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Abstract

In most human made scenes, such as high-rise urban city or indoor environment, the surface
normal vectors or direction vectors are concentrated in three orthogonal principal directions.
The scene of such a pattern is called Manhattan World (MW), and the coordinate frame
formed by the three principal directions is called Manhattan Frame (MF). MF estimation
methods have been applied to many different fields, such as scene reconstruction, Visual
based Simultaneous Localization And Mapping (V-SLAM) and camera calibration. In this
paper, we propose a novel MF estimation method based on a set of normal vectors. A cost
function of normal vectors and MF axes is introduced based on the trigonometric function.
For computational purpose, the cost function is significantly simplified by making use
of vector dot and cross products, and the reduced cost function only involves 14 scalar
parameters that need to be computed with O(n) complexity. The experimental results show
that the proposed MF estimation method has excellent real-time performance and gives
high accuracy on both the virtual and real-world benchmark datasets of different sizes.

1 Introduction

In most of the artificial scenes, such as high-rise urban city and indoor environment, there is often a unified
scene structure pattern, where the floor, ceiling, wall corner and edge line are often perpendicular or parallel
to each other, and their normal vectors or direction vectors are concentrated in three main orthogonal
directions in 3D (three-dimensional) space. The coordinate frame, which defines these three main directions
along X, Y and Z axes, is called the Manhattan Frame (MF) (Straub et al., 2014; Ghanem et al., 2015; Straub
et al., 2015, 2017), and the scene with such a structural feature is called the Manhattan World (MW) (Coughlan
and Yuille, 1999). MF estimation is widely used in many visual tasks, such as Visual based Simultaneous
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Localization And Mapping (V-SLAM)(Wang and Wu, 2019; Zhou et al., 2015; Hsiao et al., 2017; Le and
Košecka, 2017), 3D scene reconstruction (Furukawa et al., 2009; Sinha et al., 2009), scene understanding
(Straub et al., 2014; Silberman et al., 2012; Gupta et al., 2013; Choi et al., 2013), scene layout estimation (Hedau
et al., 2009; Lee et al., 2009; Hedau et al., 2010; Schwing et al., 2012) and camera calibration (Straub et al.,
2014; Bazin et al., 2014).

In recent years, many methods (Ghanem et al., 2015; Furukawa et al., 2009; Gupta et al., 2013; Taylor and
Cowley, 2013; Zhang et al., 2010) have been proposed for MF estimation, but these methods only provide
suboptimal solutions (Joo et al., 2018). In order to ensure the global optimal result, Bazin et al. (2012a) and
Parra Bustos et al. (2014) proposed new methods based on Branch-and-Bound (Bazin et al., 2012b) (BnB), but
the amount of the calculation of these methods is very large. In order to reduce the amount of computations,
Joo et al. (2018) proposed a BnB method based on Extended Gaussian Image (EGI). This method has reliable
real-time performance, but it needs to adjust the resolution of EGI to achieve the balance of accuracy and
computing speed.

In order to improve the real-time performance of MF estimation, while ensuring the accuracy and stability,
this paper proposes a novel MF estimation method. Firstly, the cost function of a single MF axis direction is
defined based on the trigonometric function. Then an easy-to-calculate cost function is defined by using
vector dot and cross product operations, so that the part of the normal vector sample set in the cost function
only contains 14 scalar parameters that need to be computed with O(n) complexity. Finally, the cost function
of MF rotation matrix is defined by adding the cost functions of the three MF axes, and methods for
determining the initial value and searching for an optimal solution are designed.

The number of scalar parameters of the designed cost function is fixed, so the calculation amount of the MF
optimization process does not increase with the increase of the number of normal vectors. The computation
process of the 14 scalar parameters in the cost function has O(n) complexity, and the optimization process of
MF has O(1) complexity; these enable the method to have outstanding real-time performance. The proposed
method can accurately estimate the MF which involves nearly 300000 unit normal vectors within 5 ms with
CPU only. The cost function is smooth and convex, therefore it has a global minimum which guarantees an
optimal result for the MF estimation. In addition, an initial value determination method is designed to speed
up the MF estimation convergence to the global optimum. These features ensure both high accuracy and
robustness of the MF estimation. The proposed method does not include any parameter that needs to be
adjusted manually. The main contributions of the paper include:

(1) A new cost function with parallel or vertical vector constraints based on the trigonometric function.

(2) A novel easy-to-calculate cost function, involving only 14 scalar parameters to be computed with O(n)
complexity.

(3) A new method for determining the MF initial value, which is significantly useful for speeding up the MF
estimation convergence to the global optimum.

The remaining of the paper is arranged as follows. In Section 2, the related work of the MF estimation
methods is presented. In Section 3, the methodology of the proposed MF estimation method in this paper
is described in detail. In Section 4, several experiments are carried out to evaluate the performance of the
proposed method. Section 5 briefly summarizes the work.

2 Related Work

In the early work (Lee et al., 2009; Ramalingam and Brand, 2013; Lee et al., 2010), RGB (Red-Green-Blue)
image was used as input, and the MF was estimated based on perspective geometry. The image gradient or
line features were extracted and clustered, then the MF was estimated by estimating the vanishing points



and lines.

In recent years, with the development of RGB-D (Red-Green-Blue-Depth) camera technology, RGB-D images
are more and more easy to obtain. As a result, MF estimation methods based on RGB image and depth
information are proposed (Ghanem et al., 2015; Taylor and Cowley, 2013; Wu and Wang, 2017). Compared
with the MF estimation methods based only on RGB image, the methods based on RGB-D image utilize both
2D RGB information and 3D depth information, so the RGB-D based methods are more accurate and stable
(Wang and Wu, 2019).

Furukawa et al. (2009) proposed an MF estimation method based on binocular vision, where binocular 3D
reconstruction is used to extract the main plane direction and orientation points. Then, the hemispherical
histogram is used to count these directions. The MF is estimated by finding three orthogonal clusters. The
accuracy of this method depends on the resolution of the hemispherical histogram. A lower resolution
usually cannot guarantee a high estimation accuracy. On the contrary, a higher resolution may make the
process of MF estimation more sensitive to noise.

Silberman et al. (2012) proposed a method to explain the support relationship of indoor scene elements
from RGB-D images. In this work, in order to estimate the MF, a series of candidate directions are selected
firstly, and then the coordinate axis direction of MF is determined through exhaustive search with a scoring
heuristic method. This method usually takes a long time, and the output result is suboptimal.

Taylor and Cowley (2013) proposed a method to analyze the Manhattan structure of indoor scene using
Kinect camera. The method first finds the area of the ground below the camera’s view, and then determines
the MF by choosing a main wall plane direction perpendicular to the ground. This method is not suitable for
the situation that there is no ground in the camera’s field of view.

In some visual tasks, only the gravity direction needs to be estimated. Zhang et al. (2010) proposed a
framework for semantic scene parsing and object recognition, where the normal information of the point
cloud is extracted, then a group of normal vectors close to the upward direction are selected in the camera
coordinate system. The gravity direction is estimated based on the RANSAC (RANdom SAmple Consensus)
(Fischler and Bolles, 1981) algorithm. Gupta et al. (2013) proposed a method for object boundary detection
and segmentation. The method selects the Y axis of the camera coordinate system as the initial direction of
the gravity vector, then selects the normal vector parallel to the initial direction and construct the parallel
constraint, and finally selects the normal vector perpendicular to the initial direction and constructs the
vertical constraint to optimize the gravity vector. The limitation of the methods proposed in (Gupta et al.,
2013; Zhang et al., 2010) is that the direction of the Y axis of the camera coordinate system should be near
parallel to the gravity direction.

