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Abstract

Scalable performance is a major challenge with current model management tools. As the size and complexity of models and

model management programs increases and the cost of computing falls, one solution for improving performance of model

management programs is to perform computations on multiple computers. In this paper, we demonstrate a low-overhead

data-parallel approach for distributed model validation in the context of an OCL-like language. Our approach minimises

communication costs by exploiting the deterministic structure of programs and can take advantage of multiple cores on each

(heterogeneous) machine with highly configurable computational granularity. Our performance evaluation shows that the

implementation is extremely low overhead, achieving a speed up of 24.5× with 26 computers over the sequential case, and

122× when utilising all six cores on each computer.

Keywords Model-driven engineering · Model validation · Distributed computing · Model management · Parallelism

1 Introduction

Model-driven engineering is an established approach for

managing complexity in large projects that involve many

stakeholders and heterogeneous platforms and implementa-

tion technologies, by elevating machine processable models

into first-class artefacts of the development process. Precise

and fine-grained modelling and automated model manage-

ment (model validation and transformation, code generation)

are used extensively in domains such as automotive and

aerospace where software defects are very expensive to rem-

edy or can have dear consequences.

In such domains, large (e.g. MATLAB Simulink) mod-

els are commonplace and typically the result of detailed

modelling of complex component-based systems to support

model-based verification activities and, eventually, full code

generation. Large models (of the order of gigabytes) can

also emerge by reverse engineering legacy code bases for
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comprehension and re-engineering purposes [1]. Growing

model sizes pose numerous and wide-ranging challenges [2]

for modelling tool user interfaces, model persistence, col-

laboration and versioning mechanisms, as well as for tools

and languages for queries and transformations. Popular ded-

icated tools for such tasks like Eclipse OCL suffer from poor

scalability with large models, both in memory and execu-

tion time as the semantics and most implementations were

not designed with performance in mind. Whilst there are

numerous works which attempt to optimise Object Constraint

Language (OCL) expressions (e.g. [3]), alternatives to OCL

allow for a broader range of optimisations to be applied [4],

due to some limitations imposed by the OCL specification

[5]. That said, OCL (and similar) languages can also benefit

from several optimisations (as described by in [6]).

Many optimisations have been proposed to improve scala-

bility in automated model management (e.g. transformation,

validation, code generation) languages. Such optimisations

include lazy evaluation (i.e. avoiding unnecessary computa-

tion), incrementality (avoiding unnecessary re-computation

through caching) and finally, exploiting the parallelism in

modern hardware architectures.

The case for parallel computing is now clearer than

ever. With single-core computers effectively obsolete, the

increasing number of cores on modern CPUs in recent

years, the relatively stagnant growth in clock speeds and

instructions-per-cycle (IPC) improvements, and the demon-
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strable performance benefits from multithreading, an obvious

solution for model management programs is to take advan-

tage of the available resources. However, such resources

need not be limited to the capabilities of a single machine.

With the ever-increasing number of computers and declin-

ing cost of computing resources, cloud computing is more

accessible, enabling large and complex systems to scale with

the available resources. Furthermore, the improvements in

infrastructure and networks allows for distributed comput-

ing to be more efficient than ever before.

To exploit the capabilities of modern hardware (and

cloud computing), software must be (re-)written from its

monolithic form to granular blocks which can be executed

independently. It is difficult to split models into indepen-

dent parts due to the variety in (meta)models, which can be

highly interconnected in nature. Nevertheless, the computa-

tions which are performed on such models are often (or can

be) expressed independently, making them amenable to par-

allelisation. Unfortunately, most model management tools do

not take advantage of such opportunities.

Clasen et al. [7] motivate the need for supporting dis-

tributed model transformations in the Cloud. The research

challenges consist of two main parts: storage/distribution

of models (decentralized model persistence) and distributed

computation/execution of programs. Our research aims to

address the latter in the context of model validation. Most

research in the area of performance optimisations in model-

driven engineering is primarily focused on model-to-model

transformations. However, the same scalability issues apply

to other model management tasks such as validation. The

main contributions of this paper are:

1. A distributed execution architecture for the Epsilon Vali-

dation Language [8]; a complex, feature-rich and mature

OCL-inspired model validation language. Our approach

exploits the deterministic decomposition of programs and

takes advantage of both distributed and local parallelism.

2. A bespoke prototype implementation of the proposed

approach using the Java Message Service API. By virtue

of being Java-based, our implementation can make use of

heterogeneous computing resources, with different oper-

ating systems and hardware architectures being used in

the same application.

Our performance evaluation shows that the implementa-

tion is extremely low overhead, achieving a speedup of 24.5×

with 26 computers over the sequential case, and 122× when

utilising all six cores on each computer. With 88 computers (a

total of 536 cores), our distributed solution was 340× faster

than the baseline sequential program.

The rest of the paper is organised as follows. Section 2

reviews pertinent works in parallel execution and perfor-

mance optimisations in model validation. Section 3 gives a

high-level conceptual overview of our distribution strategy.

Section 4 provides background by introducing Epsilon and

its validation language. Section 5 outlines our distributed

execution approach in detail. Section 6 describes how this

approach is realized concretely using JMS. Section 7 bench-

marks the performance of our solution in comparison to the

status quo of model validation. Section 8 concludes the paper

and advocates extensions for further improvements.

2 Background and related work

Software models are often used in complex projects involv-

ing many stakeholders as central artefacts in the development

process. These models conform to a domain-specific meta-

model which captures the most pertinent concepts and

relationships between components in the system’s architec-

ture. For example, a metamodel can be used to represent

the abstract syntax of a programming language and, through

reverse-engineering techniques, to parse programs as mod-

els conforming to the metamodel (grammar). For instance,

one could build a model of a project derived from a version

control system repository in order to perform further tasks

at a higher level of abstraction. One of the earliest stages

in model management workflows is validating the model to

ensure it meets certain domain-specific requirements, which

cannot be expressed by the metamodel alone due to their

complexity.

In many cases, models are not small and modular but large

and monolithic. This is due to the graph-like nature of mod-

els and dependencies between components within the system

being modelled, as well as poor support for modularity in

commonly used persistence formats. Although it is possi-

ble to construct more fine-grained models—for example,

one model per file in the case of reverse-engineered source

code—validation constraints may require a view of the whole

system for consistency checks and to produce meaningful,

complete diagnostics. This can arise when validation needs

to be performed across different levels of abstraction—for

example, if the presence of a file in the model must coincide

with the correctness of a particular line of code. Therefore

even if the components of a system are inherently modular,

the correctness of the system or project as a whole cannot be

determined solely by examining the correctness of its com-

ponents if the system is more complex than the sum of its

parts.

Model validation can be viewed as either a query or trans-

formation. One could view a model validation program as

a series of filtering (or select) operations which attempt to

find model elements for which invariants of interest are not

satisfied. Another perspective is that the invariants are akin

to transformation rules which classify each applicable model

element as being either satisfied or unsatisfied. Bèzivin and
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Jouault (2006) [9] demonstrate how a model transformation

language can be used to validate models and produce diag-

nostics.

The most well-known and commonly used language for

model querying and validation is the Object Constraint Lan-

guage (OCL) [10], which is a functional language free from

imperative features. Most optimisations of model validation

algorithms are built on OCL. Due to its desirable proper-

ties, it is also used as a query language in some modelling

technologies and transformation languages such as QVT and

ATL.

Although scalability and performance of model manage-

ment programs is an increasingly active research area, most

works primarily focus on model-to-model transformations.

In this section, we provide an overview of relevant work.

2.1 Parallel graph transformation

Significant overlap exists between the graph transformation

and model-driven engineering communities; particularly in

regards to model transformation optimisations (also known

as graph rewriting). As noted by Imre and Mezei [11], there

are two phases of executing a transformation: the first is

searching for applicable model elements to transform, and

the second is performing the transformation. We can think

of the first phase as being read-only, since the model is only

queried, not modified. Therefore, this first phase can be par-

allelised. The second phase is much more complex, since the

model may be modified and the order of modifications may

impact the final state.

Krause et al. [12] apply the Bulk Synchronous Parallel

(BSP) method to execute model transformation programs

in a distributed manner. Notably, their devised algorithm

performs both the pattern matching and rule execution (i.e.

modifying the model) in parallel, with the assumption that

there are no conflicting rules. The BSP model of distributed

computation allows for communication between worker

nodes, which is useful in model transformations for merg-

ing partial matches. Their approach scales both horizontally

(i.e. with more workers) and vertically (i.e. using more CPU

cores per worker). With the largest model in their evaluation,

they were able to achieve 11× speedup moving from 2 to 12

workers.

As previously mentioned, most research in the area of opti-

mising model management programs to improve scalability

focus exclusively on model-to-model (or graph) transfor-

mations. As such, their solutions are highly elaborate and

thus more constrained due to the complex nature of model

transformations. Our work focuses specifically on the model

querying and validation process, which does not require inter-

node communication or modification of the model. Hence,

we are able to devise a simpler solution for parallel and dis-

tributed execution.

2.2 Distributedmodel transformation

Benelallam et al. (2015) [13] demonstrate a distributed pro-

cessing approach for the ATL model transformation language

based on the popular MapReduce paradigm. Their approach

executes the entire transformation on a subset of the model,

exploiting the “nice” properties of ATL—namely locality,

non-recursive rule application, forbidden target navigation

and single assignment on target properties—which make

such a strategy possible. The “local match apply” or Map

phase applies the transformation on a given subset of the

model, whilst the “global resolve” or Reduce phase brings

together the partial models and updates properties of unre-

solved bindings. However, each worker requires a full copy

of the model and the splits are randomly assigned. Their

implementation was up to 5.9 times faster than sequential

ATL with 8 nodes.

The authors expanded upon this work by attempting to

improve data locality and efficiency of partitioning [14].

They note how computing a full dependency graph and fram-

ing the task as a linear programming optimisation problem

can outweigh the benefits, so a faster heuristic is needed.

