top 15 keywords are related to processes involving product such as 

complex product, product life cycle management, and product optimisation, thus product 

development and lifecycle management was deemed a suitable name to represent this 

cluster. Figure 8 illustrates the key linkages in this cluster resonating the statistics in Table 14. 

In particular, complex product, data management, smart product, and product lifecycle 

management have the strongest link with digital twin. Careful inspection of the articles does 

reveal the presence of three subclusters comprising of complex product, smart product, and 

product lifecycle management (PLM), with data management playing an integral part in these 

processes.  

[Insert Figure 8 near here] 

A complex product is one that has many constituent parts, each part is manufactured to high 

precision backed up by a level of research and development, for example, a computer server, 

sports car, and refrigerator. These are normally innovative products with less predictable 

demand (Wong et al., 2002). Zhuan et al. (2020) observe that the assembly process for these 

complex products involves high complexity, strong dynamics, many uncertainties, and 

frequent rework and repair, especially in the model development stage. According to Sun et 

al. (2020), the traditional assembly process of complex products is based on manual 

experience, which results in low assembly efficiency and poor-quality consistency. The studies 

in this subgroup variously recognise the potential of cyber-physical system to address the 

assembly problems of complex products. Consequently, each of the three papers proposes a 

digital twin-driven assembly-commissioning approach for complex products. Case studies 
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involving the assembly of a satellite (Yi et al., 2020) and an electro-hydraulic servo valve (Sun 

et al., 2020), show the effectiveness of the respective approaches.  

Gutiérrez et al. (2013, p. 206) define a smart product as “an autonomous object which is 

designed for self-organised embedding into different environments in the course of its life-

cycle and which allows for a natural product-to-human interaction. Smart products are able 

to proactively approach the user by using sensing, input, and output capabilities of the 

environment thus being self-situational, and context-aware.” The two papers in the 

subcluster focus on smart product development and innovation, two areas adjudged as 

requiring attention. In Lin et al. (2021), evolutionary digital twin (EDT) is proposed as a new 

mode for intelligent industrial product development. A case study shows that EDT instils more 

flexibility and adaptability in the development process of intelligent industrial product. 

Beyond intelligent products, flexibility and adaptability are increasingly needed in more 

general product development particularly given the uncertain nature of demand and the 

move away from mass customisation toward personalisation. On one hand, by instilling such 

attributes in the product development process, the value-added potential of DT is revealed. 

Zheng et al. (2018) on the other hand, applies the digital twin concept to the service 

innovation of smart product which they refer to as smart product-service systems (PSS). The 

service innovation is enabled by a platform-based approach and generated in a data-driven 

manner. A case study involving a personalised wearable is used to validate the digital twin 

framework for service innovation.  

Optimisation of the process of product lifecycle management (PLM) is an increasingly 

important objective for manufacturing enterprises to improve their sustainable competitive 
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advantage (Zhang et al. 2017). PLM is often defined as a set of functions and procedures which 

allows the management and exploitation of the data at the same time defining the products 

and the processes implemented for their developments (Zina, 2006). Huang et al. (2020) note 

that in PLM, there are many participating actors constructing a complicated network with 

enormous product lifecycle data, this makes the implementation of a PLM solution difficult. 

The papers in this subcluster discuss the various ways digital twin could offer a workable 

solution to the data management issues faced by PLM. Huang and colleagues discuss a data 

management method for digital twin, of PLM based on blockchain technology. It is argued 

that blockchain technology enhances data sharing efficiency among participating actors. The 

effectiveness of the proposed data management method is evaluated using a case study, 

which shows that the proposed framework can solve the data management problem.  

4.4 Supply chain resilience and risk management 

Cluster 2, which we have named supply chain resilience and risk management, is the smallest 

comprising of only 6 articles. From Figure 5, it can be observed that this community is 

somewhat removed from the core of the network. Nevertheless, the articles form a tightly 

woven literature cluster, focussing on examining the role of cyber-physical systems and digital 

twin in the development of supply chain resilience. Figure 9 indeed reveals the strongest links 

in this cluster are between supply chain, resilience, digital twin, and ripple effect. These 

studies are inspired by the ongoing Covid-19 pandemic, conceptualised as the single most 

pervasive source of supply chain disruption risk in most of the studies. As such, the studies in 

this cluster mostly focus on discussing the digital strategies built around cyber-physical 
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systems and digital twins to mitigate supply chain disruptions and recover in case of severe 

disruptions (Ivanov and Dolgui, 2019).  

