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A B S T R A C T   

The mechanical properties of masonry, both in the linear elastic range and after the onset of damage, are 
dependent on the geometric and mechanical properties of its constituent materials: the units and the mortar. 
Finite element micromodelling, while capable of providing accurate and comprehensive results, is associated 
with high computational costs and modelling effort. On the other hand, micromechanical homogenisation of the 
masonry composite provides an attractive alternative to detailed micromodelling, in which the stress and strain 
interaction between the material phases can be modelled without excessive computational cost and in which 
interpretation of the damage state of the phases is more straightforward. However, nonlinear micromechanical 
homogenisation of masonry elements through varied numerical and analytical approaches remains a subject of 
intense study. 

In this paper, an inclusion-based homogenisation scheme for masonry structures is proposed for plane stress 
conditions. The scheme is combined with constitutive laws for damage in the constituent materials of the ma-
sonry composite and implemented in finite element models. The proposed modelling approach is validated in 
terms of its capacity to predict the elastic properties against experimental results and a finite element benchmark. 
Finally, finite element analyses of walls subjected to in-plane shear under varying levels of vertical stress are 
performed and favourably compared with experimental results in terms of predicted capacity and obtained 
failure mode. The low computational cost of the proposed model makes it suitable for future application in digital 
twinning operations.   

1. Introduction 

Masonry structures are often characterised by vulnerability to 
damage arising from tectonic [23] or induced seismicity [20], differ-
ential soil subsidence and uplift [17], material degradation due to aging 
[34] or fatigue from continuous operation [4]. This vulnerability arises 
from the inherent characteristics of masonry materials and elements: 
high mass, high stiffness and tendency to crack under tensile and shear 
stresses. 

Masonry structures are characterised by the complex stress and 
strain interaction of their main constituent material phases: the mortar 
in the joints and the units. The complexity of the interaction arises 
primarily from two factors: a) the mismatch in the elastic properties of 
the two material phases, the units typically possessing a higher Young’s 
modulus and lower Poisson’s ratio than the mortar, and b) the geometric 
bond pattern, which produces staggered arrangements of head joints 

even in simple single-wythe structures. Due to these facts, masonry 
structures exhibit strong orthotropy in strength and elasticity, even 
when their constituent materials are isotropic [28,27,32]. This reflects 
the behaviour of other composite materials comprised of inclusions 
embedded in a matrix. 

Due to the differences in the mechanical properties and durability of 
the constituent materials of masonry, which leads to different rates of 
degradation and damage in each material phase, early detection of 
damage in masonry structures requires structural monitoring technolo-
gies capable of providing damage sensing at the material level of the 
mortar or brick [21]. Consequently, numerical analyses accompanying 
structural health monitoring as the computational component in a dig-
ital twinning operation should be able to provide material-level stresses, 
strains and quantified damage data. 

Numerical simulation of masonry structures designed to explicitly 
take into consideration the properties, geometric arrangement and 
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interaction of the material phases can be performed through the adop-
tion of detailed micromodelling techniques, where the units, mortar and 
the unit-mortar interface are all explicitly modelled [14,15,24,36]. 
However, this approach is burdened by excessive computational cost for 
modelling large structures, in addition to requiring substantial effort for 
the interpretation of the acquired numerical results. 

Computational costs for determining the orthotropic elastic proper-
ties of masonry or for carrying out nonlinear analyses may be reduced 
through the adoption of micromechanical analysis techniques, both for 
regularly [2,10,35,39] and for irregularly [8,9] bonded masonry. These 
techniques may be based on a closed form calculation of the stresses and 
strains in the components or through a statistical averaging process. It 
has been shown that very satisfactory results compared to detailed 
micromodelling, as well as efficient scale coupling, can be achieved 
through such methods with only a small number of assumptions or 
simplifications [1,33]. 

The observation that masonry can be treated as a composite material, 
consisting of unit inclusions embedded in a mortar matrix [19,29], has 
led to the use of homogenisation schemes based on matrix/inclusion 
modelling for the analysis of masonry structures [6,7,16] as an alter-
native to detailed micromodelling. However, these efforts relied on the 
assumption that the units, which are typically cuboidal in shape (or 
rectangular in plane strain), can be treated as oblate spheroids (or el-
lipsoids in plane strain). Additionally, in the cases where nonlinear 
analysis was attempted, it was limited to material-level predictions of 
the compressive strength rather than the implementation of the ho-
mogenisation scheme for the analysis of full masonry structural 
elements. 

