
This is a repository copy of On the power of the conditional likelihood ratio and related 
tests for weak-instrument robust inference.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/183334/

Version: Published Version

Article:

Van de Sijpe, N. orcid.org/0000-0003-0442-7020 and Windmeijer, F. (2023) On the power 
of the conditional likelihood ratio and related tests for weak-instrument robust inference. 
Journal of Econometrics, 235 (1). pp. 82-104. ISSN 0304-4076 

https://doi.org/10.1016/j.jeconom.2022.02.004

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Journal of Econometrics 235 (2023) 82–104

Contents lists available at ScienceDirect

Journal of Econometrics

journal homepage: www.elsevier.com/locate/jeconom

On the power of the conditional likelihood ratio and related
tests for weak-instrument robust inference

Nicolas Van de Sijpe a, Frank Windmeijer b,∗
a Department of Economics, University of Sheffield, UK
b Department of Statistics and Nuffield College, University of Oxford, UK

a r t i c l e i n f o

Article history:

Received 26 July 2021

Received in revised form 31 January 2022

Accepted 3 February 2022

Available online 29 March 2022

JEL classification:

C12

C26

Keywords:

Instrumental variables

Weak-instrument robust inference

Conditional likelihood ratio test

Power

a b s t r a c t

Power curves of the Conditional Likelihood Ratio (CLR) and related tests for testing
H0: β = β0 in linear models with a single endogenous variable, y = xβ + u, estimated
using potentially weak instrumental variables have been presented for two different
designs. One design keeps the variance matrix of the structural and first-stage errors,
Σ , constant, the other instead keeps the variance matrix of the reduced-form and first-
stage errors, Ω , constant. The values of Σ govern the endogeneity features of the model.
The fixed-Ω design changes these endogeneity features with changing values of β in a
way that makes it less suitable for an analysis of the behaviour of the tests in low to
moderate endogeneity settings, or when β and the correlation of the structural and first-
stage errors, ρuv , have the same sign. At larger values of |β|, the fixed-Ω design implicitly
selects values for Σ where the power of the CLR test is high. We further show that the
Likelihood Ratio statistic is identical to the t0(β̂L)

2 statistic as proposed by Mills et al.

(2014), where β̂L is the Liml estimator. In fixed-Σ design Monte Carlo simulations, we
find that Liml- and Fuller-based conditional Wald tests and the Fuller-based conditional
t20 test are more powerful than the CLR test when the degree of endogeneity is low to
moderate. The conditional Wald tests are further the most powerful of these tests when
β and ρuv have the same sign. We show that in the fixed-Ω design, setting β0 = 0 and
the diagonal elements of Ω equal to 1 is not without loss of generality, unlike in the
fixed-Σ design.
©2022 TheAuthors. Published by Elsevier B.V. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

For the linear model with one endogenous explanatory variable,

yi = xiβ + ui, (1)

for i = 1, . . . , n, estimated using instrumental variables, the Conditional Likelihood Ratio (CLR) test of Moreira (2003) and
related tests, like the AR (Anderson and Rubin, 1949), LM (Kleibergen, 2002; Moreira, 2002), and conditional Wald (CW )
tests are tests for the hypothesis H0 : β = β0. They are robust to weak instruments in the sense that they have correct
size when instruments are weak, with CLR, AR, and LM unbiased, similar tests, whereas the CW tests are not unbiased.

For the evaluation of the power of these tests, two different designs have been used in the literature. Let zi be the kz
vector of instruments and let the first-stage model be given by

xi = z ′
iπ + vi. (2)
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Then the fixed-Σ design specification is given by (1) and (2), with the variance matrix of the structural and first-stage
errors, Σ , fixed in the sense that it is not a function of β ,

Σ = Var

(
ui

vi

)
=
[

σ 2
u σuv

σuv σ 2
v

]
.

The reduced form for yi is given by yi = z ′
iπβ + ui + βvi = z ′

iπy + ri (β), with ri (β) = ui + βvi and so the variance of
the reduced-form errors is a function of β in this fixed-Σ design. The values of Σ govern the endogeneity features of the
model.

The fixed-Ω design specifies a constant reduced-form variance matrix Ω . This design has the same first-stage
specification (2), but specifies the linear model for yi as

yi = xiβ + ri − βvi, (3)

as then the reduced form for yi is given by yi = z ′
iπβ + ri and the reduced-form error variance is fixed

Ω = Var

(
ri
vi

)
=
[

σ 2
r σrv

σrv σ 2
v

]
.

In this case, the structural error is ui (β) = ri − βvi and hence the variance of the structural errors is a function of β in
this fixed-Ω design, and so here the values of Σ (β) govern the endogeneity features of the model.

The simulations in Kleibergen (2002), Moreira (2003, 2009) and Stock et al. (2002), amongst others, are based on the
fixed-Σ design, whereas those in Andrews et al. (2006, 2007), Hillier (2009), Mills et al. (2014) and Moreira and Moreira
(2019) are based on the fixed-Ω design. These fixed-Ω design examples all start with specifying the model of interest as
the structural and first-stage equations as in (1) and (2), but then subsequently fix Ω , without explicitly specifying the
model of interest as in (3). An argument used for fixing Ω is that it can be consistently estimated and hence treated as
known, see e.g. the discussion in Andrews et al. (2019).

Poskitt and Skeels (2008) discuss these two designs and show that simulation results can differ substantially between
them, but do not provide an explanation for these differences. Davidson and MacKinnon (2008) highlight that a design
with Ω fixed changes Σ when changing the value of β and conclude that Ω is ‘‘not a sensible quantity to keep fixed’’
(Davidson and MacKinnon 2008, p 455). Andrews et al. (2019) propose a design, their Scenario 2, where the value of β is
fixed, but the value of β0 in H0: β = β0 is varied instead, arguing that this keeps Ω fixed. Their motivation for this design
is its direct link to the formation of confidence intervals based on inverting test statistics. As we show in Section 3.1, this
design where β is kept fixed but β0 is varied is essentially the same as the fixed-Σ design. This follows as, ceteris paribus,
for δ ∈ R, the test statistics for H0: β = β∗ − δ when β = β∗ in the Andrews et al. (2019) design are identical to the test
statistics for H0: β = β∗ when β = β∗ + δ in the fixed-Σ design.

The main contribution of our paper is that we examine in detail the relationship between power analyses conducted
using the fixed-Σ and fixed-Ω designs. The standard fixed-Σ design power curve varies the value of β but keeps the
structural endogeneity features constant, in particular the degree of endogeneity ρuv = σuv

σuσv
. This is not the case for the

fixed-Ω design, where σ 2
v is kept fixed, but σ 2

u (β) and ρuv (β) change with the value of β in the DGP in a very specific
way, as shown in Fig. 2 in Section 4. In particular, for the usual setting of σ 2

r = σ 2
v = 1, the structural correlations ρuv (β)

are predominantly negative for positive values of β and vice versa. Further, ρuv (β) approaches 1 for large negative values
of β , and −1 for large positive values of β , with accompanied levels of the variance σ 2

u (β) such that the power of the
AR and CLR tests approaches 1, even with very weak instruments. Therefore, significant parts of the fixed-Ω power curve
implicitly consider variance and endogeneity structures that favour the AR and CLR tests.

As we further discuss in Section 4 and highlight in Fig. 2, and also in Fig. 5 in Section 5.1, only a relatively small part
of a fixed-Ω power curve relates to settings of low to moderate endogeneity, or settings where β and ρuv have the same
sign, and these parts are at very specific values of β and specific combinations of values of β and ρuv . The fixed-Σ design
is therefore better suited to evaluate the power of the tests for these cases. Low endogeneity settings seem important, as
e.g. Chernozhukov and Hansen (2008) report a median estimated value of ρuv = 0.3 for a survey of applied instrumental
variables papers and Angrist and Kolesár (2021) find in three applications an absolute degree of endogeneity of at most
0.46.

Our paper makes a number of further contributions. We first document in Section 2, which introduces the model and
test statistics, a standalone finding that the AR test statistic is identical to a Hausman (1978) type test statistic comparing
the Liml estimator of π under the null, H0 : β = β0, to the OLS estimator of π . We then show that the LR test statistic

is identical to the t0(β̂L)
2 ≡ W0(β̂L) statistic proposed by Mills et al. (2014), where β̂L is the Liml estimator of β . The

only difference between the W0(β̂L) statistic and the standard Liml-based Wald statistic is the estimator for σ 2
u in the

denominator of the test. For W0(β̂L) this variance is estimated under the null. From this equivalence result it follows that

a conditional W0

(
β̂Full

)
test, denoted as CW0

(
β̂Full

)
, where β̂Full is a Fuller (1977) estimator, and which is not an unbiased

test, is a direct alternative to the Liml-based CLR test.
In Section 3, we follow the analysis of Andrews et al. (2006) and evaluate the noncentrality parameters of the weak-

instrument limiting noncentral Wishart distribution of the maximal invariant. We find that for the fixed-Σ design the
noncentrality parameters depend on the values of β and β0 only through the difference δ = β − β0, and hence one can
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set β0 = 0 without loss of generality (wlog) when evaluating power. We also find that one can set σ 2
u = σ 2

v = 1 wlog for

evaluating power in the fixed-Σ design. In contrast, these findings do not hold for the fixed-Ω design, contradicting the

statements in footnotes 7 and 8 in Andrews et al. (2006), i.e. one cannot set β0 = 0 wlog.1 One also cannot set the diagonal

elements of Ω equal to 1 wlog, unless β0 is set equal to 0. The latter combination is standard practice in the literature, but

the special nature of the fixed-Ω , β0 = 0 case is highlighted by our finding for the AR test in Section 3.2, where we find

that the limiting weak-instrument power of the AR test is identical to the local-to-zero power of the standard OLS-based

Wald test for testing H0: πy = 0 in the reduced form specification yi = z ′
iπy + ri, which hence does not depend on σrv

and σ 2
v .