[Insert Figure 9 near here] 

Predicting the impact of epidemic outbreaks on global supply chains is the subject of Ivano’s 

(2020) study. Supply chains are complex systems, unlike manufacturing or a piece of 

machinery where the avatar is a virtual representation of the physical object, the 

conceptualisation of a supply chain digital twin requires the modelling of the supply chain 

design supported by real time operational parameters (Ivanov and Dolgui, 2020), employing 

both prescriptive and predictive analytics. In this study the value-added potential of a digital 

twin is thus conceptualised at the level of supply chain capability. Previous research has 

positioned supply chain resilience as a dynamic capability, to prepare for unavoidable risk 

events and to respond to and recover from unexpected disruptions. Ivanov and Dolgui (2020) 

show how the application of a DT could enable such a dynamic capability, by matching supply 

chain designs to different sets of disruption patterns, while key performance measures are 

monitored. Decision makers can draw on the outcomes of these predictive simulations and 

prescriptive optimization, to transform the supply chain design to absorb the negative effects 

from a range of different risk sources (Teece, 2007) in real time. Ivano’s study for instance, 

reveal that the timing of the closing and opening of the facilities at different echelons, might 

be a significant factor that determines the epidemic outbreak impact on the SC performance, 

rather than an upstream disruption duration or the speed of epidemic propagation. 

Three studies in this cluster recognise the ripple effect (Ivanov and Dolgui, 2019; Ivanov et al., 

2019; Ivanov and Dolgui, 2020) as a significant threat to supply chain resilience resulting from 
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disruptions. The ripple effect occurs when a disruption, rather than remaining localized or 

being contained to one part of the supply chain, cascades downstream and impacts the 

performance of the supply chain (Ivanov and Dolgui, 2019). Ripple effect control is thus seen 

as a critical risk management task to achieve supply chain resilience. In these studies, a supply 

chain digital twin for risk management is conceptualised, and the ripple effect of an epidemic 

outbreak in global supply chains is modelled to evaluate optimal supply chain risk measures 

and potential recovery paths. Based on the results of simulations, redundancy, flexibility, and 

leanness are assessed as key supply chain capabilities effective to control the ripple effect 

caused by a global pandemic. Similarly, these studies are examples of value-creation at the 

level of supply chain capability level orchestrated by the application of a DT.  

4.5 Enabling technologies 

Cluster 4 is dedicated to enabling technologies particularly focussing on blockchain as can be 

observed in Figure 10. Disruptive technologies are foundational to the digital twin concept, 

they are the very bedrock enabling the physical-virtual manifestations. Some of the core 

disruptive technologies captured across the five clusters include: cyber physical systems, 

Industry 4.0, Internet of Things, robotics, artificial intelligence, virtual reality, simulations, 3D 

printing, machine learning, big data analytics, predictive analytics, smart contract, and of 

course blockchain. Figure 10 shows a strong link between digital twin, blockchain, and smart 

contracts. Blockchain and smart contract are related concepts. Blockchain is defined as a 

distributed data base or digital ledger, that records transactions of value using a cryptographic 

signature that is inherently resistant to modification (Mylrea, and Gourisetti, 2017). Applying 
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blockchain based smart contracts presents an opportunity to increase the speed, scale, and 

security of transactions.  

[Insert Figure 10 near here] 

The articles in this cluster investigate how blockchain technologies could be dispensed to 

enhance the existing digital twin frameworks. Hasan et al. (2020) point out some limitations 

of current approaches, systems and technologies of digital twin related to centralization and 

falling short of providing trusted data provenance, audit, and traceability. A blockchain 

approach to digital twin promises to resolve some of those limitations, possessing the 

advantage of distributed consensus and tampering-resistant, blockchain makes decentralized 

and collaboration in manufacturing possible (Leng et al., 2019). Hasan and colleagues propose 

a blockchain-based creation process of digital twins to ensure secure and trusted traceability, 

accessibility, and immutability of transactions, logs, and data provenance. Their approach 

uses smart contracts to govern and track transactions initiated by participants involved in the 

creation of digital twins.  