Instead, they rely on static analysis to compute “footprints”

of transformations (i.e. model element accesses for each

rule) and approximate the dependency graph on-the-fly. Their

approach splits the model into as many parts as there are

workers, and attempts to maximise the dependency overlap

in each worker’s partition whilst also balancing the number

of elements assigned to each worker. However, their solution

requires the modelling framework to support partial loading

of models and access to model elements by ID.

Burgeño et al. [15] present a model transformation

approach based on the Linda co-ordination language. The

idea is that a lower-level implementation is used which allows

for multiple distributed tuple spaces that can hold (serial-

izable) Java objects. Multiple threads can access the tuple

space(s) and query it using SQL-like syntax. Although this

approach works in both distributed and local environments,

the scalability is far from linear, achieving an average of 2.57

times speedup with 16 cores compared to sequential ATL.

2.3 Distributed patternmatching

As previously mentioned, much of the computational expense

in some model management programs stem from finding

applicable model elements to execute rules upon. There are

various approaches for executing this stage in parallel, and is

of particular interest to the graph transformation community.

Szárnyas et al. [16] present IncQuery-D, a distributed and

incremental graph-based pattern matching tool based on Rete

network algorithm. Their architecture provides a framework

for distributed model queries which can be performed incre-

mentally, thanks to a distributed model indexer and a model
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access adapter with a graph-like API which allows for opti-

mised queries based on the underlying storage solution, as

their architecture allows for different types of persistence

backends. They found the overhead of constructing Rete

network makes it less efficient than non-incremental engine

for smaller models, but the benefits outweigh the costs for

medium-size models and above. Perhaps the main benefit of

such an approach is the near-instantaneous query evaluation

(after caching) even for models with well over 10 million

elements. This work therefore serves as evidence that distri-

bution and incrementality are not mutually exclusive.

Mezei et al. [17] propose distributed model transfor-

mations based on parallelisation of the pattern matching

process. They use a 3-layer approach, with the master co-

ordinating execution, “primary workers” applying re-write

rules and “secondary workers” computing matches for the

rules using a pseudo-random function. In other words, the

master handles transformation-level parallelism, primary

workers handle rule-level parallelism and secondary workers

perform the pattern matching process. The authors approach

the task of model transformation from a graph isomor-

phism / pattern-matching perspective, noting the wide range

between worst-case and best-case execution time for com-

puting matching rules.

2.4 Incremental and lazy execution

Incrementality is one of the most commonly explored solu-

tions for improving performance of model management

programs. An early example is presented by Cabot and

Teniente [18], who designed an incremental model validation

algorithm which ensures the smallest/least work expression

can be provided to validate a given constraint in response to a

change in the model (i.e. Create/Read/Update/Delete events).

They conceptualise the problem of model validation and use

this prove that their solution automatically generates the most

efficient expression for incremental validation in response to

a given CRUD event.

Laziness is also used to delay or avoid unnecessary com-

putations. Often the most demanding operations in model

queries involve the (eager) retrieval of model elements,

though an entire in-memory collection is rarely required.

Tisi et al. [19] proposed an iterator-based lazy production

and consumption of collection elements. Iteration operations

return a reference to the collection and iterator body, which

produces elements when required by the parent expression.

Laziness in this context is useful when a small part of a large

collection is required, as the iteration overhead can actually

be worse than eager evaluation in some cases.

2.5 Parallel model validation

Vajk et al. [20] devised a parallelisation approach for OCL

based on Communicating Sequential Processes (CSP). The

authors’ solution exploits OCL’s lack of side effects by exe-

cuting each expression in parallel and then combining the

results in binary operations and aggregate operations on col-

lections. They demonstrate equivalent behaviour between

the parallel and sequential OCL CSP representations ana-

lytically. Their implementations use CSP as an intermediate

representation which is then transformed into C# code. Users

must manually specify which expressions should be paral-

lelised. The authors’ evaluation was brief, with relatively

small models and simple test cases. Despite the absence of

any non-parallel code in their benchmark scenarios, their

implementation was 1.75 and 2.8 times faster with 2 and

4 cores, respectively.

Finally, our recent work [21] presents a data-parallel

approach for the execution of a complex hybrid model val-

idation language. Notably, our work details the challenges

with concurrency in this context and provides solutions for

efficiently dealing with issues such as dependencies between

rules (invariants). Our work builds on top of this, enabling us

to take advantage of parallelism on a larger scale.

3 Overview

Rule-based model management programs typically execute

some user-defined code over a subset of model elements.

The language may provide some special constructs to decora-

tively filter the subset of model elements to apply a given rule

to. To make this concrete, consider Listing 1, which shows

the structure of an OCL model validation program. The con-

text represents the model element type from which elements

are drawn. For each element, each invariant within the con-

text is executed, taking as input the model element (which is

assigned to the variable self ). Arbitrary logic (within the con-

straints of the language of course) which returns a Boolean

may be expressed within each invariant.

Listing 1 Anatomy of OCL invariants

1 context ModelElementTypeA

2 inv AC1: <expression>

3 inv AC2: <expression>

4 context ModelElementTypeB

5 inv BC1: <expression>

6 inv BC2: <expression>

To execute a program structured in this way, the engine

needs to loop through all model elements for each type and

execute every invariant applicable to that type for the given

model element. Assuming that each context is considered in

order of declaration and, crucially, that the underlying model
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returns all model elements of a given type in a determinis-

tic order, then we can build a list of model elements to be

evaluated. We know which invariants to execute for a given

element based on its type. Since this list of model elements

can be reproduced identically for a given invocation of the

same program and input model(s), we can spawn multiple

processes with the complete program and model(s), on sep-

arate machines, to execute a given subset of this list. That

is, each worker process will be assigned a subset of model

elements, and evaluate all applicable invariants based on the

type of those elements. Each invariant which is unsatisfied

(i.e. the expression returns false) for a given model element

is sent to the master. The invariant is identified by its name,

and the model element by its index in the list. Since we can

refer to model elements by their index in a list, we can batch

consecutive elements in the list (i.e. instead of sending each

job individually, we send a list of consecutive jobs to be exe-

cuted atomically) to minimise network traffic and maximise

CPU utilisation on each worker.

Sections 5, 6, and 7 describe how this can be efficiently

achieved in practice, maximising parallelism and fairly dis-

tributing the workload amongst independent processes. We

implement our solution on top of the Epsilon Validation Lan-

guage using a messaging system for distribution and load

balancing of jobs.

4 Epsilon validation language

In this section, we introduce the Epsilon Validation Language

(EVL), which we use as a host language for implementing

our distributed approach. We chose this language due to its

notably rich set of features and compatibility with a wide

range of modelling technologies. However, in principle other

model management languages (e.g. OCL) can benefit from

the approach discussed in this paper.

4.1 Epsilon

Epsilon1 [22] is an open-source model management plat-

form, offering a family of task-specific languages for model

transformation, querying, comparison, merging, text genera-

tion, pattern matching and validation. All languages build on

top of EOL [23]: an OCL-inspired model-oriented language

with both imperative and declarative constructs. EOL offers

many powerful features, such as the ability to define opera-

tions on any types and call native Java methods. A distinctive

feature of Epsilon is that its languages are decoupled from the

modelling technologies, so programs can be run on models

irrespective of their representation. This is achieved through

a model connectivity layer which offers an abstraction that

1 eclipse.org/epsilon.

can be implemented by tool-specific drivers. Several such

drivers have been developed that enable Epsilon programs

to operate on EMF models, XML documents, spreadsheets

and models captured with commercial tools such as Matlab

Simulink, PTC Integrity Modeller and IBM Rational Rhap-

sody.

4.2 EVL

The Epsilon Validation Language (EVL) is a model vali-

dation language similar to OCL but with more advanced

capabilities. Like OCL, invariants (Constraints in EVL ter-

minology) are expressed as Boolean expressions in the

context of model element types. However, EVL allows the

body of invariants (the check block) to be arbitrarily com-

plex, combining imperative and declarative style statements

and expressions. This is in contrast to OCL, which is not

suitable for imperative style of programming. Since EOL is

not strictly a functional language and allows for side-effects

(such as declaration of global variables), users can specify pre

and post blocks which are executed once before and after the

main program, respectively. The pre block is typically used

to set up variables which can be referred to within the con-

straints and post block, and may contain arbitrary imperative

code.

Other features of EVL include the ability to declare pre-

conditions for constraints (semantically identical to using

the implies operator), specify custom messages for unsatis-

fied constraints (using information from the failed instance)

and even the ability to declare solutions (fixes) for unsatis-

fied constraints. Perhaps the most interesting feature from a

research perspective is that constraints may have dependen-

cies between them and can also be lazily invoked. Constraints

may invoke one or more constraints through the satisfiesOne

and satisfiesAll operations. These operations can be invoked

on a given model element type (usually derived from self,

i.e. the current model element), taking as input the name(s)

of the constraint(s) for which the given element should be

validated against. The former checks that at least one of the

specified constraints return true, whilst the latter requires all

of the constraints to be satisfied.

4.3 Example program

Listing 2 shows a simple EVL program demonstrating some

of the language features, which validates models confirming

to the metamodel shown in Fig. 1. Execution begins from

the pre block, which simply computes the average number

of actors per Movie and stores it into a global variable, which

can be accessed at any point. The ValidActors constraint

checks that for every instance of Movie which has more than

the average number of actors, all of the actors have valid

names. This is achieved through a dependency on the Hash-
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ValidName invariant declared in the context of Person type.

This constraint is marked as lazy, which means it is only

executed when invoked by satisfies, so avoiding unneces-

sary or duplicate invocations. The HasValidName constraint

makes use of a helper operation (isPlain()) on Strings. Once

all Movie instances have been checked, the execution engine

then proceeds to validate all Person instances, which con-

sists of only one non-lazy constraint ValidMovieYears. This

checks that all of the movies the actor has played in were

released at least 3 years after the actor was born. Finally, the

post block is executed, which in this case simply prints some

basic information about the model.

