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Abstract 12 

Continued urban population expansion will be a defining challenge for climate change 13 

mitigation, and global sustainability more generally, over the coming decades. In this 14 

context, an important but underexplored issue concerns the relationship between the 15 

scale of urban areas and their carbon emissions. This paper employs the urban Kaya 16 

relation and Reduced Major Axis regression to look at urban emission patterns in 17 

China from 2000 to 2016. Our results reveal that larger cities have lower per capita 18 

emissions. Thus, population agglomeration may be able to contribute to climate 19 

change mitigation and a wider transition to sustainability. The inverse-U shape 20 

between carbon emissions and population size is found. In addition, we observe 21 

unique scaling patterns in different regions, revealing how the relationship between 22 

emissions and population can be influenced by economic geography. City 23 

consumption weakens the role of population agglomeration in reducing carbon 24 

emissions in the East region, therefore it should be placed top priority in carbon 25 

emissions mitigation. These findings are important for China which looks to achieve 26 

carbon neutrality by 2060 against the backdrop of intertwined interplay between 27 

population agglomeration and city consumption. 28 

 29 
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1. Introduction 7 

The concentration of individuals in urban areas brings both opportunities and 8 

challenges for sustainable development. Although agglomeration makes economies of 9 

scale in infrastructure possible and facilitates the provision of services, it can also lead 10 

to unprecedented increases in urban greenhouse gases (GHGs) emissions and energy 11 

consumption and produces urban challenges related to climate change, such as the 12 

urban heat island effect (Bettencourt et al., 2007; Meerow, 2017; Mi et al., 2018). 13 

With the rural to urban shift showing no signs of slowing down, nearly 70% of the 14 

population is projected to live in urban areas by the middle of this century (United 15 

Nations, 2019). Given this inexorable shift, global sustainability and climate change 16 

mitigation will depend significantly on our capacity to understand and manage the 17 

complexity and dynamism of urban systems (North et al., 2017; Meirelles et al., 18 

2021).  19 

 20 

Cities are complex systems with interacting material, social and institutional aspects 21 

(Meirelles et al., 2021). Therefore, cities display sophisticated nonlinear changes in 22 

elements as they grow in size, giving rise to the development of the science of cities 23 

which looks into underlying regularities in urban systems, in cases of distinct 24 

geographical constraints and historical trajectories. Urban scaling laws, as a central 25 

part of city science, explore how variations in social organization and dynamics 26 

caused by expanding urban population sizes impact the interactions between natural 27 

and societal systems (Bettencourt et al., 2007). The demographic scale of changes in 28 

social organization and patterns of human behavior are unprecedented, which will 29 

lead to important, although as of yet poorly understood, impacts on the global 30 

environment (Bettencourt et al., 2007; United Nations, 2019). This puzzle is 31 

meaningful to explore as the quantitative understanding of human social organization 32 

and dynamics in cities is a major piece of the puzzle toward successfully navigating a 33 

transition to sustainability (Bettencourt et al., 2007; Rybski et al., 2017). This puzzle 34 
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especially matters to China, which pledges to achieve carbon neutrality by 2060, 1 

against the backdrop of ongoing industrialization and urban population expansion.  2 

 3 

Substantial research on the application of the urban scaling law has been undertaken. 4 

This work can be categorized into two streams. The first stream focuses on 5 

socioeconomic variables, such as gross domestic product (Bettencourt and Lobo, 6 

2016), number of patents (Bettencourt et al., 2007) and crimes committed (Anand 7 

and Luís M. A., 2019). The latter addresses infrastructure performance in urban areas, 8 

including street networks (Louf and Barthelemy, 2015; Emanuele et al., 2017), cable 9 

networks (Kühnert et al., 2006) and petrol supply networks (Christian et al., 2006). 10 

Urban scaling laws postulate a power-law association between urban population and 11 

urban variables. A sub-linear scaling (a scaling exponent<1) indicates economies of 12 

scale while a super-linear scaling (a scaling exponent>1) indicates diseconomies of 13 

scale. A linear scaling (a scaling exponent =1) indicates proportionality. 14 

 15 

Recent research on urban scaling has been extended to environmental indicators, 16 

including carbon emissions. These research shed light on the intricacy of urban 17 

emission patterns. Nevertheless, no scientific consensus has yet been reached on 18 

urban emission patterns. For instance, Oliveira et al. (2015) employed a bottom-up 19 

approach to find a super-linear association between emissions and population for 20 

2281 clusters in the United States, while Ribeiro et al. (2019) found a sub-linear 21 

scaling between CO2 emissions and urban population size across more than 3000 U.S. 22 

urban units. A similar study on German cities depict a sub-linear scaling (Gill and 23 