To address the challenge of ensuring trust among makers in the social manufacturing 

paradigm, Leng et al. (2019) propose a blockchain-driven decentralized self-organizing model 

they named Makerchain, through which a decentralized network of makers can cooperate in 

a manufacturing ecosystem. The implementation of the Makerchain is validated via a case 

study of 3D printer manufacturing based on an open- source project named RepRap. The work 

by Leng et al. (2020) addresses the problem of inflexibility of centralized control associated 

with Industrial Internet of Things (IIoT) with respect to the manufacturing of individualized 

products. They argue that the current system is unable to cope with the disturbance and 
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changes required of individualized manufacturing. As such, they propose a novel iterative bi-

level hybrid intelligence model they called ManuChain to get rid of unbalance/inconsistency 

between holistic planning and local execution in individualized manufacturing systems. 

ManuChain is based on incorporation of blockchain into a digital twin for individualized 

manufacturing on a decentralized network. A blockchain data model and smart contracts are 

built to autonomously execute plans being given to the manufacturing unit based on real-

time tracking of Industrial Internet of Things (IIoT) events. Zhang et al. (2020) also employ a 

blockchain approach to address the problem of inflexibility of IIoT in the intelligent 

manufacturing paradigm. To address the problem, the authors combine IIoT with the 

permissioned blockchain and propose a novel Manufacturing Blockchain of Things (MBCoT) 

architecture for the configuration of a secure, traceable, and decentralized Intelligent 

Manufacturing System (IMS). 

5. Conclusion 

Digital twins promise to revolutionise the practice of operations and supply chain 

management and is the most recent in a long list of technologies that have helped give 

strategic purchase to the field. The practice-based literature reports on the marvels of this 

technology accounting for its value-added potential in glorious details. Given the pre-

eminence of big data analytics (BDA) in the functioning of a DT, in this work we have relied 

on the literature on BDA-enabled capabilities to advance arguments to support the use of DT 

in OSCM, as a dynamic capability and by doing so recognising its ability to create value is 

incumbent on its embeddedness in supply chain processes. We have then examined the 
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literature to capture how far the conversation on the value potential of DT in OSCM has 

reached in the academic world.  

Our findings reveal that while this conversation is still in its infancy, value clusters are 

beginning to appear in the literature. Researchers have examined the value-added potential 

of DT at the level of supply chain business processes (Croxton et al., 2001), with an 

accentuated focus on manufacturing flow management and product development and 

commercialisation. We believe that these are maturing literature streams. Furthermore, 

there is an emerging cluster which focusses attention on value at a more abstract capability 

level. This emerging cluster discusses supply chain resilience as a dynamic capability, and the 

pivotal role DT can play in its enablement. These findings provide an initial point of entry for 

discussions with respect to practice, theory development, and future research. 

5.1 Implication for practice 

Our analysis of the literature reveals the huge potential of DT to add value to the 

manufacturing flow process and the product development process. With respect to the 

manufacturing flow management process, the findings reveal that DT adds value mostly 

through process optimization (Cimino et al., 2019; Sun et al., 2020; Leng et al.,2020) and 

predictive maintenance (Cahyati et al., 2019; Cimino et al., 2019). Manufacturing in its various 

forms has frequently been accused of being wasteful often to the detriment of the 

environment. The findings in this review suggest avenues where DT could be employed as an 

operational capability to streamline processes, remove manufacturing flaws, enhance quality 

and efficiency, and improve the overall productivity. Although evidence linking these value 
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improvements to value manifestations such as waste reduction, cost reduction, and overall 

firm performance is not provided, these appear to be the natural conclusion.  

There has been much talk by industrial nations such as the US and the UK, regarding the 

reshoring of manufacturing activities. In the context of the UK, Brexit has provided the 

momentum for the made in Britain movement. Much of the manufacturing activities were 

offshored from the UK in the 1980s (Bailey and De Propris, 2014) under the leadership of 

Margaret Thatcher citing the growing lack of competitiveness of the UK as the key economic 

argument. Digital twin potentially helps to redress this situation and could be seen as the 

raison d’etre to fuel the reshoring or made in Britain ambitions. The UK has indeed recognised 

the benefits of DT to manufacturing and supports numerous initiatives (e.g., Slingshot 

Simulations). As such our findings serve to reinforce the need for a national debate on the 

benefits of DT as a distinct manufacturing capability, as well as the development of inclusive 

industrial policy framework that sets out mechanisms to support and encourage UK 

industries, especially SMEs, to adopt such digital technologies. 

