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Abstract

Open-source model management frameworks such as OCL and ATL tend to focus on manipulating models built atop the

Eclipse Modelling Framework (EMF), a de facto standard for domain specific modelling. MATLAB Simulink is a widely

used proprietary modelling framework for dynamic systems that is built atop an entirely different technical stack to EMF. To

leverage the facilities of open-source model management frameworks with Simulink models, these can be transformed into an

EMF-compatible representation. Downsides of this approach include the synchronisation of the native Simulink model and

its EMF representation as they evolve; the completeness of the EMF representation, and the transformation cost which can be

crippling for large Simulink models. We propose an alternative approach to bridge Simulink models with open-source model

management frameworks that uses an “on-the-fly” translation of model management constructs into MATLAB statements.

Our approach does not require an EMF representation and can mitigate the cost of the upfront transformation on large models.

To evaluate both approaches we measure the performance of a model validation process with Epsilon (a model management

framework) on a sample of large Simulink models available on GitHub. Our previous results suggest that, with our approach,

the total validation time can be reduced by up to 80%. In this paper, we expand our approach to support the management of

Simulink requirements and dictionaries, and we improve the approach to perform queries on collections of model elements

more efficiently. We demonstrate the use of the Simulink requirements and dictionaries with a case study and we evaluate

the optimisations on collection queries with an experiment that compares the performance of a set of queries on models with

different sizes. Our results suggest an improvement by up to 99% on some queries.

Keywords Model driven engineering · Interoperability · Epsilon · MATLAB Simulink · Query optimisation · Eclipse

Modelling Framework
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1 Introduction

Systems engineers typically treat models as living entities,

which must be modified and manipulated throughout the

engineering lifecycle. In model-driven engineering processes

specifically, models are transformed, queried, modified and

validated (amongst other activities) with the aid of model

management frameworks. In the case of such open-source

frameworks like as QVT, ATL, Acceleo and Epsilon, these
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are mostly tailored for managing models conforming to the

Eclipse Modelling Framework (EMF [42]), a de facto stan-

dard for domain-specific modelling [18]. Engineers working

with modelling environments that build atop EMF, such as

Papyrus [44], Capella [37] and SCADE [1], have at their dis-

posal the model management facilities that these frameworks

provide.

MATLAB Simulink is a modelling framework for dynamic

systems that is widely used across many industries includ-

ing aerospace and automotive [2,35,36]. This framework has

its own set of model management activities to operate on its

own models such as code generation and validation, but it

does not offer facilities to export these models in XMI, the

default exchange format for EMF models. As such, involv-

ing Simulink models in model management activities outside

of MATLAB—particularly those involving other heteroge-

neous models—can be challenging.

There are multiple scenarios in which Simulink models

are required to be used outside MATLAB. For example, the

interface of its elements (inputs and outputs) could be parsed

and stored in other models (e.g. XML) or used to produce

documentation. Similarly, a number of works have been writ-

ten on transformations that produce Simulink models from

SysML models [3,32,39,49]. In this particular scenario, sev-

eral approaches achieve the transformation by generating

MATLAB programs that produce the Simulink models on

execution. Evidently, these approaches are less reusable for

other scenarios, e.g. which may perform slightly different

transformations, as they are written for a particular input

model; but also because they only generate the model leaving

out the possibility of reading it or modifying it. The Mas-

sif [48] project offers a more reusable approach that makes

Simulink models available to model management frame-

works with EMF support; this is achieved by transforming

Simulink models into an EMF-compatible representation and

vice versa. With this approach, the full Simulink model must

be translated into EMF. This upfront transformation can be

crippling for large models (as demonstrated in [38]) and

unnecessary when the model management programs do not

work on the entire model. Additionally, Simulink models

that continuously evolve may require the co-evolution of the

EMF-counterpart which involves the re-execution of a non-

incremental transformation which can be expensive for large

models. Furthermore, model management programs might

be limited by the set of model element types supported by

the Simulink-to-EMF transformation [31] which currently

does not support Stateflow blocks.

Since Simulink is a tool that allows the creation of large

and complex designs [30], we anticipated that the upfront

transformation required with Massif would be expensive for

these models. As such, we set out to implement an alter-

native approach that would shift the cost away from their

EMF transformation and into the complexity of the manip-

ulating program. Our approach consists in translating model

management operations into small MATLAB programs at

runtime (on-the-fly). This ensures a constant synchronisa-

tion between the modelling tools and the MATLAB models.

Since no upfront transformation is required, the round-

trip engineering and co-evolution costs are eliminated. Our

implementation offers broader model coverage by including

Stateflow elements, Simulink requirement and Simulink dic-

tionary models. Additionally, it offers a more unified way of

accessing model element properties and shares a vocabulary

closer to the one used by MATLAB.

We compare the performance of our approach against

Massif’s upfront model transformation by measuring the

execution time of different stages of a representative model

validation process. This process involves the execution of

OCL-like invariants that validate structural properties on a

sample of the largest available Simulink models on GitHub.

Our evaluation indicates that our approach is more appro-

priate for continuously changing models as it can reduce

the overall time of the validation process by up-to 80%. In

contrast, the transformation-based approach (Massif) is bet-

ter suited for signed-off models that need to be extensively

queried as the cost of the transformation is a one-off and the

validation two orders of magnitude faster.

Although experimental results on our on-the-fly Simulink

bridge approach [38] show that it can reduce the overall exe-

cution time for a set of validation tasks on large models, the

execution time was still high for certain classes of queries.

We identified queries on collections of model elements as an

area for optimisation. In order to improve the performance

of our solution, we rewrite and delegate the execution of

bulk queries to the MATLAB engine to take advantage of

its inner indexes that are inaccessible by external clients.

Experiments with models that grow exponentially in num-

ber of elements suggest that off-loading to MATLAB these

queries can improve their performance by up to 99% in some

cases.

Another area we identified as source of improvement was

the coverage of the Simulink modelling environment which

relies on a set of (different) MATLAB-based models. This is

the case of Simulink requirements and Simulink dictionaries

which add information to the Simulink models. In this paper,

we expand our driver to support these additional model for-

mats.

Our approach offers researchers and practitioners an

additional option to manage Simulink models from model

management frameworks that is convenient for large and/or

continuously evolving Simulink models. Our implementa-

tion atop Epsilon, which offers a set of model management

languages, makes this approach accessible to a range of

model management activities such as model validation,

model-to-model and model-to-text transformations, model

comparison, etc., that can involve multiple heterogeneous
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models (e.g. EMF, UML) in the same program. Developers

of model management frameworks such as ATL can use the

technical details from this work to add support for Simulink

models in their own frameworks.

As shown later in the paper, MATLAB uses a different set

of operations and properties to manage elements in the dif-

ferent types of Simulink models (dictionaries, requirements,

Simulink models) and even for managing different elements

within these models, as is the case of Simulink and Stateflow

model elements. A side contribution of our approach is that it

provides a unified syntax to manage model elements within

the same MATLAB model and across the different types of

models.

This paper is an extended version of the work presented

in [38]. Compared to [38], in this paper, we also:

– Propose and implement a driver with a similar approach

to [38] that supports the management of Simulink dictio-

naries (Sect. 3.2) and requirements (Sect. 3.3). We also

demonstrate how they can be used in a running example

(Sect. 4).

– Propose a method for optimising queries on collections

of Simulink and Stateflow model elements (Sect. 3.1.2).

– Evaluate the performance of proposed collection query

optimisations with an experiment performed on model

element collections of different sizes (Sect. 5.2). This

experiment shows that the optimised queries outperform

the original ones, some by up to 99%.

– Extend our review of related work section (Sect. 7).

Roadmap The rest of the paper is structured as follows. Sec-

tion 2 introduces the modelling technologies used in our

approach and evaluation. Section 3 presents the architec-

ture of our “live” approach to bridge MATLAB Simulink

models, requirements and dictionaries into Epsilon. In addi-

tion, this section presents a query optimisation approach

which works on collections of Simulink and Stateflow model

elements. Section 4 presents a running example that show-

cases potential usage of the drivers. Section 5 evaluates the

performance of two approaches to bridge Simulink mod-

els: the upfront Simulink-EMF transformation against the

on-the-fly MATLAB function execution. This section also

evaluates the performance of query optimisations on col-

lections of Simulink/Stateflow model elements. Section 6

discusses observations and lessons learned. Section 7 sum-

marises related work. Section 8 concludes the paper and

discusses future work.

2 Background

In this section, we introduce the modelling technologies at

the core of this work: MATLAB/Simulink, Epsilon, EMF

and Massif.

Fig. 1 Example MATLAB/Simulink model

2.1 MATLAB/Simulink

MATLAB is a commercial tool developed by MathWorks

that provides a variety of numerical computing environments.

Under its Simulink [25] environment, it provides a graphical

block-based modelling framework that supports the design,

simulation and analysis of dynamic systems as well as model

management activities like code generation and continuous

model verification for such systems.

Simulink Models These are file-based models that represent

dynamic systems based on interconnected blocks. A sample

Simulink model representing the behaviour of a car in motion

after the accelerator pedal [24] is presented in Fig. 1. The

model contains five blocks from the Simulink library: a pulse

generator, a gain, a second-order integrator and two outports.

The pulse generator produces an input signal which simulates

the accelerator pedal. The gain simulates the multiplied effect

in the car acceleration. The second-order integrator enables

the acquisition of the position and speed of the car from the

acceleration through its outports. These blocks are intercon-

nected by their ports through directed lines called signals.

Simulink model elements have both a type and a sub-

type. Example model element types include Block, Line

and Port. Elements of type Port may have an inport or

outport subtype. The list of subtypes is much longer for

Block elements. All elements in Fig. 1 are blocks and their

subtypes, from left to right, are: DiscretePulseGenerator,

Gain, SecondOrderIntegrator and Outport.

Stateflow MATLAB offers an additional toolbox of decision

logic, called Stateflow [26], used to describe how blocks react

to events, input signals and time-based conditions. This tool-

box is based on state machines and flowcharts that can be

attached to Simulink model elements. Figure 2 shows a sam-

ple Stateflow diagram containing two states named ON and

OFF representing the operating modes of a system, and one

transition,1 named E1, that connects one state to the other.

Stateflow model elements are persisted within a Simu-

link model. On a Simulink model, there is a corresponding

Stateflow machine which contains all Stateflow charts of the

model. Each chart defines decision logic by combining log-

ical elements such as states, boxes, functions, data, events,

messages, transitions, junctions and annotations. Only states,

boxes and functions may contain any other logical elements

1 The arrow on the left is not a transition.
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Fig. 2 Example of MATLAB/Stateflow model elements

indefinitely. Stateflow charts may be included as blocks in

the Simulink model.

All model elements in Stateflow are Stateflow.Object

instances and their specific type names are always preceded

by the Stateflow prefix and a period. For example, states

are of type Stateflow.State.

Simulink functions Simulink models can be manipulated

manually using MATLAB’s graphical interface or pro-

grammatically invoking Simulink functions via MATLAB’s

command line interface. Listing 1 illustrates some of the main

Simulink functions that enable model navigation and modi-

fication.

1 load_system m

2 find_system('m','Type','Block ')

3 find_system('m','BlockType ','Gain')

4 gain=add_block('simulink/Math Operations

/Gain','m/Gain')

5 get_param(gain ,'BlockType ')

6 set_param(gain ,'Name','newName ')

Listing 1 MATLAB Simulink functions

Line 1 shows how to load a model named m (same as its

filename without extension) before we can interact with it.

Line 2 shows how to retrieve all model elements of a given

type, in this case, of elements of type Block from model m

. For the model in Fig. 1, this evaluation would return five

blocks. By changing the value of the type parameter to Line

or Port (instead of Block) the same evaluation would return

the 4 signals or 8 ports from the figure, respectively]. To find

block model elements by their subtype it suffices to change

thetypekeyword forBlockType in thefind\_system func-

tion. Line 3 illustrates query at subtype level which looks for

block elements of subtype Gain. A similar approach applies

for line and port elements which must replace the BlockType

keyword for the corresponding LineType or PortType.

Line 4 illustrates the creation of a block of type Gain. The

first function argument is the path of the library block to be

used while the second argument represents the location in the

destination model where the block will be created. This path

starts with the name of the Simulink model, ends with the

new element’s intended name, and may contain in-between

the name of intermediary nested blocks that will contain the

new element. Regarding the management of model element

properties, line 5 gives an example of how to retrieve the

subtype property of a gain block while line 6 shows how to

set the block’s name.