Moeller, 2018). Furthermore, underlying systematic dynamics that govern such 24 

scaling properties remain underexplored (Gudipudi et al., 2019). Therefore, Gudipudi 25 

et al. (2019) unprecedentedly combined Kaya identity and urban scaling law 26 

generating urban Kaya relation and applied it to 61 cities from 12 countries to look at 27 

urban emission scaling properties worldwide in 2005. The Kaya identity is an 28 

equation that relates the level of carbon emissions to population growth, economic 29 

growth, energy intensity and carbon intensity per unit of energy consumed. It is a 30 

concrete form of the more general I = PAT equation relating factors that determine the 31 

level of human impact on climate. By applying the urban Kaya relation, this paper 32 

found a sub-linear scaling for cities in Annex 1 regions and a super-linear scaling for 33 

cities in the Non-Annex 1 regions. Problematically, however, a small number of urban 34 

agglomerations from different countries are mixed to conduct the scale analysis, 35 

which is expected to be performed within a single urban system (Meirelles et al., 36 

2021). In addition, carbon emissions data comes from four diverse sources with 37 
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varying accounting approaches, leading to comparability issues, particularly around 1 

the accounting for electricity emissions and assumptions about urban boundaries 2 

(Cottineau et al., 2019). Also, Gudipudi et al. (2019) relied on the cross-sectional data 3 

which fails to illustrate the dynamics of emission patterns within and across cities, an 4 

issue of particular importance for China, which is experiencing economic 5 

development mode shifts and industrial upgrade which may cause changes in urban 6 

emission patterns. 7 

 8 

To extend the work inaugurated by Gudipudi et al. (2019), this paper applies the urban 9 

Kaya relation to 50 Chinese cities to look at the dynamics of urban emission patterns 10 

from 2000 to 2016. The urban Kaya relation is utilized respectively among East, 11 

Middle and West regions, as well as megalopolis, metropolis, large cities and medium 12 

and small cities (further details in section 2) to identify the heterogeneity of urban 13 

emission patterns and the impact of city size on GHGs emissions. Results indicate that 14 

the larger the cities the lower the per capita emissions. From this, the inverse-U shape 15 

between carbon emissions and population size is found. The scaling of emissions with 16 

population size depends on the economic geography of the region. Specifically, 17 

carbon emissions reductions in the Middle region can primarily be ascribed to energy 18 

efficiency improvements, while carbon intensity reductions are the key contributing 19 

factor in the West and East regions. Considering that city consumption has offset the 20 

role of population agglomeration in reducing carbon emissions in the East region, the 21 

East region should be the top priority when it comes to reducing carbon emissions.  22 

 23 

2. Method 24 

2.1. The urban Kaya relation 25 

This paper looks into the underlying mechanisms among influencing factors inducing 26 

urban emission patterns based on the Kaya identity, which relates carbon emissions 27 

per capita to emissions and energy, energy and gross domestic product (GDP), and 28 

GDP and population size, as shown in formula (1). 29 

,
P

G
G

E
E

C
P

C                                                   (1) 30 

where C denotes carbon emissions at the city level. This analysis utilizes scope 1 and 31 

scope 2 emissions to identify the impact of different emission accounts on urban 32 

emission patterns. P and G represent population size and GDP for each corresponding 33 

city, and E is energy consumption. According to Kaya identity, carbon emissions per 34 
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capita acts as a function of carbon intensity per unit of energy consumed ( EC ), 1 

energy intensity ( GE ) and economic activity ( PG ). 2 

 3 

Urban scaling laws hold that urban indicators scale with urban population. To fully 4 

understand the intrinsic factors determining urban emission patterns, we postulate 5 

each factor in formula (1) exhibit scaling properties, i.e. 6 


PC  ,                                                            (2) 7 

 EC ,                                                            (3) 8 


GE  ,                                                            (4) 9 


PG  .                                                            (5)  10 

 is the value we focused on, as it indicates how carbon emissions scale with 11 

population, and whether cities get ‘greener’ as they get larger.  reflects the carbon 12 

intensity of energy sources. The value of shows the technological level, especially 13 

energy-related technology.  is a measure of affluence. 14 

 15 

Combining the scaling relations in formulas (2)-(5), we obtain                                   16 

  .                                                           (6) 17 

 18 

Therefore, by making adjustments we can identify the chain between urban carbon 19 

emissions and population size and reveal an urban Kaya relation with a similar 20 

structure to the Kaya identity. In line with formula (6), the exponent of urban 21 

emissions and population size can be obtained by the product of exponents of the 22 

other factors. Formula (6) allows us to understand the linearity of scaling between 23 

emissions and urban population based on the potential scaling of carbon intensity, 24 

energy efficiency and economic activity. 25 

 26 

2.2. Reduced Major Axis regression 27 

The default method to obtain exponent   is to transform formula (2) into log-log 28 

space, then   can be computed as a regression coefficient of the linear regression 29 

equation. However, the measurement of power-law exponent in urban scaling studies 30 

is not as simple as originally thought. While a straightforward regression is thought to 31 
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be robust and sufficient (Leitão et al., 2016), more rigorous and appropriate regression 1 

approaches are required as   changes with the application of varying regression 2 

methods (Gudipudi et al., 2019). 3 

 4 

The vast majority of linear regressions are performed using ordinary least squares 5 

(OLS) methodology, overlooking assumptions underlying this approach. OLS 6 

minimizes the sum of squared errors of the vertical distance between the dependent 7 

values and their corresponding predictions, which postulates independent variables 8 

are measured without errors. This is an idealized assumption in reality. Reduced 9 