Our findings also provide some points of reflections as to how DT could add value to the 

product development process particularly with respect to innovation. An interesting 

emphasis concerns product development from the perspective of whole lifecycle 

management which also tends to carry an environmental sustainability connotation. This is a 

sector which is gaining popularity especially amongst millennials believed to be more 

environmentally conscious than previous generations. Our findings reveal two different facets 

of DT as a dynamic capability, it can be leveraged into a dynamic collaborative capability for 

the large number of actors involved in the product development process, as well as dynamic 
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capability for information processing for product life-cycle data handling. Manufacturing 

firms can thus employ DT to help reconfigure existing capabilities and achieve competitive 

advantage. However, this comes with a caveat concerning data management and the issue of 

trust is also at play. While trust can be nurtured data management issues such as data quality, 

privacy, and security are a different beast altogether. Employing a DT in the context of product 

development potentially involves the collection of large amounts of personal data. While 

legislation exists (such as the General Data Protection Regulation (GDPR)) aimed at 

safeguarding personal data, there is a lack of a legal framework as to the use of product data 

collected from embedded technologies for commercialisation purposes. This is a grey area 

that needs addressing from a both an ethical and legal perspective. Companies wishing to 

develop a DT solution to build dynamic capabilities around the product development process 

would do well to consider such issues very carefully to avoid potential costly legal 

consequences in the future. 

The dynamic capability potential of DT is also visible when firms can leverage it in order to 

reconfigure supply chain design in anticipation of expected disturbances. The findings reveal 

how firms can employ DT to develop resilience in their supply chains. Resilience is an 

important supply chain dynamic capability that can help firms survive unexpected events and 

is particularly salient in times of a global health crisis such as Covid-19. Whether a supply chain 

is resilient or not can often determine whether a firm survives or not. Therefore, our findings 

provide a lens to understand how firms could instil survivability in their operations by 

employing DT solutions to create dynamic capabilities. We also wish to sound a cautious note 

here to companies thinking about developing a DT solution for supply chain resilience. Whilst 
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such a system utilises real-time data from operational processes, a large amount of data is 

third party data, and this may be data held by private entities or public bodies both local and 

foreign. This leads to questioning the issues of data acquisition and data quality. These are 

issues beyond the control of firms but nevertheless must be factored in from the onset of an 

investment project to develop a DT for supply chain resilience. A potential solution could be 

to outsource data acquisition to third party data companies; however, the veracity of such 

data remains a sticking point. Furthermore, firms would need to ensure an effective internal 

data management system to support such an initiative and with this comes the prerequisite 

IT infrastructure.  

5.2 Implication for theory development    

We have pursued the analysis of extant DT-OSCM literature on the conceptual assumption 

that DT could be treated as an enabler of dynamic capability in supply chains. As pointed out, 

the literature is still in its infancy and DT is yet to be theoretically conceptualised as a value-

creation vehicle for OSCM in any meaningful way. Our findings do however show that when 

embedded in existing processes, DT has the ability to improve and at times transform them 

into higher level capabilities. Furthermore, dynamic capabilities have been described as a 

bundle of unique resources and capabilities (Wang and Ahmed, 2007). DT is a constellation of 

different technologies, and these are increasingly ubiquitous. Therefore, it can be argued that 

the value potential of DT also rests in the unique way companies bundle these technologies 

to create a distinctive DT architecture. As such, we believe that our analysis of the literature 

is foundational to initiating a conversation about the conceptual framing of DT in OSCM. There 

might also be a need to examine the value creating mechanisms at a more granular level 
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where the microfoundations of capabilities reside. This will necessarily require 

conceptualisations at lower level of abstraction to capture the mechanisms of interaction 

between DT and supply chain processes. As such, in the tradition of IT-enabled supply chain 

management, we believe that DT will find a home under the auspices of the resource-based 

view.   

5.3 Implications for future research 

The findings and conclusions of this review have some important implications for future 

research. Supply chain resilience and risk management are viewed as an emerging research 

stream although resilience and risk have a long tradition in quantitative and modelling 

approaches. Supply chain practitioners are particularly well placed to benefit from insights 

from carefully crafted research on the benefit of a supply chain digital twin to inform robust 

and adaptable supply chain design. Digital twin is fast transcending the manufacturing 

landscape, this presents many opportunities for empirical work particularly in the shape of 

case studies that could produce actual knowledge about the specificities, challenges, and 

benefit of a digital twin approach to supply chain resilience and risk management.  

It is disappointing to note the limited contribution of supply chain and operations 

management scholars to the field so far. However, on the positive side, this presents a great 

opportunity for scholars to make significant contributions towards the development of the 

field. For example, there is a pressing need to address the first and last mile issues in supply 

chain, we see supply chain digital twin as offering useful insights as to how to optimise 

decision making regarding these functions. Overall, we believe future work could examine the 

mechanics of value creation where DT intersects with supply chain business processes such 
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as demand management, order fulfilment, supply management, and customer services 

management. 