Ghanem et al. (2015) proposed an MF estimation method by introducing sparse constraints of scene normal
information, and used it to estimate the surfaces aligned with the MF axes and the outlying surfaces. This
approach is based on the assumption that the camera attitude is normal, where the angle between the
normal vector of floor or ceiling and the Y-axis of camera coordinate system is small. The initial value of the
optimization is selected as identity matrix. The global optimization result cannot be guaranteed when the
camera is in abnormal posture.

Straub et al. (2014) proposed a new approach called MMF (Mixture of Manhattan Frame), where the multiple
MFs of the scene can be estimated simultaneously. However, the estimation accuracy is limited, and the
calculation time is up to 100s, which cannot meet the real-time requirements. They also proposed a method
called RTMF (Real Time Manhattan Frame)(Straub et al., 2015) based on the normal vectors. With the
acceleration of GPU (Graphics Processing Unit), RTMF meets the requirements of real-time application, but
it is sensitive to initial conditions and cannot guarantee the global optimal result.

In order to ensure the global optimal estimation, Bazin et al. (2012a) proposed an MF estimation method by
exploiting the Branch-and-Bound (BnB) framework (Bazin et al., 2012b), where a global search in the rotating



search space (Hartley and Kahl, 2009) is conducted based on interval analysis, and the MF is estimated by
determining the orthogonal vanishing points. The main limitation of the method is that it is not suitable for
real-time application because of the large amount of calculations (Parra Bustos et al., 2014).

In order to improve the calculation speed, Parra Bustos et al. (2014) proposed a more efficient boundary
function for BnB framework. This method can register up to 1000 points in 2 seconds, but there is still a gap
between the requirements of real-time application.

Joo et al. (2018) extended the MF estimation method presented in (Joo et al., 2016), and improved the BnB
framework and proposed a near real-time MF estimation method. In this work, the normal vectors are
projected onto an equal rectangular two-dimensional plane, and are discretized according to the manually
set resolution to obtain the Extended Gaussian Image (EGI) (Horn, 1984), which contains the histogram
information of normal vector distribution. The BnB method was then used to estimate MF in the obtained EGI.
Compared with other BnB based methods (Bazin et al., 2012a; Parra Bustos et al., 2014), the computational
efficiency of this method is greatly improved. However, this method needs to adjust the resolution of EGI to
an appropriate value so as to achieve a good balance between accuracy and running time.

3 Methodology

Let {ai|i = 1, 2, ..., n} be a set of unit normal vectors of a 3D scene point cloud. Most of the normal vector
directions are concentrated in three orthogonal main directions, and there are a number of normal vectors
whose directions are randomly distributed on the unit sphere, representing outliers. The goal of the MF
estimation is to find the MF whose three axes are parallel to the three orthogonal main directions.

For an ideal case, any normal vector is parallel or perpendicular to any coordinate axis of MF, that is, the
angle between any normal vector and any MF axis is 0°, 90° or 180°. In practice, however, because of the
existence of noise and outliers, the normal vectors are not strictly parallel or perpendicular to the axis of MF;
this can result in errors in MF estimation. This paper aims to MF estimation performance in terms of both
accuracy and computational reduction to meet the requirements of real-time applications. In doing so, a cost
function is designed, whose solution can be achieved by optimizing the corresponding rotation matrix of
MF, so as to obtain the result of MF.

3.1 The Definition of the Cost Function

Let θ be the angle between a normal vector and a MF axis. In order to make θ close to 0, 90 or 180 degrees,
the cost function e (θ) can be defined as

e (θ) = sin2θcos2θ (1)

When the normal vector and the coordinate axis are parallel, θ is close to 0 or 180 degrees, sin2θ is close to
zero. When the normal vector and the coordinate axis are vertical, θ is close to 90 degrees, cos2θ is close to
zero. The Cartesian coordinate curve of e (θ) = sin2θcos2θ is shown in Fig. 1.

Let r be the unit vector corresponding to one of the MF axes. The Single Normal vector and Single Axis
(SNSA) cost function Ei (r) associated with r and the i-th normal vector ai in the normal vector set is defined
as

Ei (r) = sin2
< r, ai > cos2

< r, ai > (2)

where < r, ai > denotes the angle between r and ai.
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Figure 1: The Cartesian Coordinate Curve of the Cost Function e (θ) = sin2θcos2θ. When θ = kπ
2 , k ∈ Z (Z

represents integer field), the function value is zero, and the closer to θ = kπ
2 , k ∈ Z, the smaller the function

value is. When θ = kπ
2 + π

4 , k ∈ Z, the function value is the largest. In addition, the function

e (θ) = sin2θcos2θ is smooth and continuous in all domains.

Figure 2: The Polar Coordinate Curve of e (θ) = sin2θcos2θ.

Fig.2 shows the polar coordinate curve ofe (θ) = sin2θcos2θ, and Fig.3 is the spherical coordinate curve
surface of Ei = sin2

< r, ai > cos2
< r, ai > when the vector ai and Z-axis are in the same direction.

It can be seen from Fig.2 and Fig.3 that the spherical coordinate curve surface of the cost function Ei =
sin2

< r, ai > cos2
< r, ai > is a hourglass shaped curve surface after the polar coordinate curve of Fig.2

is rotated 180 degrees around its polar axis. The upper, lower and the waist part of the curve surface are
concave inward, while the rest are protruding outward.

The Multiple Normal vector and Single Axis (MNSA) cost function associated with the vector r and the
vector set {ai|i = 1, 2, ..., n} is defined as the arithmetic mean of the SNSA cost function (2) of each vector ai,
shown as follow

E (r) =
1

n

n

∑
i=1

Ei (r) (3)



Combining (2) and (3), we can obtain

E (r) =
1

n

n

∑
i=1

sin2
< r, ai > cos2

< r, ai > (4)

Fig.4 is the spherical coordinate curve surface of the cost function corresponding to two orthogonal normal
vectors. Fig.5 is the spherical coordinate curve surface of the cost function corresponding to three orthogonal
normal vectors. It can be seen that the MNSA cost has a minimum value when the vector r points to one of
the MF axis, which satisfy the parallel or vertical constraints. In addition, the curve surface has no other
minimum points which do not satisfy the constraints.
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Figure 3: The Spherical Coordinate Curve Surface of Ei (r) = sin2
< r, ai > cos2

< r, ai >. It is a hourglass
shaped curve surface after the polar coordinate curve of Fig.2 is rotated 180 degrees around its polar axis.
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Figure 4: The Curve Surface of the MNSA Cost Function Corresponding to Two Orthogonal Normal Vectors
a1 and a2. Along the a1, a2 and a1 × a2 directions, the curve surface concave inward, and the rest parts are

protruding outwards.
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Figure 5: The Curve Surface of the MNSA Cost Function Corresponding to Three Orthogonal Normal
Vectors a1, a2 and a3. The curve surface of the cost function is a round corner cube whose the six sides are
concave inward. Along the a1, a2 and a3 direction, the curve surface concave inward, and the rest of the

parts are protruding outwards.