Major Axis (RMA) regression is specifically formulated to handle errors in both 10 

dependent and independent variables by minimizing both horizontal and vertical 11 

distances of data points from the fitting line. Another source of concern about OLS is 12 

the asymmetry between the OLS regression of Y on X and of X on Y. The lack of 13 

interchangeability between dependent and independent variables is noteworthy for 14 

cases where two-way causation exists. For example, energy consumption and 15 

economic growth (formula (4)) and affluence and population (formula (5)). The 16 

symmetry of X and Y in RMA regression enables the bivariate relationship to hold 17 

when variables assigned to X and Y are reversed. This paper therefore employs RMA 18 

regression methods to explore urban emission patterns across various urban 19 

agglomerations and regions. Then we employ a nonparametric bootstrap method (999 20 

replications) to test the credibility of coefficients obtained from the RMA regression 21 

method. 22 

 23 

2.3. Limitations in the method 24 

This paper has three main limitations which we leave to be addressed by future 25 

research. Firstly, Kaya identity is a widely used equation to determine the level of 26 

human impact on carbon emissions by relating the carbon emissions to energy use, 27 

economic growth and population growth. However, it fails to consider some factors 28 

that can affects the carbon emissions, such as government efficiency, trade and FDI. 29 

Future research can address this issue by further enriching the form of Kaya identity. 30 

Furthermore, considering the data availability and the representativeness of the 50 31 

cities in population size and carbon emissions, this paper uses the 50 cities as a 32 

sample for analysis, which may lead to sample selection bias in the estimation of the 33 

parameters. Lastly, this paper uses total population data within the city boundary, does 34 

not distinguish between urban population and rural population, and does not deal with 35 

the complexity of China’s city size.   36 
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 1 

3. Data 2 

Analysis conducted in this paper is limited to 50 Chinese cities, which ensures 3 

consistent demarcation and definition of cities; for these cities, four types of data are 4 

available, namely city-level carbon emissions, energy consumption, population size 5 

and GDP. To identify the impact of emission accounting inventory scopes on urban 6 

emission patterns, this analysis utilizes scope 1 and scope 2 emissions to assess how 7 

carbon emissions from fossil fuel combustion and industrial processes occurring 8 

within the city boundary or emissions related to electricity and heating change with 9 

city size. This paper draws on emissions data from Wang et al. (2019), whose analysis 10 

is based on the Intergovernmental Panel on Climate Change (IPCC) territorial 11 

emissions (IPCC, 2006). Emissions from agriculture, forestry and other land use, as 12 

well as waste, have been excluded due to their high uncertainties and relatively small 13 

influence on urban emissions (Wang et al., 2012). Data on national carbon emissions 14 

used for prediction comes from CEADS database (CEADS, 2019). Data on GDP and 15 

population are collected from the China City Statistical Yearbook (2001-2017). GDP 16 

is converted to purchasing power parity (PPP) dollars based on the implied PPP 17 

conversion rate using the current international dollar from EconStats (EconStats, 18 

2019). We collect energy consumption of industrial enterprises from the 19 

corresponding city’s statistical yearbooks (2001-2017) and convert these to standard 20 

coal equivalents based on conversion factors from China Energy Statistical Yearbook 21 

(2017). See Supplementary Table 1 for a statistical description of the variables. 22 

 23 

Analysis covers cities in 30 provinces. The contribution of these cities to total 24 

population is 30% in 2015, while the combined share of the GDP and cumulative 25 

carbon emissions generated from fossil-fuel combustion and industrial production in 26 

these cities are 51% and 35% respectively (Wang et al., 2019). Due to distinct 27 

geographical constraints, resource endowments, and historical trajectories, there is 28 

remarkable divergence among energy mix, city size and affluence across cities. This 29 

paper classifies the 50 cities into four city groups according to the standard of city 30 

classification published by the China State Council in 2014 in order to explore the 31 

impact of city size on urban emission patterns, namely megalopolis, metropolis, large 32 

cities and middle and small cities. These represent the cities with residential 33 

population living in the urban districts more than 10 million, 5-10 million, 1-5 million 34 

and less than 1 million in 2010. The 50 cities are then divided into East, Middle and 35 

West regions to look at the heterogeneity of urban emission patterns by region, as 36 

shown in Supplementary Figure 1 and Supplementary Table 2. 37 
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 1 

4. Results  2 

4.1. Carbon emission patterns for all cities  3 

Carbon emissions for 50 cities increased dramatically between 2000 and 2016, with 4 

scope 1 emissions increasing from 797 Mt in 2000 to 1982 Mt in 2016, and scope 2 5 

emissions reaching 1557 Mt in 2016 from 435 Mt in 2000. Scope 1 emissions grew 6 

rapidly at an annual growth rate of over 7% before 2008, and stabilized at around 5% 7 

for the following four years. Between 2012 and 2016, scope 1 emissions basically 8 

achieved zero growth, and even negative growth in 2016. The scope 2 emissions 9 

growth rate then started to decline from 18.51% in 2004 to 2.71% in 2008, after 10 

reaching a peak of 23.32% in 2003. After that, scope 2 emissions showed slight 11 

growth between 2009 and 2011, before bottoming out at -3.23% in 2013 and 12 

gradually plateauing (Supplementary Figure 3). According to the observed 13 

time-varying characteristics of the carbon emissions trend, we divide the total trend 14 

into four stages: World Trade Organization (WTO) accession (2000-2003), high 15 

economic growth (2004-2008), post financial crisis (2009-2011) and the ‘new normal’ 16 