We further see the need for the development of a scale enabling the measurement of the 

“digital twin capability” construct. This will enable the conceptualisation of digital twin as a 

capability or dynamic capability in empirical work by drawing on the resource-based view. 

Research work employing survey instruments could test the relationship between digital twin 

capability and value manifestations such as firm performance and customer satisfaction. 

Furthermore, this will also allow antecedents or enablers of digital twin capability to be closely 

examined. These developments would help move the field along and attract a more diverse 

pool of scholars.  

As we have already highlighted, theoretical work in this area also remains outstanding, we 

urge scholars to take on the challenge, this can be in the form of conceptual work or case 

studies as directed above. Digital twin presents the supply chain with endless possibilities to 

achieve optimal functioning, we have highlighted a few areas where we think supply chain 

research would benefit the most. However, a digital twin approach has the potential to 

revolutionize operations and supply chain management research we hope the findings in this 

work can provide the momentum to make this happen. 

5.4 Limitations 

In spite of our best efforts to ensure robustness and inclusivity, our research is limited by the 

exclusive focus on peer reviewed material. This could be addressed by future research that 

employs non-academic publications as well as a broader swathe of academic articles. In 

addition to the areas of research identified above, future empirical research could take a more 
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contextual approach with the aim of understanding the mechanics of DT-OSCM across 

different economic sectors. Another limitation concerns the use of only one database to 

extract the articles for this review. Although Scopus is by far the most comprehensive and 

updated repository for scholarly works, there is a chance that our review may have missed 

studies published in other outlets.  

 

 

 

 

 

Figure 1. Publishing trend in the area of DT-OSCM 
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Figure 2. Geographical locations of all contributing institutions. 
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Figure 4. The 135-node bibliographic network after removing remote nodes. 
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Figure 5. Literature clusters 
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Figure 8. Product development and lifecycle management 

 

 

Figure 9. SC resilience and risk management 
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Figure 10. Enabling technologies 
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Table 1. Reviews on DT-OSCM 
NLR = Narrative literature review; SLR = Systematic literature review

Author No. of 
review 
papers  

Type of review Main focus 
Traditional SLR Manufacturing  Product 

design 
Additive 

manufacturing 
Enabling 

Technologies 
Supply Chain 
Management 

Sustainable 
Business 
Model 

Logistics 

Marmolejo-Saucedo and 
Hartmann (2020) 

280 - ✓     ✓   

Butt (2020) - ✓    ✓     
Rymarczyk (2020) - ✓     ✓    
Li et al. (2020) - ✓       ✓  
Roy et al. (2020)    ✓       
Liu et al. (2020) 240 - ✓ ✓   ✓    
He and Bai (2020)  ✓  ✓       
Bányai et al. (2019) 370 - ✓ ✓      ✓ 
Tomiyama et al. (2019) - ✓  ✓ ✓  ✓    
Lim et al. (2020) 145 - ✓  ✓  ✓    
Jones et al. (2020) 92 - ✓    ✓    
Dolgui et al. (2020) 1383 - ✓     ✓   
Barricelli et al. (2019) 75 - ✓    ✓    
Cimino et al. (2019) - ✓  ✓   ✓    
Cheng et al. (2018) - ✓  ✓   ✓    
Zhang et al. (2019) 122 - ✓ ✓   ✓    
Tao et al. (2019) - ✓  ✓   ✓    
Lu et al. (2020) - ✓  ✓   ✓    
Tao et al. (2019) 50 - ✓ ✓   ✓ ✓   
Kritzinger et al. (2018) - ✓  ✓   ✓ ✓   
Negri et al. (2017) - ✓  ✓   ✓    
Qi and Tao  (2018) - ✓  ✓   ✓    
Zhang et al. (2020) - ✓    ✓ ✓    
de Paula Ferreira et al. (2020) 184 - ✓    ✓    
Errandonea et al. (2020) 167 - ✓ ✓   ✓    
Zhu et al. (2020) - ✓ -   ✓ ✓    
Ciano et al. (2020) 496 - ✓ ✓   ✓    
Kumar et al. (2020) 844 - ✓ ✓   ✓    
Chen et al. (2020) - ✓ - ✓ ✓  ✓    



51 
 
 

 

 Table 2. Article search and screening strategy. 