In this paper a modelling approach for masonry structures based on 
inclusion micromechanics is presented in combination with nonlinear 
material constitutive laws. The first aim of the study is to verify the 
validity of the homogenisation scheme for rectangular inclusions 
depending on the masonry geometric bond pattern. The second aim is to 
implement the scheme and constitutive laws in a finite element context 
for the low-cost analysis of large masonry structures and to validate the 
approach’s suitability for reproducing damage typically arising from 
seismic excitation of masonry shear walls. 

The paper begins with the description of the homogenisation scheme 
for deriving the stiffness tensor in plane stress of the masonry composite 
from the geometric and material properties of the constituent materials, 
taking into account the rectangular shape of the units. Next, the 
nonlinear constitutive laws for describing the stress–strain behaviour of 
the materials in tension and compression are presented in a damage 
mechanics context. The description of the implementation of the scheme 
and constitutive laws for plane stress finite element analysis is subse-
quently presented. Finally, the proposed model is validated firstly in its 
capacity to predict the elastic properties of masonry through a com-
parison with experimental case studies and a finite element benchmark 
and secondly in its capacity to predict the behaviour of masonry walls 
subjected to in-plane shear under varying levels of vertical prestress in 
terms of predicted peak force and failure mode. Additional commentary 
is provided regarding the interpretation of the quantitative damage 

predictions of the model. 

2. Micromechanical homogenisation scheme 

At the macro scale, masonry is treated as a composite material 
consisting of two material phases interacting in the micro scale: the 
mortar in the joints and the units. Regularly bonded single wythe ma-
sonry structures are treated in this paper. An illustration of the masonry 
composite material and its constituent material phases is shown in 
Fig. 1. 

In the inclusion approach to micromechanics, a single isotropic in-
clusion is embedded in an isotropic matrix with infinite dimensions. 
Generally, the matrix and the inclusion have different elastic properties, 
the latter acting as a reinforcing agent for the former. When the matrix 
undergoes a mean deformation, expressed in the strain vector ε, the 
inclusion is, in turn, deformed as well. Due to the two phases having 
different elastic properties, the average strain in the inclusion is different 
to the average strain in the matrix that constrains it. Upon removal of 
this constraint, the inclusion assumes a strain state called eigenstrain ε*. 
The average matrix strain and the eigenstrain are related through the 
equation: 

εij = Sijklε*
kl (1)  

where Sijkl are the components of the fourth order Eshelby’s tensor S 
[19]. Closed form expressions for a rectangular inclusion with height h 
along the y-axis and length l along the x-axis in plane strain in the xy 
plane have been recently elaborated. These expressions are material 
independent with regard to the material properties of the inclusion and 
are a function of its geometric aspect. Eshelby’s tensor S can be 
decomposed into an isotropic part SI and a deviatoric part SD [40]. 
Expressed in tensor form, these parts are equal to [41]: 

S = SI +SD  
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1
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where νm is the Poisson’s ratio of the matrix and [18]: 
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Fig. 1. Masonry composite material (C) and its constituent materials, mortar matrix (m) and unit inclusions (i).  
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q2 = q4 = 0 (3)  

where η = h/l. For calculating S for plane stress inclusions, νm should be 
replaced with νm/(1+νm) in the above equations. 

When multiple inclusions with identical orientation, geometry and 
elastic properties are evenly distributed in a matrix, these can be treated 
as a group. The dilute approximation of inclusions states that the dilute 
estimate Ti of the inclusions i in the matrix m is equal to: 

Ti =
(
I + Si(Cm)

− 1
(Ci − Cm)

)− 1
(4)  

where I is the 3 × 3 identity tensor and Cm and Ci are the plane stress 
stiffness tensors of the matrix and the inclusion respectively, functions of 
the Young’s moduli and Poisson’s ratios of the individual phases. 
Generally, the isotropic plane stress stiffness tensor C of a material with 
Young’s modulus E and Poisson’s ratio ν reads: 

C =
E

(1 − ν)2

⎡

⎣
1 ν 0
ν 1 0
0 0 1 − ν

⎤

⎦ (5) 

The matrix strain concentration factor AC is a function of the dilute 
estimate of the inclusions in the matrix and is equal to: 

AC = (ωmI + ωiTi)
− 1 (6)  

where ωi is the volume ratio of the inclusions and ωm the volume ratio of 
the matrix with respect to the total volume of the composite, with ωi +

ωm = 1. The strain concentration tensor Ai of the inclusions is equal to: 

Ai = TiAC (7) 

Finally, the effective stiffness tensor CC of the composite material can 
be calculated in closed form according to the equation [26]: 

CC = Cm +ωi(Ci − Cm)Ai (8) 

While the stiffness matrices of the matrix and the inclusions may be 
isotropic, the orthotropy of the masonry composite arises from the dif-
ference between the length lu and height hu of the units. 