(2012-2016), which is characterized by the economic development mode shifts from 17 

extensive growth to intensive growth and the economic growth rate slows down. In 18 

order to test whether emissions modes in these stages are statistically significantly 19 

different, we perform bootstrapping and a Kolmogorov-Smirnov test. The 20 

Kolmogorov-Smirnov test (P-value=0.000) indicates that emission modes in the four 21 

stages show varying characteristics, as shown in Fig. 1.  22 

 23 

The rapid growth of export trade after joining the WTO was a key driving force for 24 

economic development in the first stage, which is characterized by significant 25 

increases in industrial outputs, fossil fuel consumption and carbon emissions (Feng 26 

and Zou, 2008). The scaling exponent of scope 1 emissions increased from 1.45 to 27 

1.49, while that of scope 2 emissions rose from 1.37 to 1.53. The Chinese government 28 

gave top priority to economic development from the 1990s to early 2000s, and as a 29 

result China’s rapid economic growth was achieved at the cost of significant 30 

environmental degradation. Given mounting environmental issues, the ‘Scientific 31 

Outlook of Development’ was proposed in 2003 to seek a balance between economic 32 

growth and environmental sustainability. In addition, policy makers have developed a 33 

series of binding policies aimed at energy conservation and emission reduction. For 34 

example, the Chinese government set a ambitious target of decreasing energy 35 

consumption per unit of GDP by 20% during the 11th Five-Year Plan period (from 36 
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2006 to 2010), compared with that in the tenth five-year plan period (during 2001 and 1 

2005). Thus, in the second and third stages, although GDP still maintained a relatively 2 

high growth rate, the scaling exponent of carbon emissions (both scope 1 and scope 2) 3 

significantly reduced. Under the constraint of total carbon emission and energy 4 

intensity proposed by the Twelfth Five-Year Plan, total carbon emissions and carbon 5 

intensity in the ‘new normal’ stage are well controlled by energy structure adjustment, 6 

characterized by emissions shifting from coal-based emissions to gas-based emissions 7 

through the progress of clean energy power generation (Zheng et al., 2019).  8 

 9 

 10 

Fig. 1. Scaling exponent and urban Kaya relation for all cities 11 

Notes: The nonparametric bootstrap method is employed to test the credibility of 12 

coefficients obtained from the RMA regression method. For each scaling exponent, 13 

we conducted 999 times random sampling with replacement, and then calculated each 14 

sample and recorded the results. The results are summarized as follows: ++++ 15 

represents at least 90% of the replications lead to exponents larger than 1; +++ 16 

represents 60%-90% of the estimates are larger than 1; ++ represents 30%-60% of the 17 

estimates are larger than 1; + represents less than 30% are larger than 1 18 

 19 

4.2. Carbon emission patterns for city groups 20 

Do emissions scale the same way for cities of all sizes? Or does the relationship 21 

between scaling and population change as cities get larger? To explore this question, 22 

the 50 cities in the analysis are divided into four city groups according to the standard 23 

of city classification in China, namely megalopolises, metropolises, large cities and 24 
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middle and small cities, to explore the city size effect on urban emissions, as shown in 1 

Supplementary Figure 5 and Supplementary Tables 3-4. Due to quite limited numbers 2 

of cities in the group of middle and small cities, this paper focuses on the analysis of 3 

the first three city groups.  4 

 5 

Our results indicate that the megalopolis and the metropolis are more energy efficient 6 

with respect to their population compared to the large city. Although per capita energy 7 

consumption in megalopolises is similar to that of metropolises, it is the more 8 

advanced power generation technologies employed that typically make its per capita 9 

emissions lower than that of metropolis. The scaling of scope 2 emissions with 10 

population scale differs across city groups (Supplementary Figure 5 and 11 

Supplementary Tables 3-4). We observe a sub-linear scaling in the megalopolis and 12 

the metropolis, and a super-linear scaling in the large city. In order to test whether 13 

these slopes are significantly different, we perform bootstrapping and a 14 

Kolmogorov-Smirnov test. The Kolmogorov-Smirnov distance between these 15 

bootstrapped samples is 1 with a significant P-value (0.000), which confirms that the 16 

slopes are drawn from different distributions. Furthermore, the scaling of scope 1 17 

emissions with population scale are smaller for larger cities although super-linear 18 

scaling is observed in all city groups. Therefore, we find that larger cities have lower 19 

per capita emissions.  20 

 21 

The scaling of emissions with population size are smaller for larger cities, and the 22 

scaling exponent of the largest cities is on a downward trend over time. These results 23 

suggest there may be an inverse-U shape between carbon emissions and population 24 

size. Thus, here we predict when China will reach its peak in carbon emissions, as 25 

shown in Supplementary Figure 4. The goodness of fit of up to 97.12% validates the 26 

inverse-U shape among carbon emissions and population scale. Applying a quadratic 27 

equation between carbon emissions and population size to simulate the peak of carbon 28 

emissions based on China’s national historical emissions, we project that emissions 29 

for China should peak at 9.04 Gt in 2030, realizing its commitment to peak carbon 30 

emissions by 2030. Our estimation results coincide with the projection of Yuan et al. 31 