Step 1  Search for "digital twin*"OR "virtual twin" OR "evaluation twin" OR "digital 
shadow") in title, keyword or abstract in Scopus database 

1856 

Step 2 Retain journal articles and reviews in English language 652 
Step 3 Full screening of abstracts and titles for relevance (see inclusion criteria for 

details) 
234 

 

Table 3. Top journals contributing to the area of DT-OSCM. 

Journal   Publication year 

Hi TC 2017 2018 2019 2020 2021 Total 

Journal of Manufacturing Systems 7 265 1 2 1 14 1 19 

International Journal of Computer 
Integrated Manufacturing 8 144 

  
9 8 

 
17 

International Journal of Production 
Research 9 419 

  
7 9 

 
16 

Applied Sciences (Switzerland) 4 41 
  

4 5 1 10 

International Journal of Advanced 
Manufacturing Technology 6 721 

 
3 

 
5 1 9 

IEEE Access 4 571 1 1 3 3 
 

8 

Advances in Computers 1 2 
   

6 
 

6 

Journal of Cleaner Production 4 151 
 

1 1 3 1 6 

Robotics and Computer-Integrated 
Manufacturing 4 201 

  
1 3 1 5 

CIRP Annals 4 169 
 

2 2 
  

4 

Computers in Industry 3 92 
 

1 2 1 
 

4 

Journal of Ambient Intelligence and 
Humanized Computing 4 191 

  
4 

  
4 

Journal of Intelligent Manufacturing 3 92 
  

1 2 1 4 

Lecture Notes in Networks and 
Systems 1 2 

  
1 3 

 
4 

Sustainability (Switzerland) 3 15 
   

3 1 4 

Total   2 10 36 65 7 120 

TC = total citation within the sample; Hi = Hindex within the sample 
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Table 4. Key contributing authors. 

Author No. published articles Author No. published articles 

Tao, F. 13 Zhang, M. 6 

Zhang, Y. 9 Chen, X. 5 

Wang, Y. 8 Leng, J. 5 

Qi, Q. 7 Liu, Q. 5 

Zhang, H. 7 Liu, Z. 5 

Ivanov, D. 6 Noh, S.D. 5 

Liu, J. 6 Park, K.T. 5 

Lu, Y. 6 Xu, X. 5 

Nee, A.Y.C. 6 
  

 

Table 5. Key contributing paired authors. 

Author 1 Author 2 No. of joint 
publications 

Author 1 Author 2 No. of joint 
publications 

Tao, F. Nee, A.Y.C. 6 Leng, J. Zhang, D. 3 

Park, K.T. Noh, S.D. 5 Lu, Y. Xu, X. 3 

Tao, F. Qi, Q. 4 Zhang, H. Chen, X. 3 

Tao, F. Zhang, M. 4 Zhang, M. Nee, A.Y.C. 3 

Leng, J. Chen, X. 4 Yan, D. Zhang, D. 3 

Leng, J. Liu, Q. 4 Qi, Q. Nee, A.Y.C. 3 

Liu, Q. Chen, X. 4 Zheng, P. Chen, C.-H. 3 

Tao, F. Liu, A. 4 Ivanov, D. Dolgui, A. 3 

Yan, D. Chen, X. 3 Liu, Q. Zhang, D. 3 

Yan, D. Liu, Q. 3 Zhuang, C. Liu, J. 3 

Qi, Q. Tao, F. 3 Liu, A. Nee, A.Y.C. 3 

Leng, J. Yan, D. 3 
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Table 6. Top contributing institutions. 

Institutions Country Number of papers 

Xi'an Jiaotong University China 13 

Jinan University China 10 

Berlin School of Economics and Law Germany 7 

Indian Institute of Technology Kharagpur India 7 

The University of Hong Kong Hong Kong 7 

Guangdong University of Technology China 6 

People's Education Society University India 6 

University of Bremen Germany 6 

National University of Singapore Singapore 5 

Beihang University China 4 

IMT Atlantique France 4 

Jinan University (Zhuhai Campus) China 4 

St. Petersburg Polytechnic University Russia 4 

The University of Auckland New Zealand 4 

Khalifa University of Science and Technology Abu Dhabi 4 

 

Table 7. International collaboration statistics. 