3.2 Simplification of the MNSA Cost Function

In order to reduce the amount of calculations in the optimization process of MF estimation, the cost function
defined in (4) is simplified in this section, so that the variables related to the normal vectors {ai|i = 1, 2, ..., n}
in the MNSA cost function are separated from the vector r. In this way, the resulting cost function only
contains 14 scalar parameters that need to be calculated with O(n) complexity. In the following, we use
vector cross and dot product operations to simply the MNSA cost function.

The vector cross multiplication property is

|sin < r, ai >| = |ai × r| (5)

The vector dot multiplication property is

|cos < r, ai >| = |ai · r| (6)

For scalars, the operator |·| denotes an absolute value operation, whereas for vectors, it denotes the modular
length operation.

Define ai =
[

ai bi ci

]T
and r =

[

x y z
]T

, the cross and dot multiplications for vectors and matrices are
respectively defined as

ai × r = [ai]×r =





0 −ci bi

ci 0 −ai

−bi ai 0









x
y
z



 (7)

ai · r = rTai =
[

x y z
]





ai

bi

ci



 (8)

where the operator [·]× represents the operation of converting a 3D vector to a 3 × 3 skew symmetric matrix.

We can obtain that

|sin < r, ai > cos < r, ai >| =
∣

∣

∣[ai]×rrTai

∣

∣

∣ (9)

For [ai]×rrTai, we separate the variables of ai and r to two matrices, as follow

[ai]×rrTai =





0 −bici bici −aici aibi bi
2 − ci

2

aici 0 −aici bici ci
2 − ai

2 −aibi

−aibi aibi 0 ai
2 − bi

2 −bici aici





















x2

y2

z2

xy
xz
yz

















(10)

The detailed derivation process of formula (10) is in Appendix A.



Two matrix functions are defined as follow

V2 (r) =

















x2

y2

z2

xy
xz
yz

















(11)

A (ai) =





0 −bici bici −aici aibi bi
2 − ci

2

aici 0 −aici bici ci
2 − ai

2 −aibi

−aibi aibi 0 ai
2 − bi

2 −bici aici



 (12)

So we can obtain

[ai]×rrTai = A (ai)V2 (r) (13)

Combining (2), (9) and (13) gives:

Ei (r) = V2
T (r)AT (ai)A (ai)V2 (r) (14)

where

AT (ai)A (ai) =


















ai
2bi

2 + ai
2ci

2 −ai
2bi

2 −ai
2ci

2

−ai
2bi

2 ai
2bi

2 + bi
2ci

2 −bi
2ci

2

−ai
2ci

2 −bi
2ci

2 ai
2ci

2 + bi
2ci

2

aibici
2 − ai

3bi + aibi
3 ai

3bi − aibi
3 + aibici

2 −2aibici
2

aici
3 − ai

3ci + aibi
2ci −2aibi

2ci aibi
2ci − aici

3 + ai
3ci

−2ai
2bici ai

2bici − bi
3ci + bici

3 bi
3ci − bici

3 + ai
2bici

aibici
2 − ai

3bi + aibi
3 aici

3 − ai
3ci + aibi

2ci −2ai
2bici

ai
3bi − aibi

3 + aibici
2 −2aibi

2ci ai
2bici − bi

3ci + bici
3

−2aibici
2 aibi

2ci − aici
3 + ai

3ci bi
3ci − bici

3 + ai
2bici

ai
2ci

2 + bi
2ci

2 + ai
4 − 2ai

2bi
2 + bi

4 −3ai
2bici + bici

3 + bi
3ci −3aibi

2ci + aici
3 + ai

3ci

−3ai
2bici + bici

3 + bi
3ci ai

2bi
2 + ci

4 − 2ai
2ci

2 + ai
4 + bi

2ci
2 aibi

3 + ai
3bi − 3aibici

2

−3aibi
2ci + aici

3 + ai
3ci aibi

3 + ai
3bi − 3aibici

2 bi
4 − 2bi

2ci
2 + ci

4 + ai
2bi

2 + ai
2ci

2



















(15)

The detailed derivation process of formula (14) is in Appendix A.

Combining (4), (14) and (15) gives:

E (r) = V2
T (r)

(

1

n

n

∑
i=1

AT (ai)A (ai)

)

V2 (r) (16)

Define



M =
1

n

n

∑
i=1

AT (ai)A (ai) (17)

The MNSA cost function E (r) can then be simplified as:

E (r) = V2
T (r)MV2 (r) (18)

Define

Suvw =
1

n

n

∑
i=1

ai
ubi

vci
w (19)

Combining (15), (17) and (19), yields,

M =
1

n

n

∑
i=1

AT (ai)A (ai) =

















S220 + S202 −S220 −S202

−S220 S220 + S022 −S022

−S202 −S022 S202 + S022

S130 − S310 + S112 S310 − S130 + S112 −2S112

S103 − S301 + S121 −2S121 S301 − S103 + S121

−2S211 S013 − S031 + S211 S031 − S013 + S211

S130 − S310 + S112 S103 − S301 + S121 −2S211

S310 − S130 + S112 −2S121 S013 − S031 + S211

−2S112 S301 − S103 + S121 S031 − S013 + S211

S202 + S022 + S400 − 2S220 + S040 S013 + S031 − 3S211 S103 + S301 − 3S121

S013 + S031 − 3S211 S220 + S004 − 2S202 + S400 + S022 S130 + S310 − 3S112

S103 + S301 − 3S121 S130 + S310 − 3S112 S040 − 2S022 + S004 + S220 + S202

















(20)

The matrix M is determined by the following 15 scalar parameters

S400, S310, S220, S130, S040,

S301, S211, S121, S031,

S202, S112, S022,

S103, S013,

S004

(21)

Note that the vectors ai (i = 1, 2, ..., n) are unit vectors and there is a constraint on the three elements of each
ai as follows:

1

n

n

∑
i=1

(

ai
2 + bi

2 + ci
2
)2

= 1 (22)

By expanding 1
n

n

∑
i=1

(

ai
2 + bi

2 + ci
2
)2

, we can get



1

n

n

∑
i=1

(

ai
2 + bi

2 + ci
2
)2

= S400 + S040 + S004 + 2S220 + 2S202 + 2S022 (23)

Using (22) and (23), it can be known that:

S004 = 1 − (S400 + S040 + 2S220 + 2S202 + 2S022) (24)

Therefore, in order to calculate each Suvw with the normal vector set {ai}, only the following 14 scalar
parameters are needed:

S400, S310, S220, S130, S040,

S301, S211, S121, S031,

S202, S112, S022,

S103, S013

(25)

Finally, the 15th parameter S004 can be worked out using (24); this significantly reduces the overall computa-
tional load.

3.3 The Definition of MNMA Cost Function and the Estimation of the MF

In order to estimate the MF, we design the cost function of Multiple Normal vectors and Multiple MF Axis
(MNMA), represented by the rotation matrix R of the MF.