In addition to allowing the calculation of the stiffness tensor of the 
composite material, the above scheme makes it possible to calculate the 
stress and strain interaction between the inclusions and the matrix. The 
strain vector in the matrix εm is equal to [29]: 

εm = ACεC (9)  

where εC is the macroscopic strain vector in the composite. The stress 
vector σm in the matrix is equal to: 

σm = Cmεm (10) 

The strain vector εi in the inclusions is equal to [5]: 

εi = Aiεc (11)  

and the stress vector in the inclusions σi is equal to: 

σi = CiAi(CC)
− 1σC (12)  

where σC is the macroscopic stress vector in the composite material, 
equal to: 

σC = CCεC (13) 

The described homogenisation scheme is applied to masonry walls in 
plane stress conditions, subjected to in plane loading. The mortar in the 
joints serves as the matrix and the units serve as the inclusions. Regu-
larly bonded single wythe masonry means that all units are of equal 
nominal size and oriented with their length along the longitudinal axis 
of the wall. This precludes any complex calculations regarding orien-
tation of the inclusions with respect to the global axes of the composite. 
Therefore, the entire scheme can be expressed in convenient closed 

form. 

3. Constitutive modelling 

Both the mortar (based on lime, cement or a combination of the two) 
and the units (typically brick, concrete or stone) in masonry are quasi 
brittle materials. These materials can fail in compression and tension. 
Similarly, the unit-mortar interface can fail in tension or shear. A 
damage mechanics approach is adopted in this paper for calculating and 
expressing the loss of stiffness in the material phases through the use of 
integrity variables [38]. Integrity variables are scalars ranging from 1 in 
the case of an undamaged material and tending to 0 in the case of a fully 
softened material. These integrity variables are equal to the ratio be-
tween the actual damaged stress in the material phase and the effective 
stress, which is the stress that would arise in the material phase for a 
given strain if the material were linear elastic, i.e., the effective stress is 
proportional to the strain. These integrity variables are multiplied with 
the stiffness tensors of each material phase for calculating the reduced 
stiffness due to damage. The adoption of integrity variables offers a 
simple method for damage quantification, namely the constitutive 
relation between an imposed strain and a percentile loss of stiffness in a 
material. 

Compressive failure in each material phase is modelled through a 
simple bilinear hardening curve up to peak stress followed by an expo-
nential softening curve based on compressive fracture energy. The 
integrity variable in compression Ic as a function of the strain ε is equal 
to: 

Ic(ε) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1 εl
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σe

(
3εl

c − εp
c

3εl
c − 3εp

c
−

2ε
3εl

c − 3εp
c

)

εp
c ≤ ε ≤ εl

c

fc

σe
exp

(

−
ε − εp

c

εu
c

)

ε ≤ εp
c

(14)  

where fc is the compressive strength of the component (negative value), 
σe is the effective stress and εl

c, ε
p
c and εu

c being the limit of proportion-
ality, peak strain and ultimate strain in compression respectively, equal 
to: 

εl
c =

fc

3E  

εp
c = 5εl

c  

εu
c =

Gc

fch
(15)  

where E is the Young’s modulus, Gc is the compressive fracture energy of 
the material and h is the bandwidth, namely the length at which the 
constitutive law is being evaluated. 

Tensile damage in each material phase is modelled through linear 
behaviour up to peak stress followed by an exponential softening curve 
based on tensile fracture energy. The integrity variable for tension It is 
equal to: 

It(ε) =

⎧
⎪⎨

⎪⎩

1 0 ≤ ε ≤ εp
t

ft

σe
exp

(

−
ε − εp

t

εu
t

)

εp
t ≤ ε

(16) 

where ft is the tensile strength and εp
t and εu

t being the peak strain and 
ultimate strain in tension respectively. These are equal to: 

εp
t =

ft

Ec  

εu
t =

Gt

fth
(17) 
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where Gt is the tensile fracture energy. 
For the shear strength fv, linear behaviour is assumed up to peak 

stress, followed by an exponential softening curve. As such, the shear 
strength as a function of the strain is: 

fv(ε) =

⎧
⎪⎨

⎪⎩

fv0 0 ≤ |ε| ≤ εp
v

fv0exp
(

−
|ε| − εp

v

εu
v

)