MATLAB Java API MATLAB provides several Application

Programming Interfaces (APIs) that allow the invocation of

MATLAB functions from languages like Python, C, C++,

Fortran and Java. In the case of its Java API, MATLAB

provides the MatlabEngine class that is able to start or con-

nect to a MATLAB engine and also to evaluate MATLAB

functions. The Java API also provides wrappers for specific

MATLAB types such as structural arrays, cell arrays, etc.

Listing 2 illustrates a sample program that starts a MAT-

LAB engine (line 1), evaluates MATLAB functions (lines

2–3) and then closes the connection with the engine (line 5).

The evaluation of MATLAB functions through the engine is

done using the eval method which receives the functions as

strings. Line 4 shows how the getVariablemethod can then

be used on the engine to retrieve variables from MATLAB’s

workspace.

1 MatlabEngine e= MatlabEngine.startMatlab ();

2 e.eval("load_system sl;");

3 e.eval("m=getSimulinkBlockHandle('sl ')");

4 Object m = e.getVariable("m");

5 e.close ();

Listing 2 MATLAB Java API

Simulink Projects MATLAB can group multiple Simulink

models inside a project. Additionally, Simulink projects can

contain requirement definitions, test cases and data dictio-

naries that complement the Simulink models.

A data dictionary file represents a data repository which

includes design data such as parameters and signals that are

used to configure the behaviour of Simulink models [28].

The dictionary object is the root element and it contains

sections which in turn contain a set of entry elements.

Each entry has a unique name and a value of an arbitrary

type. The four default sections of a dictionary are named:

Design Data, Configurations, EmbeddedCoder and Other

Data.

The Simulink requirements toolbox enables the definition

of requirements that can be linked to dictionary and Simu-

link model elements. The RequirementSet is the root object

of a requirements definition file and contains elements of

type Requirement, Justification and Reference. Each

of these elements may contain nested elements of the same

parent type, e.g. a requirement can contain other require-

ments. Elements of type Justification are requirements

excluded from implementation and verification metrics,

while Reference elements are proxies for external require-

ment objects from third-party applications.

Note that the traceability information—in the form of

links among requirement, dictionary and Simulink model

elements, is persisted in its own file. Each Simulink model,

dictionary or requirement file which has elements involved in

traceability links will have a corresponding link file with the

same name as the model. At the root of element of these link

files is the LinkSet which contains the set of Link elements.
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2.2 Epsilon

Epsilon is a framework of inter-operable languages and tools

designed for model management tasks like model navigation,

validation and transformation. The Epsilon Object Language

(EOL) [19] is an OCL-like model query and transforma-

tion language that all other Epsilon languages are built on

top of. Among these model management languages, we

find the Epsilon Validation Language (EVL) [21]—designed

to evaluate invariants on model elements, and the Epsilon

Transformation Language (ETL) [20]—targeted at model-

to-model transformations.

Epsilon has a layered architecture (see Fig. 3). The Epsilon

Model Connectivity (EMC) layer provides abstraction facil-

ities that allow models of arbitrary technologies (e.g. EMF,

XML) to be managed in a uniform manner in any of the

Epsilon languages. Concrete EMC implementations for dif-

ferent modelling technologies such as EMF, or PTC Integrity

Modeler, are known as (epsilon model) drivers.

Listing 3 shows a sample EOL program that navigates and

manipulates a model M2 of arbitrary underlying modelling

technology (e.g. EMF, XML). In the first line, the first of all

the elements of type Block contained in the model is selected

and then assigned to a new variable namedelement. In line 2,

the value of its name property is retrieved, while in line 3, its

evaluate() method is invoked. Further down, line 4 shows

how a new element of type Block is created and assigned to

the newElement variable while line 5 sets its name property.

1 var element = M!Block.all().first ();
2 element.name;
3 element.evaluate ();
4 var newElement = new M!Block;
5 newElement.name = "My Block";

Listing 3 Example EOL Script.

The EOL program in Listing 3 can be executed on mod-

els of arbitrary technology because the model is injected to

the EOL interpreter at runtime by an arbitrary driver. The

syntax that an EOL program uses to create and delete model

elements, to set and get their properties, or invoke their meth-

ods does not depend on the driver. The contribution of a driver

on any Epsilon program is the availability of model element

types, their properties and additional methods at runtime.

For example, the first() operator works on collections and

is handled by the EOL engine by default.3 In contrast, the

all() method in Listing 3 delegates the collection of all ele-

ments of type Block to the driver that handles model M. For

Listing 3 to terminate successfully, the driver that provides

2 The character “!” is used in Epsilon to separate the runtime name of

the model from a model element type or kind available in that model.

3 Other collection operators such as select() and collect()
are provided in EOL by default although drivers may override their

behaviour.

and manages model M would need to know how to handle

model elements of type Block with a name property and an

evaluate() method.

Epsilon currently provides drivers for a variety of mod-

elling technologies including EMF, XML [19] and Spread-

sheets [12]. Section 3 presents the architecture of the Simu-

link driver which was the main contribution of the original

publication [38], and of the Simulink requirements and Simu-

link dictionary drivers, which are introduced for the first time

in this paper.

2.3 The Eclipse Modelling Framework andMassif

The Eclipse Modelling Framework (EMF) was designed

to build Java applications based on domain-specific model

definitions [40] described with the Ecore meta-modelling

language. EMF offers several representations for their mod-

els including Java code, XML Schema and UML diagrams,

but its canonical format is the XML Metadata Interchange

(XMI). Models conforming to an Ecore metamodel are

referred to as EMF models.

Massif The Massif [48] project enables the transformation

of MATLAB/Simulink models into an EMF-compatible rep-

resentation and vice versa. Massif connects to MATLAB’s

engine to parse and update Simulink models. The result-

ing EMF models conform to an Ecore Simulink meta-model

defined by Massif which is limited to Simulink elements, i.e.

leaving out Stateflow elements.

Massif’s Simulink Ecore meta-model The Massif meta-

model considers any Simulink model element that can be

identified and named as a subtype of the SimulinkElement

class. All subclasses of SimulinkElement are presented in

Fig. 4. Its direct descendants are Connection, Port, Block

and SimulinkModel.

The SimulinkModel class is the root model element

which keeps a reference to the file and version of the Simu-

link model. This class contains all the Block elements along

with their Port and Connection elements.

In Massif, the ports (Port) of a block are either of type

InPort or OutPort and they can be represented by a virtual

block of class PortBlock. Similarly, the lines that connect

the block ports are instances of the Connection class which

can be either SingleConnection or MultiConnection.

Any block whose MATLAB subtype cannot be found as a

class in Massif is considered as a generic Block. Some blocks

have predefined properties as attributes, e.g. the tag prop-

erty in the SubSystem class but most of their properties are

dynamically added to their parameters attribute which con-

tains array of Property elements, each with a name, value

and type.

Some of the Massif meta-model constructs differ from the

way MATLAB manages Simulink models. The most notable

difference is that Simulink’s block library offers 140 differ-
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Fig. 3 Epsilon architecture

Fig. 4 Simulink element types provided by Massif’s Simulink meta-model

ent Block subtypes (e.g. Gain, Sum, UnitDelay, etc.), while

Massif only provides 11 concrete ones. The Simulink subtype

of blocks that do not fall under the previous 11 subtypes can

be retrieved from the block’s parameters attribute, look-

ing for the one with the BlockType identifier. Similarly,

there are 5 Port subclasses in Massif’s meta-model out of

the 6 subtypes found in the Simulink library and, in par-

ticular, it is unclear how the State class in Massif maps

to one or both of the Reset and ifaction port types in

Simulink. A related inconsistency can occur when, after a

transformation into EMF, the attributes of some block sub-

classes can have redundant or unpopulated values as they

can also be found within the block’s parameters attribute,

e.g. the tag attribute in the SubSystem class which can

also be found in the parameters. Another difference is that

the Connection class in Massif refers to Simulink model

elements of type Line and subtype signal and that the

MultiConnection and SingleConnection subclasses in

the meta-model are used to refer to the SegmentType prop-

erty of lines in MATLAB which can take the value of trunk

or branch, correspondingly. In addition, subtype capitalisa-

tion is important for Simulink functions, e.g. input is used

to refer to a port subtype as opposed to Input which identi-

fies a block subtype. By contrast, in Massif the InPort and

InPortBlock classes are used to refer to the port and block

elements, respectively. Finally, MATLAB also handles spe-

cial data types such as Cell Arrays4 and Structure Arrays5

which Massif stores as plain Strings.

From Simulink to EMF and vice versa Massif provides four

different ways to transform Simulink models into an EMF-

compatible representation. This process is known as the

import process. The import modes can affect performance of

the process as they differ in the way the MATLAB/Simulink

ModelReference blocks6 are resolved: The shallow mode

does not process the referenced model; the deep mode creates

new SimulinkModel elements for each ModelReference

block; the flattening model processes these blocks as

SubSystem blocks; and the referencing mode processes

ModelReference blocks as new EMF resources (once) and

references them in the model.

4 Indexed data containers that can store any type of data.

5 Groups of data in containers that store any type of data.

6 Blocks that represent a reference to another model.
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The Massif export process transforms the Simulink EMF-

compatible representation into a Simulink file. This process

can produce files with either .slx or .mdl extension.

3 Live Simulink bridges

In this section, we introduce the architecture and implemen-

tation of an approach that bridges models of the MATLAB

Simulink environment with the Epsilon model management

framework through on-the-fly translations of model manage-

ment constructs into MATLAB functions. We choose the

Epsilon [46] model management framework to implement

and evaluate our approach based on the connectivity facili-

ties that it offers and for the variety of model management

languages in which the implementation becomes available.

A similar approach can be implemented by other model

management frameworks with similar connectivity facilities,

such as ATL [17].

We present three concrete implementations (known as

drivers or EMCs) that bridge different Simulink-based mod-

els with Epsilon. The Simulink EMC (Sect. 3.1) manages

Simulink models including their Stateflow model elements.

The Dictionary EMC (Sect. 3.2) handles Simulink dictio-

naries that are used by Simulink models to configure their

models. The Requirements EMC (Sect. 3.3) can manage

requirements that are linked to elements on dictionaries and

Simulink models. The Simulink driver was formerly pre-

sented in [38], while the other two drivers are introduced for

the first time in this work. All drivers are publicly available

as plugins of the Epsilon project [46].

Implementation The Epsilon Model Connectivity (EMC)

layer enables the uniform navigation and manipulation of

models in any Epsilon model management language regard-

less of the model’s underlying technology. Each driver

implementation is able to access and interact with “live”

Simulink models as they generate on-demand MATLAB

commands that are executed on the Simulink model. To

achieve this, these drivers connect to MATLAB’s engine via

the MATLAB Java API.

To illustrate the on-the-fly translation from EOL to MAT-

LAB functions, consider the EOL program in Listing 4.

At runtime, this program receives a model managed by the

Simulink EMC driver, which can handle elements of type

Block and knows how to manipulate their properties. The

EOL Block.all() statement is used to retrieve all the Simu-

link block model elements from the model. To collect these

elements the Simulink driver replaces the ? placeholder in the

MATLAB function from line 1 in Listing 5 with the appro-

priate values, in this case the name of the model and the

kind of element looked for, i.e. Block. The resulting func-

tion (line 2) is then submitted for evaluation to the MATLAB

engine through its Java API. The function returns a collec-

tion of block identifiers which is wrapped by the Simulink

EMC into a lazy collection of SimulinkBlock instances to

be used in subsequent processing. The first() statement

from our EOL program in Listing 4 is then called on this

lazy collection of SimulinkBlock elements. This statement

is an Epsilon operation that works on collections of any type

to return their first element. The following statement Name

is acting on the first SimulinkBlock returned. Since this

model element belongs to the Simulink model handled by

the Simulink EMC driver, it is the driver which handles the

requested property access. To do so, the driver replaces the ?

placeholder in line 3 of Listing 5 and submits its populated

version (line 4) to the MATLAB engine over the API. The

get\_param MATLAB function in this place is expecting as

first argument the block’s identifier (or handle) which is a

number of type double. The last step consists in parsing the

function result and assigning its value to the EOL variable

name.

var name = Block.all().first().Name;

Listing 4 Collection of block names in EOL

1 find_system('?','type','?')

2 find_system('modelName ','type','Block ')

3 get_param (?,'Name')

4 get_param (34.394856839 , 'Name')

Listing 5 MATLAB functions to collect Simulink blocks and their

names.

Architecture Figure 5 shows the architecture of Simulink-

based drivers and how they relate to the core facilities of the

Epsilon Model Connectivity layer (Group 1). All concrete

drivers such as the Simulink EMC (Group 3), the Dictio-

nary EMC (Group 4) and the Requirements EMC (Group

5) use common classes and helpers that are provided by the

abstract Common Simulink EMC (Group 2) which extends

the core EMC. The common facilities include the config-

uration of the Simulink project and the establishment of

a connection with the MATLAB engine. In addition, a set

of abstract classes to handle lazy collections of Simulink-

based model elements are also provided. Each concrete driver

extends the AbstractSimulinkModel class and implements

its own approach to create, delete and collect elements of spe-

cific types. This is done by overriding the respective methods

from the Model superclass.