(2014). They projected that China’s carbon emissions would peak in 2030-2035 at 32 

9.30 Gt or so and may be cut by 0.3 Gt through a cleaner energy path. Also, in view of 33 

the progress of energy saving technology, the adjustment of industrial structure and 34 

energy mix unconsidered in the fitting equation, it is possible for China to reach its 35 

carbon emissions peak earlier. Furthermore, Covid-19 and China-United States trade 36 

war have both exposed the urgent need for the adjustment of China's industrial 37 
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structure, which will undoubtedly accelerate the pace of optimization and upgrading 1 

of China's industrial structure, thereby providing favorable conditions for China's 2 

carbon emissions to peak ahead of time. 3 

 4 

4.3. The heterogeneity of carbon emission patterns among regions 5 

There is substantial divergence across the 50 cities in geographic location, industrial 6 

structure and economic development. For example, from less-developed (e.g. per 7 

capita GDP of 3447 PPP dollars in Linfen in 2016) to more-developed (e.g. per capita 8 

GDP of 116151 PPP dollars in Shenzhen in 2016) in terms of economic development, 9 

from heavy-industry dominated (e.g. Tangshan) to service-sector oriented (e.g. 10 

Guangzhou and Beijing) in terms of industrial structure. Considering the differences 11 

in these city characteristics, this paper divides 50 cities into three groups, namely East, 12 

Middle and West, to explore the heterogeneity of carbon emission patterns, as shown 13 

in Tables 1-3. The Kolmogorov-Smirnov test (P-value=0.000) confirms that the 14 

scaling of emissions with the population size is different between these subsets. 15 

Therefore, the following section will look into the reasons for distinct carbon 16 

emission patterns in each region. Tables 1-3 also includes the absolute difference 17 

between the prediction (formula (6)) and the measured exponent  . When using 18 

RMA, the deviation of the obtained exponent is extremely small. Thus, we 19 

recommend using RMA rather than OLS when analyzing the urban Kaya relation.  20 

 21 

Compared to energy efficiency, carbon intensity reduction contribute more to the 22 

carbon emissions mitigation in the East regions. In specific, the scaling exponent 23 

between carbon emissions and energy for the East region decreased by 19.3%, much 24 

higher than the improvement of energy efficiency by 3.23% during the period from 25 

2000 to 2016. The improvement of carbon intensity and energy efficiency in the East 26 

region may be attributed to the strict implementation of environmental protection and 27 

emission reduction policies, including industrial low carbon transformation and rigid 28 

emission-limit standards. Shandong and Hebei provinces have made environmental 29 

protection a priority as they are primary energy-consuming provinces proximate to 30 

capital cities, and have achieved eye-catching emission reductions. Hebei Province 31 

has addressed mounting environmental challenges through a steady process of 32 

industrial green transformation and energy mix adjustment. This has specifically been 33 

achieved by eliminating excess capacity and preventing outdated capacity from 34 

resuming production through remote monitoring. In addition, this has been supported 35 

through the promotion of industrial restructuring by boosting internet based and cloud 36 
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computing businesses (Zheng et al., 2019), and by and replacing coal with clean 1 

energy in power generation and heating. As a result, carbon emissions have decreased 2 

(both carbon emissions and per capita emissions decline for scope 1 and scope 2) for 3 

cities in Hebei province in the ‘new normal’ stage. An exception is for Tangshan, 4 

whose economic development relies on heavy industry and abundant coal reserves.  5 

 6 

Similarly, Shandong province has taken various measures to promote the low carbon 7 

transformation which have contributed to the reduction of emissions in Qingdao and 8 

Jinan. A building energy network and regulatory platform based on big data and cloud 9 

computing has helped to improve administrative efficiency of both government and 10 

enterprises. In addition, apart from eliminating excess capacity in high carbon 11 

intensity industries, especially the steel industry and chemical industry, Shandong 12 

province also controls approvals of high energy consumption projects and has 13 

accelerated emission-reducing projects (Zheng et al., 2019). Further, the active 14 

promotion of carbon emissions trading and encouragement of the development of 15 

energy saving and low carbon technologies have also contributed. 16 

 17 

First-tier cities, such as Guangzhou, have aggressively pursued striking a balance 18 

between economic growth and environmental sustainability, achieving a carbon 19 

emissions level far lower than other cities while maintaining high economic growth 20 

(Qu et al., 2017; Xiong et al., 2020). Beijing and Shenzhen have accelerated emission 21 

reduction after the financial crisis, which has led to the rapid development of the 22 

service sector in these cities. The worst emission reduction performance is seen in 23 

Tianjin, where industries that have shifted from the capital Beijing have led to 24 

increases in emissions over the last decade. With advanced science and technology 25 

and industrial green transformation, cities in Jiangsu and Zhejiang provinces have 26 

performed above average in emissions reduction. 27 

 28 

Table 1 Scaling exponent and urban Kaya relation for the East region 29 
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2000 1.579  0.841  1.392  0.741  1.762  1.066  0.000  