Through an analysis of the fixed-Σ design weak-instrument noncentrality parameters we can highlight the behaviour

of the tests when |ρuv| → 1. Section 3.1.1 shows that the LR test, using the critical value of the strong-instruments χ2
1

limiting distribution, is not size distorted when |ρuv| → 1 (see also Andrews et al., 2019), and has a maximum size

distortion at ρuv = 0. Section 3.1.2 then shows that for each value of β there is a value of σ 2
u , such that the power of

the AR and CLR tests approaches 1 when β < β0 and ρuv → 1, or β > β0 and ρuv → −1. We show in Section 4 and

illustrate in Fig. 3 that the fixed-Ω design maps onto those particular combinations of β , ρuv and σ 2
u for large values of

|β|, confirming that significant parts of the fixed-Ω power curve implicitly considers parameter configurations with high

power of the AR and CLR tests. From the noncentrality parameters, we can also show in Section 3.1.3 that the fixed-Σ

power curve of the CLR test is asymmetric around β0 as a function of β − β0.

As discussed above, conclusions based on fixed-Ω designs about which test has superior power may be based on

only very partial information. We illustrate this in Section 5.1 by comparing the behaviours of the Liml- and Fuller-based

conditional Wald (CW ) tests and the CW0-Fuller test to that of the CLR (= CW0-Liml) test in fixed-Σ design Monte Carlo

simulations for different degrees of endogeneity ρuv . As far as we are aware these tests have only been compared in the

fixed-Ω design (see Andrews et al., 2007; Mills et al., 2014), where the CLR test was found to dominate for most values

of β . In contrast, we find in the fixed-Σ design that, for low to moderate degrees of endogeneity, the conditional Wald

tests are more powerful than the CLR test. Even for medium to high values of ρuv the CW0-Fuller test is well behaved,

with higher power than the CLR test for part of the parameter space. Also, of these tests, the CW tests have the most

power when β and ρuv have the same sign, including for the highest value of ρuv = 0.75 considered in the simulations.

In a fixed-Ω analysis, these findings are easy to miss, as only a relatively small segment of the power curve encapsulates

low to moderate degrees of endogeneity or situations where ρuv and β have the same sign. These results then translate

to the length of the confidence sets based on inverting the test statistics. In Section 5.2 we find that the CLR confidence

sets have longer median lengths than the ones based on CW -Liml, CW -Fuller and CW0-Fuller for a range of settings that

are relevant in practice.

2. Model and tests

We start with the standard structural and first-stage linear model specifications for a sample
{
yi, xi, z

′
i

}n
i=1

, given by

yi = xiβ + ui (4)

xi = z ′
iπ + vi,

where zi is the kz vector of instrumental variables. The instruments satisfy E (ziui) = 0. Standard assumptions on

the data, see e.g. Assumption M in Stock and Yogo (2005), needed for limiting normal distributions and consistent

estimation of variance matrices are assumed to hold. The explanatory variable xi is endogenous as E (xiui) = E (uivi) ̸= 0.

Other exogenous explanatory variables, including the constant, have been partialled out. The errors are assumed to be

conditionally homoskedastic, with

Σ = Var

((
ui

vi

)
|zi
)

=
[

σ 2
u σuv

σuv σ 2
v

]
, (5)

and correlation ρuv = σuv
σuσv

.

The reduced form for yi is given by

yi = z ′
iπβ + ui + viβ (6)

= z ′
iπy + ri(β),

with ri (β) = ui + viβ , and the reduced-form error variance of (ri (β) vi)
′ is given by

Ω (β) =
[

σ 2
u + 2βσuv + β2σ 2

v σuv + βσ 2
v

σuv + βσ 2
v σ 2

v

]
. (7)

1 Footnote 8 in Andrews et al. (2006) refers to setting β0 = 0 wlog, but in the structural equation (1), not Eq. (3), and hence applies to the

fixed-Σ design.
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Let y and x be the n-vectors (yi) and (xi) and Z the n × kz matrix of instruments. The standard 2SLS estimator for β is

given by

β̂2sls = x′PZy

x′PZx
,

where PZ = Z
(
Z ′Z
)−1

Z ′. The 2SLS estimator is based on the OLS estimator for π , given by π̂ =
(
Z ′Z
)−1

Z ′x. Let x̂ = Z π̂ ,

then β̂2sls = x̂′y/
(
x̂′x
)

= x̂′y/
(
x̂′x̂
)
.

Dropping notationally the dependence of Ω on β for ease of exposition, an estimator for

Ω =
[

ω11 ω12

ω12 ω22

]

is Ω̂ = W ′MZW/n, where W = [y x] and MZ = In − PZ . The Liml estimator for β is then given by

β̂L = x′PZy − nκ̂ω̂12

x′PZx − nκ̂ω̂22

,

where κ̂ is the minimum eigenvalue,

κ̂ = min eval
((

n−1W ′PZW
)
Ω̂−1

)
. (8)

Let aL = (β̂L 1)′. The definition of the Liml estimator for π as used in Moreira (2003) is given by

π̂L =
(
Z ′Z
)−1

Z ′WΩ̂−1aL

(
a′
LΩ̂

−1aL

)−1

. (9)

Let x̂L = Z π̂L, then β̂L = x̂′
Ly/

(
x̂′
Lx
)

= x̂′
Ly/

(
x̂′
Lx̂L
)
, see Windmeijer (2018) for the latter equality.

Consider testing the null H0 : β = β0 against the two-sided alternative H1 : β ̸= β0. The distributional properties of
the AR and LR tests as described below are exact under fixed instruments, known Ω and normally distributed errors.2

Instrument strength is determined by the concentration parameter λn/σ
2
v , where λn = π ′Z ′Zπ . The limiting distributions

of the tests under the null are the same when relaxing these assumptions and using Ω̂ as an estimator for Ω , see Moreira

(2003) and Kleibergen (2002). Weak instrument asymptotics imply π = πn = c/
√
n, where c is a vector of constants,

with instrument strength then determined by λ/σ 2
v , with λ = plim

(
π ′
nZ

′Zπn

)
= c ′Azzc , where Azz = plim

(
Z ′Z/n

)
.

Let u0 = y − xβ0. The Anderson–Rubin test statistic is given by

AR = u′
0PZu0

σ̂ 2
0

, (10)

where σ̂ 2
0 = b′

0Ω̂b0 = u′
0MZu0/n, with b0 = (1 − β0)

′. AR has a limiting χ2
kz

distribution under the null, independent of

the strength of the instruments. The AR test is a test for overidentifying restrictions in model (4), imposing the null.

Let π̂L0 be the Liml estimator of π under the null, given by

π̂L0 =
(
Z ′Z
)−1

Z ′WΩ̂−1a0/

(
a′
0Ω̂

−1a0

)
,

with a0 = (β0 1)′. As π̂L0 is a consistent and efficient estimator of π under the null, H0: β = β0, but inconsistent under

the alternative, H1 : β ̸= β0, whereas π̂ is consistent in both cases, we can use the Hausman (1978) specification test

principle to construct the test statistic

Hπ =
(
π̂ − π̂L0

)′ (
V âr

(
π̂
)
− V âr

(
π̂L0

))−1 (
π̂ − π̂L0

)
. (11)

Under the null, Hπ has a limiting χ2
kz

distribution. An interesting, and standalone, observation is that the Hπ statistic is

identical to the AR statistic, as stated in the following proposition.

Proposition 1. Let the Anderson–Rubin test statistic AR be as defined in (10) and let the Hausman test statistic Hπ be defined

as in (11). Then Hπ = AR.

Proof. See Appendix A.1 □

2 Our main focus is on the CLR test. As the LR test statistic is based on the AR test statistic, we introduce and discuss issues related to the (C)LR

and AR tests, but refrain from a general discussion of the LM test.
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The Likelihood Ratio test we consider here is the test denoted LR1 in Moreira (2003), which is a criterion difference
test. This LR statistic is given by

LR = u′
0PZu0

σ̂ 2
0

− û′
LPZ ûL

σ̂ 2
L

(12)

= AR − B

(
β̂L

)
,

where σ̂ 2
L = û′

LMZ ûL/n = b′
LΩ̂bL, with ûL = y − xβ̂L and bL = (1 − β̂L)

′, and where B

(
β̂L

)
is the Basmann (1960) test

for overidentifying restrictions in model (4), with B

(
β̂L

)
= nκ̂ . Under standard strong instrument asymptotics, LR has a

limiting χ2
1 distribution. However, under weak instruments, its distribution is not invariant with respect to the value of

πn = c/
√
n, unlike AR. As Moreira (2003) showed, the asymptotic conditional distribution of LR under the null, conditional

on the value of the π̂L0-based Wald test statistic for testing H0: π = 0,

τ0 = π̂ ′
L0

(
V âr

(
π̂L0

))−1
π̂L0 = a′

0Ω̂
−1W ′PZWΩ̂−1a0

a′
0Ω̂

−1a0
, (13)

is given by

f (LR|τ0) = 1

2

(
ξ1 + ξkz−1 − τ0 +

√(
ξ1 + ξkz−1 + τ0

)2 − 4ξkz−1τ0

)
,

where ξ1 and ξk−1 are independent χ2
1 and χ2

kz−1 distributed random variables. Conditional critical values for the LR test
can then be simulated, or the conditional p-values calculated by numerical integration (Moreira, 2003; Mikusheva and Poi,
2006; Andrews et al., 2007; Hillier, 2009), resulting in correct size for this conditional LR (CLR) test, also when instruments
are weak or uninformative. In the following we refer to the LR test when using critical values from the strong-instruments
limiting χ2

1 distribution, and the CLR test when using the conditional on τ0 critical values.
Conditional tests with correct size under the null in weakly identified models can also be obtained from standard Wald

tests, for example based on 2SLS, Liml, Fuller and bias-corrected 2SLS estimators, see Andrews et al. (2007) and Mills et al.
(2014). Mills et al. (2014) provide the details for obtaining the distributions of these test statistics conditional on τ0, and
they also considered one-sided conditional t-tests. A Liml-based test considered by Mills et al. (2014) is given by

W0

(
β̂L

)
= t0(β̂L)

2 =

(
β̂L − β0

)2 (
x′PZx − nκ̂ω̂22

)

σ̂ 2
0

. (14)

The difference with the standard Liml-based Wald test is the use of the restricted estimator σ̂ 2
0 instead of the unrestricted

σ̂ 2
L . We find that the W0

(
β̂L

)
statistic is identical to the LR statistic, as stated in the following proposition.