εp
v ≤ |ε|

(18)  

where fv0 is the initial shear strength of the component (positive) and εp
v 

and εu
v being the peak strain and ultimate strain for the shear strength 

respectively. These are equal to: 

εp
v =

1 + ν
E

fv0  

εu
v =

Gv

fv0h
(19)  

where Gv is the shear fracture energy. For the friction coefficient μ the 
constitutive relation reads: 

μ(ε) =

⎧
⎪⎨

⎪⎩

μ0 0 ≤ |ε| ≤ εp
v

μ0 +
(μR − μ0)(fv0 − fv(ε) )

fv0
εp

v ≤ |ε|
(20)  

where μ0 and μR are the initial and residual values of the friction coef-
ficient respectively. Finally, the integrity variable in shear Iv can be 
expressed as: 

Iv(ε) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 0 ≤ |ε| ≤ εp
V

|σn|μ(ε) + fv0exp
(

−
|ε| − εp

V

εu
v

)

|σe|
εu

V ≤ |ε|
(21)  

where σn is the compressive stress acting normal to the shearing surface 
(negative for compression, disregarded for tension) and εp

V is the peak 
strain in shear, calculated as: 

εp
V =

1 + ν
E

(fv0 + |σn|μ0 ) (22) 

The constitutive equations for compressive, tensile and shear dam-
age are presented in stress–strain terms in Fig. 2. 

4. Finite element implementation 

The above presented homogenisation scheme and accompanying 
constitutive stress–strain laws have been implemented in plane stress in 
the FEniCS finite element platform [3] for the analysis of structures. The 
implementation of the model is performed at the Gauss points of the 
structural mesh. Masonry is treated as a composite material wherein the 
mortar in the joints acts as the matrix and the units act as the inclusions. 

It is assumed that the masonry is regularly bonded with a repeating 
geometric pattern. Therefore, it is possible to extract a periodic unit cell, 
representative of the layout of the material phases in the composite. For 
the case of running bond masonry, this periodic unit cell, and its 
reduction due to geometric symmetry is illustrated in Fig. 3. Under plane 
stress conditions, the geometry is not altered along the thickness of the 

Fig. 3. Derivation of the periodic unit cell for running bond masonry. Extraction of the repeating pattern and reduction due to symmetry of the cell.  

u

m

Fig. 4. Dimensions of periodic unit cells and geometric arrangement of mate-
rial phases: m for mortar and u for units. 

Fig. 2. Stress–strain constitutive laws for damage in components: a) compression, b) tension and c) shear.  

A. Drougkas et al.                                                                                                                                                                                                                              



Structures 38 (2022) 375–384

379

cell perpendicularly to the xy plane. 
Following the extraction of the periodic unit cell, it is possible to 

calculate the volume ratios of the mortar matrix and the unit inclusions. 
As illustrated in Fig. 4, the volume ratio ωi of the units and ωm of the 
mortar in the running bond masonry composite are equal to: 

ωi =
2 lu

2
hu
2(

lu
2 +

lm
2

)

(hu + hm)

ωm = 1 − ωi (23)  

where lu is the length of the unit, lm is the thickness of the head joint, hu is 
the height of the unit and hm is the thickness of the bed joint. For stack 
bond masonry, the volume ratios can be obtained by assuming lm = 0. 

In keeping with the manner in which failure in the masonry com-
ponents develops, and taking into consideration the regularity of the 
masonry bond, the constitutive equations for damage are evaluated in 
the following manner:  

1) Mortar is checked in compression in the vertical y and horizontal x 
directions, simulating crushing of the bed joints and head joints 
respectively. 

2) Mortar is checked in tension in the vertical y and horizontal x di-
rections, simulating the opening of the bed joints and head joints 

respectively. The mortar is assigned the tensile strength of the unit- 
mortar interface. 

3) Units are checked in compression in the vertical y direction, simu-
lating the crushing of the units under vertical load.  

4) Units are checked in tension in the horizontal x direction, simulating 
the cracking of the units due to unit-bed joint interaction under 
compression.  

5) The unit-mortar bed joint interface is checked in shear according to 
the shear strain in the matrix 

Through the above evaluations of damage, the mechanical ortho-
tropy of the masonry composite, arising from the homogenisation 
scheme due to the different dimensions of the units in the x and y di-
rections, is further reinforced in the nonlinear range. The bandwidths h 
used in eq. (15), (17) and (19) are a function of the dimensions of the 
material component in the direction where damage is being evaluated 
[43]. In this context, the bandwidth h is equal to: 

h =
d
D

l (24)  

where d is the dimension of the component in the direction being 
evaluated, D is the dimension of the periodic unit cell in the direction 
being evaluated and l is the characteristic finite element length where 
the evaluation is being performed, namely the square root of its surface 

Table 1 
Model validation: comparison of Young’s modulus as experimentally derived (Eexp

yy ) and predicted by the proposed model (Emod
yy ) and by finite element analysis (EFE

yy ).  