3.1 Simulink EMC

This driver manages Simulink and Stateflow model elements

which are described in Sect. 3.1.1. We expand on previous

work by adding query optimisations on operations that act on

collections of model elements which are presented in Sect.

3.1.2. A simplified view of this driver’s architecture is pre-

sented in Group 3 of Fig. 5.
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Fig. 5 Simplified architecture of Simulink drivers. Group 1 represents the Epsilon Model Connectivity (EMC) Layer. Group 2 contains the

Common Simulink EMC facilities. Groups 3–5 show the main contents of the Simulink model, Simulink dictionary and Simulink Requirement

EMCs, respectively

3.1.1 Simulink

Model The Simulink EMC driver considers a Simulink file

(*.slx or *.mdl) as a model. This model is managed as

an instance of the SimulinkModel class (see Fig. 5). A

model defines the behaviour of inherited methods from the

class AbstractSimulinkModel in the Common Simulink

EMC layer which in turn extends functionality from the

CachedModel class defined in the EMC layer. Together, these

classes describe how a model will perform CRUD operations

on its owned model elements and the model itself, while they

also determine how to load and dispose the model instance

before and after the execution of a model management pro-

gram, e.g. validation, transformation.

Model Elements The SimulinkModelmanages elements that

inherit from the SimulinkModelElement class which can

be either SimulinkElement or StateflowBlock. For each

MATLAB Simulink type, e.g. Block, Port and Line, there is

a corresponding class, e.g. SimulinkBlock, SimulinkPort

and SimulinkLine that extends SimulinkElement. These

classes provide additional methods, e.g. to link blocks or

to change their parents; and may override the behaviour of

CRUD operations for the type of element they work on.

As discussed in Sect. 2, Simulink elements in MATLAB

have subtypes, e.g. an element of type Block may be of

subtype Gain or SubSystem. In Epsilon, the union of an

element’s super types and of its concrete type is referred to

as the element’s kinds. The Simulink EMC driver consid-

ers the Simulink subtype (e.g. Gain) as the model element

concrete type, while still considering their Simulink type

(e.g. Block) as one of their kinds. Stateflow element types

(e.g. Stateflow.State) are used as their concrete type in

Epsilon. At the same time, all Stateflow elements belong to

the Stateflow kind in Epsilon.

MATLAB Simulink model elements provide different

ways to be identified (e.g. path, id, handle). However, MAT-

LAB Simulink functions return either handles or paths. As

such, for Simulink elements, the driver uses as identifier

their handle property which is a non-persistent session-based

immutable identifier of type Double. In contrast, the driver

uses the id property (Integer) to manipulate Stateflow ele-

ments which is easy to retrieve from the Stateflow objects

returned by most Stateflow functions and queries. In the rest
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of the paper, we use interchangeably the words identifier or

handle of a model element to refer to the mechanism by

which specific element instances are retrieved across MAT-

LAB toolboxes.

Create element The SimulinkModel instance manages

the creation of Simulink and Stateflow model elements.

When the reserved word new precedes a type name in

an Epsilon program, the interpreted invokes the method

createInstance(type:String) of the EMC model.

To instantiate Simulink blocks, MATLAB requires the

path of the block in the Simulink library. The user is respon-

sible for providing this path in order to instantiate a block in

Epsilon. Once provided, the model populates the MATLAB

function add\_block with the path of the library block then

asks the MATLAB engine to evaluate it. Listing 6 shows the

creation of Sum and SubSystem blocks in EOL using their

library block path.7 The Simulink driver creates these blocks

at the top level of the Simulink model but they can later be

placed elsewhere by changing their parent.

1 var sum = new `simulink/Math
Operations/Sum`;

2 var subsystem = new `simulink/Ports &
Subsystems/Subsystem`;

Listing 6 Model element creation

There is no equivalent add\_port function in MATLAB

to create port model elements. In contrast, the add\_line

MATLAB function which creates lines, requires the source

and target ports to be connected. The Simulink EMC driver

does not allow the direct creation of lines through EOL state-

ment such as new Line or new signal. Instead, lines are

created using linkage methods on block elements which may

specify the source and/or target ports to be connected. For

example, provided the model from Fig. 1 with no lines, these

can be created with the following EOL program:

1 pulse.link(gain);
2 gain.linkTo(integrator , 1);
3 integrator.linkFrom(outport1 , 1);
4 integrator.linkFrom(outport2 , 2);

Listing 7 Linking methods for block elements in EOL

In MATLAB, Stateflow elements use a different syntax

for instantiation which consists of their type followed by a

container. For example, a Stateflow state can be created by

invoking the function in Listing 8 where chart is the con-

tainer Stateflow element. This same statement can be used

in EOL to instantiate this state by preceding it with the new

reserved word (line 1). Additionally, the Simulink EMC

can delay the instantiation of Stateflow elements until the

parent is assigned. In other words, a placeholder is created

when using a statement with no parent (line 2) which is only

7 The use of the back-tick (`) is required when a type identifier contains

spaces.

submitted to the MATLAB engine for instantiation when its

parent property is assigned (line 3). Before then, other prop-

erties of the Stateflow element can be assigned in memory to

its placeholder. These properties are submitted to MATLAB

just after the element is instantiated.

1 Stateflow.State(chart)

Listing 8 Stateflow element creation in MATLAB

1 var off = new `Stateflow.State`(chart);

2 var on = new `Stateflow.State`;

3 on.parent = chart;

Listing 9 Stateflow element creation in EOL

Delete element In Epsilon programs, deleting a model ele-

ment involves the use of the delete reserved word before

the element to delete as shown in Listing 10.

1 delete sum;
2 delete subsystem;

Listing 10 Simulink element deletion in EOL

functions from lines 1 and 2 in Listing 11, respectively.

There is no equivalent delete\_port MATLAB function.

1 delete_block(blockElement);
2 delete_line(lineElement);

Listing 11 Simulink element deletion in MATLAB

The SimulinkModel is responsible for the deletion of model

elements and does this through its deleteElementInModel

(e:Object) EMC method . For Simulink elements, the

Simulink EMC chooses the appropriate MATLAB function

for the element being deleted and provides its appropriate

identifier. MATLAB has a different syntax to delete Stateflow

elements which is the dot notation, e.g. elementId.delete.

Read and update element properties The SimulinkModel

delegates to instances of the SimulinkPropertyGetter

and SimulinkPropertySetter classes the responsibility of

reading and updating properties of model elements. The for-

mer receives a model element and the property that is to be

retrieved from it while the latter additionally requires the

value to be assigned to the element’s property.

Depending on the kind of model element that these act

upon, they populate and evaluate different MATLAB func-

tions. For example, when dealing with Simulink blocks, these

property managers evaluate the MATLAB functions from

Listing 12.

1 get_param(element ,'PropertyName ')

2 set_param(element ,'PropertyName ',value)

Listing 12 MATLAB Simulink element getter and setters

An example of an EOL program retrieving and populating

Simulink element properties is shown inListing 13.
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1 subsystem.name = "Controller";
2 var subsystemName = subsystem.name;
3 sum.description = "Sum block";
4 var sumDescription = sum.description;
5 var inportHandles = subsystem.

LineHandles.Inport;

Listing 13 Get and set Simulink element properties in EOL

Lines 1 and 3 set element properties, while lines 2, 4 and

5 get property values from them. In the particular case of

line 5, the property LineHandles returns a Structured Array,

which is a MATLAB-specific type that represents an array of

key-value pairs. In MATLAB, their values are retrieved using

thegetfield(element,property) function. The Simulink

EMC driver can identify these types and navigate them as any

other property. In the example, the value of its Inport key

is retrieved.

In MATLAB, the dot notation is used once more to get and

set properties from Stateflow elements. This is illustrated in

Listing 14 where the name of a Stateflow State element is

retrieved (line 1) and set (line 2). The syntax to do the same

in an EOL program would be identical.

1 element.Name;
2 element.Name='NewName ';

Listing 14 Get and set stateflow element properties in MATLAB and

EOL

Retrieve elements To collect all instances of a given type,

Epsilon programs use the all() operation on types. Alterna-

tively, to collect all available elements on the model, Epsilon

provides the allContents() operation at the EMC model

level. Given a model M, Listing 15. illustrates different ways

to retrieve Simulink model elements in EOL.

1 var blocks = M!Block.all();
2 var lines = M!Line.all();
3 var ports = M!Port.all();
4 var sums = M!Sum.all();
5 var subsystems = M!SubSystem.all();
6 M.allContents ();

Listing 15 Retrieval of model elements

The all() operation (lines 1–3) triggers the execution

of the getAllOfKindFromModel(kind:String) method

from the SimulinkModel. At first, this method attempts to

find elements of either Block, Line, Port or Stateflow

kind. If the kind argument does not match any of those, as in

lines 4–5, then the SimulinkModel will attempt to find the

MATLAB subtype, e.g. SubSystem blocks or Stateflow.

State elements. In contrast, the use of the allContents()

in line 6 triggers the result aggregation of collections by kind,

i.e. Block, Port, Line, and Stateflow elements.

Line 1 in Listing 16 reminds the reader how elements of

type Port, Block or Line can be collected in MATLAB, while

line 2 shows how this function is adapted to collect elements

by their subtype. The SimulinkModel class populates and

submits the appropriate MATLAB functions for the element

kinds (e.g. Block) or types (e.g. Sum) to be collected and then

stores the results in lazy collection objects which extend the

AbstractSimulinkCollection class.

1 find_system(model ,'type','Port')
2 find_system(model ,'blockType ','Sum')

Listing 16 Retrieval of Simulink elements in MATLAB

Stateflow elements are collected using the MATLAB func-

tions in Listing 17 which act on the model handle. All

Stateflow objects can be retrieved by passing the Stateflow

.Object as isa parameter but subtypes (e.g. Stateflow.

State) can also be passed instead. The approach to collect

these from Epsilon is shown in Listing 18.

1 model.find('-isa','Stateflow.Object ');
2 model.find('-isa','Stateflow.State');

Listing 17 Retrieval of Stateflow elements in MATLAB

1 M!Stateflow.all();
2 M!`Stateflow.State`.all();

Listing 18 Retrieval of Stateflow elements in EOL

Element Methods The Simulink EMC adds convenience

methods to its model and model elements, such as the one for

linking blocks in Listing 7. Other methods are also available,

such as getType(), getParent() and getChildren().

Nevertheless, MATLAB provides many more functions for

its Simulink and Stateflow model elements that would be

challenging to individually replicate in the EMC driver. To

deal with this, when an unknown method in EOL is called on

the model or its elements the following strategy is applied.

Many MATLAB functions for Simulink model and model

elements have a common structure (Listing 19) which takes

the model element as first argument. At the same time, model

element operations in EOL are executed as instance methods

and have the form shown in Listing 20.

method_name(element ,arg0 ,..., argN)

Listing 19 Matlab function structure

element.methodName(arg0 ,..., argN);

Listing 20 EOL method structure

To execute non-hard-coded MATLAB functions, the

Simulink driver dynamically translates the method as a MAT-

LAB command and submits it to the MATLAB engine

for evaluation. The SimulinkOperatorContributor class

specifies this behaviour. As an example, consider the EOL

statements in Listing 21 which would be translated to the

corresponding MATLAB functions in Listing 22.

1 subsys.find_mdlrefs ();
2 subsys.find_mdlrefs('AllLevels ',true);

Listing 21 Invocation of MATLAB functions as EOL methods
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1 find_mdlrefs(subsys)
2 find_mdlrefs(subsys ,'AllLevels ',true)

Listing 22 Sample MATLAB functions that act on Simulink elements

MATLAB operations acting on Stateflow elements com-

monly8 share the same syntax as EOL, except that operations

with no arguments do not require brackets in MATLAB.

Through the SimulinkOperatorContributor class, the

Simulink EMC driver can change the translation of these

functions depending on the model element kind they act

upon.

3.1.2 Collection query optimisation

The Simulink driver returns lazy collections of model ele-

ments when retrieving elements by type or kind. This

capability was already presented in [38]. However, perform-

ing collection and selection operations on these collections

can become computationally expensive as these collections

grow in size because they are performed sequentially by

default. Taking advantage of some of the MATLAB functions

which can perform bulk operations much more efficiently, in

this work we use them on collections of Simulink or Stateflow

model elements when select or collect operations involve

property checks on their members.