2001 1.604  0.916  1.416  0.809  1.594  1.098  0.000  

2002 1.616  0.912  1.448  0.817  1.575  1.126  0.000  

2003 1.793  1.002  1.753  0.980  1.335  1.340  0.000  

2004 1.946  0.921  1.711  0.810  1.542  1.370  0.000  

2005 2.019  0.845  1.790  0.749  1.603  1.490  0.000  

2006 2.119  0.926  1.772  0.774  1.468  1.559  0.000  

2007 2.094  0.870  1.746  0.725  1.569  1.534  0.000  

2008 1.995  0.812  1.734  0.706  1.608  1.527  0.000  

2009 1.874  0.829  1.582  0.700  1.626  1.391  0.000  

2010 1.879  0.842  1.581  0.708  1.623  1.376  0.000  

2011 1.883  0.833  1.509  0.668  1.650  1.369  0.000  

2012 1.894  0.841  1.470  0.653  1.654  1.362  0.000  

2013 1.872  0.815  1.446  0.629  1.666  1.379  0.000  

2014 1.894  0.826  1.425  0.622  1.683  1.362  0.000  

2015 1.911  0.822  1.412  0.607  1.689  1.377  0.000  

2016 1.903  0.799  1.424  0.598  1.705  1.396  0.000  

Notes: a) The nonparametric bootstrap method is employed to test the credibility of 1 

coefficients obtained from the RMA regression method. For each scaling exponent, 2 

we conducted 999 times random sampling with replacement, and then calculated each 3 

sample and recorded the results. The results are summarized as follows: ++++ 4 

represents at least 90% of the replications lead to exponents larger than 1; +++ 5 

represents 60%-90% of the estimates are larger than 1; ++ represents 30%-60% of the 6 

estimates are larger than 1; + represents less than 30% are larger than 1; b) For 7 

readability, only three decimal places are reserved for the results in the table. The 8 

original results obtained by the RMA regression method are available from the 9 

corresponding author upon reasonable request; c) The results in the last column are 10 

calculated based on the original results. 11 

 12 
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The Middle region has achieved a gain in energy efficiency and carbon intensity that 1 

can be attributed to strategic policies. Among them, the improvement of energy 2 

efficiency contribute the most to carbon emissions reductions in the Middle region, 3 

whose scaling exponent drops from 2.04 to 1.22. While undertaking technical transfer 4 

from the East region, the Middle region has actively promoted upgrading of 5 

characteristic industries (Zheng et al., 2019). Hubei and Hunan provinces, acting as 6 

the major energy consumption cities and the transportation hub of the Middle region, 7 

have focused on low carbon economic development. This has included eliminating 8 

outdated energy-consuming equipment and full monitoring of energy management of 9 

major energy consumption equipment and diversified financing support for key 10 

energy conservation and emission reduction projects. Hubei has also been one of the 11 

seven nationwide pilots for carbon emissions trading markets. 12 

 13 

Considering environmental issues caused by industrial structure and outdated 14 

technologies, reducing carbon emissions and improving energy efficiency in 15 

Changchun and Harbin present huge opportunities (Dong et al., 2007). However, the 16 

challenges faced by state-owned enterprises and the continued dominance of coal in 17 

the energy-mix will make this difficult (Zheng et al., 2019). At the forefront of 18 

supply-side reform such as de-capacity, Taiyuan has made progress in reducing 19 

emissions intensity. Similarly, Zhengzhou has achieved a gain in energy conservation 20 

and reductions in emissions through a supervision system aimed at improving the 21 

transparency of projects review. 22 

 23 

Table 2 Scaling exponent and urban Kaya relation for the Middle region 24 
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2000 2.310  0.717  2.230  0.692  2.045  1.576  0.000  

2001 2.051  0.666  2.091  0.679  1.921  1.603  0.000  

2002 2.261  0.718  2.061  0.655  1.969  1.599  0.000  

2003 1.749  0.574  1.684  0.553  2.174  1.402  0.000  
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2004 2.008  0.734  1.993  0.728  1.793  1.527  0.000  

2005 1.804  0.712  1.533  0.605  2.038  1.243  0.000  

2006 1.896  0.774  1.877  0.767  1.705  1.437  0.000  

2007 1.819  0.759  1.407  0.587  1.608  1.491  0.000  

2008 1.782  0.676  1.404  0.532  1.694  1.557  0.000  

2009 2.102  0.824  1.337  0.524  1.562  1.633  0.000  

2010 1.860  0.849  1.199  0.548  1.439  1.522  0.000  

2011 1.669  0.787  1.114  0.525  1.449  1.464  0.000  

2012 1.543  0.747  1.103  0.534  1.417  1.457  0.000  

2013 1.633  0.722  1.088  0.481  1.379  1.642  0.000  

2014 1.495  0.657  1.116  0.491  1.326  1.716  0.000  

2015 1.567  0.659  1.156  0.486  1.260  1.887  0.000  

2016 1.974  0.845  1.054  0.451  1.221  1.912  0.000  

Notes: a) The nonparametric bootstrap method is employed to test the credibility of 1 