Listing 2 EVL program over IMDb metamodel

1 pre {

2 var numMovies = Movie.all.size();

3 var numActors = Person.all.size();

4 var apm = numActors / numMovies;

5 }

6 operation String isPlain() : Boolean {

7 return self.matches("[A-Za-z\\s]+");

8 }

9 context Movie {

10 constraint ValidActors {

11 guard : self.persons.size() > apm

12 check : self.persons.forAll(p |

13 p.satisfies("HasValidName")

14 )

15 }

16 }

17 context Person {

18 @lazy

19 constraint HasValidName {

20 check : self.name.isPlain()

21 }

22 constraint ValidMovieYears {

23 check : self.movies.forAll(m |

24 m.year + 1 > self.birthYear

25 )

26 }

27 }

28 post {

29 ("Actors per Movie="+apm).println();

30 ("# Movies="+numMovies).println();

31 ("# Actors="+numActors).println();

32 }

Fig. 1 Movies metamodel

5 Parallel EVL

In this section we briefly review the parallel implementation,

as described in [21].

5.1 Algorithm

The architecture is relatively straightforward: a fixed pool of

threads (equal to the number of logical cores in the system) is

managed by an ExecutorService. The execution algorithm is

conceptually the same as in the sequential implementation,

however each ConstraintContext is executed independently

for each applicable model element.2 That is, the algorithm is

data-parallel. The result of this algorithm is a Set of Unsat-

isfiedConstraint objects, where each UnsatisfiedConstraint

is a diagnostic describing the invariant and the offending

model element. The details of how dependencies are handled

is explained in [21]. Briefly, we set a flag on a Constraint

when it is invoked as the target of the dependency, so that

we know whether we should check the trace (cache of exe-

cuted constraint-element pairs and their results) rather than

re-executing it. This avoids wastefully reading from and writ-

ing to it for each invocation. For simplicity, Algorithm 1 does

not show this.

5.2 Data structures

Parallel execution of Epsilon programs is non-trivial due to

the internal design, assumptions and data structures used

in the respective interpreters. There are three notable core

engine structures (discussed below) where thread safety is

guaranteed via serial thread confinement. That is, in each

of the cases, we use ThreadLocal instances of the structure,

so that each thread has its own independent copy. Note that

in visitor-based interpreter implementations this may not be

necessary, though we found this solution to be the most con-

venient without re-architecting Epsilon.

5.2.1 Frame stack

The FrameStack is used to store variables during execution.

Variables are mutable and may be stored in different scopes.

For example in EVL, variables declared in the pre block are

always visible. Therefore the FrameStack is split into multi-

ple regions. Note that not all variables are explicitly declared

by the user. For example when executing a constraint, the

self variable is bound to the model element under execu-

tion by the engine and placed into the FrameStack. Although

under parallel execution each thread’s FrameStack is unique,

any variables declared in the main thread (e.g. in the pre

2 getAllOfKind() returns all types and subtypes described by the Con-

straintContext.
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Algorithm 1 Simplified parallel execution algorithm

results = new ConcurrentHashSet

p = Runtime.availableProcessors()

executorService = new ThreadPoolExecutor(p)

for all cc in module.getConstraintContexts() do

for all element in cc.getAllOfKind() do

executorService.submit(new Runnable {

for all c in cc.getConstraints() do

if c not lazy and c.executeGuard(element) then

if not c.executeCheckBlock(element) then

results.add(new UnsatisfiedConstraint(c, element)))

}

executorService.awaitCompletion()

block) must always be visible. Therefore when resolution of

a variable fails under parallel execution, the main thread’s

FrameStack is queried.

5.2.2 Execution trace

All module elements (ASTs)—i.e. all expressions, state-

ments, operators etc.—are executed through an internal data

structure, which may have listeners to record various infor-

mation before and after execution. Most notable is the stack

trace, so that if an error occurs, the exact location of the

expression / statement, along with the complete trace lead-

ing up to it, is reported to the user. With multiple threads of

execution, different parts of the program (or the same parts

with different data) may be executed simultaneously, there-

fore each thread needs to keep track of its own execution

trace. The same applies to profiling information. We track

the cumulative execution time of each Constraint on a per-

thread basis, then merge the results back to the main thread’s

structure.

5.2.3 Operation calls

Epsilon’s languages are interpreted and make heavy use

of reflection internally. EOL programs can invoke arbitrary

methods defined on objects, since it is implemented in Java.

This is in addition to built-in operations which extend the

functionality of existing types (known as operation contrib-

utors), as well as user-defined operations. When invoking

an operation on an object, a tuple of the target object and

the operation (Java Method) being invoked is created. The

operation resolution and execution process is quite complex.

With multiple threads of execution, the infrastructure used

to handle operation calls needs to be modified to be able to

deal with multiple simultaneous invocations. Again we use

serial thread confinement for this.

5.2.4 Caches

As with most complex applications, there are various caches

involved in the execution engine and the modelling layer

which need to be thread-safe. This is especially true for

models, where a cache of the model’s contents as well as

of its types (internally, a Multimap from type name to a col-

lection of its elements) is kept for improved performance.

In the case of the Multimap, not only does the underly-

ing map need to be thread-safe, but also the collection of

elements. We use high-performance data structures such as

ConcurrentHashMap and a custom non-blocking collection

based on ConcurrentLinkedQueue to avoid synchronization

where possible. The reason thread-safe caches are needed

even though we never mutate / write to the model is because

these caches are populated lazily at runtime when required.

5.2.5 Results

The output of an EVL program is a Set of Unsatisfied-

Constraints, where each UnsatisfiedConstraint contains the

invariant, the model element which violated the invariant and

the (optional) description for why it failed. During execution,

this set is only ever written to, but not queried. Therefore

any solution which is “write-safe” is valid. We could use

persistent thread-local values and merge them once parallel

execution has completed, however with many threads and

UnsatisfiedConstraints this is expensive. Our solution uses a

non-blocking collection to write all results to, which is then

converted to a Set.

6 Distributed EVL architecture

In this section, we describe our distribution strategy for

the Epsilon Validation Language (EVL) and its execution

semantics independently from any underlying distribution

framework or transport technology. First, we turn to the data

structures, as any distributed computation approach requires
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a way to break down the computational problem into smaller

tasks.

6.1 From parallel to distributed

As mentioned previously, the motivating factor behind dis-

tributed execution is to improve performance when the

model(s) under validation are large. As with the parallel

implementation (discussed in the previous section), we can

decompose the validation program at the finest levels of gran-

ularity in a data parallel manner. The core building block

of each computational “atom” is the ConstraintContextAtom

(see Fig. 2). Essentially this is a data structure comprising

of a ConstraintContext—the construct which contains the

constraints applicable to a given model element type—and

a single model element of that type. Every EVL program

can then be decomposed into these atoms. For example, the

program in Listing 2 would result in as many atoms as there

are instances of Movie and Person in the model. Algorithm 2

shows the job creation algorithm, along with a graphic in

Fig. 3.

More generally, if an EVL program includes invariants

for M model element types, such as Ma , Mb, Mc etc. with

N instances (model elements) of each type (e.g. Na for Ma)

then the number of atoms will be M ∗ N for all M.

We can also adapt Algorithm 2 to be both rule- and data-

parallel by making use of a ConstraintAtom instead, where

each job consists of a constraint-element pair. However,

Fig. 2 Highly simplified class diagram of relevant EVL data types

Fig. 3 Atomic decomposition illustration. The numbers identify the order of each element for a given type
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Algorithm 2 Simplified EVL job creation algorithm

jobs = new ArrayList

for all cc in ConstraintContext do

for all element in cc.getAllOfKind() do

atom = new ConstraintContextAtom(cc, element)

jobs.add(atom)

this level of granularity is unnecessary as it imposes extra

communication overhead based on experiments. Given that

problems with scalability are rooted in the number of model

elements, we focus on a data-parallel approach.

Now that we have a fine-grained atomic unit of compu-

tation, the next challenge is to distribute these atoms, which

requires serializability. Serializing the entire EVL program

is non-trivial, since the ConstraintContext DOM element

has references to its parent and children, and the model ele-

ment could potentially have transitive references to the entire

model. Rather than serializing the entire object graph, or

sending the program’s resources directly to workers, a more

scalable approach is needed. Our solution exploits the con-

sistent nature of the execution algorithm to refer to units of

computation by a proxy.

Algorithm 2 shows how the deterministic order of jobs

can be exploited. Assuming that getAllOfKind() (which gets

all model elements that are of the type and its subtypes of

the ConstraintContext as specified by its name) returns a

deterministically-ordered iterable from the model, we can

then refer to jobs by their indices, since the number of jobs

and their order is known prior to distribution. Thus, the only

information we need to distribute is a collection of batches,

where each batch consists of a start and end index in the

list (see JobBatch in Fig. 2). This approach allows us to

distribute multiple jobs with minimal overhead, as it is far

more efficient to serialize two integers than Strings or other

serializable forms. This requires each worker to have pre-

computed the jobs (i.e. every pair of model element type and

model element applicable to that type) as shown in Algo-

rithm 2; which not only requires the full program but also the

model(s) to be available.

Next, we need to consider the results. The outcome of exe-

cuting a ConstraintContext on a model element is a collection

of UnsatisfiedConstraints. Recall that each ConstraintCon-

text contains one or more Constraints. Executing a Constraint

for a given element returns the result of the check block

or expression, which will be a Boolean. Internally however

an UnsatisfiedConstraint object is created and added to the

results set if the check block returns false. An Unsatisfied-

Constraint basically consists of the Constraint, the model

element and a message describing the failure. We describe

the serialization strategy in detail in a subsequent section.

6.2 Preparation

Distributed execution begins from the master3; which co-

ordinates execution and sends jobs to workers. We assume

that all workers have access to the necessary resources (i.e.

the same resources available to the master): the EVL pro-

gram (and any of its dependencies, such as other EOL

programs), models and metamodels.4 Whilst initially it

may appear straightforward to co-ordinate distributed exe-

cution when every participating node has its own local

copies of all resources, the sequence of execution events

needs to be revised compared to single-node EVL to max-

imise efficiency. This is because preparing execution of

constraints requires parsing the script, loading the mod-

els, constructing the jobs list and executing the pre block.