Let R =
[

r1 r2 r3

]

, where r1,r2,r3 are the corresponding unit vector of the X, Y and Z axes of the MF in the
camera coordinate system. We define MNMA cost function as the sum of the X, Y and Z axes’ MNSA cost
values, as follow:

E (R) = E (r1) + E (r2) + E (r3)

=
[

V2
T (r1) V2

T (r2) V2
T (r3)

]





M
M

M









V2 (r1)
V2 (r2)
V2 (r3)





(26)

In this paper, the Levenberg-Marquardt (LM) optimization algorithm is used to estimate R. In doing so, it
needs to find a function f (R) that satisfies

E (R) = fT (R) f (R) (27)

The matrix M can be written as the product of a matrix and its transpose

M =











1√
n











A (a1)
A (a2)

...
A (an)





















T

1√
n











A (a1)
A (a2)

...
A (an)











= A′TA′ (28)



The matrix M can be further decomposed as:

M = Qdiag (λ1, λ2, ..., λ6)QT (29)

where λk ≥ 0, k = 1, 2, ..., 6, and the matrix Q is an orthogonal matrix.

Define

H = diag
(

√

λ1,
√

λ2, ...,
√

λ6

)

QT (30)

So the matrix M is formed by

M = HTH (31)

Then

E (R) = fT (R) f (R) =
[

V2
T (r1)HT V2

T (r2)HT V2
T (r3)HT

]





HV2 (r1)
HV2 (r2)
HV2 (r3)



 (32)

where f (R) =





HV2 (r1)
HV2 (r2)
HV2 (r3)



.

From (11), the Jacobian matrix of V2 (r) with respect to r is

JV2
(r) =

∂V2 (r)

∂r
=

















2x 0 0
0 2y 0
0 0 2z
y x 0
z 0 x
0 z y

















(33)

Let exp([∆φ]×)R be a left perturbed matrix of R, where ∆φ corresponds to the Lie algebra of the rotation
perturbation, and exp([∆φ]×) represents the perturbation rotation matrix corresponding to ∆φ. The Jacobian
matrices of r1,r2,r3 with respect to ∆φ are

∂r1

∂∆φ
= −[r1]×

∂r2

∂∆φ
= −[r2]×

∂r3

∂∆φ
= −[r3]×

(34)

So the Jacobian matrix of f (R) with respect to ∆φ is



Jf (R) =
∂f (R)

∂∆φ
= −





HJV2
(r1) [r1]×

HJV2
(r2) [r2]×

HJV2
(r3) [r3]×



 (35)

Given an initial value Rinit, the minimum of the MNMA cost function E (R), i.e., the MF estimation result
R∗, can be obtained by using the LM optimization algorithm to minimize the function as follow

R∗ = arg min
R

E (R) (36)

It is known that R0, the initial value of R, is an orthogonal matrix. Assume that after the n-th iteration, the
resulting matrix Rn is orthogonal (based on the definition of exp([∆φn]×), then it is ready to know that

Rn+1 = exp([∆φn]×)Rn is also orthogonal. So the optimization result R∗ is orthogonal.

3.4 Determination of the Initial Value

Define R0 =
[

r1,init r2,init r3,init

]T
. In order to avoid the influence of the zero gradient point on the cost

function in the optimization process and ensure the global optimality, we design a method to select the initial
value Rinit through selecting the direction of the three coordinate axes r1,init, r2,init, r3,init.

Define the candidate axis vector set as

Candidate = {v =
v′

|v′|

∣

∣

∣

∣

v′ =
[

x y ±4
]T

or
[

x ±4 y
]T

or
[

±4 x y
]T

, x = −3,−2, ..., 3, y = −3,−2, ..., 3}
(37)

The set Candidate contains a total of 7 × 7 × 6 = 294 unit vectors, which are roughly evenly distributed on
the unit sphere. The purpose of constructing such a Candidate set is to ensure that, for any case, there is at
least one vector in the set Candidate in every convergence domain of minimum value of E (r).

Firstly, for each member vector v in the set Candidate, the corresponding MNSA cost value E (v) is computed,
and the vector v1 with the lowest MNSA cost is selected as the X-axis direction vector r1,init, that is

r1,init = v1 = arg min
v∈Candidate

E (v) (38)

Then, in the set Candidate, the vector v2 with the smallest MNSA cost value E (v) is determined on the
premise that the angle between v1 and v2 is between 60 and 120 degrees, that is

v2 = arg min
v∈Candidate,− 1

2<cos(v1·v)< 1
2

E (v) (39)

In order to ensure that r2,init is perpendicular to r1,init, we define the following rules to determine r2,init

r2,init =

(

I − v1v1
T
)

v2

|(I − v1v1
T) v2|

(40)



where I is the identity matrix,
(

I − v1v1
T
)

v2 represents the vector after v2 removing the component of v1,
1

|(I−v1v1
T)v2| is the normalization factor. The vector r2,init is a unit vector and coplanar with vectors v2 and

v1. The construction of vector r2,init is shown in Fig.6.

1v

2v

2,init
r

 T

1 1 2I v v v

Figure 6: The Construction Process of r2,init

Finally, r3,init is determined by the cross product of r1,init and r2,init.

r3,init = r1,init × r2,init (41)

3.5 Complexity Analysis of the Proposed Method
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Figure 7: An illustration of the Proposed MF Estimation Algorithm.



A graphical illustration of the flow of the proposed method is shown in Fig.7. The left panel represents the
input data and the corresponding normal vectors. The middle panel represents the determination of the cost
function. In this process, 14 scalar parameters shown in (25) are computed from the normal vector set, then the
15th scalar parameter S004 is calculated, and the parameter matrix M and H are determined by the 15 scalar
parameters. The MNSA cost function E (r), the MNMA cost function E (R) and the corresponding function
f (R) are obtained. The right panel represents the optimization of MF rotation matrix. In this process, the
initial value Rinit is determined first, and the MF rotation matrix R is optimized by the Levenberg-Marquardt
Algorithm based on the MNMA cost function E (R), f (R) and the corresponding Jacobian matrix Jf (R). The
analysis of the global optimality of the proposed method is presented in Appendix B.

From equation (25), it can be seen that the complexity of the 14 scalar parameters computing process is O(n).
The rest parts of the proposed method, namely, the parameter matrix M, H, and the optimization process of
the MF rotation matrix R, can be computed based on the 14 scalar parameters and do not need to use the
original normal vector set, so the complexity is O(1). Thus, the overall complexity of the proposed method is
O(n+1) which is linear.

4 Experimental Verification

To verify the performance of the proposed method, three groups of experiments are carried out. In Experi-
ment 1, the accuracy and real-time performance of the proposed algorithm are evaluated on a generated
virtual dataset. In experiment 2, the performance of the proposed algorithm is evaluated using real-world
datasets. In Experiment 3, the performance of proposed method for estimating gravity direction in Atlanta
Word is evaluated using Bremen dataset. All the experiments are carried out on a laptop with the following
configuration:

CPU: Intel Corei7-4710MQ CPU with 2.50GHZ

Memory: 8G DDR4 RAM

Graphics Card: NVIDIA GT940M 2G DDR3

System: Ubuntu 16.04

4.1 Experiment 1: Performance Verification in Virtual Datasets

In this experiment, three groups of virtual datasets are generated to evaluate: 1) the accuracy of the proposed
algorithm under different data dispersions and outlier ratios, and 2) the real-time performance under
different data size.