Country 1 Country 2 No. of papers Country 1 Country 2 No. of 
papers 

China Hong Kong 9 France Russia 2 

China Singapore 7 Singapore Sweden 2 

China United States 6 France United States 2 

Australia China 6 Australia United States 2 

France Germany 6 Sweden United States 2 

China United Kingdom 4 Hong Kong Singapore 2 

China Sweden 4 United Kingdom United States 2 

Australia Singapore 4 Australia Sweden 2 

India United States 3 Germany United States 2 

Germany Spain 2 China France 2 

Germany Russia 2 Sweden United Kingdom 2 

Finland Sweden 2 Australia France 2 
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Table 8. Top 10 papers based on citations. 

Author Local citation Global citation 

Qi, Q.; Tao, F. (2018) 2 269 

Lu, Y.; Xu, X. (2019) 2 76 

Lu, Y.; Xu, X. (2018) 2 56 

Ivanov, D.; Dolgui, A. (2020) 2 45 

Qi, Q.; Tao, F. (2019) 2 17 

Ivanov, D.; Dolgui, A. (2019) 2 8 

Tao, F.; Cheng, J.; Qi, Q.; Zhang, M.; Zhang, H.; Sui, F. (2018) 1 533 

Schleich, B.; Anwer, N.; Mathieu, L.; Wartzack, S. (2017) 1 297 

Tao, F.; Zhang, M. (2017) 1 252 

Negri, E.; Fumagalli, L.; Macchi, M. (2017) 1 251 

 

Table 9. Top 10 papers based on Eigenvector centrality. 

Author Eigenvector 
centrality 

Local 
citation 

Global 
citation 

Ciano, M.P.; Pozzi, R.; Rossi, T.; Strozzi, F. (2020) 1 0 0 

Tao, F.; Qi, Q.; Wang, L.; Nee, A.Y.C. (2019) 0.9432 1 71 

Barricelli, B.R.; Casiraghi, E.; Fogli, D. (2019) 0.9416 1 24 

Lim, K.Y.H.; Zheng, P.; Chen, C.-H.; Huang, L. (2020) 0.9261 1 1 

Jones, D.; Snider, C.; Nassehi, A.; Yon, J.; Hicks, B. (2020) 0.9201 1 16 

Yi, Y.; Yan, Y.; Liu, X.; Ni, Z.; Feng, J.; Liu, J. (2020) 0.9125 1 4 

Ding, K.; Chan, F.T.S.; Zhang, X.; Zhou, G.; Zhang, F. (2019) 0.9094 1 78 

Bao, J.; Guo, D.; Li, J.; Zhang, J. (2019) 0.9017 1 33 

Tao, F.; Zhang, H.; Liu, A.; Nee, A.Y.C. (2019) 0.8897 1 151 

Errandonea, I.; BeltrÃ¡n, S.; Arrizabalaga, S. (2020) 0.8881 0 0 

 

Table 10. Top 20 keywords by frequency of occurrence. 

Key words Occurrence 
frequency 

Keywords Occurrence 
frequency 

Digital twin 111 Industrial research 24 

Manufacturing 69 simulation 24 

Industry 4.0 58 Product design 24 

Life cycle 49 Big data 23 
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Embedded systems 46 Virtual reality 22 

Cyber Physical System 39 Production system 22 

Smart manufacturing 35 Digital twins 21 

Internet of things 34 Blockchain 21 

Decision making 32 Intelligent Manufacturing 20 

Flow control 31 Digital storage 20 

 

 

 

Table 11. Top 20 keywords by Eigenvector centrality. 

Keyword Eigenvector centrality Keyword Eigenvector centrality 

Digital twin 1 virtual reality 0.512817 

Manufacture 0.864539 Production system 0.479714 

Life cycle 0.707403 Big data 0.474789 

Industry 4.0 0.706363 Simulation 0.471727 

Smart manufacturing 0.687019 Digital storage 0.430077 

Cyber-physical system 0.670974 Floors 0.418721 

Embedded systems 0.653097 Enabling technologies 0.3709 

Flow control 0.603058 Data Analytics 0.336579 

Industrial research 0.599459 Interoperability 0.318288 

Internet of things 0.563073 Computer architecture 0.313076 

 

Table 12. Top 20 paired keywords. 