Whilst this is straightforward when dealing with a sin-

gle shared-memory program, with multiple processes (and

in fact, multiple computers in this case), the same steps

must be repeated for all participating processes (we use the

term nodes, processes and workers interchangeably). Fur-

thermore, additional steps must be taken to co-ordinate the

execution between workers and the master, which are heavily

implementation-dependent. The order of steps in preparation

for distributed execution are as follows:

1. The master must establish communication channel with

workers5 (and vice-versa)

2. The master must send program configuration (i.e. script,

models etc.) to workers

3. The master and all workers must perform the following

steps:

(a) The EVL script (program) must be parsed

(b) The model(s) must be loaded (if appropriate, depend-

ing on EMC driver6)

(c) The execution engine must be initialized

(d) The jobs list (ConstraintContext-element pairs) must

be computed (see Algorithm 2)

(e) The pre block must be executed7

4. All workers must report to the master when they are ready

to begin processing jobs.

3 This is a single-master architecture.

4 Ensuring that workers have copies of the necessary resources is trivial

and not a focus of this paper.

5 Each worker is a separate machine.

6 The Epsilon Model Connectivity layer (EMC) is the abstraction which

allows Epsilon’s languages to be independent of specific modelling

technologies.

7 The pre block may contain arbitrary imperative code and is executed

sequentially on each worker independently.
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The crucial part here is (3)—that worker processes need

to essentially replicate the potentially expensive process of

loading the program configuration. Since workers need to

perform all the steps in (3), and the configuration is known

in advance, it makes sense to perform this simultaneously on

the master and workers. This means rather than the master

loading the configuration, then sending it to workers, then

waiting for them to load it, both the master and workers can

perform these in parallel to each other to avoid effectively

doubling the time spent loading the configuration. Note that

jobs can be sent to a worker as soon as it and the master

are ready (i.e. have loaded the configuration), so we are not

bottlenecked by the slowest worker in the group.

Since all workers have access to the required resources

(i.e. their own local copy), the master needs only to send

pointers to these resources. Specifically, this (serializable)

configuration data consists of all of the information required

to instantiate the execution engine, such as: the path to the

validation script, the model URIs and properties, additional

variables to be passed to the script, where to log the out-

put (results) and profiling information to and any optional

flags for the execution engine, as well as internal configura-

tion like how many threads to use when evaluating jobs in

parallel. The serialization of this information into key-value

pairs is relatively straightforward, however since workers

may be heterogeneous in their environment (e.g. directory

structures), some substitution is required for paths. Note that

the distribution framework is oblivious to the hardware, given

our solution is Java-based.

6.3 Job granularity

In our index-based approach, a trade-off exists between gran-

ularity8 and throughput. This is especially important when

the computational expense of each job can vary greatly. This

is because invariants (Constraints) can be arbitrarily com-

plex and navigate any properties of a given element. In this

regard, smaller batches allow for greater control with regards

to load-balancing, so if a worker receives a few very demand-

ing jobs, the rest can be distributed to other workers. With

larger batches, the work may be distributed unevenly, with the

worst-case scenario leaving all but one of the workers idle.

On the other hand, if the computational complexity (time-

wise) is fairly uniform across jobs, then larger batches place

less load on the underlying distribution technology and net-

work, which means communication is less likely to become

a bottleneck.

At this point it should not be surprising that the batch gran-

ularity is an important parameter which can have a massive

impact on the effectiveness of the distribution (and hence

8 By “granularity”, we mean the difference between end index and start

index of a batch; i.e. its size.

Fig. 4 Illustration of job batching with batch factor of 3

performance). To easily set this parameter in a normalised

way, we define a batch factor, which may be a percentage

or absolute value. When set as a percentage (i.e. a number

between 0 and 1) where 1 means one batch per job (i.e. each

batch refers to a single job in the list) and 0 means all jobs are

a single batch (i.e. there is one batch with start index 0 and

end index the number of total jobs). The split is performed

by creating sublists of indices where the granularity of each

batch (i.e. the difference between the to and from indices)

is N j ∗ ((1 − b)/w) (except for the last batch, which may

be smaller), where Nj is the total number of jobs, b is the

batch factor and w is the number of workers. If this number

(i.e. b) is greater than or equal to 1, then a fixed batch size

(i.e. b) is used. By default, b is set to the number of logical

cores on the master. This maximises CPU utilisation at the

finest level of granularity. The rationale for this is discussed

in the next subsection. Ultimately, the purpose of the batch

factor is to minimise the difference in time between the first

and last worker finishing their workload by maximising core

utilisation on each worker.

A demonstration of the mapping from the deterministic

jobs list to batches is shown in Fig. 4, where the size of each

batch is 3 jobs.

6.3.1 Local parallelisation of jobs

When a worker receives a job, it can execute it in parallel

using the parallel execution capabilities discussed in Sect. 4

(and which are now part of Epsilon). The level of parallelism

depends on the number of jobs received, which is deter-

mined by the granularity of batches. For example, if a worker

receives a batch with index from 0 (inclusive) to 8 (exclusive)

and has eight logical cores, it can perfectly map each Con-

straintContextAtom represented by each index to a separate

thread and evaluate them in parallel.9 If however it receives

a batch containing one job (e.g. index from 0 to 1), then

execution will effectively be single-threaded, since the job

9 Load balancing of local jobs is performed by a thread pool executor

service.

123



Distributed model validation with Epsilon 1699

received represents only a single atomic unit of work. Note

that this assumes the distribution framework waits for jobs

to complete before sending them the next; i.e. that workers

“pull” jobs from the work queue. If this is not the case, then

that means the distribution framework does not perform any

load-balancing since it has no information on which work-

ers are “busy”, so job execution will be asynchronous and

parallel.

For simplicity, we assume the distribution framework only

sends one job at a time to workers and waits for the results

before sending another. Hence, parallelisation within work-

ers is only made possible by the fact that each batch represents

multiple jobs (if the batch size is greater than 1). The corollary

of this is that the optimal batch size is equal to the maximum

number of hardware threads (logical cores) on all partici-

pating nodes, as mentioned in the previous subsection. Note

that a batch size greater than the number of cores still results

in efficient utilisation, as the job scheduling within nodes is

handled by the thread pool executor service, as in the paral-

lel case. However, a batch size too large means work may be

less evenly distributed, since each batch represents a larger

proportion of the jobs list. We show how this can be partially

mitigated in Sect. 6.4.1.

If a machine receives only C jobs at a time, and has C

logical cores, then some jobs may finish faster and so the

cores may go underutilized. Whilst this is a possibility when

the network is heavily congested, in practice our distribu-

tion algorithm ensures the minimal amount of data is sent, so

unless the computer running the messaging broker is particu-

larly slow at dispatching jobs, this shouldn’t be a bottleneck.

6.4 Job assignment

It is worth noting that the master itself is also a worker, since

it has already loaded the configuration required to perform

computations. In most cases, we can treat the master just as

we would any other worker, except there is no need to reload

the configuration.

If the number of workers is known in advance, we can per-

form a further optimisation, since it does not make sense to

serialize jobs and send them to itself, or indeed to serialize the

results of jobs executed on the master. In this case, execution

of some jobs on the master works outside of the distribution

framework. It is worth bearing in mind that unlike most dis-

tributed processing tasks, in our case the workload is finite,

ordered and known in advance and hence, we can perform

further optimisations such as assigning a certain number of

jobs to the master directly. We can distinguish between mas-

ter and worker jobs where the ratio is statically assigned when

starting the master.

In general, the master proportion should be set accord-

ing to the relative strength in performance of the master and

workers, based on the CPU. The background tasks of mas-

ters and workers should also be taken into account, since this

will impact performance. The network speed and latency

will also need to be accounted for—with slower networks

or more distant computers, a greater proportion should be

assigned to the master. Assuming the master and work-

ers are identical in their compute performance, a sensible

default proportion of jobs to statically assign to the master

is 1/(1 + numberof workers). If the master is significantly

more powerful than workers, the proportion of jobs assigned

to the master should be increased, bearing in mind the co-

ordination overhead incurred on the master and accounting

for whether the broker is hosted on the master or a different

machine.

To be clear, the difference between static and dynamic

assignment of jobs on the master is that the former operates

outside of the distribution framework, whilst the latter allows

for load balancing. In both cases, no separate worker process

is spawned on the master, so all resources, state, memory etc.

are reused.

Regardless of how jobs are distributed amongst workers

and the master, both sets of jobs need to be executed, which

can be performed in any order. The execution of the mas-

ter’s jobs are performed asynchronously (i.e. in parallel) to

worker jobs. Since we have two sets of jobs to execute and

require both to complete but be processed independently of

each other, there is some co-ordination required. Here we can

take advantage of Java’s asynchronous execution utilities to

pipeline these two tasks and wait for both to complete.

Worker jobs (i.e. those which go through the distribu-

tion framework) are dynamically assigned. The exact worker

a job ends up executing on and the granularity of jobs is

implementation-specific. We assume that the distribution

framework automatically performs load balancing, so that

jobs are assigned efficiently, maximising aggregate CPU

utilisation across all workers. Note that if the number of

workers (or master proportion) is unspecified, then the mas-

ter itself becomes a regular worker (i.e. it operates within

the distribution framework), except that it does not reload

the configuration: all state is shared. The master executes

jobs locally when it receives them from the distribution

framework, so jobs are dynamically load balanced between

workers and the master. The implementation becomes more

complex however, depending on the facilities offered by the

distribution framework. For instance, it may not be necessary

to send back results from the master’s “local worker” (which

is basically a “job receiver”) to the master, since the master’s

worker operates within the same process as the master.

6.4.1 Shuffling

Regardless of what distribution framework is used, our objec-

tive is to maximise core utilisation on workers (and the

master), with ideally maximum CPU usage at almost all
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times on all workers (and the master) until execution is com-

plete. We have seen how, in the absence of knowledge about

the computational complexity of a given job—as this can

vary depending not only on the constraints but also on the

values of the individual model element. However we can-

not assume that the computational cost of jobs is uniformly

distributed across the job list (cf. Algorithm 2). For this

reason, we shuffle the batches on the master prior to distribu-

tion. The effectiveness of this randomisation again depends

on the number of batches. With more fine-grained batches,

there will be more distributed jobs to shuffle. With fewer but

larger batches, randomisation has less of an effect and could

actually make matters worse. Shuffling the batches helps to

balance the computational workload so that if expensive jobs

are concentrated at particular parts of the list, they are spread

out more normally. The only reason to avoid this randomi-

sation is to obtain more consistent results or for debugging,

since the order in which jobs are distributed will be deter-

ministic.