In the process of dataset generation, 100 values are randomly selected in Lie Group SO(3) as the MF rotation
matrix ground truth Rgt,k, k = 1, 2, ..., 100. For each Rgt,k, six directions, corresponding to the positive and
negative directions of three axes, are taken as the distribution center, and n1 normal vectors are randomly
generated according to the vMF (von Mises-Fisher) (Ulrich, 1984) distribution law. The distribution law of
vMF is as follow:

vMF (a) =
κ

4π sinh κ
eκuTa (42)

where the unit vector u represents the distribution center of the sample normal vector, and κ describes the
dispersion of the sample normal vector distribution relative to the distribution center. The smaller the value
κ is, the more discrete the normal vector distribution is. Moreover, a number of n2 additional unit vectors are
generated uniformly and randomly to form the outlier component of the normal vector dataset.



In the experiments, the state-of-the-art MF estimation methods, EGI-BnB(Joo et al., 2018), MMF(Straub et al.,
2014) and RTMF(Straub et al., 2015) are selected as baseline. For a fair comparison, we use the open source
code provided by the original authors and use the default values of the associated parameters. The open
source code of RTMF contains MMF algorithm implemented by GPU, and the GPU version of MMF is used
in the experiment 1(a) to 1(c). Since MMF generates multiple MF solutions, we select the one closest to the
ground truth as its evaluation result.

4.1.1 Experiment 1(a): Performance Evaluation under Different Data Dispersions

Referring to (Joo et al., 2018), seven different values of κ are taken, making the values of κ−1 be 0.0012, 0.0025,
0.005, 0.01, 0.02, 0.04 and 0.08 respectively. Taking the number of the inliers n1 as 300000, and the number of
the outliers n2 as 20000, then 700 normal vector datasets are generated. Some examples of the generated
datasets are shown in Fig.8.

(a) κ−1=0.0012 (b) κ−1=0.01 (c) κ−1=0.08

Figure 8: The Generated Datasets under Different Data Dispersion. With the increase of κ−1, the normal
vector distribution of each pole becomes more discrete.

Table 1: The Mean and SD Values of the Evaluation Results under Different Data Dispersion

κ−1 Proposed EGI-BnB RTMF MMF
Mean(°) SD(°) Mean(°) SD(°) Mean(°) SD(°) Mean(°) SD(°)

0.0012 0.009 0.0024 1.362 0.334 4.668 8.443 3.146 6.942
0.0025 0.011 0.003 1.356 0.332 5.28 8.483 3.836 8.004
0.005 0.0138 0.0038 1.363 0.328 6.393 9.146 3.325 5.598
0.01 0.0181 0.0048 1.388 0.374 8.264 10.405 3.633 3.306
0.02 0.0249 0.0059 1.562 0.794 11.097 11.954 5.631 4.098
0.04 0.0366 0.0069 1.821 1.433 15.109 13.211 8.264 4.372
0.08 0.0606 0.0119 2.789 5.97 20.494 13.473 12.484 6.244

The proposed method, together with EGI-BnB(Joo et al., 2018), MMF(Straub et al., 2014) and RTMF(Straub
et al., 2015), is applied to the above generated data. For all the four methods, the MF is estimated with
the generated normal vector datasets as input. Let Rest,k be the rotation matrix estimation result of the test
methods. The error angle between Rest and the ground truth Rgt,k is calculated as follow

θk = arccos
(

max
(

abs
(

RT
gt,kRest,k

)))

(43)

θk =
[

θx,k θy,k θz,k

]T
(44)



θAvg,k =
θx,k + θy,k + θz,k

3
(45)

where θx,k, θy,k, θz,k are the angular errors of X, Y and Z axes of the MF estimation result. Abs() represents
the absolute value operation for each element of the input matrix. Max() represents the maximum value
operation for each row of the input matrix. Arccos() represents the arccosine operation for each matrix
element. θAvg,k is the average of the angular errors of the three axes.

The mean value θAvg,mean and standard deviation (SD) θAvg,SD of θAvg,k are calculated as follow

θAvg,mean =
1

100

100

∑
k=1

θAvg,k (46)

θAvg,SD =
1

100

√

√

√

√

100

∑
k=1

(

θAvg,k − θAvg,mean

)2
(47)

The smaller the value of θAvg,mean, the higher the accuracy. The smaller the value of θAvg,SD, the higher the
stability.

The evaluation results of angular error mean θAvg,mean and SD θAvg,SD in degree are shown in TABLE 1,
and the corresponding line charts are shown in Fig.9. As an example, the curve surfaces of the MNSA cost
function E (r) and the X (red), Y (green), and Z (blue) axes of the corresponding MF estimation results, for
the three cases of κ−1=0.0012, 0.01 and 0.08, are shown in Fig.10.

From TABLE 1 and Fig.9, it can be seen that the proposed method shows better accuracy and stability than
the three compared methods under different data dispersion.

In Fig.10, it can be seen that with the increase of the dispersion of normal vector distribution, the minimum
value of the cost function increases gradually, and the curve surface of the cost function tends to be flat
gradually. Even so, the cost function still has obvious minimum value and sufficient convergence region in
the corresponding MF axis direction, and each convergence region occupies the angular area covered by one
face of the cube. Therefore, the proposed method produces stable and robust MF estimation under different
data dispersions.
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Figure 9: The Mean and SD Curves of Evaluation Results under Different Data Dispersion



(a) κ−1=0.0012 (b) κ−1=0.01 (c) κ−1=0.08

Figure 10: The Curve Surfaces of the MNSA Cost Function and Corresponding MF Estimation Results under
Different Data Dispersion

4.1.2 Experiment 1(b): Performance Evaluation under Different Outlier Rates

In this experiment, the number of the inlier normal vectors is 30000, the dispersion parameter κ of inliers is
128, and the outlier rate η are chosen to be 10%, 20%, ... , 80% respectively. The number of outlier normal
vectors is calculated as follows

outliers = inliers × η

1 − η
(48)

In this experiment, a total of 800 normal vector sets are generated. Some examples of the sets are shown in
Fig.11.

(a) η=10% (b) η=50% (c) η=80%

Figure 11: The Generated Datasets under Different Outlier Rate

Similar to experiment 1(a), EGI-BnB, RTMF, MMF, together with the proposed method, are considered.
Based on (43)-(47), the accuracy metric θAvg,mean and stability metric θAvg,SD under different outlier rates are
calculated. The evaluation results of angular error mean θAvg,mean and SD θAvg,SD in degree are shown in
TABLE 2, and the corresponding line charts are shown in Fig.12. As an example, the curve surfaces of the
MNSA cost function E (r) and the X (red), Y (green), and Z (blue) axes of the corresponding MF estimation
results, for the case of η=10%, 50% and 80%, are shown in Fig.13.

It can be seen from TABLE 2 and Fig.12 that the proposed method has better accuracy and stability under
different outlier rates.



From Fig.13, it can be seen that with the increase of the outlier rate η, the minimum value of the MNSA cost
function gradually increases, and the curve surface of the cost function gradually flattens. When η = 80%, the
minimum neighborhood of the curve surface of the cost function changes from concave to plane. Even so,
the cost function still has obvious minimum values and sufficient convergence region in the corresponding
MF axis directions, while each convergence area of MF axis direction occupies the angular area covered
by one face of the cube. At η= 80%, the polar radius corresponding to the direction of MF axes are still a
local minimum. All these show that the proposed method produces stable and robust MF estimation under
different outlier rates.