coefficients obtained from the RMA regression method. For each scaling exponent, 2 

we conducted 999 times random sampling with replacement, and then calculated each 3 

sample and recorded the results. The results are summarized as follows: ++++ 4 

represents at least 90% of the replications lead to exponents larger than 1; +++ 5 

represents 60%-90% of the estimates are larger than 1; ++ represents 30%-60% of the 6 

estimates are larger than 1; + represents less than 30% are larger than 1; b) For 7 

readability, only three decimal places are reserved for the results in the table. The 8 

original results obtained by the RMA regression method are available from the 9 

corresponding author upon reasonable request; c) The results in the last column are 10 

calculated based on the original results. 11 

 12 

The reduction of carbon intensity is the key contributing factor to carbon emission 13 

mitigation in the West region. The scaling exponent between carbon emissions and 14 

energy for the West region decreased by 27.7% during the period from 2000 to 2016, 15 

which was two times higher than that of energy efficiency improvement (12.9%). The 16 

reduction of carbon intensity and energy intensity contribute to emission reductions in 17 



 16 

the West region that can be primarily attributed to new patterns of sustainable 1 

development and the application of environmentally-friendly technologies (Zheng et 2 

al., 2019), including a shift from coal to gas and oil in some industrial processes. 3 

Guizhou province has explored new modes of low carbon development to balance 4 

economic prosperity and the environment, including the creation of pilot areas for 5 

new technologies, low carbon parks and the building of low carbon communities. 6 

Tourism in Nanning and Kunming, and cloud computing and big data in Chongqing 7 

and Chengdu, have also played a role in reducing the dependence on heavy industry.  8 

 9 

Table 3 Scaling exponent and urban Kaya relation for the West region 10 
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2000 0.916  0.857  0.923  0.863  1.260  0.849  0.000  

2001 0.867  0.810  0.766  0.716  1.254  0.853  0.000  

2002 0.907  0.798  0.689  0.606  1.357  0.838  0.000  

2003 0.906  0.942  0.772  0.803  1.156  0.832  0.000  

2004 0.808  0.885  0.695  0.762  1.101  0.829  0.000  

2005 0.768  0.911  0.666  0.790  0.963  0.875  0.000  

2006 0.721  0.872  0.653  0.789  0.947  0.874  0.000  

2007 0.692  0.818  0.647  0.766  0.955  0.886  0.000  

2008 0.747  0.878  0.627  0.738  0.964  0.882  0.000  

2009 0.758  0.878  0.576  0.667  0.957  0.902  0.000  

2010 0.719  0.778  0.583  0.631  1.028  0.899  0.000  

2011 0.729  0.771  0.618  0.653  1.047  0.904  0.000  

2012 0.716  0.803  0.602  0.676  0.995  0.895  0.000  

2013 0.652  0.733  0.627  0.705  0.986  0.903  0.000  
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2014 0.727  0.749  0.672  0.693  1.070  0.906  0.000  

2015 0.740  0.759  0.626  0.642  1.098  0.888  0.000  

2016 0.744  0.757  0.613  0.624  1.097  0.896  0.000  

Notes: a) The nonparametric bootstrap method is employed to test the credibility of 1 

coefficients obtained from the RMA regression method. For each scaling exponent, 2 

we conducted 999 times random sampling with replacement, and then calculated each 3 

sample and recorded the results. The results are summarized as follows: ++++ 4 

represents at least 90% of the replications lead to exponents larger than 1; +++ 5 

represents 60%-90% of the estimates are larger than 1; ++ represents 30%-60% of the 6 

estimates are larger than 1; + represents less than 30% are larger than 1; b) For 7 

readability, only three decimal places are reserved for the results in the table. The 8 

original results obtained by the RMA regression method are available from the 9 

corresponding author upon reasonable request; c) The results in the last column are 10 

calculated based on the original results. 11 

 12 

4.4. The comparison of emissions scaling among regions  13 

We separately regress logarithmic carbon emissions on logarithmic population size for 14 

all cities and three regions (East, Middle and West regions) to look into the 15 

complexity of the scaling exponent  , as shown in Fig. 2. We found that population 16 

growth in the East region contributes the most to carbon emissions increase. 17 

Specifically, every additional person will bring about another 6.30 tons of scope 1 18 

emissions, which is much higher than that of city-average level (4.98 tons/person) and 19 

that of other regions (4.14 tons/person for the West region and 3.36 tons/person for 20 

the Middle region) (Fig. 2A), and the marginal effect of population growth on scope 2 21 

emissions in the East region is also above-average (Fig. 2B). This might be attributed 22 

to the relatively higher levels of consumption of goods and services for individuals in 23 

the East region due to their higher income (e.g. per capita GDP of 29050 PPP dollars 24 

in the East region in 2016 vs per capita GDP of 14842 PPP dollars in the West region 25 

in 2016). Their consumption draws on resources for their fabrication, distribution, sale 26 

and use which cause the emission of GHGs (Satterthwaite, 2009; Duan et al., 2018). 27 

Furthermore, due to the differences in openness, urban distribution density and natural 28 

geographical conditions, China has formed an uneven spatial distribution pattern of 29 

population. The densely populated areas are mostly distributed in the East region, 30 

whose population accounts for 40% or so of the total population with an average 31 