6.5 Processing results

For simplicity and compatibility with all use cases, we collect

the results of evaluating each Constraint in full on the master.

This preserves compatibility with existing EVL implemen-

tations and user expectations, and also permits the option

of writing to a file on the master if needed. An Unsatis-

fiedConstraint consists of a Constraint, the model element

for which the constraint was unsatisfied, a message detailing

the failure and fixes (which are optional and executed as a

post-processing step). Workers need to send back serializable

instances of this to the master. As with our index-based job

distribution strategy, our solution further exploits the deter-

ministic ordering of jobs for results, although it is slightly

more complex.

Since the execution of each ConstraintContextAtom (i.e.

ConstraintContext-element pair) may output multiple Unsat-

isfiedConstraints (because each ConstraintContext may have

multiple Constraints), we need a way to uniquely identify

each Constraint and the element. We create a new datatype

containing the names of the Constraints along with the

position of the ConstraintContextAtom in the job list, so

the UnsatisfiedConstraint scan be resolved by examining

both the name of the Constraint (and its associated Con-

straintContext) and the corresponding model element from

the ConstraintContextAtom. Furthermore, we don’t need to

transmit the message of the UnsatisfiedConstraint, since this

can be derived on the master from the Constraint instance

when required. Whilst the “message” block of an EVL con-

straint may contain arbitrarily complex code, in most cases

the block is a simple String expression, or absent entirely (in

which case a default message is generated for a Constraint-

element pair). Implementation-wise, we only need to add two

methods: one for finding a model element’s index (position)

in the job list during the serialization process (performed on

workers), and one for finding an element by its index during

the resolution process (performed on the master). Further-

more, resolution of the UnsatisfiedConstraint is performed

lazily, since for example computing the message can poten-

tially be expensive. In the absence of a message block, the

practical performance difference between lazy and eager res-

olution is likely to be negligible, since looking up an item in

an ArrayList by index is an O(1) operation.

Depending on the implementation technology (i.e. the

framework used for realising our distributed approach), it

may be necessary to return a result from the execution of each

job even if there are no UnsatisfiedConstraints—for exam-

ple, as an acknowledgement that the job has been processed

or if the implementation performs a map operation which

requires a result.

6.5.1 Dealing with dependencies

Although each job is unique in that it is only sent and pro-

cessed once, there may still be duplicate results (unsatisfied

constraints) due to dependencies. For example, if constraint

C1 depends on constraint C2 and C2 is not lazy, then one

worker (W1) may get a job to execute C1, and another (W2)

may get one to execute C2. W1 will also execute C2, and if

C2 is unsatisfied this will be returned. Since each worker’s

state is independent of other workers, constraints with depen-

dencies must be evaluated on the worker that received the job

(but can be cached thereafter on the worker). It is the mas-

ter’s responsibility to filter duplicates; which is usually trivial

since a Set is used for the unsatisfied constraint instances. One

issue which arises from dependencies on workers is that if a

constraint has one or more dependencies, then any unsatis-

fied constraints encountered during execution must also be

reported as part of the result of the job; unless they have

already been evaluated for the given element and sent to the

master. To effectively handle this, we reset the set of Unsat-

isfiedConstraints each time we receive a job, since workers

do not need to persist such information. Once execution of a

job is complete, we can then serialize the results. This works

because evaluation of constraints automatically adds Unsat-

isfiedConstraints to this collection, rather than returning them

as a result.

It should be noted that the set of UnsatisfiedConstraints

is independent from the ConstraintTrace; which is used to

keep track of which constraints have been evaluated and their

results. The constraint trace is not shared between nodes,

though it shared between threads within nodes. This trace is

only written to and read from for constraints with dependen-

cies. The optimisation details of this are outlined in [21]. A

consequence of this is that a given constraint-element pair

will not be evaluated repeatedly and thus not added to the set
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of UnsatisfiedConstraints more than once, and hence only

sent to the master once from each worker in the worst-case

scenario.

To clarify, in our implementation no communication hap-

pens between workers: if a dependency exists between

constraints, the dependencies are executed separately on each

worker when required.

6.6 Alternative serialization strategy

The index-based distribution strategy we have presented

relies on deterministic ordering, however not all modelling

technologies return elements in order. Our alternative design

thus relies on a different serialization mechanism. A notable

feature of Epsilon is that its languages are decoupled from

modelling technologies through a model connectivity inter-

face (EMC). This API supports various features, one of which

is the ability to retrieve model elements by an identifier (ID)

and vice-versa.

Our alternative serialization strategy uses IDs to refer to

model elements, and Strings to refer to model element types

and Constraints. This information can be trivially serialized

and used to distribute both jobs and results. However this

approach is much more expensive than our index-based one

in every measurable way. Not only is there more network

traffic and serialization overhead (due to the larger objects),

but also more expensive to resolve each job / result. Whilst

finding Constraints by their name is relatively inexpensive,

the main expense comes from finding elements by ID (and in

some cases, computing the ID). Also, this feature is not sup-

ported by all modelling technologies. In our experiments with

in-memory EMF models, resolving elements by ID turned

out to be quite expensive. This is where lazy resolution of

unsatisfied constraints on the master becomes even more cru-

cial.

7 Implementation

In this section, we describe our reference implementation for

Distributed EVL using the Java Message Service (JMS) API.

This is a custom, hand-coded solution which is more low-

level than what would usually be required to develop such

a distributed system. Nevertheless, it allows us to explore in

greater detail the communication and also grants greater flex-

ibility, enabling optimisations which would not be possible

with off-the-shelf distributed processing frameworks such as

Apache Flink. Our implementation is open-source on GitHub

[24].

7.1 Javamessaging service

JMS10 is an API specification for enterprise Java applications

designed to facilitate communication between processes. The

API revolves around Messages, which are created by Pro-

ducers, sent over-the-wire to Destinations and processed by

Consumers. A Message has metadata, a body (which can

be any Serializable object) and can any number of serial-

izable properties. The API supports both synchronous and

asynchronous messaging, along with both point-to-point and

publish-and-subscribe semantics. There are two types of Des-

tinations; Queues (point-to-point / exactly-once delivery) and

Topics (pub-and-sub / broadcast). Communication is admin-

istered by a broker service which implements the API and

provides a ConnectionFactory which each JVM can use

to connect to the broker. For our implementation, we use

Apache ActiveMQ Artemis11; a JMS 2.0 compliant broker.

7.2 Message-based architecture

Our implementation follows a standard master-worker archi-

tecture. Figures 5 and 6 illustrate the communication between

the master and workers. Note that in Fig. 5, the commu-

nication channels are asynchronous and reactive, with the

direction of arrows signifying data flows. Figure 6 illus-

trates the order of events, although it should be noted that

the timeline of workers and the master are separate due to

the asynchronous design.

The master is started in the usual way (e.g. through a UI or

command-line) with all of the parameters specified. The addi-

tional arguments are the URL of the broker (communication

protocol is TCP) and a session ID, which is used to uniquely

identify this invocation of the program and avoid receiving

irrelevant messages by appending it to the names of Destina-

tions. The master is also told how many workers it expects

so that jobs can be divided more evenly. Workers are started

with only three arguments: the address of the broker, the ses-

sion ID and base path for locating resources. The order in

which workers and master are started does not matter. When

a worker starts, it announces its presence to the registration

queue, sending a message containing its TemporaryQueue;

a unique queue for the worker. It then waits for a message

to be sent to this queue. When the master starts, it loads the

configuration and creates a listener on the results queue for

processing the results. It then creates a listener on the regis-

tration queue. When it receives a message, it increments a

counter for the connected workers, creates a Message con-

taining the configuration along with the worker’s ID based

on the number of connected workers, attaches the master’s

10 docs.oracle.com/javaee/7/api/index.html?javax/jms/package-summ

ary.html.

11 activemq.apache.org/components/artemis.
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Fig. 5 Summary of communication channels in JMS implementation

Fig. 6 Summary of asynchronous communication steps

TemporaryQueue and sends it to the TemporaryQueue of the

received message. When a worker receives this message, it

loads the configuration and takes its hashCode. It then creates

a listener on the jobs queue and sends the hashCode of the

configuration in a message to the master’s TemporaryQueue.

The master checks the hashCode is consistent with its own

for the configuration and increments the number of workers

which are ready. Jobs can be sent to the jobs queue at any

point once the master’s listener on the results queue is set

up. In our implementation, we wait for at least one worker

to be ready before sending jobs to the jobs queue, because

otherwise messages may not be processed depending on the

broker settings.12

If the number of workers is known in advance (or the

master proportion parameter is specified), the proportion of

work assigned to the master is given by the formula 1/(1 +

Nw), where Nw is the expected number of workers. If the

master proportion or number of workers is unspecified, then

the master creates a special worker which bypasses the initial

registration step. This worker shares all state with the master,

12 The “Dead Letter Queue” may be unset, so messages are only sent

once with no attempts to re-send them.
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and so does not send anything to the results queue since

any unsatisfied constraints are automatically added to the

results as a side effect of execution. Consequently, jobs are

dynamically load balanced between master and workers, as

previously described.

Once all jobs have been sent, the master sends an empty

message to the completion topic to signal the end of jobs.

A worker terminates once its jobs queue is empty, there are

no jobs in progress and the end-of-jobs message has been

received. Before terminating however, a worker needs to tell

the master that it has processed all of its jobs, so that the

master can also terminate once all workers have completed.

Once there are no more messages left in the jobs queue, each

worker sends a final message to the results queue with a spe-

cial property set to signal completion, along with the number

of jobs it has processed. It also sends its profiling information

for the jobs it executed (which consists of a cumulative sum

of CPU time consumed by each Constraint) to the master.