Table 2: The Mean and SD Values of the Evaluation Results under Different Outlier Rate

Outlier Rate (%)
Proposed EGI-BnB RTMF MMF

Mean(°) SD(°) Mean(°) SD(°) Mean(°) SD(°) Mean(°) SD(°)

10 0.0442 0.0076 1.389 0.375 8.32 9.934 4.36 4.259
20 0.0274 0.0048 1.385 0.368 10.593 10.008 5.371 6.322
30 0.0573 0.0121 1.385 0.368 12.925 10.111 5.65 4.901
40 0.0856 0.0131 1.384 0.368 15.378 10.243 8.343 7.478
50 0.0841 0.0212 1.39 0.376 17.845 10.443 8.963 6.783
60 0.128 0.0406 1.39 0.377 20.416 10.672 11.656 7.87
70 0.0626 0.0244 1.406 0.41 23.026 10.935 13.462 9.101
80 0.148 0.0675 1.445 0.517 25.617 11.212 14.701 8.549
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Figure 12: The Mean and SD Curves of Evaluation Results under Different Outlier Rate

(a) η=10% (b) η=50% (c) η=80%

Figure 13: The Curve Surfaces of the MNSA Cost Function and Corresponding MF Estimation Results under
Different Outlier Rate



4.1.3 Experiment 1(c): Real-Time Performance Evaluation under Different Data Sizes

Set κ as 128, and the ratio of the inliers and outliers is 30:2. The normal vector sets are generated according
to the six data size levels shown in TABLE 3, and three examples of the generated vector sets are shown in
Fig.14.

Table 3: Data Size Levels of the Normal Vector Sets

Level 1 2 3 4 5 6

Data Size 96000 320000 1056000 3200000 10656000 32000000

(a) Data Size = 9.6 × 104 (b) Data Size = 3.2 × 106 (c) Data Size = 3.2 × 107

Figure 14: The Generated Datasets under Different Data Size

The computational performance of the proposed method, EGI-BnB, RTMF and MMF are carried out at each
data size level. Our method and EGI-BnB run on CPU, whilst RTMF and MMF run on GPU. The results are
shown in TABLE 4, and the corresponding logarithmic scale line chart is shown in Fig. 15. Besides, the time
consuming performance of the 14 scalar parameters Suvw computing process and the computational load
associated with the cost functions and the MF optimization are shown in TABLE 5 and Fig. 16.

From the experimental results of TABLE 4 and Fig. 15, it can be seen that the time consuming curve of our
method is significantly lower than the other three methods if only CPU is used; it is especially obviously
lower than RTMF and MMF which are accelerated by GPU. The experimental results show that our method
has outstanding real-time performance.

It can be seen from TABLE 5 and Fig. 16 that the time consuming of the computing process of the 14 scalar
parameters is increasing with the increase of the data size. The complexity of this process is O(n). The time
consuming of the rest part of the proposed method is constant. Because this process is only based on the 14
scalar parameters , the complexity is O(1). Thus, the overall complexity of the proposed method is O(n+1)
which is linear. Therefore, the overall computational complexity of the proposed method is O(n+1).



Table 4: The Time Consuming Results under Different Data Size

Data Size
Time Consuming(s)

Proposed EGI-BnB RTMF(GPU) MMF(GPU)

96000 0.000979 0.0358 0.00348 0.00442
320000 0.00294 0.0616 0.00994 0.0114

1056000 0.00681 0.134 0.0316 0.035
3200000 0.0197 0.348 0.0924 0.1
10656000 0.0657 1.08 0.299 0.321
32000000 0.196 3.13 0.922 0.996

Table 5: The Time Consuming of Two Parts of the Proposed Method under Different Data Size

Data Size
Time Consuming(s)

Suvw The Rest

96000 0.000878 0.000101
320000 0.00284 0.000103
1056000 0.00672 0.0000898
3200000 0.0196 0.000103

10656000 0.0656 0.00011
32000000 0.196 0.000113
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Figure 16: The Time Consuming Curves of Two Parts
of the Proposed Method under Different Data Size

4.2 Experiment 2: Performance Evaluation in Real Word Datasets

Two experiments are carried out on NYUv2 dataset (Silberman et al., 2012) and self-captured RGB-D image
sequences to verify the accuracy and real-time performance of the proposed algorithm.

4.2.1 Experiment 2(a): Performance Evaluation on the NYUv2 Dataset

The NYUv2 dataset contains 1449 RGB-D image samples of indoor scenes, four sample images of which are
shown in Fig. 17. In each image sample of the dataset, we extract about 200000 to 300000 normal vectors as



input, and determine the MF ground truth according to the method proposed in RMFE (Robust Manhattan
Frame Estimation)(Ghanem et al., 2015).

Figure 17: Some Example Images in NYUv2 Dataset

The corresponding angular error histogram and logarithmic scale time consuming histogram are shown in
Fig.18. For our method, the computation of θx, θy, θz is as follow

θx =
1

1449

1449

∑
k=1

θx,k

θy =
1

1449

1449

∑
k=1

θy,k

θz =
1

1449

1449

∑
k=1

θz,k

(49)

where k is the index of the sample images. θx,k, θy,k, θz,k represent the angular error on X, Y and Z axis
between MF estimation result and ground truth at k-th sample. θAvg is computed by (46).

We compare our method with other state-of-the-art methods including MPE (Main Plane Estimation) (Taylor
and Cowley, 2013), MMF (Straub et al., 2014) , ES (Exhaustive Search) (Silberman et al., 2012) , RMFE
(Ghanem et al., 2015) , RTMF (Straub et al., 2015) , Exhaustive BnB (Joo et al., 2018) and EGI-BnB (Joo et al.,
2018). The details of the results are shown in TABLE 6. Some examples of the curve surfaces of MNSA cost
functions and X (red), Y (green) and Z (blue) axis of MF estimation results in NYUv2 dataset are shown in 19.

From the experimental results of TABLE 6 and Fig.18, it can be seen that the angular error of the proposed
method is within 2.0-2.5 degrees, which is similar to the Exhaustive BnB and EGI-BnB, and θz and θAvg

are the lowest among all the methods involved in the comparison. Compared with the virtual datasets (in
experiment 1) which only contains unbiased noise, the real dataset here contains more biased noise. Due to
the influence of biased noise, the proposed method cannot achieve the same accuracy for the NYUv2 dataset
as that obtained for the virtual datasets.

The average time consuming of our method is 4.93 ms, which is far less than 68.5 ms of EGI-BnB, and much
less than 9.48 ms of RTMF and 11ms of MMF (GPU). Among all the methods involved in the comparison,
the real-time performance of our method is much better than the compared methods.

The experimental results show that, compared with other MF estimation methods, the proposed method
can produce more accurate estimation results and shows outstanding real-time performance for the NYUv2
dataset.

It can be seen from Fig.19 that the curve surface shape of MNSA cost function changes with the scene
structure in NYUv2 dataset. Even so, the MNSA cost function still has obvious minimum values and
sufficient convergence regions in the corresponding MF axis directions, and the MF can be estimated stably
and accurately by our method.