A collect operation works on a collection and consists in

evaluating an expression on each member of the collection

to return a new collection with the evaluation results. For

example, the EOL statement from Listing 23 starts on a col-

lection of all Block elements in the model and returns a new

collection with all the names of these elements.

Block.all().collect(b|b.Name);

Listing 23 EOL collection of Simulink block names

A select operation also works on collections and filters the

collection leaving only the elements that satisfy a given con-

dition. For example, the EOL statement from Listing 24 starts

from a collection of elements of Inport type and returns a copy

of the collection with only the elements named Temperature

.

Inport.all()
.select(i|i.Name=="Temperature");

Listing 24 EOL selection of Simulink inport blocks

Lazy collections of Simulink or Stateflow model elements

work by storing the array of model element identifiers (han-

dles) and only constructing the appropriate wrapper (e.g.

SimulinkBlock, StateflowBlock) when acting on the ele-

ments of the collection. For example, when Block.all()

is invoked in Epsilon, the collection of blocks returned by

the appropriate MATLAB function is an array of Simulink

8 The only method that does not follow this structure is provided by the

driver.

handles (doubles). There are operations we can compute on

this array without having to resolve them into their corre-

sponding SimulinkBlock wrapper instance. For example,

we can get the number of blocks on the collection by getting

the size from the array of Simulink handles. However, when

select or collect operations are invoked on a lazy collection,

their argument expressions are likely to involve interactions

with properties from elements in the collection. As such, the

lazy collections have to iterate over their elements, instanti-

ate them in their appropriate wrapper class and evaluate their

expressions.

In this paper, we have extended the implementation of the

lazy collections to support the invocation of select and col-

lect operations without having to instantiate wrapper classes

for all its elements. To achieve this, the lazy collection first

checks whether the operator’s expression can be optimised

(i.e. has a specific form) and if so then the collection builds

a MATLAB function that can use the array of Simulink han-

dles. Currently, we optimise only those operations whose

expressions can be translated into a valid bulk MATLAB

statement.

For collect operators, we currently support simple prop-

erty navigation expressions such as Listing 23. The MAT-

LAB functions in Listing 25 are used to collect properties

from collections of Simulink (line 1) or Stateflow (line 2)

model elements. These functions take as first argument the

array of element handles and replace the '?' placeholder

with the property name to be retrieved.

simulink=get_param(handles , '?')
stateflow=get(handles ,'?')

Listing 25 MATLAB Simulink and Stateflow collection operations

The Epsilon operator sortBy reuses this implementation

to sort the elements on the collection after they have been

collected in bulk.

The select operator optimisation for collections of Simu-

link model elements uses the MATLAB function in Listing 26

to perform the bulk queries. This function replaces the ques-

tion mark placeholders with property-value pairs that all

elements in the collection must match. When more than one

property-value pair is used the function performs the logi-

cal AND operation. As such, optimised select operations in

Epsilon only support expressions which involve logical AND

expressions that, as in the collect case, involve simple prop-

erty checks. Select operations that do not match this criteria

fall back to the default sequential evaluation.

simulink=find_system(handles ,'?','?')

Listing 26 Simulink element selection MATLAB function

An example of a supported EOL query on a collection

of Simulink model elements is shown in Listing 27. The

corresponding MATLAB function submitted to the engine
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is shown in Listing 28, where all refers to a collection of

Simulink element handles.

1 Gain.all().select(g|(g.Gain ==2) and
(g.Name=='Gain'))

Listing 27 EOL selection of Simulink gain blocks

1 find_system(all ,'Gain',2,'Name','Gain')

Listing 28 MATLAB selection of Simulink gain blocks

The select operator for collections of Stateflow elements

delegates to the MATLAB function in Listing 29. The ques-

tion mark placeholders in this function can be replaced with

property-value pairs to be matched from the elements in

the collection. This MATLAB function supports more fine-

grained queries than the find\_system MATLAB function.

For example, it supports multiple logical operators (i.e. AND,

OR, XOR and NOT) to join property-value pairs and also

supports regular expressions for property values.

stateflow=handles.find('?','?')

Listing 29 Stateflow element selection MATLAB function

Listing 30 is an example of an EOL select operation that

can be performed on collections of Stateflow elements. List-

ing 31 shows the MATLAB function that is constructed and

submitted to the MATLAB engine, where all represents a

collection of Stateflow handles.

1 `Stateflow.State`.all().select(s|
(s.Name.startsWith('S')) and
(s.IsExplicitlyCommented ==0) or
not (s.IsImplicitlyCommented ==0)))

Listing 30 EOL selection of Stateflow states

1 all.find('-regexp ','Name','^S','-and',
'IsExplicitlyCommented ',0,'-or',
'-not','IsImplicitlyCommented ' ,0)

Listing 31 MATLAB selection of Stateflow states

The select operator is reused by other Epsilon operators

such as: selectOne, find, findOne, reject, rejectOne, exists and

forAll.

3.2 Simulink Dictionary EMC

This driver manages Simulink Data Dictionary as models. A

simplified view of its architecture is presented in Group 4 of

Fig. 5.

In Sect. 3.1.1, we discussed the process by which EOL

statements are translated into and back-from MATLAB

functions using facilities provided by the Epsilon Model

Connectivity layer. Since the process to manage dictionary

models is very similar, in this section we focus on the MAT-

LAB functions involved in the translation process rather than

the process itself.

Model Before executing an Epsilon program, the Dictionary

EMC invokes the appropriate MATLAB function from List-

ing 32 to either create (line1) a new dictionary model file

(*.sldd) or open one (line 2). After the execution of an Epsilon

program and depending on the runtime model preferences,

changes in the dictionary may be saved or discarded invok-

ing the MATLAB functions from lines 3 or 4 in Listing 32,

respectively. Only if specified at runtime, the dictionary may

be closed after an execution invoking the MATLAB close

function (line 5).

1 dict=Simulink.data.dictionary.create(

file)

2 dict=Simulink.data.dictionary.open(file)

3 saveChanges(dict)

4 discardChanges(dict)

5 close(dict)

Listing 32 MATLAB Dictionary model operations.

Model Elements As discussed in Sect. 2, the root instance

of a data dictionary is the dictionary itself. In the Dictio-

nary EMC, this instance is represented and managed by

the SimulinkDictionaryModel class. The root element

contains four specific sections by default: Design Data, Con-

figurations, EmbeddedCoder and Other Data. Sections are

represented by the SimulinkSection class in the Dictio-

nary driver. Each section contains a set of entry elements

which represent a key-value pair but contain more informa-

tion such as their last modification date and the author of the

changes. In the Dictionary EMC, the SimulinkEntry class

wraps these entries.

Retrieve Elements MATLAB provides several functions to

retrieve either sections or entries from a dictionary. The first

line in Listing 33 shows how to retrieve a section from the

dictionary by specifying the name of the section, in this case

“Design Data”. The second line illustrates how the entries of

the section can be collected.

1 s = getSection(dict ,'Design Data');
2 entries = find(s)

Listing 33 Section and entry retrieval in MATLAB

When an Epsilon program asks for all elements of type

Dictionary (line 1 from Listing 34) the Dictionary EMC

returns the model9 for convenience. For collecting the sec-

tions of a dictionary model (line 2), the Dictionary EMC

invokes the getSectionMATLAB function for the four sec-

tions of the dictionary and wraps each section identifier in

an instance of the SimulinkSection class. As there is no

method to retrieve all entries from a dictionary (line 3) in

MATLAB, the Dictionary EMC invokes the find MATLAB

function on each of the sections of the dictionary. Each of the

entry identifiers returned is wrapped in the SimulinkEntry

class of the driver. However, when the Epsilon program calls

9 In the script, the model is identified at runtime as D.
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for entries of a specific section—such as in lines 4–6, the

find function is only invoked once for the specific section.

At the moment, this driver is unable to handle entries from

the EmbedderCoder section.

1 D!Dictionary.all();
2 D!Section.all();
3 D!Entry.all();
4 D!DesignDataEntry.all();
5 D!OtherDataEntry.all();
6 D!ConfigurationEntry.all();

Listing 34 Dictionary model element collection in EOL

Create Elements There are four sections in a dictionary and

we are not aware of a way to create new ones through the

MATLAB API. For an entry to be instantiated, it must specify

the section that will contain it, the name of the entry and its

value as required by the addEntry MATLAB function from

Listing 35.

1 entry=addEntry(section , Name , value)

Listing 35 MATLAB function to create entries

The Dictionary EMC allows the instantiation delay for

entries with a specific section but no name or value, as shown

in line 1 from Listing 36. This delayed instantiation sav-

ing its name and value in memory when provided and only

submits the MATLAB instantiation command to the MAT-

LAB engine when both are assigned. A delayed-instantiation

approach is also applied to entries with no section.

1 entry = new D!DesignDataEntry;
2 entry.Name = "My Entry";
3 entry.Value = "My Value";

Listing 36 Delayed instantiation of entries in EOL

Delete Elements Deletion is only applicable to dictionary

entries as there is no MATLAB function to delete dictionaries

or sections. Listing 37 shows the corresponding MATLAB

function to achieve this.

1 deleteEntry(entry)

Listing 37 MATLAB function to delete entry

Read and Update Element Properties To read and write

model element properties in MATLAB, dictionary, section

and entry elements use the dot notation. In Listing 38, line 1

shows the retrieval of a property from the dictionary and line

2 shows how to set the name of an entry.

1 number = dict.NumberOfEntries
2 entry.Name = 'NewName '

Listing 38 MATLAB dictionary element property getter and setter

There is an exception to the dot notation and it occurs when

trying to set the value property of entry objects. Getting and

setting this property requires the use of special getter and

setter methods as in Listing 39.

1 setValue(entry ,value)
2 getValue(entry)

Listing 39 MATLB entry value getter and setter

Methods All model elements, i.e. dictionary, entry and sec-

tion, share the same syntax to invoke MATLAB functions on

themselves. This notation (Listing 40) is the function name

followed by the element and an arbitrary number of subse-

quent parameters. The Dictionary EMC is responsible for

translating methods in Epsilon programs to the appropriate

syntax when these act on dictionary-related model elements.

1 method_name(element , arg0 ,..., argN)

Listing 40 MATLAB dictionary method structure

3.3 Simulink Requirements EMC

This driver manages Simulink requirements as models. A

simplified view of this driver’s architecture is presented in

Group 5 of Fig. 5. As in Sect. 3.2, this section focuses on the

MATLAB functions and model elements that are involved

when executing CRUD operations on model elements man-

aged by the Requirements EMC.

Model When an Epsilon program is about to execute, the

Requirements EMC invokes the appropriate MATLAB func-

tion from Listing 41 to either create (line 1) a new requirement

definition file (*.slreqx) or open an existing one (line 2). Both

these functions return a handle or identifier of the Require-

ment Set (rs), the root model element. When an Epsilon

program has finished its execution, the Requirement EMC

may save the requirement set (line 3) or close it (line 4) if

specified in the configuration. This corresponds to Epsilon’s

model disposal process.

1 rs = slreq.new(file)
2 rs = slreq.load(file)
3 save(rs);
4 close(rs);

Listing 41 Requirement set MATLAB functions

Tightly related with the requirement management pro-

cess is the ability to process traceability links. MATLAB

persists link information in as many link files (*.slmx)

as there are models involved in the links. For example,

each Simulink model (mySimulink.slx) with link traces

will have a co-located link file (mySimulink.slmx) with

the same name as the Simulink model. Each of these

files contains all the links in which the non-link model

artefact is the destination. The same applies to dictio-

naries and requirements. While MATLAB provides meth-

ods to load link files, when their corresponding model

is loaded or opened, the set of links contained in the

file is loaded in memory as well. Closing and saving
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one of these models has the same effect on its link

set.

Model Elements The root instance of a requirement defini-

tion file is the RequirementSet. In the Requirements EMC,

a requirement set is represented by the RequirementModel

class. A requirement set contains requirement, justification

and reference elements. These are handled in the driver with

the SimulinkRequirement, SimulinkJustification and

the SimulinkReference classes.

In MATLAB, the root instance of any link file is a LinkSet

which contains all the links associated to a model arte-

fact (e.g. a Simulink model, a requirement set or a data

dictionary). As opening or loading model artefacts automat-

ically load their link files, the Requirement driver associates

all available link sets in the form of SimulinkLinkSet

objects to a RequirementModel. Similarly, all the links

contained by the loaded link files are managed by a

RequirementModel in the form of SimulinkLink entities.

However, the models of all Simulink-based drivers have a

getLinks() method which returns the links associated to

themselves.