Parameter Symbol Units Case study 

Reference − − [31] [22] [37] [15] [12] 
Young’s modulus of units Eu  

(
N/mm2) 6740 3372 3372 3372 976 976 976 4000 4080 2570 

Poisson’s ratio of units νu  ( − ) 0.167 0.150 0.150 0.150 0.150 0.150 0.150 0.130 0.150 0.150 
Length of units lu  (mm) 110 230 230 230 230 230 230 206 72.5 188 
Height of units hu  (mm) 35 75 75 75 75 75 75 50 12.5 42 
Young’s modulus of mortar Em  

(
N/mm2) 970 5450 7083 8568 238 1500 8568 1650 3500 920 

Poisson’s ratio of mortar νm  ( − ) 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 
Thickness of head joint lm  (mm) 5.0 12.0 12.0 12.0 12.0 12.0 12.0 12.5 2.5 12 
Thickness of bed joint hm  (mm) 5.0 12.0 12.0 12.0 12.0 12.0 12.0 10.0 2.5 12 
Young’s modulus of masonry - experiment Eexp

yy  
(
N/mm2) 3700 5232 4824 5024 580 735 400 3200 4370 1615 

Young’s modulus of masonry – proposed model Emod
yy  

(
N/mm2) 3655 3645 3785 3888 652 1047 1402 3046 4017 1775 

Young’s modulus of masonry – FE analysis EFE
yy  

(
N/mm2) 3936 3660 3702 3782 717 1033 1254 3114 3917 1856  

Fig. 5. Linear elastic analysis results for running bond case studies. Comparison of proposed model predictions with a) finite element analyses and b) experimental 
results. Solid line indicates equality and dotted lines indicate 10% deviation. 
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area. For example, when the bed joint is being evaluated against vertical 
compression, d = hm and D = hu + hm. In addition to handling ortho-
tropy arising from the masonry bond, this adjustment of the bandwidth 
is adopted for dealing with scale separation violation arising from the 
relatively large dimensions of the unit inclusions compared to the 
thickness of the mortar joint matrix into which they are embedded. Scale 
separation in masonry multi-scale modelling remains an open problem 
due to the practical difficulties in reliably determining scale separation 
limits in periodic masonry through experimental means. 

In nonlinear analysis, the damaged stiffness tensors of the units and 
the mortar are calculated by multiplying the elastic stiffness tensor of 
each phase calculated from Eq. (5) with the integrity variables calcu-
lated for each phase from Eq. (14), (16) and (21) (both units and mortar 
are evaluated in compression and tension, while mortar is additionally 
evaluated in shear). This isotropic damage approach means that 
reduction of the integrity variable in one direction in a given material 
phase results in the equal reduction of the stiffness of the phase in all 
directions. Further, the phase-wise calculation of stiffness loss means 
that damage in the masonry composite cannot be directly expressed in a 
single scalar value. This is accomplished for each phase through multi-
plication of its stiffness tensor with all its integrity variable scalars. 
Finally, damage is irreversible, meaning that reduction of the strain in a 
component does not lead to a potential increase in the integrity. 

5. Model validation 

5.1. Linear elastic analysis 

The accuracy of the homogenisation scheme in predicting the elastic 
properties of masonry is evaluated against a series of experimental tests 
from the literature involving the determination of the Young’s modulus 

of masonry in the vertical y direction (Eyy). In addition, the same case 
studies are analysed using finite element mesomodels, namely detailed 
micromodels without the explicit modelling of the unit-mortar interface, 
for comparing the results of the proposed model with results from an 
established analysis method. 

These case studies considered [12,15,22,31,37] involve concentric 
uniform compression tests conducted on single-wythe running bond 
masonry wallettes in the direction normal to the bed joints. In all cases 
the wallettes were constructed using solid brick units and lime/cement 
mortar, with soil introduced in one of the mortars used in one case study 
[22]. 

The results of the linear elastic analysis are summarised in Table 1. It 
is shown that the proposed model predicts the Young’s modulus of 
masonry with substantial accuracy for most cases. Large deviations from 
the experimental results occur in a few cases, where peculiarly the 
Young’s modulus of masonry was lower than that of either of the con-
stituent materials. Regardless, of special note is the closeness between 
the results of the proposed model and those of the finite element analysis 
for all cases. Therefore, it is demonstrated that the proposed model can 
serve in the task of predicting the Young’s modulus of masonry on an 

Table 2 
Geometric and mechanical parameter values used in parametric investigation.  