Keyword 1 Keyword 2 Co-occurrence frequency 

Digital twin Manufacturing 55 

Digital twin Industry 4.0 37 

Digital twin Life cycle 32 

Digital Twin Embedded systems 32 

Cyber-physical system Digital twin 31 

Digital twin Smart manufacturing 26 

Manufacturing Smart manufacturing 22 

Cyber-physical system Embedded systems 22 

Decision making Digital twin 19 

Digital twin Flow control 18 

Embedded systems Manufacturing 18 

Digital twin Industrial research 18 

Digital Twin Internet of Things 18 

Cyber-physical system Manufacturing 17 

Flow control Smart manufacturing 17 

Flow control Manufacture 16 
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Digital twin Product design 15 

digital twin Simulation 14 

Digital storage Digital twin 14 

Digital twin Production system 14 
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Table 13. Top papers of each cluster based on Eigenvector centrality. 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

Butt (2020) Ivanov (2020) Sun et al. (2020). Cimino et al. (2019) Barricelli et al. (2019) 

Knapp et al. (2017) Ivanov & Das (2020) Huang et al. (2020) Fang et al. (2019) Kusiak (2020) 

Cai et al. (2020) Ivanov & Dolgui (2020) Lim et al. (2020) Hasan et al. (2020) Schleich et al. (2017) 

Ciano et al. (2020) Ivanov & Dolgui (2020) Liu et al. (2020) Leng et al. (2019) Shahidi et al. (2021) 

Gaikwad et al. (2020) Ivanov et al. (2019) Nikolakis et al. (2020) Leng et al. (2020) Söderberg et al. (2017) 

Longo et al. (2019) Narula et al. (2020) Park et al. (2020) Lin et al. (2021) Tan et al. (2019) 

Wang & Wang (2019) 
 

Yi et al. (2020) Rocca et al. (2020) Tao, Qi et al. (2019) 

Cahyati et al. (2019) 
 

Zhang & Zhu (2020) Tomiyama et al. (2019) Tao, Sui et al. (2019) 

Nagar et al. (2020) 
 

Zheng et al. (2018) Sierla et al. (2018) Wang & Luo (2021) 

Wang et al. (2020) 
 

Zhuang et al. (2020) Zhang et al. (2020) Zhang, Zhang et al. (2019) 
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Table 14. Top 15 keywords based on total link strength (TLS) measure in each cluster. 

Cluster 1: Alternative 

manufacturing 
Cluster 2: SC resilience and 

risk management 
Cluster 3: Product innovation 

management 
Cluster 4: Enabling technologies Cluster 5: Smart manufacturing 

Keywords F TLS Keywords F TLS Keywords F TLS Keywords F TLS Keywords F TLS 

Digital twin 6 37 Digital twin 5 40 Digital twin 9 37 Digital twin 6 29 Digital twin 7 27 

Additive 
manufacturing 

5 37 Resilience 4 32 Cyber-physical 
production system 

3 12 Blockchain 4 21 Smart manufacturing 4 17 

Industry 4.0 5 25 Supply chain 4 32 Smart product 2 14 Industry 4.0 4 20 Cyber-physical system 3 11 

3d printing 3 24 Ripple effect 3 26 Complex product 2 10 Smart contracts 3 13 Machine learning 2 11 

Augmented reality 2 13 Coronavirus 2 19 Data management 2 8 Cyber-physical 
system 

2 12 Manufacturing 2 10 

Remanufacturing 2 9 Covid-19 2 19 Industry 4.0 2 8 Industrial internet 
of things  

2 8 Big data 2 9 

Cyber-physical 
system 

2 7 Epidemic 
outbreak 

2 19 Product lifecycle 
management 

2 8 Manufacturing 1 6 Internet of things 2 9 

Data analytics 1 16 Pandemic plan 2 19 Data management 2 8 Simulation 1 6 Smart factory 2 8 

Directed energy 
deposition 

1 16 Risk 
management 

2 19 Connected product 1 5 Big data 1 5 Convolutional neural 
networks 

1 6 

Graph theory 1 16 Sars-cov-2 2 19 Product data 
package 

1 5 Circular economy 1 5 Deep learning 1 6 

Laser powder bed 
fusion 

1 16 Simulation 2 19 Product family 
design 

1 5 Cloud simulation 1 5 Generative adversarial 
networks 

1 6 

Machine learning 1 16 Industry 4.0 3 17 Product 
optimization 

1 5 Ethereum 1 5 Intelligent 
manufacturing 

1 6 

Meltpool 1 16 Blockchain 2 16 Product-service 
systems 

1 5 Cps-digital-twin 1 5 Artificial intelligence 1 5 

Overhang 1 16 Supply chain 
resilience 

1 8 Product 
configuration 

1 5 Virtual reality 1 5 Data lifecycle 1 5 

Photodetector 1 16 Risk analysis 1 8 Data driven design 1 5 Efficient parallel 
simulation 

1 5 Design theory 1 5 

F = Occurrence frequency; TLS = Total link strength 
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