Table 6: The Results of Angular Error and Time Consuming in NYUv2 Dataset

Method MPE MMF(CPU/GPU) ES RMFE RTMF(GPU) Exhaustive BnB EGI-BnB Proposed

θx (°) 26.3 5.3 2.3 2.3 4.1 2.9 3.0 2.435
θy (°) 18.1 4.6 5.6 4.7 2.7 1.8 2.0 2.265
θz (°) 18.2 5.3 2.9 2.8 3.9 2.8 2.9 2.020

θAvg (°) 20.87 5.07 3.6 3.27 3.57 2.5 2.63 2.240

Time Consuming(s) 2.8 148.7/0.011 21.4 0.9 0.0095 117.06 0.069 0.0049
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Figure 18: The Histogram of the Angular Error and Time Consuming in NYUv2 Dataset

Figure 19: The Curve Surfaces of the MNSA Cost Function and Corresponding MF Estimation Results in
NYUv2 Dataset

4.2.2 Experiment 2(b): Performance Evaluation in Self-captured Datasets

This experiment is carried out on a RGB-D image sequence captured in a self-structured Manhattan indoor
scene to test the algorithm performance. In this scene, we put some boxes, boards and other items on
the ground according to the Manhattan World pattern, and add some irregular objects such as cylinders
and stools as noise. We use an RGB-D camera with a resolution of 640 * 480 to take the image sequence.
Four sample images are shown in Fig.20. In order to obtain the MF ground truth of each frame, we use
Optitrack localization system to record the camera pose, and set the scene coordinate system of the Optitrack
coincidence with the MF of the scene.



Figure 20: Some Example Images in RGB-D Image Sequence

Firstly, based on each image’s depth information, the point cloud is generated and the normal vectors are
extracted. With the normal vectors as the input, the MFs are estimated and the average angular errors
θx, θy, θzand θAvg between the estimated MF and ground truth are determined. In this experiment, EGI-BnB
is selected as the comparison benchmark. The results are shown in TABLE 7, from which it is clear that
the proposed method outperforms the EGI-BnB method used in (Joo et al., 2018) for dealing with RGB-D
images. The corresponding histogram is shown in Fig.21. Some examples of the curve surfaces of MNSA
cost function E (r) and X (red), Y (green) and Z (blue) axis of MF estimation results are shown in Fig.22.

From Fig.22, it can be seen that although there are various irregular objects in the scene, the MNSA cost
function curve surface has obvious minimum values and sufficient convergence regions in the corresponding
MF axis directions, and there are enough convergence regions near the minimum values of the cost function.
The proposed method can still accurately estimate MF.

The experimental results show that the proposed method shows good accuracy and real-time performance
for MF estimation in the RGB-D image sequences.

Table 7: The Angular Error and Time Consuming in Self-Captured Image Sequence

Method Proposed EGI-BnB

θx (°) 1.88 2.53
θy (°) 1.89 2.24
θz (°) 2.29 2.65

θAvg (°) 2.02 2.47
Time Consuming(s) 0.00522 0.053
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Figure 21: The Histogram of the Angular Error and Time Consuming in Self-Captured Image Sequence



Figure 22: The Curve Surfaces of the MNSA Cost Function and Corresponding MF Estimation Results in
Self-Captured Image Sequence

4.3 Experiment 3: Performance Evaluation of Gravity Direction Estimation in Atlanta World

In some cases, the artificial scenes do not strictly conform to the Manhattan World model, but the Atlanta
World model. Different from Manhattan World, for Atlanta World pattern, the distribution of normal vectors
in the horizontal direction is arbitrary, but all normal vectors are vertical or parallel to the gravity direction.
The schematic diagram of Manhattan World and Atlanta World is shown in Fig.23 (Straub et al., 2017).

Figure 23: Manhattan World (Left)
and Atlanta World (Right) (Straub

et al., 2017)

Figure 24: Bremen Point Cloud Dataset

For some tasks, it is not necessary to calculate all the horizontal directions in the Atlanta World, but only the
gravity direction (Straub et al., 2017). In order to verify the performance of the proposed method in estimating
gravity direction of Atlanta World, the point cloud dataset of Bremen is adopted, as shown in Fig.24, which
is freely obtained from Robotic 3D scan repository (http://kos.informatik.uni-osnabrueck.de/3Dscans/).
The Bremen dataset is collected by a laser scanner in 99 frames, which contains about 81 million 3D points
and 99 laser scanner pose.

In the Bremen dataset, by manually selecting 3D points on the ground, we determined the ground truth
of the gravity vector. Then, we extracted about 200000 normal vectors from the point cloud as the input of
gravity direction estimation, and evaluate the accuracy and time consuming performance of our method.

For an ideal Atlanta World, the distribution of its normal vectors are all perpendicular or parallel to the
gravity vector, so the MNSA cost function value of the gravity vector is zero. Unless it is Manhattan World,
there is no orthogonal principal direction of the normal vectors in the horizontal direction, so the MNSA cost
function value corresponding to any horizontal direction is not zero; in fact, it can be far greater than that in
the gravity direction. Therefore, in this experiment, in the three output MF axes of the proposed method,



the axis with the least value of MNSA cost function is defined as the Z-axis, whilst the estimated gravity
direction of Atlanta World, and the other two axes are defined as the X-axis and Y-axis according to the
right-hand rule.

In this experiment, the EGI-BnB (Joo et al., 2018) and the state-of-the-art gravity vector estimation method of
Liu et al. (2020) for Atlanta word, dubbed GOVDE (Globally Optimal Vertical Direction Estimation) in this
paper, are selected as the baseline; we evaluate the accuracy performance and time consuming of our method
on the Bremen dataset. For EGI-BnB, we calculate all the angular errors between the three output MF axes
and the ground truth gravity vector, and take the minimum value as the angular error of gravity estimation.

The experimental results are shown in TABLE 8 and the corresponding histogram is shown in Fig.25. The
curve surface (red point cloud) of the MNSA cost function for the Bremen dataset, and the output along
the X (red line), Y (green line) and Z (blue line) axes of our method are shown in Fig.26, where the Z-axis
represents the gravity direction estimated by our method. The four views (oblique view, top view, front view
and side view) of the MNSA cost function curve surface are shown in Fig.27.

It can be seen from Fig.26 that the minimum direction of the MNSA cost function is parallel to the gravity
direction of the Bremen point cloud. From the four views of the MNSA cost function curve surface in Fig.27,
it can be seen that the MNSA cost value of gravity direction is about 0.4 times of the MNSA cost value of the
MF horizontal axes. The results show that, for the Bremen dataset, it is reasonable to find out the gravity
direction of Atlanta World by the strategy of finding the axis with the least MNSA cost value.

The experimental results show that, for Atlanta World, the proposed method shows outstanding accuracy
and real-time performance for gravity direction estimation task.