Component Parameter Symbol Value Units 

Units Young’s modulus Eu  20,000 N/mm2  

Poisson’s ratio νu  0.15 N/mm2  

Length lu  210 mm  
Height hu  52 mm  

Mortar Young’s modulus Em  20 – 20,000 N/mm2  

Poisson’s ratio νm  0.15 N/mm2  

Head joint thickness lm  0.1–30 mm  

Bed joint thickness hm  0.1–30 mm   

Fig. 6. Results of linear elastic parametric investigation. Comparison of proposed model predictions of elastic moduli against a finite element benchmark: a) running 
bond and b) stack bond. 

Fig. 7. Results of scale separation investigation.  
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equal footing with finite element analysis, with the added benefits of 
reduced modelling effort and computational cost. The results of the 
linear elastic analyses are further illustrated in Fig. 5. The coincidence of 
the model predictions with the finite element analysis results can be 
clearly seen. 

The accuracy of the model in predicting the elastic moduli of ma-
sonry is assessed through a parametric investigation against a finite 
element benchmark in order to enrich the validation with elastic pa-
rameters often not characterised in experimental testing, namely the 
horizontal Young’s modulus of masonry Exx and the shear modulus Exy. 
The parametric investigation is performed through varying the Young’s 
modulus of the mortar Em as a ratio of the Young’s modulus of the units 
Eu. The values used in the parametric investigation are presented in 
Table 2. In the finite element analyses two different geometric patterns 
were investigated: a running bond pattern, where the units overlap in a 
staggered arrangement, and a stack bond pattern, in which the units do 

not overlap but allow the formation of both continuous bed and head 
joints. The head and bed joint thickness used in this investigation was 
10 mm. 

The results are illustrated in Fig. 6. For the running bond case, while 
the vertical Young’s modulus of masonry Eyy is predicted with excellent 
accuracy, the horizontal Young’s modulus Exx is underestimated by the 
model as the Eu/Em ratio increases. This is due to the inability of the 
model to precisely account for the shear stresses developed in the bed 
joint under horizontal stressing of the masonry, which contributes to the 
increase of the horizontal stiffness of the composite material in the 
presence of unit interlocking [42]. The influence of interlocking be-
comes more pronounced as the units become relatively stiffer compared 
to the mortar. A similar overestimation is obtained for the in-plane shear 
modulus Exy. This overestimation is due to the presence of a continuous 
bed joint, essentially free to deform in shear, which cannot be directly 
accounted for by the homogenisation scheme. Nevertheless, these dis-
crepancies only become significant for a Young’s modulus of mortar less 
than 10% with respect to that of the units, which substantially narrows 
down the cases for which these discrepancies can arise. Conversely, in 
the stack bond case the prediction of Exx is much more accurate 
throughout the investigated range. This is due to the shear deformation 
of the bed joint not playing a significant part in the response of stack 
bond masonry under horizontal macroscopic stress. 

A second sensitivity study was conducted for investigating potential 
scale separation issues stemming from the mortar matrix surrounding 
the unit inclusions having dimensions of the same order of magnitude. 
This investigation was conducted based on the properties listed in 
Table 2 and varying the head and bed joint thickness and evaluating 
changes in the vertical Young’s modulus Eyy. The results of the proposed 
homogenisation scheme and their comparison with a finite element 
benchmark for two different ratios of Eu/Em are illustrated in Fig. 7. The 
accuracy of the scheme is not affected even for very small matrix volume 
ratios which do not conform with scale separation conditions. 

5.2. Nonlinear analysis of masonry shear walls 

The finite element implementation of the homogenisation scheme 
and constitutive laws are validated against two series of experiments on 
masonry walls subjected to in plane shear under varying levels of ver-
tical prestress [15]. The experiments were conducted on scaled down 
single wythe masonry walls constructed in a running bond pattern. The 
two series of experiments involved solid and perforated walls featuring a 
single window opening, eccentrically placed with regard to the centre of 
the wall. The geometric and material properties for the units, mortar and 
the unit-mortar interface as determined in the experimental campaign 
and used in the analyses are presented in Table 3. The units were solid 
clay bricks scaled down to one quarter scale and were subjected to 

Table 3 
Geometric and material properties of constituent materials.  