Proposition 2. Let LR be as defined in (12) and let W0(β̂L) be as defined in (14). Then W0

(
β̂L

)
= LR.

Proof. See Appendix A.2. □

It follows from Proposition 2 and the results in Mills et al. (2014) that the conditional W0(β̂L) (CW0(β̂L)) and CLR tests

are also equivalent. This implies that a conditional CW0

(
β̂Full

)
test, where β̂Full is a Fuller (1977) estimator of β , and which

is not an unbiased test, is a direct alternative to the Liml-based CLR test, and this will therefore be one of the tests whose
power we evaluate in Section 5.1.

For the just-identified case, kz = 1, it follows from Proposition 2 that W0

(
β̂IV

)
= LR = AR, where β̂IV =

(
z ′x
)−1

z ′y.

The equivalence of W0

(
β̂IV

)
and AR was derived by Feir et al. (2016), see also Lee et al. (2020).

3. Properties of tests in the two designs

In this section, we first show that, in the fixed-Σ design, we can set β0 = 0 without loss of generality. We also
establish that the Andrews et al. (2019) approach of keeping the value of β fixed, but varying the values of β0 when
testing H0 : β = β0, is equivalent to the fixed-Σ design. We then analyse the noncentrality parameters of the fixed-Σ
design weak-instrument noncentral Wishart distribution of the maximal invariant in order to examine properties of the
AR and (C)LR tests that will help us understand the link between the fixed-Ω and fixed-Σ designs. We show that the
power curve of the CLR test is asymmetric, and establish the conditions in which the weak-instrument power of the AR
and CLR tests goes to 1. Later on in Section 4, we show that the fixed-Ω design tends to implicitly select those values of
Σ where the CLR test reaches a power of 1 as the value of |β| increases. We end the current section by analysing the
noncentrality parameters of the fixed-Ω design and showing that, unlike in the fixed-Σ case, in the fixed-Ω case we
cannot set β0 = 0 and the diagonal elements of Ω equal to 1 without loss of generality.
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3.1. Fixed-Σ design

It is clear from the model specification (4), that for given values of
{
z ′
i , ui, vi

}n
i=1

and π , and hence a given value of

λn = π ′Z ′Zπ , all distributional properties of the 2SLS estimator remain unchanged but for the location of the estimator,

when β is changed from β = β∗ to β = β∗ + γ . For the first case we have β̂2sls,1 = β∗ + x′PZ u
x′PZ x

, and for the second case,

β̂2sls,2 = β∗ + γ + x′PZ u
x′PZ x

= β̂2sls,1 + γ , as the ratio
x′PZ u
x′PZ x

is unaffected. As we show in Appendix A.3, the same holds for the

Liml estimator, leading to the following result. We focus here on the CLR test, but results here and below hold equivalently
for the AR and conditional Wald tests.

Result 1. Given values
{
z ′
i , ui, vi

}n
i=1

and π , and hence given values xi = z ′
iπ + vi for i = 1, . . . , n, and λn = π ′Z ′Zπ , denote

the LR test statistic for testing H0: β = β0 when β = β∗, and so yi = xiβ∗ + ui, by LR (β0)β=β∗ , and τ0 is denoted τ0 (β0)β=β∗ .

Then keeping everything constant, but only changing the value of β to β = β∗ + γ , with γ ∈ R, and so only changing the

values yi to yγ ,i = xi (β∗ + γ ) + ui = yi + xiγ , we have the result that, for testing H0: β = β0 + γ ,

LR (β0 + γ )β=β∗+γ = LR (β0)β=β∗

τ0 (β0 + γ )β=β∗+γ = τ0 (β0)β=β∗ .

Proof. See Appendix A.3 □

It follows directly from Result 1 that the power of the CLR test in the fixed-Σ design only depends on δ = β − β0,
and hence there is no loss of generality in taking β0 = 0 when generating power curves using Monte Carlo simulation
methods.

Corollary 1. Let δ∗ ∈ R. Under the conditions of Result 1, it follows that

LR (β∗)β=β∗+δ∗ = LR (β∗ − δ∗)β=β∗ ;
τ0 (β∗)β=β∗+δ∗ = τ0 (β∗ − δ∗)β=β∗ .

Proof. Follows directly from Result 1, with γ = δ∗ = β∗ − β0. □

It follows from Corollary 1 that the Andrews et al. (2019) approach of keeping the value of β fixed at β∗, but varying
the values of β0 for testing H0 : β = β0, results in a power curve which is the mirror image around β∗ of the standard
fixed-Σ power curve when varying the value of β and testing H0: β = β∗. This follows as the values of

{
z ′
i , ui, vi

}n
i=1

and
π are kept constant when varying the value for β0 in the Andrews et al. (2019) approach.

Next, consider the weak instruments limiting distribution results in Andrews et al. (2006, Lemma 4, p 736). Defining

Ŝ =
(
Z ′Z
)−1/2

Z ′Wb0

(
b′
0Ω̂b0

)−1/2

T̂ =
(
Z ′Z
)−1/2

Z ′WΩ̂−1a0

(
a′
0Ω̂

−1a0

)−1/2

,

then the AR and LR test statistics are given by

AR = Ŝ ′Ŝ

LR = 1

2

(
Ŝ ′Ŝ − T̂ ′T̂ +

√(
Ŝ ′Ŝ − T̂ ′T̂

)2
+ 4

(
Ŝ ′T̂
)2
)

,

and τ0 = T̂ ′T̂ .

Andrews et al. (2006) show that
(
Ŝ, T̂

)
d→ (S, T ), with S ∼ N

(
cβ,β0

µ, Ikz
)
and T ∼ N

(
dβ,β0

µ, Ikz
)
, where µ = A

1/2
zz c

and

cβ,β0
= (β − β0)

(
b′
0Ωb0

)−1/2
,

dβ,β0
= a′Ω−1a0

(
a′
0Ω

−1a0
)−1/2

= b′Ωb0
(
b′
0Ωb0

)−1/2 |Ω|−1/2 ,

where a = (β 1)′, b = (1 − β)′, |Ω| is the determinant of Ω , and where here Ω = Ω(β).
The power properties of the tests when n → ∞ are determined by the properties of the noncentral Wishart distribution

of the maximal invariant, given by

Q =
[

S ′S S ′T
T ′S T ′T

]
. (15)

87



N. Van de Sijpe and F. Windmeijer Journal of Econometrics 235 (2023) 82–104

As above, let δ = β − β0, λ = c ′Azzc = µ′µ and note that

σ 2
0 (β) := b′

0Ω (β) b0 = (1 δ)Σ(1 δ)′ = σ 2
u + 2σuvδ + σ 2

v δ2.

Then we get for the noncentrality parameters, see Appendix A.4.1 for details,

c2β,β0
λ = λδ2

σ 2
0 (β)

= λ/σ 2
v(

σu
δσv

)2
+ 2ρuv

σu
δσv

+ 1

, (16)

d2β,β0
λ =

(λ/σ 2
v )
(

σu
δσv

+ ρuv

)2

((
σu
δσv

)2
+ 2ρuv

σu
δσv

+ 1

) (
1 − ρ2

uv

) , (17)

cβ,β0
dβ,β0

λ =

(
λ/σ 2

v

) (
σu
δσv

+ ρuv

)

((
σu
δσv

)2
+ 2ρuv

σu
δσv

+ 1

)√(
1 − ρ2

uv

) .

It follows that in order to investigate the weak-instrument power properties of the tests for n → ∞, there is no loss
of generality in setting σ 2

u = σ 2
v = 1, because, given Azz , the distribution of Q under

(
δ∗, c∗, σ 2

u , σ 2
v , ρuv

)
equals its

distribution under (δ, c, 1, 1, ρuv), where δ = δ∗σv/σu and c = c∗/σv . The results also confirm that the power properties
of the tests in the fixed-Σ design only depend on β and β0 via their difference δ = β − β0.

Notice further that the noncentrality parameters c2β,β0
λ, d2β,β0

λ and
⏐⏐cβ,β0

dβ,β0
λ
⏐⏐ are symmetric in δ and ρuv , in the

sense that their values, and hence the asymptotic power of the tests, are the same for any values {δ, ρuv} and {−δ, −ρuv}.

3.1.1. Size properties of LR test
The noncentrality parameter of the weak-instrument limiting noncentral chi-squared distribution of τ0 is given by

d2β,β0
λ. Under the null, H0: β = β0, we have that δ = 0, and so

d2β0,β0
λ = λ/σ 2

v

1 − ρ2
uv

.

Therefore, given values λ > 0 and σ 2
v > 0, d2β0,β0

λ → ∞ and hence τ0 → ∞, if |ρuv| → 1. For the CLR test, the critical

values depend on the value of τ0. They range from the critical values of the χ2
1 distribution as τ0 → ∞ to the critical

values of the χ2
kz

distribution as τ0 → 0, see Moreira (2003). Whilst the standard 2SLS-based Wald tests have their largest
weak instrument size distortions at |ρuv| = 1 (see Stock and Yogo, 2005), it follows that this is not the case for the LR
test. For λ > 0, the LR test has no size distortion when |ρuv| → 1, as then τ0 → ∞ and hence the critical values of the χ2

1

distribution apply, see also Andrews et al. (2019). The noncentrality parameter d2β0,β0
λ is minimised at ρuv = 0, and hence

the weak-instrument size distortion of the LR test is maximised at ρuv = 0, see Fig. B.1 in Appendix B for an illustration.
We summarise this result:

Result 2. For λ > 0, the LR test has no weak instrument size distortion when |ρuv| → 1. The weak instrument size distortion
of the LR test is largest when ρuv = 0.