 18 

annual growth rate of approximately 1%, higher than the national average (National 1 

Bureau of Statistics, 2020). Therefore, the East region should be regarded as the top 2 

priority for carbon emission mitigation. 3 

 4 

 5 

Fig. 2. Comparisons of scaling between carbon emissions and population. (A) 6 

Trajectory of scope 1 emissions and population size for all cities and three regions 7 

from 2000 to 2016; (B) Trajectory of scope 2 emissions and population size for all 8 

cities and three regions from 2000 to 2016. 9 

Notes: The average population and average emissions data for three regions and for 10 

all cities are utilized in Figure 2. Each dot is a year's average data with the horizontal 11 
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axis represents the average population in logarithmic form for that year and the 1 

vertical axis represents the average carbon emissions in logarithmic form. 2 

 3 

5. Conclusion 4 

If continued urban population growth is a cause of rising GHGs emissions, could it 5 

also contribute to a solution? Understanding the impact of urban population expansion 6 

on energy consumption and carbon emissions is of great importance for climate 7 

change mitigation and sustainable development. This paper applies an urban Kaya 8 

relation to explore the role of urban size in contributing to GHGs emissions using an 9 

RMA regression method performed within a single urban system and across a 17-year 10 

time period. This paper has two main findings. First, population agglomeration may 11 

be able to contribute to climate change mitigation and a wider transition to 12 

sustainability. China is still in the rapid development phase of urban population 13 

expansion. From 1978-2013, China’s urban population ratio rises from 17.9% to 14 

53.7%, with an average annual growth rate of 1.02%. The traditional extensive city 15 

development model has brought about a series of issues, including slow industrial 16 

upgrading, environmental deterioration and increased social conflicts, risking the 17 

process of sustainable development in the long run. Transferring to a new type of city 18 

development path highlighting intensive production and environmental protection 19 

with the focus shift to the quality of development is a feasible way to give full play to 20 

the role of population agglomeration in reducing emissions. For central cities, it is 21 

necessary to accelerate industrial upgrading and set up complete modern industrial 22 

systems to exert their scale effects and driving effects, thereby promoting the 23 

extension of industrial chains and service chains to the periphery, realizing the joint 24 

development of central cities and surrounding cities. Meanwhile, speeding up the 25 

population agglomeration of small and medium-sized cities should become the focus 26 

in the following city development process: a) small and medium-sized cities should 27 

accelerate the construction of comprehensive urban transportation networks and 28 

public service facilities so as to enhance their ability to support population gathering; 29 

b) it is also necessary to cultivate characteristic urban industrial systems on the basis 30 

of urban environmental carrying capacity, factor endowments and comparative 31 

advantages; and c) enhancing the undertaking capacity of industrial transfer of small 32 

and medium-sized cities is the key to realize specialized division of labor among 33 

cities and create an industrial development pattern with complementary advantages.  34 

 35 
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Narrowing the gap between the ratio of urban registered population and the ratio of 1 

urban permanent population is also an important measure to promote urban 2 

sustainable development and improve the quality of urban development. The 3 

constraints of the household registration system are the main cause of this problem. 4 

For different city groups, household registration reform should be carried out 5 

according to local conditions to promote the sustainability development of the new 6 

path to urban development. For megalopolises with excessive population 7 

concentration and severe pressure on resources and environment, strict household 8 

registration policies are conducive to the control of further population expansion. On 9 

the premise of improving infrastructure and public service facilities, middle and small 10 

cities should steadily absorb the population displaced from megalopolises to form 11 

urban agglomerations with reasonable grades. 12 

 13 

Second, city consumption will weaken the role of population agglomeration in 14 

reducing carbon emissions. In the East region with high population density, 15 

population agglomeration has the minimal role on reducing emissions as city 16 

consumption has a more significant impact on carbon emissions. Specifically, urban 17 

population expansion brings about changes to economic production, lifestyles and 18 

land use types, which affect the carbon emissions in varying extent. Urban population 19 

agglomeration involves a process whereby large numbers of people migrate into the 20 

urban areas from the countryside and agricultural activities shift to non-agricultural 21 

activities. Continuously increased human consumption levels and ongoing 22 

industrialization results in increasing energy consumption during urban population 23 

expansion, these lead to more carbon emissions. In the process of interactive 24 

development of population, economy and society, the proportion of the population in 25 

the East region has been continuously increasing from 31.4% in 2000 to 41.8% in 26 

2019, while a downward trend and a U-shaped curve are observed in the Middle and 27 

West regions respectively. This dynamic process of population spatial distribution will 28 

not only exacerbate the imbalance of regional development, but also increase the 29 

pressure on emission mitigation. Therefore, for the East region, the focus should be on 30 

improving the ecological environment efficiency of urban development, including 31 

improving energy efficiency and optimizing industrial structure. The Middle and West 32 

regions will be important growth poles in the future urban development, which need 33 

to increase opening up and improve infrastructure on the basis of protecting the 34 

ecological environment to undertake industrial and technical transfer from the East 35 

region, thereby forming economically vibrant and eco-friendly city clusters. 36 

 37 
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