The master then merges all of these execution times together

to produce a final report.

7.3 Exception handling

Failures in execution are inevitable. Whether they are the

fault of users (e.g. in the script by navigating null properties,

referencing non-existent variables etc.) or unrecoverable,

low-level faults with hardware, network, out of memory

errors, etc. it is reasonable to expect a distributed system to

be able to deal with the former. In the event of an exception,

execution should halt and all workers as well as the master

should stop. The master should report the exception, along

with the stack trace / traceability information, in the usual

way (i.e. equivalent to the single-node version of EVL).

To facilitate this, we create a termination topic which all

workers listen to. When a message is sent to this topic, the

workers terminate; though this can only be signalled by the

master. When encountering an exception on a worker, we

send the job that caused the exception back to the master

via the results queue, along with the exception. The worker

continues processing other jobs as normal. When the master

receives this message, it adds the job to a collection of failed

jobs. Depending on the nature of the failure, it can either try

to execute the job locally or, if the exception was due to user

error (a problem with the script), it produces a stop message

and sends it to the termination topic to stop all workers.

The master then stops executing its own jobs and reports

the received exception.

7.4 Termination criteria

Another concern is how to determine when all jobs are

processed, since the master sends jobs to workers and pro-

cesses results asynchronously in different threads. When

each worker finishes, it sends back to the master the number

of jobs it has processed, along with profiling information for

the rules. The master also keeps track of how many jobs it

has sent to the jobs queue. Each time a worker signals to the

completion topic, the master increments the total number of

jobs processed by workers, and when this value is equal to

the number of jobs sent, it assumes completion. Another pos-

sible strategy is to require a response from workers for each

job sent, but this incurs greater overhead both at runtime and

during development, since it is on a per-job (per-message)

basis. Our solution is arguably simpler and only requires a

one-time response from each worker.

8 Evaluation

We aim to evaluate the performance of our solution by com-

paring it to the status quo. Thus, the metric we focus on is

speedup; i.e. how much faster it is compared to the base-

line sequential execution algorithm. However, to truly assess

the efficiency of our approach, we also put the speedup into

context by accounting for the number of processing cores.

Since our distribution strategy does not perform any static

analysis on the program or model to intelligently partition

the workload, each constraint is treated as a “black box”.

Therefore, we aim to assess how our solution copes with the

worst-case scenario, where a single constraint dominates the

execution time.

We used the models and validation programs in [21]. This

allows for better reproducibility and comparability of our

results. However, since the codebase of Epsilon has evolved

and we are using different hardware, we replicate the exper-

iments in [21] with the latest version of Epsilon, EMF 2.15

and Eclipse OCL 6.7.0. Our main focus is on the findbugs

script, which is inspired by the open-source project for detect-

ing code smells in Java. We chose this scenario because the

MoDisco Java metamodel is very large and complex, exer-

cising almost all features of Ecore. There are 30 invariants

in the EVL program which exercise different parts of Java

models as obtained by reverse engineering the Eclipse JDT

project. The resources for our experiments and results are

available on GitHub [25].

Another option we considered for evaluating the per-

formance of our solution was the Train Benchmark model

generator [26]. We opted for the Java/Modisco-based sce-

nario instead as it involves a larger and more complex

metamodel and a larger set of constraints (the Train Bench-

mark paper describes only six, contrived, constraints).

8.1 Experiment setup

We use one system as a baseline for all benchmarks, and up to

87 workers when running Distributed EVL. All systems were
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on the same wired (Ethernet) network in the same building.

Their specifications are as follows:

– 1× AMD Ryzen Threadripper 1950X 16-core CPU @

3.6 GHz (in “Creator Mode”), 32(4x8) GB DDR4-2933

MHz RAM, Fedora 30 OS (Linux kernel 5.1.12), HotSpot

11.0.2 JVM.

– 1× Intel Core i7-4790K quad-core CPU @ 4.00 GHz,

16(2x8) GB DDR3-1600 MHz RAM, Windows 10

v1607, OpenJ9 11.0.3 JVM.

– (Remaining) Intel Core i5-8500 hex-core CPU @ 3

GHz (4 GHz turbo), 16 GB RAM, Windows 10 v1803,

HotSpot 25.181 JVM.

All workers had all models and scripts required for the

experiments on their local disk drives (i.e. we did not use

a shared network drive; every worker had all resources it

needed locally). Before timing each experiment in distributed

mode, we ensured all workers were started first. We used our

base Threadripper system as the master node except other-

wise stated. We used Apache ActiveMQ Artemis 2.1013 as

our broker with message persistence disabled. When record-

ing execution time, we exclude the loading time for the

configuration (i.e. the model and script parsing). We repeated

each experiment several times and took the mean average

time in milliseconds. We used a maximum JVM heap size of

at least 80% of the total memory of each machine.

We are primarily interested in evaluating the efficiency of

our distributed approach in terms of execution time. Model

loading is a one-off task with a constant cost for a given model

(growing linearly at worst with model size), whilst execution

time of a complex program may grow exponentially. Since

model loading time is constant factor in all cases, we exclude

the model loading time from our speedup measurements to

simplify the analysis. The loading time measurements in the

following tables are measured on the master.

8.2 Parameters

Since our implementation is configurable, we show the

results for what we found to be optimal settings. We briefly

discuss the chosen parameters for our experiments in this

subsection.

8.2.1 Master proportion

In all of our experiments, we know in advance the number

of workers, so we always statically assign a proportion of

jobs to the master rather than relying on the broker to assign

jobs to the master. Since jobs assigned to the master do not

need to be serialized or communicate with the broker, they

13 activemq.apache.org/components/artemis.

have no overhead and so it is preferable to give bias to the

master. More so in our case, since the master has sixteen

cores and more memory than the workers, however it is also

burdened with deserializing the results and also hosting the

broker. Nevertheless, it would be optimal to assign a greater

proportion of jobs to the master than workers in this case, so

we set a figure of 0.08 (for sixteen workers) which is slightly

above the 0.0588 figure as would be assigned by the default

formula. We did not want to set this figure too high as we are

interested in testing the performance gains from distributed

processing and not necessarily the optimal for this specific

scenario.

8.2.2 Batch size

As discussed previously, there is a tradeoff between granu-

larity and throughput. In practice, so long as the size of each

batch is greater than or equal to the number of cores, the bro-

ker should be more than capable of handling such loads, since

each batch only consists of two integers, and the result for-

mat is also index-based. In our experience, the CPU usage of

the broker never exceeded 2%. If setting the batch factor as a

percentage, we found this is best kept close to one, especially

for unevenly distributed workloads. This parameter should be

proportional to the model size, as larger models will result in

bigger batches otherwise. For the models in our experiment,

we found a figure of between 0.9992 and 0.998 works well,

keeping all machines at between 95 and 100% CPU usage

when they were active, and the time between the first worker

finishing and the last being one or 2 min. A higher percent-

age (i.e. more batches) yields more consistent performance

at the expense of greater network traffic. We conducted fur-

ther experiments where we set the batch size to the default

value (i.e. the number of logical cores in the master), which

yielded more consistent results with all workers and the mas-

ter finishing within a few seconds of each other. Hence, our

recommendation for the default batch factor is to set it as an

absolute value equal to the highest number of logical cores

of all computers in the experiment.

8.3 Results and analysis

Table 1 shows the results for findbugs, with speedup relative

to sequential EVL. Note that the relatively small execution

times, and in some cases this is less than the model load-

ing time. We see that even when execution times are small

(measured in seconds, rather than hours), our distribution

strategy still provides large gains when excluding loading

times. However if we factor in the overhead of model load-

ing on workers and the master, the gains in absolute terms

are more negligible, since model loading becomes the main

bottleneck. In such cases local parallelisation may be more

practical, which in this case is ten times faster than interpreted
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Table 1 Results for simplified findbugs script with 16 workers

Model Implementation Load Execute Speedup

1m Interpreted OCL 7686 42,803 0.474

1m Compiled OCL 8312 8871 2.289

1m Sequential EVL 9354 20,308 –

1m Parallel EVL 9317 4966 4.089

1m Distributed EVL 9058 6777 3.000

2m Interpreted OCL 15,769 86,659 0.447

2m Compiled OCL 16,774 16,993 2.280

2m Sequential EVL 18,132 38,741 –

2m Parallel EVL 18,179 8637 4.485

2m Distributed EVL 18,371 8299 4.668

4m Interpreted OCL 31,856 145,540 0.422

4m Compiled OCL 32,337 29,928 2.054

4m Sequential EVL 35,294 61,482 –

4m Parallel EVL 34,623 14,541 4.228

4m Distributed EVL 34,751 13,736 4.476

OCL. Despite an additional 94 processor cores, distributed

EVL is only able to narrowly beat parallel EVL when there

are over 2 million model elements.

8.3.1 Adding a demanding constraint

Since the execution times are small in absolute terms, we

also added a very demanding constraint to the findbugs script,

which is responsible for approximately 99% of the execution

time. The invariant in question is shown in Listing 3. It is an

inefficient algorithm for ensuring that all imports in all Java

classes are referenced within the class. Since there are many

imports, and for each instance almost every model element

is looped through, there are an exponential number of com-

putations and reference navigations performed, even though

the logic is very simple.

Listing 3 Most demanding invariant

1 context ImportDeclaration {

2 constraint allImportsAreUsed {

3 check : NamedElement.allInstances()

4 .exists(ne | ne == self.importedElement

5 and ne.originalCompilationUnit

6 == self.originalCompilationUnit

7 )

8 }

9 }

We repeated the experiments in the previous subsection

(with identical parameters) with this constraint added to

assess how scalability varies; especially given the imbalance

in execution times between jobs. The intention is to test how

well random assignment works in tandem with our batch-

based approach. The results are shown in Table 2.