3.1.2. Conditions for the power of AR and CLR tests to approach 1
The noncentrality parameter for the weak-instrument limiting distribution of the AR test statistic is given by c2β,β0

λ.

Given values σ 2
u > 0, σ 2

v > 0 and λ > 0, c2β,β0
λ is maximised at δ+ = − 1

ρuv

σu
σv
, or, given β0, β

+ = β0 − 1
ρuv

σu
σv
. It follows

that the power of the AR test in the fixed-Σ design is asymmetric, with the maximum power to the left of β0 if ρuv > 0
and to the right of β0 if ρuv < 0. The asymmetry of the power of the AR test follows directly from the asymmetry of the
function c2β,β0

λ as illustrated in Fig. 1.

The noncentrality parameter at δ+ is given by

c2
β+,β0

λ = λ/σ 2
v

1 − ρ2
uv

.

It follows that c2
β+,β0

λ → ∞, and so AR (β0)β=β+ → ∞, if |ρuv| → 1, with β+ → β0 − σu
σv

for ρuv → 1, and β+ → β0 + σu
σv

for ρuv → −1. As Davidson and MacKinnon (2015, pp 831-832) show, for λ > 0, nκ̂ = B

(
β̂L

)
d→ χ2

kz−1 when |ρuv| → 1.

It therefore follows that LR (β0)β=β+ = AR (β0)β=β+ − B

(
β̂L

)
→ ∞ when |ρuv| → 1. Thus the power of the AR and CLR

tests approaches 1 at β = β+ when |ρuv| → 1. We summarise this result:

Result 3.
The power of the AR and CLR tests approaches 1 when ρuv → 1 and β = β0 − σu

σv
, or ρuv → −1 and β = β0 + σu

σv
.
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Fig. 1. Left panel, values of c2β,β0
λ and d2β,β0

λ, λ = 1, σ 2
u = σ 2

v = 1, ρuv = 0.5. Right panel, asymptotic power of the CLR test, λ = 10, σ 2
u = σ 2

v = 1,

ρuv = 0.5, horizontal dashed line is power at δ = 6, the vertical dashed line is at δ = −0.8571, see text for explanation.

Alternatively, and for later reference, this can be rephrased in the following way. If we standardise σ 2
v = 1, then for

each value of β there is a value of σ 2
u , namely σ 2+

u = (β − β0)
2, such that the power of the AR and CLR tests approaches

1 when β < β0 and ρuv → 1, or β > β0 and ρuv → −1.

3.1.3. Asymmetry of the power of the CLR test

As the distribution of B
(
β̂L

)
= nκ̂ is invariant to the value of β in the fixed-Σ design, see the proof of Result 1 in

Appendix A.3, it follows that the power of the LR test is asymmetric due to the asymmetry in power of the AR test, and

because the LR test uses the constant critical values of the χ2
1 distribution. As the critical values of the CLR test depend on

the observed value of τ0, it does not immediately follow that the power of the CLR test is also asymmetric, but we show

here that it is.

From the expressions of the noncentrality parameters c2β,β0
λ and d2β,β0

λ in (16) and (17) respectively, it follows that

c2β,β0
λ + d2β,β0

λ = λ/σ 2
v

1 − ρ2
uv

. (18)

As this is not a function of δ = β − β0, it implies that the sum of the two noncentrality parameters is constant, given

values λ > 0, σ 2
v > 0 and −1 < ρuv < 1. This is illustrated in the left panel of Fig. 1, which graphs the values of c2β,β0

λ

and d2β,β0
λ as a function of δ, for λ = 1, σ 2

u = σ 2
v = 1 and ρuv = 0.5. The symmetry in the values of c2β,β0

λ and d2β,β0
λ is

clear, with larger values of c2β,β0
λ accompanied by smaller values of d2β,β0

λ and vice versa, with their sum being constant.

A higher value of c2β,β0
λ leads to a higher expected value of the AR statistic and hence, ceteris paribus, a higher expected

value of the LR statistic. However, the accompanied lower value of d2β,β0
λ leads to a lower expected value of τ0, and hence

a larger expected value of the conditional critical value for the CLR test. We can therefore not directly assess the properties

of the power curve of the CLR test without investigating the distribution of the conditional critical values for different

values of d2β,β0
λ.

However, we are able to make a statement about the asymmetry of the power of the CLR test. This is due to the fact

that S and T are independently distributed, see Lemma 2 in Andrews et al. (2006). Therefore for a given value of β0, and a
value β∗ of β , with value for c2β,β0

λ equal to c2β∗,β0
λ, if there is a value β̃ ̸= β∗ of β with c2

β̃,β0
λ = c2β∗,β0

λ, then the power of

the CLR test for testing H0: β = β0 when β = β∗ is the same as the power of the test when β = β̃ . This follows as, ceteris

paribus, the distributions of the AR test statistics and hence the LR test statistics are the same due to the equal values of

the noncentrality parameters c2β∗,β0
λ = c2

β̃,β0
λ. But it follows from (18) that then also d2β∗,β0

λ = d2
β̃,β0

λ, and hence, ceteris

paribus, the distributions of the τ0 statistics are the same. Because S and T are independently distributed, it follows that

the distributions of the LR statistics and the conditional critical values for the CLR test are the same at β = β∗ and β = β̃

and hence the rejection probabilities are the same.

From this result, the asymmetry of the power function of the CLR test follows from the asymmetry of c2β,β0
λ and d2β,β0

λ

as a function of δ, as displayed in the left panel of Fig. 1. We have c2β0,β0
λ = 0 and limδ→∞ c2β,β0

λ = λ/σ 2
v . It is further

easily derived that for ρuv > 0, ∂c2β,β0
λ/∂δ > 0 for δ > 0, and ∂c2β,β0

λ/∂δ < 0 for − σu/σv

ρuv
< δ < 0. Further at the
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value δm = βm − β0 = − σu/σv

2ρuv
we have that c2

βm,β0
λ = λ/σ 2

v , and so for any value δ∗ ∈ (0, ∞) there is a unique value

δm < δ̃ < 0 with the power of the CLR test at δ̃ the same as that at δ∗, and for each δ∗,1 > δ∗,2 we have that δ̃1 < δ̃2.
3

This is illustrated in the right panel of Fig. 1, which shows the weak instruments asymptotic power of the CLR test

from simulations, for 20,000 replications at values δ = −6, −5.95, . . . , 6, with λ = 10, σ 2
u = σ 2

v = 1, ρuv = 0.5, and so
δm = −1 here. The horizontal dashed line is the rejection frequency at δ = δ∗ = 6. We have here that c2β∗,β0

λ = cβ̃,β0
λ at

δ̃ = −0.8571. The vertical dashed line is at δ = −0.8571 and the two dashed lines cross exactly on the power curve of

the CLR test, confirming the results. We summarise the main result:

Result 4.

The power of the AR, LR and CLR tests is asymmetric in the values of δ = β − β0 around δ = 0.

3.2. Fixed-Ω design

We now contrast the results found above for the fixed-Σ design with those for the fixed-Ω design. We can write the

data generating process for the fixed-Ω design as

yi = xiβ + ri − βvi (19)

xi = z ′
iπ + vi,

as then the reduced form is given by yi = z ′
iπβ + ri, and Ω is constant for all values of β and given by

Ω =
[

σ 2
r σrv

σrv σ 2
v

]
,

and correlation ρΩ := ρrv = σrv
σrσv

.

Changing in this design the value of β from β = β∗ to β = β∗ + γ whilst keeping the values of
{
z ′
i , ri, vi

}n
i=1

and π constant does not lead to a location shift only, but changes the distributions of the estimators. For example,

for the 2SLS estimator, we have for the first case β̂2sls,1 = β∗ + x′PZ (r−β∗v)

x′PZ x
, whereas for the second case, β̂2sls,2 =

β∗ + γ + x′PZ (r−β∗v)−γ x′PZ v

x′PZ x
= β̂2sls,1 + γ

(
1 − x′PZ v

x′PZ x

)
. The same applies to the Liml estimator and we therefore have in

general in this fixed-Ω design that LR (β0 + γ )β=β∗+γ ̸= LR (β0)β=β∗ , everything else constant. Hence, choosing β0 = 0 is

now not without loss of generality.

This can further be seen by investigating the noncentrality parameters of the maximal invariant Q as defined in (15)

for the fixed-Ω design. We get in this case, see Appendix A.4.2 for details,

c2β,β0
λ =

(
λ/σ 2

v

)
(

σr
δσv

)2
− 2

β0
δ

ρΩ

(
σr
δσv

)
+
(

β0
δ

)2 ,

d2β,β0
λ =

(
λ/σ 2

v

) (
σr
δσv

− ρΩ + β0
δ

(
β σv

σr
− 2ρΩ

))2

((
σr
δσv

)2
− 2

β0
δ

ρΩ
σr
δσv

+
(

β0
δ

)2) (
1 − ρ2

Ω

) ,

cβ,β0
dβ,β0

λ =

(
λ/σ 2

v

) (
σr
δσv

− ρΩ + β0
δ

(
β σv

σr
− 2ρΩ

))

((
σr
δσv

)2
− 2

β0
δ

ρΩ
σr
δσv

+
(

β0
δ

)2)√(
1 − ρ2

Ω

) ,

where, as before, δ = β − β0. These noncentrality parameters, and hence the asymptotic power of the tests under weak

instrument asymptotics, depend on the value β0/δ so that one cannot set β0 = 0 or σ 2
r = σ 2

v = 1 wlog in this design.