Retrieve Elements To collect model elements from require-

ment definition files, MATLAB provides the functions in

Listing 42. Lines 1–3 contain functions which collect ele-

ments by type (i.e. requirement, reference and justification)

from the requirement set. To get elements by their subtype,

the find MATLAB function receives the ReqType argument

shown in lines 4–5 which can be used to retrieve require-

ment and reference subtypes. Justifications do not have a

subtype.

1 find(rs ,'Type','Requirement ')

2 find(rs ,'Type','Reference ')

3 find(rs ,'Type','Justification ')

4 find(rs ,'Type','Requirement ','ReqType ',

'Functional ')

5 find(rs ,'Type','Reference ',

'ReqType ','Container ')

Listing 42 Requirement model elements retrieval in MATLAB

In an Epsilon program where a model R is managed by the

Requirements EMC, it is possible to collect the requirements

with the statement in line 1 from Listing 43. This invokes line

1 from the MATLAB functions in Listing 42 and the driver

builds a SimulinkRequirement instance from the returned

identifier. A similar procedure is followed for justifications

and references when the Epsilon program executes lines 2–

3. For collecting references and requirements of a specific

subtype, the Requirement EMC needs to know if the subtype

is for a requirement or a reference to pass the right value for

the Type parameter in the MATLAB functions above (lines

4–5). This is why the driver requires prepending the prefix

RQ\_ or RF\_ to the subtype (lines 4–5) to detect whether

it corresponds to a requirement or a reference, respectively.

1 R!Requirement.all();
2 R!Justification.all();
3 R!Reference.all();
4 R!RQ_Functional.all();
5 R!RF_Container.all();

Listing 43 Requirement model element retrieval in EOL

Traceability links are managed differently in MATLAB

and require the use of the slreq.find MATLAB function.

The first two lines in Listing 44 show how to collect all loaded

link sets or links from the artefacts loaded in the workspace.

Furthermore, it is possible to retrieve links of a specific type

by specifying the subtype as an extra parameter (line 3).

1 slreq.find('Type','LinkSet ')
2 slreq.find('Type','Link')
3 slreq.find('Type','Link','LinkType '

,'?')

Listing 44 Link retrieval in MATLAB

Using the Requirements EMC, it is possible to retrieve the

link sets and link elements through the use of the first two

EOL statements in Listing 45. Similarly, the subtypes of links

can be retrieved directly by prepending the L\_ prefix to the

subtype of the link.

1 R!LinkSet.all();
2 R!Link.all();
3 R!L_Implement.all();

Listing 45 Link retrieval in EOL

Create Elements MATLAB provides different approaches

to instantiation for the different model elements used in

requirement management. Line 1 in Listing 46 shows how

to instantiate a requirement in the loaded requirement set

(rs) by invoking the add MATLAB function. To create jus-

tifications as illustrated in line 2, MATLAB provides the

addJustification function which takes the requirement

set as input. Similarly, to create a reference the add function

requires the parameters Artefact and Domain to distinguish

a reference from a requirement.

1 req = add(rs)
2 jus = addJustification(rs);
3 ref = add(rs ,'Artifact ',FileName ,

'Domain',domain);

Listing 46 Requirement model element creation in MATLAB

Following the same logic as other Simulink-based drivers

described before, to create instances of type requirement,

justification and reference in Epsilon programs it suffices to

invoke statements such as those in lines 1–3 in Listing 47. The

Requirements EMC driver allows the direct instantiation of

requirement subtypes (as in line 4) because the add MAT-

LAB function can also receive additional key-value pairs

to configure the requirement at instantiation. Instantiation

with subtype is currently not supported for references in the

Requirements driver.
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1 new R!Requirement;
2 new R!Justification;
3 new R!Reference;
4 new R!RQ_Functional;

Listing 47 Requirement model element creation in EOL

In MATLAB, links require source and destination arte-

facts to be instantiated. The Requirements EMC allows the

instantiation of the SimulinkLink class with no source and

destination artefacts as long as these are provided later. At that

point, the class prepares the MATLAB function in Listing 48

with the appropriate values and submits it for evaluation to

MATLAB’s engine. Direct instantiation of link subtypes is

not currently supported by the driver, but the subtype can be

assigned as a property.

1 link = slreq.createLink(src ,dest)

Listing 48 Link creation in MATLAB

Delete Elements The remove MATLAB function is used to

delete link, reference, justification and requirement elements.

The Requirements EMC submits the MATLAB function in

Listing 49 when a wrapper instance for a link, justification,

reference or requirement is to be deleted in an Epsilon pro-

gram.

1 remove(element);

Listing 49 Requireement model element deletion in MATLAB

Read and Update Element properties Reading and writing

properties of requirement, reference and justification model

elements can be achieved by invoking the MATLAB func-

tions in Listing 50 with the appropriate property key and

values. In contrast, to update or modify properties of the

requirement set (i.e. the model), link sets and links, MAT-

LAB offers a more direct approach where the values are read

or modified using a dot notation as in Listing 51.

1 getAttribute(element ,'Key')
2 setAttribute(element ,'Key','Value')

Listing 50 MATLAB requirement element property getter and setter

1 element.Keyword
2 element.Keyword = value

Listing 51 MATLAB property getter and setter for links, requirement

sets and link sets

Methods The syntax of functions acting on requirement and

link model elements follow the pattern in Listing 52. As done

in other Simulink-based drivers, the Requirements EMC pro-

vides an operation contributor which translates method calls

on model element instances in EOL to the appropriate MAT-

LAB syntax. For example, the EOL methods in Listing 53.

are submitted for execution to the MATLAB engine as in

Listing 54.

1 methodName(element , arg0 ,..., argN)

Listing 52 MATLAB requirement element method structure

Fig. 6 MATLAB Project Structure

1 req.getVerificationStatus("self");
2 req.promote ();

Listing 53 Sample requirement method invocations in EOL

1 getVerificationStatus(req ,'self')
2 promote(req)

Listing 54 Equivalent MATLAB functions forListing 53

4 Multi-model example

To showcase how we extract knowledge from Simulink

related models with the drivers presented in the previous sec-

tion, we now introduce a running example that works on a

sample MATLAB project [27] which represents a cruise con-

trol system. This project is composed of several files out of

which there are two Simulink models, two requirement set

files and three data dictionaries. Each of these files has a cor-

responding traceability link file as illustrated in Fig. 6. Their

interdependencies are illustrated in Fig. 7. In this example

we will only be working with the crs\_controller.slx

Simulink model (Fig. 8), the crs\_controllerdic.sldd

dictionary (Fig. 9) and with the crs\_req\_func\_spec.

slreqx requirement set (Fig. 10).

Our aim with this running example is to analyse this

project, in particular regarding traceability well-formedness

and unused/unlinked elements. As such, we now present

three analysis scenarios which involve different combina-

tions of Simulink, dictionary and requirement models. The

first scenario consists in identifying Simulink blocks with no

traceability links. The second scenario consists in counting

how many requirements are barren and orphan. The third sce-

nario checks whether Simulink block configuration variables

are present in a dictionary as entries.
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Fig. 7 Model dependencies

Fig. 8 Simulink model: crs_controller.slx

Simulink elements with no traceability Listing 55 shows an

EOL program that can be used to identify the Simulink blocks

which have not been associated with traceability links. When

this program is evaluated against a Simulink model, the EOL

execution engine retrieves all Simulink blocks in the model.

The engine then iterates over these elements to evaluate the

MATLAB function slreq.outLinks which returns a list

with their outgoing links. The select operator ensures that

only those elements with no links for a block are stored in

the unlinked variable. Because in this case no block on

the model has incoming links, the program only needs to

check for outgoing links to determine that a block has no

traceability information. Lines 2 and 3 proceed to compute

Fig. 9 Dictionary: crs_controllerdic.sldd

Fig. 10 Requirement set: crs_req_func_spec.slreqx

the path location of the blocks with no links and the number

of elements found with no traceability, respectively.
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1 var unlinked = Block.all().select(b|
b.`slreq.outLinks`() == null);

2 var paths =
unlinked.collect(b|b.Path);

3 var size = unlinked.size();

Listing 55 Size and paths of Simulink elements with no trceability in

EOL

In this program, the execution of the select operator is

not optimised (see Sect. 3.1.2) as it involves a method invo-

cation and not a property check. In contrast, the execution

of the collector is indeed optimised. The EOL method `

slreq.outLinks`() is resolved at runtime and submitted

to MATLAB as slreq.outLinks(handle).

We observe that 390 blocks out of 454 have no traceability

information in the Simulink model crs\_controller.slx.

Barren and orphan requirements Requirement analysis com-

monly involves the identification of barren and orphan

requirements. The definition of barren or orphan varies across

projects. In this example, we define a barren requirement as

a top requirement with no outgoing links while an orphan

as a leaf requirement with no incoming links. One way of

identifying a top requirement is to check if it has no parent

requirement while to identify a leaf requirement we check if it

has no children. In this example, we use a different approach

in which a top requirement is one of type container while a

leaf requirement is of type functional.

Listing 56 shows an EOL program for computing bar-

ren and orphan requirements. This EOL program is executed

on a Simulink requirement model. Line 1 computes the bar-

ren requirements by collecting the requirements of container

type and then filtering those which have no outgoing links.

Line 2 computes the orphan requirements by collecting all

the functional requirements and then filtering those with no

incoming links. The direct lookup of requirements of type

container or functional is a facility provided by the Simulink

requirements driver.

1 var barren = RQ_Container.all()

.select(r|r.`slreq.outLinks`()==null);

2 var orphan = RQ_Functional.all()

.select(r|r.`slreq.inLinks`()==null);

Listing 56 Barren and Orphan requirement queries in EOL

In this particular case, none of the select operators are

optimisable because they do not check any property value.

The execution of this analysis on the requirement set pro-

vided by crs\_req\_func\_spec.slreqx indicates that all

requirements of type container were barren. In contrast, only

16 out of the 66 functional requirements were orphans.

No missing entry definitions When using dictionary entries

to configure blocks on a Simulink model, a common anal-

ysis involves identifying blocks that specify configuration

variables which point to non-existing dictionary entries.

In the Simulink model crs\_controller, there are

blocks which are configured with entry values from the

dictionary crs\_controllerdict. This is the case of satu-

ration blocks which have their upper and lower limit values

set-up from this dictionary. Similarly, 5 out of 13 blocks of

type constant specify their value from an entry in the dictio-

nary.

Listing 57. shows an EOL program for identifying blocks

with configuration values pointing to non-existing entries. In

this program, only the select operation of line 2 is optimised

as it performs a property check on a collection of Simulink

model elements. This program must be executed against the

dictionary model (D) and the Simulink model (S). The first

line of this program collects all the entries from the dictionary

model. To check whether the constant blocks are referencing

entries that do exist, line 2 starts by retrieving all blocks

of type constant and then filters those which will inherit its

value from a dictionary in the select operator. The last part

of this query rejects all those elements which have no match

in the list of entries from line 1. Saturation blocks follow a

similar approach to identify the blocks which are using non-

existent configuration values. Line 3 presents the query for

these blocks which starts by retrieving all elements of type

Saturate. Assuming that by design we expect blocks of this

type to use values from a dictionary, the next step consists

in checking whether the upper and lower limit values are

referencing entry names present in the dictionary.

1 var entries = D!Entry.all();

2 S!Constant.all()

.select(c|c.OutDataTypeStr ==

"Inherit: Inherit via back

propagation")

.reject(c|entries.exists(e|e.Name ==

c.Value));

3 S!Saturate.all().reject(s|

entries.exists(e| e.Name ==

s.UpperLimit) and

entries.exists(e|e.Name ==

s.LowerLimit));

Listing 57 No missing entry definitions in EOL

The execution of this program on the Simulink model and

data dictionary from the running example confirms that there

are no blocks using configuration values with no matching

dictionary entries

With the use cases above, we have demonstrated how the

drivers can be used to perform analysis with information

from the Simulink-based models. We have highlighted the

situations in which collection optimisations can be invoked

and demonstrated that multiple models can be run simulta-

neously.
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5 Evaluation

This section presents a two-part evaluation of the Simulink–

Epsilon drivers. The first part (Sect. 5.1) consists of an

experiment that compares the performance of managing

Simulink models directly via MATLAB functions or build-

ing an intermediate EMF representation with an upfront

model-to-model transformation. This experiment was first

published in previous work [38]. The second part of the eval-

uation is presented in Sect. 5.2 and compares the performance

of collection operators executed on collection of Simulink

and Stateflow model elements using the query optimisations

described in Sect. 3.1.2.