Table 2 Results for findbugs script with 16 workers

Model Implementation Execute Speedup

1m Sequential EVL 2,478,312 –

1m Parallel EVL 300,494 8.247

1m Distributed EVL 45,189 54.843

1.5m Sequential EVL 5,110,216 –

1.5m Parallel EVL 594,846 8.591

1.5m Distributed EVL 83,342 61.316

2m Sequential EVL 9,590,029 –

2m Parallel EVL 1,158,201 8.28

2m Distributed EVL 128,664 74.535

4m Sequential EVL 22,823,792 –

4m Parallel EVL 2,662,679 8.572

4m Distributed EVL 316,049 72.216

Although parallel EVL provides a speedup between 8.2

and 8.6× on our 16-core system, distributed EVL varies con-

siderably more, scaling better with model size. At its peak, we

see an improvement of almost 75× compared to the single-

threaded engine with 2 million model elements. In absolute

terms, this means a configuration which took approximately

2 h and 40 min is reduced to just 2 min and 8 s. However we

see that the extent of the improvement stops with 4 million

model elements. This can be explained by a suboptimal batch

factor. Setting this parameter lower would reduce the vari-

ance between when workers finish. We investigate the effect

of setting the batch factor to a fixed optimal value in the next

section.

The potential speedup for distributed EVL compared to

sequential is (6 ∗ 15) + 4 + 16 = 110 based purely on num-

ber of cores. However, the overhead of distribution, lower

CPU clock speeds with higher utilisation and the fact that our

base system is not the same as our distributed ones should

be taken into account. We argue that the speedups achieved

are not too distant from the true realistically achievable limit,

and that with further tuning of the batch factor and master

proportion for each specific scenario could provide greater

improvements. However we can see that parallel EVL is

bottlenecked—perhaps by memory access—in the findbugs

scenario. Similar bottlenecks may be present in distributed

EVL, since each worker also executes jobs in parallel using

the same infrastructure.

8.3.2 Scalability with 87 workers

In Fig. 7 we attempt to assess the potential scalability of our

solution with specific tuning parameters. We use 87 workers

(a total of 536 cores) with a relatively small batch size of 32,

although larger than the number of logical cores on the work-

ers. Nevertheless, we found this configuration to be a good
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Fig. 7 Results for findbugs script with 87 workers (speedup relative to

sequential EVL)

balance between minimising communication overhead, max-

imising CPU utilisation and minimising the time between the

first and last worker finishing. We also found that assigning

1.5% of jobs to the master was optimal; even a proportion

of 2% left the master finishing much later (in relative terms)

than the workers. This is still higher than the default figure

of 1.1% though the master is significantly more capable than

the workers. With this many workers, the execution time of

the script on the largest model is down to an average of just

over 68 s, compared to the sequential case of over 6 h and

20 min. However as with the results in Table 1, with smaller

models the execution time becomes comparable to the model

loading time.

An interesting observation from Fig. 7 is the relatively

poor performance for one million model elements. This is

actually explained by the large standard deviation times. We

found that, with approximately a 50% probability, the execu-

tion time is either around 38 s or 12 s (±1 s). This is because

for this specific configuration, the batch factor is too large,

resulting in one worker finishing significantly later than oth-

ers in some cases. The fact that execution times are grouped

around two results can be explained by shuffling, as it is the

only source of randomness.

8.3.3 Single constraint, 2 million elements

Now we take a deep dive, focusing on one specific scenario to

further assess the scalability and efficiency of our solution.

We used the single most demanding constraint (discussed

previously) with the 2 million elements model for this bench-

mark. Except in the sequential case, we ran all workers and

the master with as many threads as there are cores in the sys-

tem. For this experiment we used only the i5-8500 machines,

with the broker on a dedicated system (i.e. not on the mas-

ter) so that we can better assess the performance delta when

adding more machines. The results are shown in Fig. 8. As

usual, the parallelism for each participating worker in the

distributed implementation was set equal to the number of

cores in the system (i.e. 6). Note that the numbers indicate

the number of threads in the case of parallel (P) implemen-

tation, and the number of workers in the case of distributed

(D).

The results in Fig. 8 are inline with our expectations.

The parallel and distributed implementations perform almost

identically at around 4.7× faster than the sequential imple-

mentation. The execution time further decreases as we add

more workers, albeit with increasingly diminishing returns.

That said, scalability does not sharply decline, so at the

top end we still see a significant improvement. With 16

total workers (including the master) each equipped with 6

cores, the maximum theoretical speedup possible is 96×,

and our implementation achieves 70×. This shows that our

approach has a remarkably low co-ordination overhead in

terms of computational cost. We can deduce this based on

the efficiency of the parallel implementation: if a single

6-core machine is “only” 4.7× faster than the sequential

implementation and we are using the same parallel execu-

tion infrastructure in the distributed case, then clearly 96×

speedup is unachievable. Based on the results for this exper-

iment, the parallel implementation is 78.9% efficient with a

parallelism of 6, whereas the distributed implementation is

72.9% efficient with a parallelism of 96: a mere six percent-

age point drop in efficiency with a 16× increase in overall

parallelism. This drop-off is far lower than it would be if

we were to add more cores to the parallel implementation,

as evident by the more rapidly diminishing speedups under

shared-memory parallelism. It is also worth noting that the

parallel implementation algorithm and infrastructure, despite

its elements-based level of granularity and all of the under-

lying complexity in the data structures and thread-locals, is

relatively low overhead in terms of performance compared

to sequential EVL. Based on these results, running the paral-

lel implementation with a single thread gives an efficiency of

95.7%. This could perhaps be improved further by using more

coarse-grained jobs through batching to reduce the schedul-

ing overhead brought about by the (fixed) thread pool.

An interesting takeaway from this experiment is that when

the master and workers are using identical hardware, despite

the broker being located on a dedicated machine, the mas-

ter still runs significantly slower than the workers. We know

this by examining the output logs which can tell us when

a worker or the master finishes processing its jobs and also

how many jobs they processed. As the number of workers

increases, the default ratio of master to worker jobs combined

with the default batch factor ensures a fairly efficient distri-

bution such that workers and the master finish at roughly the
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same time. However with fewer workers and long-running

jobs, the master proportion becomes much more important

since there are more jobs at stake, and jobs are statically

assigned to the master beforehand rather than being dynam-

ically load-balanced like worker jobs. This was particularly

the case for our experiment with 1 and 2 workers, where the

difference in execution time between the master and workers

was up to 30% of total execution time. This is because the

master also has to deal with co-ordination, sending jobs and

results processing whilst simultaneously executing its own

jobs. With identical hardware, a worker bias is needed, the

extent of which will depend on the workload. In this case, we

found that setting the master proportion to 25% for 2 workers

(as opposed to 33%) reduced execution time by up to 2 min,

whilst setting it to around 45% with one worker (instead of

50%) reduced the overall execution time by up to 10%.

So far we have presented two extreme cases: one where

execution time is very long due to a single computation-

ally expensive constraint and another where this constraint is

removed, making overall execution time relatively small and

comparable to the time taken to load the model into memory.

We see that the overhead of distribution begins to pay off

once execution times are measured in the order of minutes.

Overall, we would advocate the use of local parallelisation

when execution times are relatively small and the model takes

a long time to load, and distributed parallelisation when the

program is computationally expensive.

8.4 Single-thread parallelisation

In Fig. 8, we also ran the benchmark with local (shared

memory) parallelism set to 1, to be able to compare the effi-

Fig. 8 Results for 1Constraint script with 2 million model elements, batch size = 6, i5-8500 16GB RAM Windows 10. Labels show speedup. Error

bars show standard deviation (one direction only)
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ciency of the distributed approach without any parallelisation

overhead. We tried this with 25 workers (the result for single-

threaded distributed EVL is labelled “DS25”) and observed

a speedup of 24.5× over sequential EVL: very close to the

theoretical limit of 26×. We also ran the benchmark with

local parallelism set to the number of cores as usual for com-

parison. With over 122× speedup out of a theoretical 156×,

the efficiency being 78.2% in this case) is on par with our

expectations based on previous results. For context, where

sequential EVL took over 1 h 30 min, with 25 workers this

is reduced to just 44 s. The motivation for this experiment

is that now compare single-threaded and multi-threaded dis-

tributed execution. Leveraging all six cores on all machines

leads to almost exactly 5× speedup compared to the sequen-

tial case with the same number of workers. This is slightly

higher than the 4.7× speedup provided by parallel EVL over

sequential EVL, which requires some explanation. As with

all performance-related phenomena, there are a number of

contributing factors. Perhaps the major contributor is the fact

that because there is only a single constraint, all cores in all

computers are executing the same instruction with slightly

different inputs (i.e. the model elements), thus the load bal-

ancing is near-perfect. Since each computer processes fewer

jobs, there is also less total work for each JVM instance (for

example, garbage collection) to do, as well as reduced mem-

ory contention and even less heat, leading to higher sustained

boost clock speeds.

8.5 Local distribution vs. parallelisation

Another way to assess the efficiency of our distributed

approach is to see how it compares to parallelisation when

controlling for distribution overhead encountered by network

communication. Rather than using multiple machines, we

can instead use a single computer but spawn multiple pro-

cesses. Of course, the total level of parallelism will be limited

by then umber of logical cores on the machine, so we need

to ensure that (W + 1) ∗ T = C , where W is the number

of processes (independent workers, excluding the master), T

is the number of threads per process and C is the number of

logical cores (hardware threads) on the computer.

We experimented with the findbugs script with 100k, 200k,

500k and 1m model elements on a different system, equipped

with a Ryzen 7 3700X 8-core (16 thread) processor, 32 GB

dual-channel DDR4-3200 MHz RAM, MSI X570 A-PRO

motherboard. Given that each process would load the model

and program into memory, as well as needing to host the bro-

ker, this limits the maximum model size, since for example

with 8 processes we need to have 8 instances of the model

loaded in memory simultaneously. We set the batch factor

equal to local parallelism: with 1 worker this was set to 8,

with 3 workers this was 4 and 7 workers it was 2. Master

proportion was set as usual: 0.5 with 1 worker, 0.25 with 3

workers and 0.125 with 7 workers.