Component Parameter Symbol Value Units 

Units Length lu  72.5 mm  
Height hu  12.5 mm  

Width tu  35.0 mm  
Young’s modulus Eu  4080 N/mm2  

Poisson’s ratio νu  0.15 −

Compressive strength fcu  − 45.57 N/mm2  

Tensile strength ftu  3.59 N/mm2  

Compressive fracture 
energy 

Gcu  45.57 N/mm  

Tensile fracture energy Gtu  0.120 N/mm  
Mortar Head joint thickness lm  2.5 mm  

Bed joint thickness hm  2.5 mm  

Young’s modulus Em  3500 N/mm2  

Poisson’s ratio νm  0.20 −

Compressive strength fcm  − 7.44 N/mm2  

Tensile strength ftm  1.05 N/mm2  

Compressive fracture 
energy 

Gcm  7.44 N/mm  

Tensile fracture energy Gtm  0.111 N/mm  
Unit-mortar 

interface 
Tensile strength fti  0.18 N/mm2  

Tensile fracture energy Gti  0.013 N/mm  
Initial shear strength fv0  0.250 N/mm2  

Initial friction coefficient μ0  0.815 −

Residual friction 
coefficient 

μR  0.770 −

Shear fracture energy Gv  0.300 N/mm   

Fig. 8. Geometry of tested masonry solid and perforated walls. Dimensions in mm.  

A. Drougkas et al.                                                                                                                                                                                                                              



Structures 38 (2022) 375–384

382

compressive and flexural testing. The mortar, in order for it to be 
accommodated in the 2.5 mm thick joints, was based on an M7.5 mortar 
with adjusted granulometry after the removal of the coarsest aggregates. 
This mortar was subjected to flexural and compressive testing according 

to the relevant standards for masonry mortar [11]. The small difference 
in the elastic stiffness of the units and the mortar ensures that the ho-
mogenisation scheme remains accurate in the prediction of the hori-
zontal stiffness of the masonry composite in this case (Fig. 6a). 

The two series of walls are illustrated in Fig. 8. For construction of 
the walls, the bricks were laid on their stretcher faces atop a template, 
the mortar being cast between the units. This accomplished uniformity 
in terms of mortar compaction and curing conditions, and therefore 
mechanical properties, between bed and head joints. The walls were 
capped with a concrete beam for evenly distributing the applied vertical 
load. In the case of the perforated walls, no lintel was provided above the 
window. The vertical prestress was applied through a hydraulic ram and 
kept constant. Horizontal load was applied in displacement control 
through a second hydraulic ram, oriented from left to right (Fig. 8). The 
walls were tested in a cantilever configuration, the top beam being 
allowed to rotate and displace freely in the vertical direction. 

The experimental and numerically obtained values for the peak shear 
stress τmax for the two series of walls are compared in tabulated form in 
Table 4 and graphically in terms of interaction diagrams in Fig. 9. The 
model is shown to be accurate in predicting the peak shear force for both 
series of walls, especially for lower magnitude vertical prestress levels. 
The model tends to slightly overestimate the peak shear force in the solid 
wall series, indicating a higher global effective shear modulus as un-
derstood at the level of the structural element [25]. Similarly, the model 
appears to slightly underestimate the peak shear force in the perforated 
wall series for a vertical prestress higher than 2.5 N/mm2, at which point 
the model predictions are shifting to a failure mode dominated by 
compression [13]. 

The force–displacement graphs obtained in the experiments and in 
the numerical analyses are compared in Fig. 10. The initial global 
stiffness is calculated with high accuracy for all investigated cases. The 
overall curves are reproduced with very good accuracy in both series of 
experiments with the exception of the predicted force–displacement 
curve being steeper near the onset of yielding, particularly in the solid 
wall series with high vertical prestress. Nevertheless, the accuracy is 
comparable to the results obtained from a detailed micromodelling 
analysis of the same walls [15]. 

A comparison in the obtained failure modes is graphically provided 
in Fig. 11. Documentation of the damage in the experiments was per-
formed manually at the end of the test, leading to potential perceptual 
subjectivity in the results and inability to capture the damage pattern at 
the precise moment of attaining peak force. The visible damage pattern 
in the numerical results is presented in terms of maximum principal 
strain, with the figure indicating strains corresponding to a crack width 
in excess of 0.1 mm, which is the minimum crack width clearly 
observable with the naked eye [30]. In the 2N20 case, the 

Table 4 
Comparison of experimental and numerical results for masonry shear walls.  