The exception is that one can set σ 2
r = σ 2

v = 1 wlog when one sets β0 = 0, as then

c2β,0λ = β2λ

σ 2
r

=
(
λ/σ 2

v

)
(

σr
βσv

)2 ,

d2β,0λ =

(
λ/σ 2

v

) (
σr

βσv
− ρΩ

)2

(
σr

βσv

)2 (
1 − ρ2

Ω

) ,

3 The equivalence of power at these points δ∗ and δ̃ clearly also holds for the AR test.
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cβ,0dβ,0λ =

(
λ/σ 2

v

) (
σr

βσv
− ρΩ

)

(
σr

βσv

)2√(
1 − ρ2

Ω

) .

The case β0 = 0, σ 2
r = σ 2

v = 1 is often the one considered in the literature, but to reiterate this is clearly not without

loss of generality in the fixed-Ω design, in contrast to the findings above for the fixed-Σ design.

Notice that when β0 = 0, the noncentrality parameter for the AR test, given by c2β,0λ, and hence its asymptotic power,

does not depend on ρΩ or σ 2
v , only on β , λ and σ 2

r . The reason for this is that the AR test statistic for testing H0: β = 0,

is given by

ARβ0=0 = y′PZy

y′MZy/n
,

as u0 = y − xβ0 = y. Consider the reduced form

y = Zπy + r, (20)

with the OLS estimator for πy given by π̂y =
(
Z ′Z
)−1

Z ′y. Then the π̂y-based standard Wald test statistic for testing

H0: πy = 0 is given by

Wπy = π̂ ′
y

(
V âr

(
π̂y

))−1
π̂y = y′PZy

y′MZy/n
= ARβ0=0,

using as an estimator for the variance V âr
(
π̂y

)
= σ̂ 2

r

(
Z ′Z
)−1

and σ̂ 2
r = y′MZy/n.

The fixed-Ω design sets πy = πβ and Var(ri) = σ 2
r . Weak-instrument asymptotics sets π = πn = c/

√
n, and hence

πy = πy,n = cβ/
√
n. Therefore the weak-instrument fixed-Ω power curve for the AR test as a function of β , testing

H0: β = 0, is simply the local-to-zero power curve of the OLS-based Wald test for testing H0: πy = 0 in the standard linear
model (20). Because σ 2

r is constant, the features of the endogenous explanatory variable x do not enter this specification

and hence neither σ 2
v nor ρΩ enter the noncentrality parameter c2β,0λ.

4. Power of the CLR test in the two designs with β0 = 0

In the fixed-Ω design (19) the variance matrix of the structural errors varies with β and Σ (β) is given by

Σ (β) =
[

σ 2
r − 2βσrv + β2σ 2

v σrv − βσ 2
v

σrv − βσ 2
v σ 2

v

]
, (21)

see also Andrews et al. (2019, p 466). It is common for simulations based on the fixed-Ω design to set σ 2
r = σ 2

v = 1, from

which it follows that

σ 2
u (β) = 1 − 2βρΩ + β2, (22)

σuv (β) = ρΩ − β. (23)

For testing H0 : β = 0, it follows that under the null, Σ (0) = Ω , and so ρΩ is then an indicator of the degree of

endogeneity in the null model only.

Fig. 2 displays these values of ρuv (β) = σuv (β) /σu (β) and σ 2
u (β) as a function of β for values of ρΩ = 0, 0.5 and 0.95.

The latter two values have often been used in simulations. As is clear from the formulae (22) and (23), and highlighted by

Fig. 2, for every value of β the endogeneity and variance properties of the structural model change. For the correlations

ρuv (β) we have that ρuv (β) < ρΩ for β > 0, and ρuv (β) > ρΩ for β < 0. Further, ρuv (β) > 0 for β < ρΩ and

ρuv (β) < 0 for β > ρΩ , approaching 1 and −1 quite rapidly, especially for ρΩ = 0.95.

We have the following result:

Result 5.

For any value of ρΩ we have that

σ 2
u (β)

β2
→ 1 if |β| → ∞,

ρuv (β) → 1 if β → −∞,

ρuv (β) → −1 if β → ∞,

which are the values for σ 2
u and ρuv where the power of the AR and CLR tests approaches 1, as shown in Section 3.1.2, with

here δ = β .
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Fig. 2. Values of ρuv and σ 2
u as a function of β when holding Ω =

[
1 ρΩ

ρΩ 1

]
constant.

Therefore, the fixed-Ω design selects particular points in the space of the nuisance parameters Σ , selecting those
values that result in the power being equal to one for large values of |β|. This holds for any value λ > 0, so also for very
weak instruments.

We illustrate this in Fig. 3. Each graph in this figure considers a different value for β , going from β = 0 to β = 5 in
increments of one. In each graph, the lines show the weak-instrument asymptotic power curves of the CLR test for testing

H0: β = 0 as a function of ρuv for different values of σ 2
u , normalising σ 2

v = 1, and so specifying Σ =
[

σ 2
u ρuvσu

ρuvσu 1

]
.

Going across the graphs for different values of β while keeping σ 2
u and ρuv constant would give the fixed-Σ power curves.

The instruments are very weak with λ = 1, and the number of instruments is kz = 5. Also included are the rejection
frequencies of the CLR test for the fixed-Ω design with σ 2

r = σ 2
v = 1, for the values of ρΩ = −0.95, −0.5, 0, 0.5, 0.95.

These points are indicated by the solid left-triangle, diamond, circle, square and right-triangle shapes respectively. For
each value of β , so within each graph, each choice for ρΩ in the fixed-Ω design corresponds to particular values for ρuv

and σ 2
u in the fixed Σ design, as captured in Eqs. (22) and (23). This correspondence determines the position of the solid

black shapes of the fixed-Ω design in each graph. For instance, when β = 1, ρΩ = 0.5 corresponds to σ 2
u = 1 and

ρuv = −0.5, so that is where the solid square is positioned in the β = 1 graph.
These graphs confirm our findings as described above. For β = 0, the CLR test has correct size for all values of ρuv and

σ 2
u , and ρΩ = ρuv . Then for the values of β = 1, 2, . . . , 5, the power of the test is quite low over a wide range of values of

ρuv and σ 2
u , as the value of λ is small, but the power approaches 1 when ρuv approaches −1 and when σ 2

u is equal to β2.
The path of the fixed-Ω design clearly swings that way for increasing values of β , with the associated ρuv (β) and σ 2

u (β)

approaching −1 and β2 respectively.
This is further illustrated in Fig. 4, which displays the standard weak-instrument asymptotic power curves for the

fixed-Ω design, with σ 2
r = σ 2

v = 1 and ρΩ = {0.5, 0.99}, and fixed-Σ design, with σ 2
u = σ 2

v = 1, and ρuv = {0.5, 0.99},
again for kz = 5 and λ = 1. It is clear that these two power curves display very different types of information. For
example, with ρuv = 0.5 fixed, the power of the CLR test is low for all values of β . The power curve for ρuv = 0.99 fixed is
highly asymmetric, with low power for positive values of β , a power of 1 for β = −1 (see Result 3), and then the power
diminishing again for β < −1. The fixed-Ω power curves are much more symmetric with power approaching 1 for large
positive and negative values of β as explained above. The differences in power for the values of ρΩ = 0.5 and ρΩ = 0.99
are also not as pronounced as those of the fixed-Σ design.

For an applied researcher that makes an assumption of positive structural correlation ρuv ex ante and expects a value
of β > 0, the above fixed-Σ analysis shows that the power of the CLR test to reject H0: β = 0 is low when the instruments
are very weak, λ = 1, for all values of β > 0, ρuv > 0 and σ 2

u > 0. This information is less readily obtained from the
fixed-Ω design. As displayed in Fig. 2, for the extreme case of ρΩ = 0, the power in the fixed-Ω design is only evaluated
for {β > 0, ρuv < 0} and {β < 0, ρuv > 0}, with the asymptotic power curve then fully symmetric following the results
derived above, and hence providing a very partial set of information. For ρΩ > 0, we have ρuv > 0 for β < ρΩ and so
the fixed-Ω power curve displays the power of the test for β > 0 and ρuv > 0 for the values 0 < β < ρΩ only, with
the values of ρuv then between 0 and ρΩ , ρΩ > ρuv > 0. So for the ρΩ = 0.5 case, Fig. 4 displays power in the fixed-Ω
design for positive β and positive ρuv only for the specific values 0 < β < 0.5, with accompanying values 0.5 > ρuv > 0.
If we consider low to moderate endogeneity to be for values of |ρuv| ≤ 0.5, we find that 0.5 ≥ ρuv ≥ −0.5 for 0 ≤ β ≤ 1
and |ρuv| > 0.5 for all other values of β .

It follows that for the ρΩ = 0.5 case, only 8.33% of the values of β considered in the fixed-Ω design in Fig. 4 cover the
setting of low to moderate endogeneity, and only 4.17% cover the setting were ρuv and β have the same sign. As we have

92



N. Van de Sijpe and F. Windmeijer Journal of Econometrics 235 (2023) 82–104

Fig. 3. Weak-instrument asymptotic power of CLR test, kz = 5, λ = 1.

done here, with λ = 1, fixed-Ω power curves are often presented as a function of values for β
√

λ ranging from −6 to 6

(see e.g. Andrews et al., 2006; Andrews et al., 2007; Mills et al., 2014 and Moreira and Moreira, 2019) and so for general

values of λ, these proportions are then multiplied by
√

λ.

An argument often made for the fixed-Ω design is that Ω can be consistently estimated, unlike Σ when instruments

are weak, see e.g. the discussion in Andrews et al. (2019, p 465) who state that ‘‘. . .because ρΩ can be consistently

estimated, and hence, in large samples can be treated as fixed and known’’. However, for the structural model (4) of
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Fig. 4. Weak-instrument asymptotic power curves of the CLR test for fixed-Ω design, left panel, and fixed-Σ design, right panel. kz = 5, λ = 1.

interest, we consistently estimate Ω (β) as defined in (7), and hence ρΩ (β), given by

ρΩ (β) = σuv + βσ 2
v

σv

√
σ 2
u + 2βσuv + β2σ 2

v

.