5.1 Experiment on Simulinkmodels

This section evaluates the execution-time performance of two

approaches to bridge MATLAB/Simulink models in a model

management framework. The first approach consists in using

the Simulink model driver to manage models in the Epsilon

model management framework. The second approach uses

Massif facilities to transform Simulink models into an EMF-

compatible representation. Since Epsilon provides an EMF

driver able to read and write arbitrary EMF-based models,

we use it to manage those produced by Massif in the second

approach. In the following, we refer to the first approach

as live—since it directly manipulates the actual Simulink

model, and to the second one as Massif/EMF—as it uses the

Massif’s import facilities to produce their EMF-compatible

representation.

Epsilon supports model element caching through an

abstraction that both the Simulink model driver and the EMF

driver reuse. We evaluate both approaches with these facil-

ities enabled and disabled. Note that at the time of this

experiment, the query optimisations on Simulink and State-

flow elements had not been implemented.

5.1.1 Experiment set-up

In order to evaluate the model management of Simulink mod-

els through both approaches, we compare the performance

of their model validation process applied on large Simulink

models. We have selected a model validation process as a

representative model management operation although other

operations such as model-to-model or model-to-text trans-

formations could have been used instead.

Validation process This process is based on the execution

of EVL invariants that validate structural properties of the

models. EVL has a dedicated engine that consumes an EVL

validation script and any number of models provided by

Epsilon drivers of arbitrary modelling technology at runtime.

An example of an EVL script is shown in Listing 58. This

script starts by specifying the context in which the invariants

Fig. 11 Execution process for model management programs, in this

case, a model validation with EVL

are to be executed, in this case all elements of kind Block.

Invariants may be of type constraint or critique depending on

the severity level of a failed compliance. Line 2 of the script

shows the declaration of an invariant of type critique with

name BlockNameIsLowerCase. Invariants declare their val-

idation check as an EOL statement, which in this case (line 3)

verifies that the name of the element is lowercase. The self

reserved word is a reference to the current model element the

invariant is acting on. If a given block fails the check state-

ment, then fix elements become available if present in the

invariant declaration. In the script, the fix in line 4 updates

the element name to lowercase as specified in the do envi-

ronment (line 7). The fix title (line 5) is just informative.

1 context Block {
2 critique BlockNameIsLowerCase {
3 check : self.Name == self.Name.

toLowerCase ()
4 fix {
5 title : "Name to lower case"
6 do {
7 self.Name = self.Name.

toLowerCase ();
8 }
9 }

10 }
11 }

Listing 58 Sample EVL script with invariant 9 from Table 1

Before the EVL engine can execute the model validations,

the models must be loaded. When the EMF driver is used to

process an EMF model, the model loading stage consists

in the registration of meta-model packages and creating an

in-memory representation of the model. When the Simulink

model driver is used to process a Simulink model file, the

model loading stage consists in establishing the connection

with the MATLAB engine and requesting the model to be

loaded there.

In the following, we consider the model loading and val-

idation execution as two different stages of the validation

process. The overall validation process for each approach is

captured in Fig. 11 where loading and validation are rep-

resented by stages 1 and 2, respectively. In the Massif/EMF
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approach, we consider the transformation of the model (from

Simulink to EMF) as an additional stage of the validation pro-

cess (Stage 0 in Fig. 11). We refer to it as the import stage

after the Massif facilities that enable this transformation.

The implementation of the Epsilon drivers and the struc-

ture of the meta-model used in the EMF driver affect the

way the model is navigated in EOL-based programs. Con-

sequently, the EVL validation script cannot be reused as-is

across approaches. To illustrate this, consider an EOL pro-

gram that retrieves the PortDimension property of a block

model element. When executed on a model managed with the

Simulink model driver, the EOL statement from Listing 59 is

able to retrieve this property from an element of type block.

block.PortDimension;

Listing 59 Port dimension block property in EOL with Simulink Model

Driver

In contrast, when using the EMF driver with the Massif meta-

model, the statement needs to be adapted (as in Listing 60)

because the Block class in the meta-model does not have

a PortDimension attribute but instead has a parameters

attribute containing a set of Property elements, one of them

with the PortDimension identifier.

block.parameters.selectOne(p|p.name==
"PortDimension").value;

Listing 60 Port dimension block property in EOL with EMF/Massif

In this experiment, we measure the execution-time perfor-

mance of the different stages of the validation process, i.e.

(0) Simulink-to-EMF transformation, (1) model loading and

(2) model validation. Notice that: Stage 0 is only applicable

to the Massif/EMF approach; Stage 1 is applicable to both

approaches; and Stage 2 is applicable to each approach with

both the Epsilon caching facilities enabled and disabled.

Each stage of the validation process was executed 20 times

with 5 warm-up iterations for each model. We used the Java

Microbenchmark Harness (JMH) [33] tool to run these exper-

iments on a quad core Intel Core i5-7200U CPU @ 2.5 GHz

with 16GB of RAM. The Java Virtual Machine (64-Bit) was

provided with up to 10GB of memory and ran Java 8 on

JDK 1.8.0_152. All EMF-compatible models were gener-

ated using the shallow mode of the Massif import facilities

which does not process external model references. The val-

idation scripts and the Simulink models that were used in

our experiments can be found in the examples of the Epsilon

project [10].

Validation scripts Equivalent EVL scripts are used to evalu-

ate each approach. Each script consists of 9 invariants (see

Table 1) intended to exercise the model (e.g. using different

operations or navigation strategies) through typical query

language features [41] performed on signature model ele-

ment types [2]. The scripts are equivalent to the best of our

Table 2 Number of elements per type by model size

Size Block Inport Outport Goto From SubSys.

1.112 8785 1373 1177 69 103 717

1.131 8628 1372 1167 62 93 740

1.133 8645 1372 1167 62 93 740

1.134 9536 1489 1269 38 57 861

1.135 8645 1372 1167 62 93 740

1.138 8651 1376 1177 62 93 745

1.141 8634 1374 1156 67 99 714

knowledge as they are using (a) equivalent EVL contexts

which may vary in naming across approaches (e.g. Inport

vs. InPortBlock), (b) equivalent model element navigations

(such as the PortDimension property discussed above), and

(c) equivalent way in which the constraint checks and guards

are prescribed. In Table 1 the Kind column refers to type

of query check inspired on well-formedness constraint cat-

egories used by the Train Benchmark [41], and the Context

column refers to the EVL context, that is, the model element

types on which the invariant is executed. Stateflow blocks

were not included in the validation scripts as Massif does not

support them.

The validation scripts for the live approaches used 96 lines

of code (LOC) and that for the Massif/EMF approach used

110 LOC. The body of the invariants was written in the same

number of lines for both approaches (89 LOC) and the extra

lines were related to helper operations.

Model selection We used BigQuery [13] to find in GitHub

publicly available Simulink files (*.slx) larger than 1 MB.10

Out of the 70 models found, we selected the first 7 models

that could be translated into EMF in under 2 h using Mas-

sif’s import facilities. Table 2 shows the number of model

elements of each type used in the validation. The number

of block elements on the models ranged from 8628 to 9536.

Due to their inaccessibility, we did not process any libraries

in any approach.

5.1.2 Results

All invariants were executed in the same number of model

elements for all approaches. Similarly, the results of the val-

idation reported the same number of failed constraints on all

approaches. The file size of the EMF models produced by

the import stage are displayed in Fig. 12, plotted against the

size of the original MATLAB file.

10 We had access to one industry model that was 1.4 MB in size but for

the experiment we had to find others in public repositories. To increase

our chances to find complex models and to facilitate the collection

procedure, we looked for models persisted in a file larger than 1 MB in

size.
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Table 1 Evaluated invariants

# Kind Context Description

1 PropertyCheck Goto TagVisibility property is local

2 NavigationAndFilter From There is a Goto block in scope with the name of the GotoTag property

3 PropertyCheck Inport/InPortBlock PortDimensions property should not be inherited (−1)

4 PropertyCheck Outport/OutPortBlock Description property is not null or empty

5 NavigationAndFilter SubSystem ForegroundColor property is green for all connected Inport blocks

6 TransitiveClosure SubSystem Subsystem is no more than three levels deep

7 VertexConnectivity SubSystem All outports are connected

8 LoopAbsence SubSystem No feedback. Outports do not connect to the same subsystem

9 PropertyCheck Block Block’s name is in lower case

Fig. 12 Size of the imported EMF models against the original MAT-

LAB files

Figure 13 shows the execution time of each stage of the

model validation process (in seconds and logarithmic scale)

against the size of the MATLAB Simulink model files (in

MB). Sub-figure (a) displays the distribution of Massif’s

import task (Stage 0) which transforms Simulink models

into an EMF-compatible model. Similarly, Sub-figure (b) dis-

plays the time distribution of the model loading task (Stage

1), required by both the EMF and Simulink model drivers.

Sub-figure (c) displays the time distribution of the model val-

idation task (Stage 2) for both approaches with and without

caching.

Figure 13 shows that most of the performance overhead

of the Massif/EMF approach happens at the import stage

while most of the Simulink model driver overhead happens

at the validation stage. The import stage of the Massif/EMF

approach took between 4486 and 2911s to finish. The Mas-

sif/EMF approach achieved the loading stage in 2.95–3.63 s,

while the Simulink model driver achieved it in 15.5–16.5 s.

The live approach was approximately 1 order of magnitude

slower at the loading stage. In the validation stage, the Mas-

sif/EMF approach took between 22.4–28.9 s, while it took

the Simulink model driver 1877–2098 s to complete. With

caching facilities enabled in both drivers, the Massif/EMF

approach took 8.10–10.2 s, while the Simulink model driver

took 816–882 s to finish. With and without caching, the live

approach was approximately 2 orders of magnitude slower

at the validation stage. The caching facilities improved the

performance in the validation stage by 54.4–72.0% in the

Massif/EMF approach and 55.3–58.0% in the live approach.

Figure 14 shows the whole validation process execution-

time (in minutes) calculated using the sum of averages of each

stage for each approach with and without caching. By com-

paring this overall process, we observe that the live approach

(a) (b) (c)

Fig. 13 Execution-time duration in log-scale against MATLAB/Simulink model file size per stage of the validation process
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Fig. 14 Total execution-time duration (log-scale) against MATLAB file

size. Note that Massif and Massif-Cached overlap.

improves the performance of the Massif/EMF approach by

taking 70.7–80.0% less time when caching is enabled and by

32.6–53.2% with no caching.

In Fig. 12, we observe that the size of the EMF model

produced by Massif is much larger than the original MAT-

LAB/Simulink (.slx) files. This is partly due to *.slx being

a compressed file format. As Table 2 shows, the size of the

MATLAB/Simulink file is not directly proportional to the

number of Block11 elements in the model. In contrast, the

size of the EMF model file seems to be related to the number

of block elements, which would explain the peak on the EMF

file size with the MATLAB/Simulink model with the largest

number of block elements.

5.1.3 Discussion

In this experiment, we focused on a program that only reads

large Simulink models. We intended to investigate the per-

formance of using of both approaches with large models. In

this particular subset of models, our experiment shows that

the overhead of the Massif/EMF approach lies on the upfront

model transformation, whereas for the Simulink EMC, it lies

in the complexity of the model management program. In con-

trast, the actual execution of the program with the EMF driver

works much faster than with the Simulink EMC driver. This

is partly due to the full model being loaded in memory and

potential internal optimisations of the mature EMF driver.

Intense querying is a scenario for which the EMF approach

is more suitable, as the communication with MATLAB is

expensive, and our experiment shows the clear advantage

that the EMF driver has over our Simulink implementa-

tion. However, our experiment also shows the non-negligible

impact that the importing stage has over the overall execution.

11 Inport, Outport, Goto, From and SubSystem are all sub-

types of Block.

Choosing one approach over the other is a matter of deter-

mining the size of the model, understanding the purpose of

the model managing program and being aware of constraints

such as performance or model coverage. For example, it is

likely that large models will incur in expensive import proce-

dures with Massif. Whether this is a sensible cost depends on

the number of times the import is to be executed, the avail-

able time, the model management framework to be used, i.e.

if it only supports EMF and the range of operations to be per-

formed (e.g. do they require Stateflow blocks?). To avoid the

cost of the import process on continuously evolving models,

a practitioner may choose to manually replicate modifica-

tions in the Simulink model in the already imported EMF

copy; however, this would be an error-prone activity.

With the same large models, our implementation avoids

the import/export procedures when the models are evolv-

ing, e.g. changing property values, adding new blocks or

removing blocks. Indeed, intense querying is not the best use

scenario for our driver as demonstrated by the experiment.

With the knowledge of the new query optimisations, the val-

idation scripts used in the experiment could be rewritten to

take advantage of these optimisations in order to reduce cost

of the validation stage.

In Section 5.2, we show how the driver can be used to

generate Simulink models. Further experimentation would

be needed to evaluate how the approaches cope with pro-

grams that not only read the models but also modify them.