Walls Specimen Vertical 
stress σ 
(N/mm2)  

Experimental 
peak shear stress 
τexp

max (N/mm2)  

Numerical 
peak shear 
stress τnum

max 

(N/mm2)  

Solid 2N20  1.942  1.119  1.106 
3N40  3.894  1.887  1.978 
4N50  4.764  2.105  2.295 

Perforated 1V7  0.645  0.416  0.424 
2V13  1.132  0.649  0.686 
3V21  1.858  1.119  1.178 
4V30  2.540  1.116  1.209 
5V38  3.236  1.498  1.326  

Fig. 9. Interaction diagrams for masonry walls between vertical prestress σ and 
peak stress τmax as obtained in the experiments and predicted by the pro-
posed model. 

Fig. 10. Force-displacement graphs for walls under in plane shear. Comparison between experimental (dotted lines) and numerical (solid lines) results: a) solid, b) 
perforated walls. 

A. Drougkas et al.                                                                                                                                                                                                                              



Structures 38 (2022) 375–384

383

experimentally obtained failure mode primarily consists in a horizontal 
flexural crack forming at the base of the wall. This failure mode is 
accurately reproduced by the model. In the 3V21 case, the experimental 
crack pattern includes diagonal cracks initiating from the corners of the 
window opening and propagating to the edges of the wall. Additional 
horizontal cracks associated with post-peak rocking of the two piers are 
also formed near the base and top of the window opening. The model 
successfully reproduces the diagonal cracks, although the flexural cracks 
are formed at different locations, primarily near the base of the wall. The 
differences in the location of the flexural cracks could be attributed to 
differences in the boundary conditions at the top of the walls. 

Finally, the damage as predicted by the model is presented in Fig. 12 
in terms of integrity variables at peak force. This provides an additional 
layer of damage assessment and quantification that cannot be directly 

derived from experimental data, especially regarding compressive 
damage. Plotting the integrity of the bed joints in compression (Ib

c ) in-
dicates the formation of a compressive strut in the right pier, with a 
plastic hinge being formed at the lower right corner of the wall 
(Fig. 12a). The right pier has a shorter length than the left pier, making it 
more susceptible to compressive damage under conditions of uniform 
vertical loading. The integrity of the bed joints in tension (Ib

t ) indicates 
the formation of flexural failure near the left bases and right tops of both 
piers, also extending closer to the window, in agreement with experi-
mental data (Fig. 12b). The integrity variable of the head joints in ten-
sion (Ih

t ) indicates the location of diagonal cracks, extending from the 
window opening (Fig. 12c). Finally, the integrity variable of the bed 
joints in shear (Ib

v) indicates the onset of shearing damage at mid-height 
of the left pier, followed by shear slipping mostly concentrated at the 

Fig. 11. Comparison of experimentally obtained (left) and numerically derived (right) crack patterns: a) 2N20 case and b) 3V21 case.  

Fig. 12. Numerical integrity variables at peak force for the 3V21 case: a) compression of bed joints (Ib
c ), b) tension of bed joints (Ib

t ), c) tension of head joints (Ih
t ) and 

d) shear of bed joints (Ib
v ). 
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locations where opening of the head joints is also occurring (Fig. 12d). 

6. Conclusions 

The proposed computational homogenisation scheme, coupled with 
the proposed constitutive laws for compressive, tensile and shear dam-
age, provides accurate linear and nonlinear results for a wide range of 
material combinations and case studies. Discrepancies between experi-
mental or finite element analysis results and the predictions provided by 
the model are limited to extreme cases of material combinations char-
acterised by mortar with extremely low stiffness compared to that of the 
units. 

The model provides substantial advantages compared with finite 
element micromodelling, primarily in terms of computational cost and 
ease of results interpretation. Despite its lower modelling complexity, 
the model is able to provide comprehensive results on damage of the 
components of the masonry, including separately mapping damage to 
bed and head joints. Crack patterns can be clearly derived from the 
evaluation of the maximum principal strain, while assessment of the 
integrity variables in tension and compression at different components 
allows a more in-depth evaluation and quantification of the damage in 
the structure. 

The low computational cost of the proposed method lends itself to its 
adoption as the computational component in digital twinning in com-
bination with structural health monitoring operations for existing ma-
sonry buildings. In addition to generating macro-level analysis results, 
its capacity to provide stress, strain and damage data at the material 
component level makes the proposed model suitable to be combined 
with material-level structural health monitoring strategies such as those 
based on multi-functional materials (smart bricks and/or mortar). 
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[32] Pelà L, Cervera M, Roca P. Continuum Damage Model for Orthotropic Materials: 
Application to Masonry. Comput Methods Appl Mech Eng 2011;200(9-12):917–30. 
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