The results in Fig. 9 show that for larger models, shared-

memory parallelism is significantly less efficient than having

multiple independent processes (each with their own isolated

in-memory resources) working in parallel. This indicates that

the parallel infrastructure is bottlenecked, perhaps by access

to a shared data structure (e.g. caches), or perhaps the com-

bination of JVM, CPU and OS scheduling algorithm is to

blame. Regardless of the reasons, it’s clear that using multi-

ple processes is computationally faster, albeit an unrealistic

scenario given the memory requirements. With 1 million

elements, the optimal arrangement seems to be 4 process

using 4 threads each; giving 7× speedup over the sequen-

tial implementation. By contrast, the single-process parallel

implementation’s speedup is less than 5×. As the model size

decreases, so too does the efficiency of both the parallel and

distributed implementations. The difference is more dras-

tic with multiple processes however. We can see that with

500 k elements, 4 workers is still the optimum, giving 5.5×

speedup, whereas with 200 k elements, the overhead of the

distributed implementation means the shared-memory (sin-

gle process) parallel implementation is superior.

8.5.1 Simulink

There is a unique circumstance where distribution can pro-

vide performance benefits where shared-memory paralleli-

sation cannot. With most common modelling technologies,

there are no complex concurrency issues to handle since we

are only reading from the model, and we already have a solu-

tion in place for thread-safe caches. Despite this, some EMC

drivers relying on external, often proprietary tooling may

not be suitable for concurrent accesses. One such case is

that of the Simulink driver for Epsilon [27]. Interacting with

Simulink models requires launching MATLAB from Java, as

the driver uses MATLAB’s Java API for model access. For

reasons beyond the scope of this paper, executing an EVL

program in parallel over these does not work. Rather than

trying to debug the root cause, which is likely to be with

MATLAB or its Java API (and thus beyond our control),

we can still reduce the execution time using our distribution

strategy.

The idea is that since each worker runs in its own process

and on a separate computer, it does not share any resources

with other instances, therefore any interference or thread-

safety issues are impossible provided that there is only a

single thread of execution. We have asserted that the Simulink

EMC driver returns model elements in a deterministic order

for separate invocations for a given model, so our batch-

based approach can be used. As usual, the master splits the

job list between itself and workers. The difference here is

that it also instructs all workers (and itself) to use a local
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Fig. 9 Results for findbugs script with varying model sizes and work-

ers. R7-3700X 32 GB RAM Windows 10 JDK 13.0.1. S=Sequential,

P=Parallel, W=Workers, T=Threads per worker. Labels show speedup

Table 3 Results for single-threaded Simulink experiment, batch size =

6

Workers Load Execute STDEV Speedup

0 33 165 484 535 31 546 –

15 14 399 205 766 17 581 2.355

parallelism of 1 to avoid thread-safety issues. This way, we

are able to partition the work, effectively achieving a level of

parallelisation equal to the number of workers.

To test this theory, we used the artefacts used in [27] (we

have included these in our open-source benchmark repository

[25]). There are several models available, however all of them

are of similar size and in our experiments their execution

times are similar for the provided validation program. We

ran the “liveValidation.evl” script (consisting of 9 constraints

across 6 model element types) over the “darkd0.slx” model,

which is 1.1 MB but for context, when transformed to EMF

and serialized to XMI, is 133 MB.14 Note that we made no

attempts to optimize this script or alter it in any way. We

ran our experiments using only the worker PCs (i5-8500,

Windows 10) for a fair comparison. The MATLAB version

was R2018a. For compatibility we used the JRE shipped with

MATLAB, which was 1.8.0_181 (HotSpot VM). The master

proportion and batch size parameters were set as the default.

The results are shown in Table 3.

There are a couple of noteworthy caveats regarding the

results. Firstly, despite repeating the experiment ten times,

there was significant variance in execution time and model

loading time of sequential EVL. Intuitively we would expect

to see such variance in parallel and distributed execution, but

not with sequential. With model loading in particular saw a

standard deviation which was close to the average load time,

whilst under distributed execution load times were remark-

ably consistent (around 13.5 s) with only a single outlier at

21 s. Execution time was also more volatile than we expected,

with sequential EVL showing a standard deviation of over

31 s. Furthermore, when examining the execution time of the

constraints, we saw a lack of consistency in the dominant rule,

which always seemed to vary with sequential EVL. These

puzzling results can largely be explained by the interaction

between the EMC driver and the MATLAB engine. During

execution we noticed that both MATLAB and the EVL Java

process were using CPU time simultaneously, each running

at near 100% usage for a given core. The MATLAB Java API

supports asynchronous access, so perhaps the source of this

volatility arises from this communication.

What is more difficult to explain is the exceptionally poor

speedup achieved by 15 additional computers. Although the

14 All of the Simulink models available to us were of approximately

equal size; we chose this one at random.
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maximum possible speedup is 16, we observed less than a

sixth of this theoretical potential, with an efficiency (that is,

speedup divided by number of workers) of just 14.7%. This

is in stark contrast to our EMF-based experiments where

distributed efficiency was in some cases superior to paral-

lel. There are a couple of reasons for this. Firstly, the pre

block of the validation script took a significant amount of

time to execute, averaging around 40 s. Since this contains

arbitrary imperative code and is used to set up variables used

in the constraints, this must be executed for each worker inde-

pendently. Secondly, model element accesses are performed

lazily on-the-fly by the Simulink EMC driver. Even though

we enabled caching of getAllOfKind, model element types

which do not appear as ConstraintContexts in the valida-

tion script will not be loaded eagerly. Since our distribution

algorithm is essentially random assignment, in practice each

worker inevitably ends up accessing all necessary parts of

the model. Since model access is the primary bottleneck in

the Simulink driver, we see the effects of this dominate the

execution time, hence the poor speedup. However, we were

still able to more than halve the original execution time with

no additional optimisation.

The Simulink experiment exposes the main weakness in

our approach: the inability to exploit data locality due to the

lack of intelligent assignment and partial loading. Although

this is largely an issue at the EMC level rather than an issue

with the distribution and/or parallelisation infrastructure, it

nevertheless makes the case for more advanced distribu-

tion strategies which can take additional factors into account

for modelling technologies where model accesses are very

expensive.

8.6 Threats to Validity

The performance gains shown in our evaluation cannot nec-

essarily be generalised for all models and scripts, neither can

the parameters as they are specific to the scenarios presented.

Our experiment used computers on the same network and

were physically located in the same building. Furthermore,

the workers were homogeneous. Performance may differ

greatly depending on the hardware and network topology.

However, the lessons learnt should be more generalisable.

We have made our implementation’s parameters config-

urable to improve generality, and discussed the significance

of these parameters in the general case since, as we have

seen, performance is highly sensitive to these parameters. In

our benchmarks, we have tried to demonstrate “worst-case”

scenarios, and used benchmarks which were designed inde-

pendently of the work presented. Furthermore, the script and

models were written independently from the experiment to

avoid bias.15 Based purely on analysis of the distribution

algorithm, we have no reason to believe that the potential

performance gains of our solution should not be general-

isable to other models and scripts, given sufficiently large

models and time-consuming validation logic. As we saw

with the Simulink experiment, our solution does not gen-

eralise to all modeling technologies. Our solution relies on

model access for (random) individual elements being rela-

tively fast; certainly no worse than O(1) in time complexity.

Hence, we observed large speedups with in-memory EMF

models. Performance may not scale as well for models stored

in e.g. databases or file systems. Thus, a degree of in-memory

caching may be necessary for optimal performance. Future

work should ideally perform experiments with different mod-

els and programs than described here, as well as with different

modeling technologies which use databases for persistence

to assess the scalability of our solution, especially for larger

models which cannot be loaded entirely into memory.

9 Conclusions and future work

In this paper, we have demonstrated how the task of model

validation can be expressed in a highly parallelisable man-

ner which is amenable to distributed execution using the

Epsilon Validation Language. We showed how every EVL

program can be decomposed into a finite and deterministi-

cally ordered list of rule-element tuples. By exploiting this

fact, we can re-create the program execution environment

on multiple computers and assign a subset of this list to

each computer, referring to jobs by their position in the list.

The results show that our index-based distribution approach

has minimal overhead, and that the execution time decreases

linearly with more computers and larger models. We saw

improvements of up to 340× compared to sequential valida-

tion with 87 hexa-core workers. This was made possible by

our efficient asynchronous implementation, so that all par-

ticipating computers begin loading the models and program

independently from each other. We determined that the opti-

mal granularity of jobs is equal to the maximum number of

hardware threads across all participating computers, allowing

each computer to fully utilise all cores whilst also allowing

for efficient load balancing to be performed by the broker. We

established the efficiency of our distributed approach by per-

forming a further experiment with 25 workers each executing

sequentially (single-threaded), resulting in a 24.5× speedup.

Repeating this experiment where each worker leverages all of

its cores, we saw a further 5× speedup, making it over 122×

faster than the traditional single-machine, single-threaded

execution engine. Overall, we found that our distributed

15 The models are sourced independently, and the EVL scripts were

written years before this work.
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execution approach is actually more efficient than shared-

memory single-process parallelism, due to alleviation of the

von Neumann bottleneck (memory access).

The main limitation of our current approach is that it

requires all workers to have a full copy of the models and

the program. For very large models, this presents a sig-

nificant barrier to entry since memory-constrained devices

cannot participate in the execution. Such a limitation could

be addressed by employing advanced static analysis to opti-

mally distribute jobs based on the parts of the model they

exercise, so that workers only need partial models. This could

be combined with an efficient model indexing repository such

as Hawk [28] to lazily load model elements, thus reducing

memory footprint and the upfront temporal cost of model

loading. Static analysis could also help to identify computa-

tionally expensive jobs which would result in more balanced

distribution of jobs between master and workers. Whilst ran-

dom assignment through shuffling of batches, combined with

the load balancing capabilities of the distribution framework

provided good results in our experiments with in-memory

EMF models, this is not generalisable for all persistence

backends, since randomisation minimises data locality. In

modelling technologies where model accesses are extremely

expensive—such as Simulink—a more intelligent assign-

ment algorithm would be beneficial to exploit data locality

and lazy loading. In any case, future work should focus on

distribution of the model as well as the computation.
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