Validation scripts in EVL can also feature fix constructs that

invoke EOL expressions on the elements that do not pass the

constraints. While we have not evaluated this, we can antic-

ipate that the validation step with fixes would require little

additional time for both the Simulink EMC driver and the

EMF driver. The difference would be that the overall valida-

tion process with Massif/EMF would require an additional

step to generate the modified Simulink model from the mod-

ified EMF which could potentially be just as expensive as its

import procedure.

5.1.4 Threats to validity

We selected a validation program as a representative model

management operation to compare both approaches. As indi-

cated in the Validation scripts paragraph, the invariants used

in the experiments were intended to exercise the models in

similar ways in both approaches by means, for example, of

interacting with the same types of elements and navigat-

ing properties in similar ways. As such, the invariants were

not intended to be representative of validations performed in

industry, although some were inspired by industrial cosmetic

checks. Validations performed in EVL can be seen as com-

plementary validations as Simulink models can go through

custom validation checks within MATLAB using its Model

Advisor tool.
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Our evaluation only tested the performance of a single

model management language (EVL). Performance results

may vary across other types of model management programs

and also for different EVL programs. Moreover, the valida-

tion script was limited to read-only operations.

The sample of models may not be significant but was

limited by the 2-hour cap imposed to the import stage. Our

experiments would benefit from more diverse models with a

broader range of sizes and more varied constraints.

There may be hidden differences in the implementation of

each driver (EMF vs Simulink) such as internal optimisations

which do not make them entirely comparable. However, for

the purpose of this experiment, both driver implementations

were considered black boxes.

Large and complex models can be built by referencing

multiple models persisted in small files. Our decision to use

large models allowed us to skip the model reference pro-

cessing by ensuring that a single model contained the most

model elements. Additional metadata other than model ele-

ments, such as images, can contribute to the model file size

without affecting its complexity. We have not measured the

impact of the meta-information in the file size, but this is

mitigated by indicating the number of model elements that

were present in each file.

5.2 Experiment on collection queries

We have designed an experiment that evaluates the perfor-

mance of the collection operator optimisations presented in

Sect. 3.1.2. The research question is whether these modifica-

tions improve the performance of select- and collect-based

operators when executed on collections of Simulink or State-

flow elements of different sizes. All resources required to

reproduce the experiment are available under the Epsilon

project [9].

5.2.1 Experiment set-up

This experiment includes the evaluation of EOL queries on

collections of Simulink and Stateflow model elements. We

execute each query on four models with a similar structure

but with different number of model elements that grow expo-

nentially. For each query and model, we observe how the use

of the query optimisations on collections affects the execu-

tion performance.

As we need to have control over the number of elements

of a given type on each model, we decided to generate the

test models. As such, the models share a similar structure but

have some variability which is described later in the paper.

While the generation script is not part of this evaluation, it

serves to demonstrate the write capabilities of the Simulink

model driver.

Model Generation Process

A boiler control system can be designed using an on/off

closed-loop control. Closed-loop control systems are very

common and they can be designed and simulated using the

Simulink environment. Furthermore, on/off controllers are

easy to model as state machines which can be designed using

MATLAB’s Stateflow environment. Since boiler systems can

contain both Simulink and Stateflow model elements, we use

them at the core of our model generation process.

The model generation process consists in producing a

number of contrived components with different set points12

all receiving the ambient temperature from a pulse genera-

tor and displaying their status in a scope. In order to scale

our experiment, each model has a different number of boilers

which grow exponentially (base 3) and the value of their set

point is spread out so that each has a different value within

their operational range. At the same time, each boiler has only

one pulse generator and scope. Four models were generated

in total.

Figure 15a illustrates the root level of the model where

all boilers receive as input the ambient temperature from a

pulse generator and display their operational state in a scope.

The set point of each boiler is represented by a block of

type constant with the temperature value. The internal struc-

ture of a boiler is illustrated in Fig. 15b. Each of them has

three input ports and an output port. The inport that receives

the set point is compared with the current ambient tempera-

ture using a block of type substract, whose output goes into

a Stateflow chart. The contents of a chart are illustrated in

Fig. 15c. The chart computes the logic to go from state ON

to state OFF and produces a signal that decides whether it

is required to turn on or off the boiler. The action which

results from the chart logic goes into a delay which repre-

sents the time taken for the real boiler to respond to the signal.

The delayed signal is displayed in the topmost scope and the

one which is used as feedback on the boiler subsystem and

chart.

Queries The list of EOL statements to be evaluated is pre-

sented in Listing 61 where line numbers are used as query

identifiers. These queries were designed to demonstrate both

the usefulness of retrieved information from the boiler model,

and the complexity supported by the query optimisations

on collections. Four of these statements are executed on

collections of Simulink elements, while the other four are

executed on collections of Stateflow elements. The queries

use EOL select and collect operators both in plain form

and derived form, e.g. exists, sortBy, reject, forAll. While

most of the queries use single operators that evaluate one-

argument predicates, Query 6 uses two operators (select and

forAll) and Query 8 evaluates a three-argument predicate.

12 The temperature at which they start to heat.
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(a) (b) (c)

Fig. 15 Structure of generated Simulink models

1 Block.all().collect(b|b.Name);

2 Block.all().sortBy(b|b.BlockType);

3 Inport.all().select

(i|i.OutDataTypeStr =="boolean");

4 SubSystem.all().selectOne

(s|s.Name=="Chart");

5 `Stateflow.State`.all().reject

(s|s.Decomposition =="PARALLEL_AND");

6 `Stateflow.Transition`.all().select

(t|not (t.SourceOClock ==0))

.forAll(t|t.LabelString <>"?");

7 `Stateflow.Transition`.all().collect

(t|t.LabelString);

8 `Stateflow.State`.all().exists

(s|s.IsImplicitlyCommented ==1 or

s.BadIntersection ==1 or

s.IsExplicitlyCommented ==1);

Listing 61 List of EOL queries

Query 1 is used to retrieve the names of all Simulink blocks

in the model, including those contained in the boiler sub-

systems. Query 2 sorts all these blocks by their block type.

Query 3 acts on blocks of Inport type, i.e. input ports 1 to

3 in each boiler subsystem (Fig. 15b), and filters those of

Boolean type, i.e. port no. 3 which handles the boiler state.

Query 4 acts on subsystem blocks which include the boilers

and the chart blocks and selects the first element with the

name “Chart”. Moving on to Stateflow elements, the list of

non-parallel states is retrieved with Query 5 using the reject

operator. Query 6 starts by filtering out default transitions,

i.e. those with no source state, and then checks if they have

all been assigned a non-default name using the exists oper-

ator. In a similar fashion to Query 1, Query 7 retrieves the

labels attached to all transitions in the model. Finally, Query

8 checks for malformedness across Stateflow states by check-

ing whether they are explicitly or implicitly commented or if

they have bad intersections.

Model population Our experiments evaluate the 8 EOL state-

ments on four different models. Each evaluated EOL state-

ment starts from a collections of model elements of a given

type. These model element collections may contain Simulink

elements of type Block, Inport or SubSystem; or Stateflow

elements of type Stateflow.State or Stateflow.Transition. The

Table 3 Number of elements per type on each model

Model 1 Model 2 Model 3 Model 4

Block 47 137 407 1217

Inport 15 45 135 405

Stateflow.State 15 45 135 405

Stateflow.Transition 15 45 135 405

SubSystem 6 18 54 162

number of elements of each type in the different models is

presented in Table 3.

Infrastructure In the experiment, each EOL statement was

executed 20 times with 5 warm-up iterations on each model.

The Simulink model driver caching facilities were not used.

The experiments were executed on an 8-Core Intel Core i9

CPU @ 2.3 GHz with 16 GB of RAM. The Java Virtual

Machine (64-Bit) was provided with up to 2 GB of memory

and ran Java 8 on JDK 1.8.0_231.

5.2.2 Results

In both optimised and non-optimised executions, all queries

were executed on the same number of elements and yielded

the same results.

The mean execution time of each query is presented in

Table 4 under the Duration section. This section compares

the time (in seconds) taken by each of the models with and

without the collection operator optimisations. The iteration

distribution on the four models is presented in the box plot of

Fig. 16. This figure compares the distribution with optimisa-

tions enabled (right/orange) and disabled (left/blue) for each

model. Note that subplots do not share the y-axis in order to

have a closer look at the distribution per query.

Regardless of the collection size, all queries with optimi-

sations enabled outperformed those which did not use them,

between 50 and 99%. Table 5 summarises the performance

improvement percentage that optimisations achieved on the

different models and queries.

Another view of the results is presented in Fig. 17 where

the mean execution time per query is plotted against the num-

123



1912 B. A. Sanchez et al.

Table 4 Mean query execution

time in seconds and percentage

of time spent sending

commands to MATLAB and

awaiting a response

Duration (s) MATLAB Communication (%)

Q Opt Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4

1 Off 0.15 0.38 1.06 3.39 94.74 96.64 97.32 97.61

On 0.00 0.00 0.01 0.01 76.07 75.24 76.47 73.99

2 Off 0.20 0.55 1.73 4.96 97.21 97.70 97.95 97.79

On 0.09 0.24 0.86 2.23 96.92 98.10 98.18 98.50

3 Off 0.06 0.14 0.35 1.08 95.11 96.69 97.06 97.24

On 0.00 0.00 0.00 0.01 75.44 73.23 68.67 59.88

4 Off 0.02 0.06 0.16 0.47 93.60 96.77 97.44 98.06

On 0.01 0.01 0.01 0.01 86.22 84.45 81.85 75.24

5 Off 0.12 0.39 1.93 14.87 95.59 97.05 98.13 99.07

On 0.01 0.02 0.12 0.91 89.03 95.15 98.88 99.78

6 Off 0.70 2.28 8.33 38.49 98.80 98.97 99.15 99.39

On 0.03 0.04 0.16 1.25 95.00 97.09 99.06 99.83

7 Off 1.03 3.13 10.17 38.17 99.31 99.38 99.49 99.58

On 0.02 0.04 0.14 1.02 95.63 97.42 99.09 99.81

8 Off 2.72 8.50 28.04 109.40 99.49 99.49 99.55 99.60

On 0.03 0.05 0.15 0.98 96.76 97.79 99.17 99.82

Column Q indicates the query number, while column Opt indicates whether the optimisations were enabled

Fig. 16 Distribution of the query performance on the models with optimisations off (left/blue) or on (right/orange)

ber of model elements that the query acted on. The y-axis in

this view has been capped at 40 seconds and only Query 8

went above this limit.

Additionally, Table 4 shows (under the MATLAB Com-

munication section) the percentage of execution time that was

spend sending or receiving information to/from MATLAB.

Overall, this section shows that without operator optimisa-

tions the impact of the communications with MATLAB lies

above 93%, whereas with optimisations, the impact can be

reduced to 59% in some queries although remaining high

(e.g. 99%) in others.

5.2.3 Discussion

The first four queries acted on Simulink elements, while the

last four acted on Stateflow elements. Non-optimised queries

were more expensive on Stateflow elements than on Simu-

link elements regardless of the complexity of the evaluated

expression. In particular, consider queries 1 and 7 which are
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Fig. 17 Performance of queries, with and without optimisation, against the number of elements in the models

comparable as they both invoke a collect operation that gath-

ers a single property value but work on Simulink blocks and

Stateflow transitions respectively. Despite the fact that in

Model 4 query 1 acts on 1217 blocks while query 7 only

on 405, query 7 is much more expensive than query 1 (with-

out the optimisations). Since more than 98% of the execution

time of Stateflow queries without optimisations is spent on

the MATLAB exchange, a reasonable explanation for this

difference is that MATLAB has more efficient indexes for

Simulink blocks.

Based on preliminary observations, executing the func-

tions that the driver generates in the MATLAB console is

much faster than through its Java API for both the optimised

and non-optimised implementations. In light of the impact

that reducing the number of exchanges with the MATLAB

Java API has, future work will involve investigating optimi-

sations of more complex collect- and select-based arguments

so they can be transformed into a single complex MATLAB

function that only requires to be sent once.

To take advantage of these optimisations, the model man-

agement programmer should be aware of the particular

operations that have been optimised to write the programs

accordingly. A difference with the Massif/EMF approach is

that in that approach there are no particular optimisations to

be aware of.

5.2.4 Threats to validity

The models used in the experiment had a similar internal

structure as it enabled us to focus on the impact of the number

of model elements that the queries acted upon. From this

experiment, it is unclear to what extent the structure of the

models affects the performance.

We chose a range of collection queries that were suffi-

ciently varied and which could be optimised. We recognise

that our evaluation could be complemented with more queries

evaluating a broader range of expression forms.