And, once we have estimates of Ω (β) from the data, we can obtain the p-values of the test statistics. Clearly, in large
samples, we can treat ρΩ (β) as known, but it is not clear why it should be treated as fixed. For the fixed-Ω model
specification (19), ρΩ can be treated as known and fixed in large samples, but this model has not been posited as the
structural model of interest in the literature, and appears a circular argument. Further, knowledge about Ω does not in
itself guide a researcher to which test is best to use. For example, we find in the next section that conditional Wald tests
have more power than the CLR test for certain combinations of β and values of the nuisance parameters Σ . Knowledge
of Ω cannot differentiate between these situations, which is therefore akin to the situation that one cannot estimate Σ

in weak-instrument settings.
Further, if a researcher would like to assess power properties of tests or make power calculations ex ante, i.e. before

the data are available, she is very likely to be making assumptions about the values of β and ρuv , but not about the value
of ρΩ , which appears harder to interpret.4

5. Comparisons of Liml- and Fuller-based CW and CW0 tests

5.1. Power comparisons

Our findings so far suggest that, in the fixed-Ω design, large segments of the power curves gravitate towards particular
values for the parameters in Σ that result in high power of the CLR test. As a result, fixed-Ω designs may obscure relevant
parameter spaces where the power of the CLR test is weaker, and perhaps lower than that of other tests. We illustrate
this by revisiting comparisons between the CLR test and CW -Liml, CW -Fuller and CW0-Fuller tests. In fixed-Ω designs,
CLR power curves tend to dominate the power curves of the conditional Wald tests for most values of β . However, there
is also a narrow range of small positive values of β where the conditional Wald tests have higher power. Because in the
fixed-Ω design |ρuv| rises quickly with |β|, this narrow range of values for β actually encompasses a fairly wide range of
values for |ρuv|, covering situations with low and moderate endogeneity, and a section where β and ρuv have the same
sign. We then show that a fixed-Σ design that allows to control ρuv directly, reveals more clearly that the CLR test can
be outperformed in terms of power by the CW -Liml, CW -Fuller and CW0-Fuller tests in the cases of low to moderate
endogeneity or where ρuv and β have the same sign.

Moreira (2003) compared the behaviour of the conditional 2SLS-based Wald test to that of the CLR test in a fixed-Σ
design. Andrews et al. (2007) compared the behaviours of the 2SLS-, Liml- and Fuller(1)-based CW tests to that of the
CLR test in the fixed-Ω design. They find that the CW -Fuller test performs best of the three conditional Wald tests, but
that its performance is, overall, ‘‘. . ., very poor relative to the CLR test’’, and that overall ‘‘. . .the CW tests perform worse,
often much worse, than the CLR test’’ (Andrews et al., 2007, p 131). Fig. 5 replicates Figure 5, panel (b) in Andrews et al.
(2007) for the CLR/CW0-Liml, CW -Liml and CW -Fuller tests for the fixed-Ω design with σ 2

r = σ 2
v = 1, ρΩ = 0.5, kz = 5

4 But note that each point on a fixed-Σ power curve has its equivalent on a fixed-Ω power curve and vice versa. For example, for the setting

of Fig. 4, the fixed-Σ power at β = 4, ρuv = 0.5 in the right panel is the same as that of the fixed-Ω power at ρΩ = 0.982 and β = 0.873.

94



N. Van de Sijpe and F. Windmeijer Journal of Econometrics 235 (2023) 82–104

Fig. 5. Weak-instrument asymptotic power of tests, fixed-Ω design, ρΩ = 0.5, kz = 5, λ = 5.

and λ = 5. We further include the power curve for the CW0-Fuller test. The W0-Fuller statistic is equal to W0

(
β̂Full

)
, as

per the definition in (14), and where β̂Full is the Fuller(1) estimator of β , see also Mills et al. (2014).5

From the result of Proposition 2 it follows that the only difference between the W -Liml and LR/W0-Liml test statistics is

the estimator of the variance σ 2
u . For the LR statistic, this is estimated under the null, and for known Ω , or asymptotically,

in the fixed-Ω design, σ 2
0 = b′

0Ωb0 = σ 2
r = 1 is constant for all values of β , whereas σ 2

u (β) = 1 − 2βρΩ + β2, and so

varies with β as depicted in the right panel of Fig. 2, with increasing values of σ 2
u (β) with increasing values of |β|. The

same observation applies to the difference between the W -Fuller and W0-Fuller statistics. This is reflected in the power

curves in Fig. 5. The CW -Liml and CW -Fuller tests have (much) less power than the CW0-Liml and CW0-Fuller tests for

β < 0, and for β > 1.2, and hence the conclusion of a poor performance of the CW tests seems justified.

However, upon closer inspection, it is clear that the CW tests, and also the CW0-Fuller test, are more powerful than

the CLR test for values of β between 0 and 1.05. Fig. 5 also displays the amount of endogeneity ρuv for each value of β .

As discussed above, ρuv = ρΩ = 0.5 at β = 0, decreases to ρuv = 0 at β = 0.5, and further to ρuv = −0.54 at β = 1.05.

For all negative values of β , ρuv > 0.5, increasing to ρuv = 0.97 at β = −3, and for all values of β > 1.05, ρuv < −0.54,

decreasing to ρuv = −0.97 at β = 3.

These results therefore indicate that the CW tests are more powerful for a range of parameter values in low to moderate

endogeneity settings. Chernozhukov and Hansen (2008, p 70) report an estimated median value of ρuv = 0.3 for a survey

of instrumental variables papers, commenting that this “. . .suggests that the degree of correlation between structural and

first-stage errors is quite modest in many cases”. Angrist and Kolesár (2021) find in three applications an absolute degree

of endogeneity of at most ρuv = 0.46 and argue that many microeconometric applications share features (including for

instance modest effect sizes) that should limit the degree of endogeneity. We therefore next compare the performances

of the tests in the fixed-Σ design, where we can control the level of endogeneity ρuv explicitly and can take a closer look

at how the tests perform in low to moderate endogeneity settings. This design also enables us to better investigate the

behaviour of the tests when ρuv and β have the same sign. The performances of these tests have not been compared using

the fixed-Σ design in the literature before.

Fig. 6 shows the power curves for values of ρuv = 0, 0.25, 0.50, 0.75, with σ 2
u = σ 2

v = 1, testing H0: β = 0. As above,

kz = 5, but here the instrument strength is λ = 10. Appendix C further presents the power curves for λ = 2.5, 5 and

20. We follow here the practice in the literature to report the rejection frequencies of the tests as a function of β
√

λ.

At low levels of endogeneity, ρuv = 0 and ρuv = 0.25, the behaviour of the CW -Liml and CW -Fuller tests are virtually
identical and they are the most powerful across the range of values of β

√
λ when ρuv = 0. For ρuv = 0.25 they are also

most powerful, but for a small bias of the tests for small negative values of β
√

λ. The bias of the CW tests increases with

increasing values of ρuv . The CW0-Fuller test is less biased than the CW tests. Its power dominates that of the CLR test at

the lower endogeneity levels ρuv = 0 and ρuv = 0.25. At the higher level of ρuv = 0.5, the power of the CW0-Fuller test
also dominates that of the CLR test except for some negative values of β

√
λ close to 0, and where the difference in power

5 For the calculation of the conditional critical values, we follow the approach of Mills et al. (2014, p 354). For full details, see the Matlab file

Fig6AppC1C3.m in the Supplementary Material.
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Fig. 6. Weak-instrument asymptotic power of tests, fixed-Σ design, kz = 5 and λ = 10, for different values of ρuv .

between the two tests is small. At the higher level of endogeneity, ρuv = 0.75, the CW -tests and the CW0-Fuller have
more power than the CLR test for positive values of β

√
λ, whereas the CLR test dominates at negative values of β

√
λ.

These results show that the biased CW and CW0-Fuller tests can have more power than the CLR test in low to moderate
endogeneity environments, in which case there is also only a small to moderate bias in these tests. This seems an important
observation, as this is a situation that may well be encountered in practice as suggested by Chernozhukov and Hansen
(2008) and Angrist and Kolesár (2021). Also, for all values of β > 0 and the values of ρuv > 0 considered here, the CW
tests are the most powerful.

5.2. Comparisons of confidence sets

Table 1 presents results for the lengths of 90% confidence sets based on inverting the test statistics, from 1000 Monte
Carlo replications. We generate the data as in (4),

yi = xiβ + ui

xi = z ′
iπ + vi,

with zi ∼ N
(
0, Ikz

)
, kz = 5, (ui vi)

′ ∼ N (0, Σ), Σ =
[

1 ρuv

ρuv 1

]
, and π =

√
λ

nkz
ιkz with ιkz a kz-vector of ones. We

consider all combinations of λ = 10, 20 and ρuv = 0, 0.25, 0.5, 0.75. We include a constant in the estimation by taking
deviations of yi, xi and zi from their sample means. To mimic the asymptotic results in Section 5.1 we choose a sample
size of n = 5000. We set β = 0, and test in each replication the hypothesis H0: β = β0 for a range of values for β0. For
each test, the confidence sets consist of the values of β0 for which the test statistic is smaller than the 90% critical value.

We first determine whether a confidence set is unbounded by setting β0 = −10, 000 and β0 = 10,000. In all
replications and for all test statistics these null values are either both rejected or both not rejected. If they are not
rejected we classify the confidence set as unbounded. If they are rejected, we construct the CW -Liml and CLR/CW0-

Liml confidence intervals around the Liml estimate β̂L and the CW -Fuller and CW0-Fuller confidence intervals around
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Table 1

Length of 90% confidence sets, kz = 5.