6 Observations and lessons learned

This section summarises observations and lessons learned in

the implementation of the Simulink-based drivers and our

experiments.

Usability Being able to manage these models in either the

native tool or a model management framework requires meta-

model understanding (model element types, their properties

and operations). Model management programs should pro-

vide uniformity and predictability in how model elements

are managed as part of the conciseness and expressiveness

they offer compared to general-purpose languages. For exam-

ple, in Epsilon CRUD operations on model element types

share the same syntax regardless of the model’s underlying

technology. This enables practitioners to focus on the model

elements and the logic of their programs.

Uniformity can help to speed the learning process and

make these programs easier to write and maintain. Section

3 evidences the multiple styles that MATLAB uses to man-

age different model elements types, within the same model,

e.g. Simulink versus Stateflow, and between different model

formats, e.g. Requirements versus Dictionary. It is not just

the naming of the MATLAB functions that varies across

operation types (e.g. setAttribute as property setter for
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Table 5 Performance improvement (%) by query and model

Query Model 1 Model 2 Model 3 Model 4

1 97.52 98.95 99.43 99.76

2 55.03 56.15 50.20 55.09

3 91.80 97.20 98.82 99.48

4 69.92 87.68 94.95 98.01

5 91.73 93.95 93.71 93.88

6 96.36 98.11 98.07 96.75

7 97.58 98.72 98.64 97.33

8 98.78 99.45 99.46 99.10

requirement elements and set\_param for Simulink ele-

ments), but also the arguments required by those functions.

Similarly, different toolboxes use different notions of what

constitutes an element id in their domain, e.g. Simulink some-

times uses the element id but most functions only work with

their path property (their location) or their handle (a ses-

sion based, non-persisted identifier). Furthermore, in the case

of Simulink different parameters sometimes yield different

result types, e.g. the find\_system function can return han-

dles or paths depending on whether theFindAllflag is active.

A side-contribution of our approach is the unification of the

syntax of several MATLAB toolboxes which can make it

easier to focus on the core model management logic.

Completeness MATLAB and its Java API provide facili-

ties to support the execution of CRUD operations on its

model elements and the model itself. This API also pro-

vides an interface for a few MATLAB-specific data types

such as structured arrays. In contrast, Simulink and dictio-

nary models cannot be exported into any exchange format

from this MATLAB, although more exporting facilities are

available for Requirements including ReqIF. It is common

that vendor tools are reticent to export their models into

exchangeable data formats, e.g. to protect their intellectual

property. However, when they do export them, sometimes

they do so partially—like PTC with partial exports [49] and

Simulink with ReqIF, which can make the round-trip engi-

neering prohibitive (e.g. [49]) or complex (e.g. [29]).

In the case of Massif, the Simulink to EMF transforma-

tion is done by an external party. Among the disadvantages

of this transformation is the lack of support for Stateflow ele-

ments and slightly different naming conventions to the ones

used in MATLAB, different places to find element properties

depending on the element type and the management of Simu-

link data types as strings. In contrast, model element types

used in the Simulink EMC driver are closer to those managed

by the MATLAB command line interface and also include

Stateflow elements. In addition, by exploiting the MATLAB

API facilities at runtime our Simulink EMC driver can also

manipulate MATLAB specific data types.

Performance Several criteria can impact the performance of

model management processes that involve Simulink models,

e.g. the size of the model, the program complexity and the

rate of model evolution. Our first experiment on large Simu-

link models showed that the cost of upfront Simulink-to-EMF

transformation was particularly expensive in the Massif/EMF

approach while the cost of the program execution was much

lower than that of the Simulink EMC driver (by 2 orders of

magnitude). In light of the program execution performance,

the Massif/EMF seems convenient for large signed-off mod-

els (transformation cost paid once) that need to be extensively

queried. In contrast, this same experiment showed that the

overall execution process was reduced by up to 80% with

the Simulink EMC driver, which concentrated the cost in

the program execution. The overall execution performance

makes the Simulink EMC driver better suited for continu-

ously evolving models, otherwise recurrent transformations

would be needed in Massif/EMF. We anticipated that the exe-

cution overhead in our approach was due to the cost of the

MATLAB exchanges. Our proposed optimisations on opera-

tions on collections of Simulink model elements (Sect. 3.1.2)

were able to reduce the number of MATLAB exchanges by

not making them proportional to the collection size.

For smaller models, the decision of one approach or the

other is more related to the model coverage offered by the

approach and the relevance of the EMF model, i.e. its support

in the model management tool and associated maintainability

costs.

Other Model validation processes generally involve several

iterations of checking constraints and fixing errors, unless

the model is correct to start with. Similarly, model-to-model

transformation and other model management programs may

also result in the generation or modification of Simulink

models. From our experiments, it is unclear the performance

impact and completeness of the EMF-to-Simulink transfor-

mation although it is likely to have similar costs to the import

procedure and similar issues to those found in other tools such

as those mentioned for the ReqIF requirements imported by

MATLAB [29] or the XMI models exported by PTC [49].

Our on-the-fly approach does not need to incur in round-trip

engineering costs as it directly acts on the models themselves.

Our piecewise translation of model management con-

structs to MATLAB is convenient to deal with multiple

(heterogeneous) models in the same model management

program and to process the model information within the

managing program. A complete translation of these con-

structs to a MATLAB program that executes just once would

be more complex to orchestrate and to interact with from the

model management program, e.g. to retrieve variable values

that are assigned to elements from other models. The stark

performance difference between the execution of MATLAB

functions in Java or in its console suggests that further opti-

misations and strategies are required to reduce the number

123



Runtime translation of OCL-like statements on Simulink models: Expanding domains and optimising queries 1915

of exchanges with MATLAB and improve the performance

of model management programs while still preserving their

ability to interact with other models.

7 Related work

It is often desirable to have a common framework to man-

age models from heterogeneous modelling technologies.

Traceability tools such as Capra [23] and Yakindu [16] are

examples of those frameworks, which need to be able to

read models used at different stages of the development

process in order to create and manage traces among their

model elements. Other examples include model management

frameworks such as Epsilon [19] and ATL [17], which offer a

subset of task-specific languages for model navigation, val-

idation, model-to-model or model-to-text transformations,

etc., and which are able to interact with a number of models

of arbitrary underlying technologies.

When model management frameworks do not offer sup-

port for a specific modelling technology such as Simulink,

import and export facilities can be used to translate the

models into a supported format. Possibly for reasons of pro-

tecting intellectual property, proprietary modelling tools do

not always offer exporting facilities into open modelling for-

mats such as XMI. MATLAB, in particular, does not offer

any export or import facilities for Simulink models with other

open-source modelling formats. To address this feature gap,

the open-source Massif project led the development of import

and export facilities between EMF and Simulink models.

Massif internally uses MATLAB’s command line interface

to parse the Simulink models and populate their EMF repre-

sentation and vice versa.

The OSLC [34] is an initiative that aims to simplify the

software tool integration problem among proprietary tools.

Built atop the W3C Resource Description Framework (RDF),

Linked Data and the REST architecture, OSLC provides a set

of specifications targeted at different aspects of application

and product life cycle management. OSLC is now being used

by proprietary tool vendors (e.g. IBM Rational DOORS [15])

and some open source tools (e.g. [7]) who expose a range

of services following these specifications. Nevertheless, the

comprehensiveness of the information exposed by these ser-

vices is at the discretion of the service provider. MATLAB

does not officially provide an OSLC interface for its Simu-

link models, although the Eclipse Lyo [47] project provides

an OSLC adaptor for Simulink [43] for MATLAB version

R2013b, and Massif provides an OSLC adaptor for their

EMF-compatible representations [14]. Reqtify [4] is a pro-

prietary tool which exposes internal traceability information

from Simulink models in a similar fashion to OSLC.

Transformations from SysML to Simulink models (and

vice versa) have motivated several research works such as

[3,5,32,39]. [5,32,39] and [3] made use of model-to-text

transformations with Acceleo [45] to produce MATLAB pro-

grams that on execution created the Simulink model. More

specifically, [5,32] generated several MATLAB scripts to

populate different parts of the Simulink model, Chabibi et

al. [3] proposed the use of a UML profile to annotate the

SysML models before the MATLAB code generation, and

[5,39] suggested that to go back from Simulink to SysML

the creation of a MATLAB script to parse Simulink mod-

els and produce an XML-based SysML model description

file. In the domain of co-simulation, communicating between

MATLAB Simulink and other frameworks is a common task.

For example, Engel et al. [8] uses a software environment

based on Ptolemy II [6] to run MATLAB scripts that get and

set parameters of specific Simulink blocks and run simula-

tions. As these works either use purposed SysML to Simulink

transformations or focus on setting and getting parameter

values of limited elements, they are not easily reusable for

alternative model management scenarios such as querying

the Simulink model or validating constraints. Examples of

other works that used Simulink models external model man-

agement processes include [31] which performs independent

translation of Simulink and Stateflow blocks into UPPAAL

timed automata representations that are later combined and

used in model checking and [11] which performs invariance

checks on simplistic Simulink model representations written

in JSON. In this regard, the Massif project and our approach

facilitate the managing an EMF-compatible representation or

the actual Simulink model (respectively) in a broader range

of model management scenarios.

Our Simulink bridge built atop the Epsilon facilities is

not the first one to bridge proprietary tools with the open-

source model management languages of the Epsilon family.

In [12], a spreadsheet driver was introduced to enable the

manipulation of spreadsheets as models where element types

were resolved from spreadsheet names, elements from rows

and properties from columns while enabling flexible rules

to resolve element references or change these conventions.

Our approach is closer to that used by the PTC-IM driver

presented in [49], where an interface with the PTC is used

to manage the models. One difference with the PTC driver

is that in MATLAB the API is not consistent and required

commands to be built on demand. Additionally, MATLAB

has a full-fledged language to manage its model elements

that PTC does not, which allowed us to implement query

optimisations. As in this work, one of the findings of [49]

is that where performance is of essence, it is best to use

the native tooling. In [49], the driver is evaluated against

the native approach to manage the models by the tool, i.e.

Visual Basic. In contrast, in this work our first experiment

compares two different approaches to bridge Simulink mod-

els with model management frameworks, while the second

experiment evaluates an approach to reduce the overhead of
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queries while also measuring the cost of communicating with

MATLAB. A former driver for relational databases was pro-

posed in [22] which generated SQL queries at runtime. The

main difference between this approach and ours is the domain

of application and non-uniform MATLAB API used to man-

age different model types. Kolovos et al. [22] investigate the

use services provided by the underlying technology to opti-

mise those provided at the proxy level in a similar fashion to

what we do in this work although no evaluation is provided.

8 Conclusions and future work

We have presented an approach to bridge Simulink mod-

els with model management frameworks that uses on-the-fly

and on-demand translation of OCL-like statements into

MATLAB commands. Given the widespread use of Simu-

link models in industry and the potentially large size of

such models, our bridge offers an alternative approach to

manage these without requiring their complete upfront trans-

formation into an EMF-compatible representation therefore

avoiding expensive transformation costs for large models and

potential co-evolution procedures. Our public implementa-

tion, built atop Epsilon, enables comprehensive and uniform

Simulink model, Simulink requirement and Simulink dictio-

nary management, that includes Stateflow elements.

We have evaluated our implementation against a represen-

tative approach that requires an upfront model transformation

into EMF set-up using facilities from the Massif project.

This experiment measured the execution time of a model

validation process evaluated on a sample of large publicly

available Simulink models in GitHub (up to 1.141 MB and

9536 blocks) using both approaches. Our evaluation results

support the claim that the transformation of large Simulink

models into an EMF-compatible representation can be very

expensive and shows that our bridge was able to reduce the

overhead of this approach (mainly due to the transformation)

by up to 80% in the validation process used in an experi-

ment. Further evaluations showed that the cost of continuous

MATLAB communication in our implementation is far from

negligible which led us to introduce optimisations for oper-

ations that work on collections of Simulink and Stateflow

model elements that were able to make these operations more

efficient by up to 99%.

Future Work In light of the expensiveness of the communica-

tion with MATLAB through the Java API, in future work we

will explore alternative mechanisms to reduce the impact of

these communications which includes expanding our query

optimisations to more complex queries. We are currently

working on an approach that reduces the number of required

exchanges with MATLAB by queueing the commands to be

dispatched until the Epsilon program either finishes or has

to use data computed in MATLAB. We would also like to

add further support MATLAB Simulink-based models such

as those provided by the Tests and Test Harness toolboxes.

In addition, we plan to investigate alternatives to continue

improving the efficiency of OCL expressions in large Simu-

link models and to add support for these optimisations to the

Dictionary and Requirement drivers.
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