λ ρuv CW -Liml CW -Fuller CLR/CW0-Liml CW0-Fuller

10 0 % Unbounded 21.80 21.70 23.60 23.60

% Coverage 88.60 88.10 87.70 87.50

Med. length 1.21 1.22 1.76 1.28

Med. length only bounded 1.01 1.01 1.39 1.09

Mean length only bounded 1.26 1.27 1.93 1.62

0.25 % Unbounded 20.50 20.30 22.00 22.00

% Coverage 88.60 88.80 88.10 88.70

Med. length 1.20 1.20 1.72 1.27

Med. length only bounded 1.02 1.03 1.39 1.08

Mean length only bounded 1.42 1.33 3.80 3.51

0.5 % Unbounded 17.50 17.70 18.50 18.50

% Coverage 90.50 90.80 89.80 88.80

Med. length 1.20 1.21 1.63 1.25

Med. length only bounded 1.06 1.07 1.37 1.08

Mean length only bounded 1.43 1.49 2.41 2.17

0.75 % Unbounded 11.60 11.80 11.10 11.10

% Coverage 89.90 89.90 88.90 88.50

Med. length 1.22 1.24 1.51 1.22

Med. length only bounded 1.11 1.13 1.36 1.09

Mean length only bounded 1.57 2.25 2.48 2.30

20 0 % Unbounded 2.70 2.50 2.80 2.80

% Coverage 87.10 87.10 87.50 87.50

Med. length 0.74 0.73 0.90 0.83

Med. length only bounded 0.74 0.73 0.89 0.82

Mean length only bounded 0.83 0.82 1.15 1.01

0.25 % Unbounded 1.90 2.00 2.40 2.40

% Coverage 88.50 88.60 88.30 88.10

Med. length 0.74 0.74 0.89 0.82

Med. length only bounded 0.74 0.73 0.88 0.81

Mean length only bounded 0.86 0.86 1.16 1.03

0.5 % Unbounded 1.40 1.40 1.50 1.50

% Coverage 89.10 89.10 89.30 89.20

Med. length 0.75 0.76 0.88 0.78

Med. length only bounded 0.75 0.75 0.87 0.78

Mean length only bounded 0.99 1.09 1.32 1.19

0.75 % Unbounded 0.80 1.10 0.70 0.70

% Coverage 89.10 89.20 89.00 88.60

Med. length 0.76 0.78 0.86 0.73

Med. length only bounded 0.76 0.78 0.86 0.72

Mean length only bounded 0.92 1.07 1.10 0.95

Notes: Results from 1000 Monte Carlo replications, n = 5, 000. ‘‘% Unbounded’’ is the percentage of confidence sets

that are unbounded. ‘‘Med. length’’ is the median length of confidence sets. ‘‘Mean/Med. length only bounded’’ is the

mean/median length of the confidence sets for the replications where all tests produce bounded confidence sets.

the Fuller estimate β̂Full. We create these confidence intervals around the Liml or Fuller estimate by moving away from
the estimate in both directions until we enter the rejection region. We label these confidence intervals generically as[
β̄Low, β̄Upp

]
. For the CLR/CW0-Liml test there is only one such bounded confidence interval (see Mikusheva and Poi,

2006). The CW and CW0-Fuller confidence sets can contain separate intervals when considering bounded sets only,
for example [−2, −1] ∪ [0, 1], and the length is then calculated as the sum of the lengths of the disjoint sets (in
our example, the length is 2). We find these other intervals by evaluating the test statistics for a grid of values of
β0 =

(
β̄Low − [50, 49.99, 49.98 . . . , 0.01]

)
∪
(
β̄Upp + [0.01, 0.02, . . . , 50]

)
.6 There are a only a small number of cases

with multiple intervals. The maximum number of replications with multiple intervals is 12 out of 884 replications with
bounded sets for the CW -Liml test when λ = 10 and ρuv = 0.75.

The proportion of unbounded confidence sets can be large with very weak instruments, consistent with the power
curves presented in Section 5.1 and Appendix C. The weakest setting we consider in the table is therefore that of λ = 10,
where for example 23.6% of the confidence sets of the CLR/CW0-Liml and CW0-Fuller tests are unbounded when ρuv = 0,
whereas for λ = 5, this proportion is 53.1%. Because of the presence of unbounded confidence sets, we first report median
rather than mean lengths in Table 1, but also present median and mean lengths for those replications where no confidence
set of any test statistic is unbounded. The table further includes the results for coverage, which are the percentage of
replications in which H0: β = 0 is not rejected.

6 In order for intervals around β0 = 0 to always be considered, we set the lower limit to −5 if β̄Low − 50 > −5 and the upper limit to 5 if

β̄Upp + 50 < 5.
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Coverage is on the whole slightly below 90% with no clear discernible pattern of differences between the tests. The CW

tests have slightly smaller proportions of unbounded sets than the CW0 tests when ρuv ≤ 0.5, especially when λ = 10.
For both values of λ and all values of ρuv considered, the median lengths of the confidence sets are largest for the

CLR/CW0-Liml test. As expected from the power graphs presented in Section 5.1, the confidence sets based on the CW -
Liml and CW -Fuller tests have shorter median length than those of the CW0-based tests for ρuv ≤ 0.5. The CW0-Fuller
confidence sets dominate at ρuv = 0.75, more clearly so when λ = 20. For λ = 10 and ρuv = 0, the median length of the
CLR confidence sets is 1.45 times that of the CW -Liml one. This reduces to a factor of 1.24 when ρuv = 0.75. When only
considering replications with bounded confidence sets for all tests, these factors are 1.38 and 1.23 respectively. When
λ = 20 these factors are smaller: 1.22 for ρuv = 0 and 1.13 for ρuv = 0.75 and when including the small proportion
of unbounded sets. The mean lengths of the confidence sets for the replications with bounded confidence sets show an
increase in these factors, especially when λ = 10.

6. Conclusions

We have compared and contrasted the performances of the Conditional Likelihood Ratio and related tests in the fixed-
Σ and fixed-Ω designs. Due to the changing endogeneity properties as a function of β in the fixed-Ω design, this design
is less suited to show the differences in the properties of the tests in low to moderate endogeneity environments and
where the structural correlation ρuv and β have the same sign, when testing H0 : β = 0. These characteristics can be
controlled directly in the fixed-Σ design, which reveals more clearly that, for these parameter configurations, the Liml-
and Fuller-based conditional Wald tests have more power than the CLR test. We have also shown that for the fixed-Ω
design, setting β0 = 0 in H0: β = β0 or the diagonal elements of Ω equal to 1 is not without loss of generality. For the
fixed-Σ design, one can set β0 = 0 and the diagonal elements of Σ equal to 1 without loss of generality, making the
power curves in the latter design more generally applicable.

Results from the weak-instrument asymptotic power analysis in the fixed-Σ design and the associated properties of
the confidence sets based on inverting the test statistics show that the conditional Wald tests can outperform the CLR test
in conditions of low to moderate endogeneity and/or when β and ρuv have the same sign. These are situations that may be
commonly found in practice, and we find that weak-instrument large sample confidence sets for the Liml- and Fuller-based
conditional Wald tests dominate in terms of shorter median length, with the CLR test having the largest median lengths of
the confidence sets in all cases considered. The results for power and length of confidence sets presented in Sections 5.1
and 5.2 show that the CW -Liml, CW -Fuller and CW0-Fuller tests and associated confidence intervals can dominate the
ones for the CLR/CW0-Liml test in settings that are relevant in practice. We therefore recommend to, alongside the CLR

test, routinely report results for the CW -Liml, CW -Fuller and CW0-Fuller tests and their associated confidence intervals.
As is common in the literature, we have used simulation methods to compare the weak-instrument asymptotic

performances of the test statistics. No results have thus far been derived theoretically/analytically. This is due to the nature
of the problem, where we have non-standard weak-instrument asymptotic distributions of the estimators, resulting in
non-pivotal distributions of the test statistics, and complex distributions of the conditional critical values. The simulations
are exact in the sense that they give a correct representation of asymptotic power for the values of the nuisance parameters
considered. To derive these results analytically remains an open research question.
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Appendix A. Proofs

A.1. Proof of Proposition 1

Alternative expressions for π̂L are,

π̂L =
(
Z ′MûLZ

)−1
Z ′MûLx (A.1)

= π̂ −
(
Z ′Z
)−1

Z ′̂uL

(
ω̂12 − β̂Lω̂22

)

σ̂ 2
L

, (A.2)

where ûL = y − xβ̂L and σ̂ 2
L = û′

LMZ ûL/n = b′
LΩ̂bL, with bL = (1 − β̂L)

′. Expression (A.1) is the standard expression as
given in e.g. Bowden and Turkington (1984, p 108), from which (A.2) can be derived, see also Hausman (1983, p 424).
The result of Proposition 1 follows as π̂L0 can alternatively be expressed as

π̂L0 = π̂ −
(
Z ′Z
)−1

Z ′u0 (ω̂12 − β0ω̂22)

σ̂ 2
0

,
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following (A.2), linking the definitions of Moreira (2003) and Kleibergen (2002). Further,

V âr (π̂) − V âr (π̂L0) =
(
ω̂22 −

(
a′
0Ω̂

−1a0
)−1
) (

Z ′Z
)−1

,

and a′
0Ω̂

−1a0 = σ̂ 2
0 /
⏐⏐Ω̂
⏐⏐. It follows that ω̂22 −

(
a′
0Ω̂

−1a0
)−1 = (ω̂12 − β0ω̂22)

2 /σ̂ 2
0 and so Hπ = AR.

A.2. Proof of Proposition 2

It follows from (A.2) that

û′
LPZx = û′

LZ π̂ = û′
LZ π̂L + û′

LPZ ûL

σ̂ 2
L

(
ω̂12 − β̂Lω̂22

)

= B
(̂
βL

) (
ω̂12 − β̂Lω̂22

)
,

as û′
LZ π̂L = û′

L̂xL = 0.

As u0 = ûL + x
(̂
βL − β0

)
, it follows that

u′
0PZu0

σ̂ 2
0

=
û′
LPZ ûL + 2̂u′

LPZx
(̂
βL − β0

)
+
(̂
βL − β0

)2
x′PZx

σ̂ 2
0

= û′
LPZ ûL

σ̂ 2
0

+
2B
(̂
βL

) (
β̂L − β0

)

σ̂ 2
0

(
ω̂12 − β̂Lω̂22

)
+
(̂
βL − β0

)2
x′PZx

σ̂ 2
0

.

Further

û′
LPZ ûL

σ̂ 2
0

− û′
LPZ ûL

σ̂ 2
L

= û′
LPZ ûL

σ̂ 2
L σ̂ 2

0

(
σ̂ 2
L − σ̂ 2

0

)

=
B
(̂
βL

)

σ̂ 2
0

((̂
β2
L − β2

0

)
ω̂22 − 2

(̂
βL − β0

)
ω̂12

)
.

As
(̂
β2
L − β2

0

)
ω̂22 = −

(̂
βL − β0

)2
ω̂22 + 2β̂L

(̂
βL − β0

)
ω̂22,

and B
(̂
βL

)
= n̂κ , it follows that

u′
0PZu0

σ̂ 2
0

− û′
LPZ ûL

σ̂ 2
L

=
(̂
βL − β0

)2 (
x′PZx − B

(̂
βL

)
ω̂22

)

σ̂ 2
0

=
(̂
βL − β0

)2 (
x′PZx − n̂κω̂22

)

σ̂ 2
0

= W0

(̂
βL

)
.

A.3. Proof of Result 1

Consider the model specification with β = β∗,

y = xβ∗ + u (A.3)

x = Zπ + v.

Then the Liml estimator is given by

β̂L =
(
x′ (In − (̂κ + 1)MZ ) x

)−1
x′ (In − (̂κ + 1)MZ ) y

= β∗ +
(
x′ (In − (̂κ + 1)MZ ) x

)−1
x′ (In − (̂κ + 1)MZ ) u.

For testing H0: β = β0, we have that u0 = y − xβ0, and ûL = y − xβ̂L.
Next, consider a change in the parameter value only, β = β∗ + γ , ceteris paribus

yγ = x (β∗ + γ ) + u (A.4)

x = Zπ + v.

It follows that for testing H0: β = β0 + γ , we have that

u0,γ = yγ − x (β0 + γ ) = u0.
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Let W = [y x] and Wγ =
[
yγ x

]
. Let Ω̂γ = W ′

γMZWγ /n and

κ̂γ = min eval
((

n−1W ′
γ PZWγ

) (
Ω̂γ

)−1
)

.

Then the Liml estimator in model (A.4) is given by

β̂L,γ = β∗ + γ +
(
x′ (In −

(
κ̂γ + 1

)
MZ

)
x
)−1

x′ (In −
(
κ̂γ + 1

)
MZ

)
u.

As

Wγ = WΓ ; Γ =
[

1 0
γ 1

]
,

it follows that
(
n−1W ′

γ PZWγ

) (
Ω̂γ

)−1 =
(
n−1Γ ′W ′PZWΓ

) (
n−1Γ ′W ′MZWΓ

)−1

= Γ ′ (n−1W ′PZW
)
Ω̂−1

(
Γ ′)−1

and so κ̂γ = κ̂ and β̂L,γ = β̂L + γ . It therefore follows that

ûL,γ = yγ − xβ̂L,γ = y − xβ̂L = ûL.

Denote by AR(β0)β=β∗ and LR(β0)β=β∗ the test statistics for testing H0 : β = β0 when β = β∗, then it follows, ceteris
paribus, that

AR(β0 + γ )β=β∗+γ = AR(β0)β=β∗

LR(β0 + γ )β=β∗+γ = LR(β0)β=β∗

Further, for testing H0: β = β0 when β = β∗, we have

τ0(β0)β=β∗ = a′
0Ω̂

−1W ′PZWΩ̂−1a0

a′
0Ω̂

−1a0
,

where a0 = (β0 1)′. Then for testing H0: β = β0 + γ when β = β∗ + γ , denoting a0,γ = (β0 + γ 1)′,

τ0(β0 + γ )β=β∗+γ =
a′
0,γ

(
Ω̂γ

)−1
W ′

γ PZWγ

(
Ω̂γ

)−1
a0,γ

a′
0,γ

(
Ω̂γ

)−1
a0,γ

=
a′
0,γ Γ −1Ω̂−1W ′PZWΩ̂−1

(
Γ ′)−1

a0,γ

a′
0,γ Γ −1Ω̂−1 (Γ ′)−1 a0,γ

= τ0(β0)β=β∗ ,

as

(
Γ ′)−1

a0,γ =
[

1 −γ

0 1

](
β0 + γ

1

)
= a0.

It therefore follows that, ceteris paribus, the LR test statistic and its conditional p-value for testing H0: β = β0 when
β = β∗ are identical to the test statistic and its conditional p-value for testing H0: β = β0 + γ when β = β∗ + γ .

A.4. Derivation of noncentrality parameters

A.4.1. Fixed-Σ design

As

σ 2
0 (β) := b′

0Ω (β) b0 =
(

1 −β0

) [ σ 2
u + 2βσuv + β2σ 2

v σuv + βσ 2
v

σuv + βσ 2
v σ 2

v

](
1

−β0

)

= σ 2
u + 2σuvδ + σ 2

v δ2,

with δ = β − β0, it follows that

c2β,β0
λ = λδ2

σ 2
0 (β)

= λδ2

σ 2
u + 2ρuvσuσvδ + σ 2

v δ2

= λ/σ 2
v(

σu
δσv

)2
+ 2ρuv

σu
δσv

+ 1

.
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Fig. B.1. Size properties of LR test using 5% critical value of the χ2
1 distribution, for different values of ρuv and instrument strength λ. σ 2

u = σ 2
v = 1,

kz = 5.

Fig. C.1. λ = 2.5, kz = 5.
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Fig. C.2. λ = 5, kz = 5.

Further,

b′Ω (β) b0 = (1 − β)

[
σ 2
u + 2βσuv + β2σ 2

v σuv + βσ 2
v

σuv + βσ 2
v σ 2

v

](
1

−β0

)

= σ 2
u + δσuv,

and so

d2β,β0
λ =

λ
(
b′Ω (β) b0

)2

σ 2
0 (β) |Ω (β)|

=
λ
(
σ 2
u + δσuv

)2
(
σ 2
u + 2σuvδ + σ 2

v δ2
)
σ 2
u σ 2

v

(
1 − ρ2

uv

)

=
(λ/σ 2

v )
(

σu
δσv

+ ρuv

)2

((
σu
δσv

)2
+ 2ρuv

σu
δσv

+ 1

) (
1 − ρ2

uv

) .

Finally,

cβ,β0
dβ,β0

λ =
λδ
(
σ 2
u + δσuv

)

σ 2
0 (β) |Ω (β)|1/2

=
λδ
(
σ 2
u + δσuv

)

(
σ 2
u + 2σuvδ + σ 2

v δ2
)
σuσv

√(
1 − ρ2

uv

)

=

(
λ/σ 2

v

) (
σu
δσv

+ ρuv

)

((
σu
δσv

)2
+ 2ρuv

σu
δσv

+ 1

)√(
1 − ρ2

uv

) .
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Fig. C.3. λ = 20, kz = 5.

A.4.2. Fixed-Ω design
We now have

σ 2
0 := b′

0Ωb0 =
(

1 −β0

) [ σ 2
r σrv

σrv σ 2
v

](
1

−β0

)

= σ 2
r − 2β0σrv + β2

0σ
2
v ,

and so, with ρΩ := ρrv = σrv
σrσv

,

c2β,β0
λ = λδ2

σ 2
0

= λδ2

σ 2
r − 2β0σrv + β2

0σ
2
v

= λ/σ 2
v(

σr
δσv

)2
− 2

β0
δ

ρΩ
σr
δσv

+
(

β0
δ

)2 .

Further, |Ω| = σ 2
r σ 2

v − σ 2
rv = σ 2

r σ 2
v

(
1 − ρ2

Ω

)
, and b′Ωb0 = σ 2

r − (β + β0) σrv + ββ0σ
2
v = σ 2

r − δσrv + β0

(
βσ 2

v − 2σrv

)
,

hence

d2β,β0
λ =

λ
(
σ 2
r − δσrv + β0

(
βσ 2

v − 2σrv

))2
(
σ 2
r − 2β0σrv + β2

0σ
2
v

)
σ 2
r σ 2

v

(
1 − ρ2

Ω

)

=

(
λ/σ 2

v

) (
σr
δσv

− ρΩ + β0
δ

(
β σv

σr
− 2ρΩ

))2

((
σr
δσv

)2
− 2

β0
δ

ρΩ
σr
δσv

+
(

β0
δ

)2) (
1 − ρ2

Ω

) ,
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and

cβ,β0
dβ,β0

λ =
λδ
(
σ 2
r − δσrv + β0

(
βσ 2

v − 2σrv

))

(
σ 2
r − 2β0σrv + β2

0σ
2
v

)
σrσv

√(
1 − ρ2

Ω

)

=

(
λ/σ 2

v

) (
σr
δσv

− ρΩ + β0
δ

(
β σv

σr
− 2ρΩ

))

((
σr
δσv

)2
− 2

β0
δ

ρΩ
σr
δσv

+
(

β0
δ

)2)√(
1 − ρ2

Ω

)

Appendix B. Size distortion of the LR test

See Fig. B.1.

Appendix C. Power curves of CLR/CW0-Liml, CW -Liml, CW -Fuller and CW0-Fuller tests

See Figs. C.1–C.3.

Appendix D. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2022.02.004.
The supplementary material contains Matlab replication files for the results in Table 1 and Figures 1–6, B.1 and C.1–C.3.
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