Table 8: The Angular Error and Time Consuming of Gravity Direction Estimation in Bremen Dataset

Method EGI-BnB GOVDE Proposed

Angular Error(°) 3.85 0.738 0.414
Time Consuming(s) 0.0532 3.94 0.00514
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Figure 25: The Histogram of the Angualr Error and Time Consuming of Gravity Direction Estimation in
Bremen Dataset



Figure 26: The Curve Surface (Red Point Cloud) of MNSA Cost Function and the Gravity Estimation Result
(Blue Line) of Our Method in Bremen Dataset

(a) Oblique View (b) Top View (c) Front View (d) Side View

Figure 27: The Four View of the MNSA Cost Function Curve Surface in Bremen Dataset

5 Conclusion

To improve the real-time performance of MF estimation while ensure a high accuracy, a novel fast MF
estimation method is proposed. Based on the trigonometric function, the cost function of Single Normal
vector and Single MF Axis (SNSA) are designed, and the cost function of Multiple Normal vectors and Single
MF Axis (MNSA) are defined as the arithmetic mean of the SNSA cost function of every normal vector.
Then, the MNSA cost function is simplified utilizing vector dot and cross product operations, resulting in
a simplified MNSA cost function where the normal vector set only contains 14 scalar parameters and the
associated computational complexity is O(n). Finally, the cost function of MF rotation matrix, the initial
value determination and the optimization method are given, whose computational complexity is O(1).

The accuracy and real-time performances of the proposed method are evaluated using three groups of
experiments and compared with several state-of-the-art MF estimation methods. The experimental results in
experiment 1 show that the proposed method performs excellently in terms of accuracy and computational
speed for virtual datasets containing unbiased noise. In experiment 2, the experimental results show that
the proposed method performs excellently in terms of computational efficiency for real-world datasets
containing biased noise, and meanwhile ensures that the accuracy is comparable to the state-of-the-art
methods. For the Bremen dataset in experiment 3, the proposed method shows outstanding real-time
performance and high accuracy for estimating the gravity direction in Atlanta World.



The innovative design and the good properties shown by the proposed method on the benchmark tests set it
aside from the state-of-the-art methods, in that it enables more effective and efficient MF estimation.

Appendix A Detailed Derivation of Some Formulas

The detailed derivation process of formula (10) is as follows
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(A.1)

The detailed derivation process of formula (14) is as follows

Ei (r) = sin2
< r, ai > cos2

< r, ai >

= |sin < r, ai > cos < r, ai >|2

=
∣

∣

∣[ai]×rrTai

∣

∣

∣

2

= |A (ai)V2 (r)|2

= V2
T (r)AT (ai)A (ai)V2 (r)

(A.2)

Appendix B Analysis of the Global Optimality

From (4), we can see that the cost function value is related to the angles between the axes of coordinate
frame R to be optimized and the normal vector set {ai}, and independent with the selection of the Reference
Coordinate Frame (RCF). For the convenience of description, the MF corresponding to the vector set {ai} is
selected as the RCF.



When the three coordinate axes of the Coordinate Frame to be Optimized (CFO) coincide with the three
coordinate axes of the RCF, the attitude matrix R of the CFO is at a stationary point of the MNMA cost
function. We intend to explain that, in this case, the global minimum of the MNMA cost value is obtained.

Since the MNSA cost function has central symmetry, and the three coordinate axes of CFO have the same
mathematical status in the definition of MNMA cost function, no matter which axis of the RCF coincides
with the X, Y, or Z axis of the CFO, whether the direction of any coordinate axis of CFO is the same as or
opposite to the corresponding axis of the RCF, the value of MNMA cost value is the same. Therefore, in the
following analysis, R = I is taken as an example, where I is an identity matrix.

Combining (18) and (20), yields

E (r) = A1x4 + B1y4 + C1z4

+ A2x2y2 + B2x2z2 + C2y2z2

+ 2A3x2yz + 2B3xy2z + 2C3xyz2

+ 2A4x3y + 2B4x3z + 2C4y3z

+ 2A5xy3 + 2B5xz3 + 2C5yz3

(B.1)

where
A1 = S′

220 + S′
202

B1 = S′
220 + S′

022

C1 = S′
202 + S′

022

A2 = S′
400 + S′

040 + S′
202 + S′

022 − 4S′
220

B2 = S′
400 + S′

004 + S′
022 + S′

220 − 4S′
202

C2 = S′
040 + S′

004 + S′
202 + S′

220 − 4S′
022

A3 = S′
013 + S′

031 − 5S′
211

B3 = S′
103 + S′

301 − 5S′
121

C3 = S′
130 + S′

310 − 5S′
112

A4 = S′
130 − S′

310 + S′
112

B4 = S′
103 − S′

301 + S′
121

C4 = S′
013 − S′

031 + S′
211

A5 = −S′
130 + S′

310 + S′
112

B5 = −S′
103 + S′

301 + S′
121

C5 = −S′
013 + S′

031 + S′
211

(B.2)

In (B.2), S′
uvw = 1

n

n

∑
i=1

au
i,Mbv

i,Mcw
i,M represents the 15 parameters Suvw of {ai} calculated in the MF as the RCF,

where ai,M,bi,M,ci,M are the coordinates of the normal vector ai in the MF.

In the Manhattan scene, assume that most of the normal vectors of {ai} are uniformly distributed near the X,
Y and Z axes of the MF, and a small number of vectors are distributed away from the MF axes in the form of
noise. Therefore, the values of the non-negative parameters S′

400, S′
040, S′

004 are the three largest of the 15
parameters S′

uvw, and A2x2y2 + B2x2z2 + C2y2z2 is the main component of the MNSA cost function (B.1).

For the parameters A1, B1, C1, the related non-negative parameters S′
220, S′

202, S′
022 reflect the distribution

proportion of the vector set {ai} near the XOY plane, XOZ plane and YOZ plane and away from the MF
axes. The greater the noise, the greater the A1, B1, C1 values. We assume that most normal vectors in the



Manhattan scene are distributed near the MF axes, and the proportion of the noise normal vectors far away
from the MF axes is very small, so S′

400, S′
040, S′

004 are much greater than S′
220, S′

202, S′
022, and A2, B2, C2

are much greater than A1, B1, C1 and positive.

A3, B3, C3, A4, B4, C4, A5, B5, C5 are the parameters about the odd power of the normal vectors’ coordinates
in MF, which reflect the degree of non-uniformity of the noise normal vector distribution. If the noise
normal vector distribution is absolutely uniform, the values of A3, B3, C3, A4, B4, C4, A5, B5, C5 will be zero.
It is assumed that in the Manhattan scene, the normal vectors near the Manhattan axes are uniformly
distributed, and the normal vectors away from the Manhattan axis may be uneven, but the proportion is very
small. Therefore, A3, B3, C3, A4, B4, C4, A5, B5, C5 is much smaller than the parameters A1, B1, C1 reflecting
the proportional size of noise.

To sum up, the following assumption is made in the Manhattan scene:

A2, B2, C2 ≫ A1, B1, C1 ≫ A3, B3, C3, A4, B4, C4, A5, B5, C5 (B.3)

Let θz, θy, θx be the Euler angles of the CFO relative to the RCF in the order of Z-Y-X. The rotation matrix R
between the CFO and the RCF is

R =





cos θz cos θy − sin θz cos θx + cos θz sin θy sin θx sin θz sin θx + cos θz sin θy cos θx

sin θz cos θy cos θz cos θx + sin θz sin θy sin θx − cos θz sin θx + sin θz sin θy cos θx

− sin θy cos θy sin θx cos θy cos θx



 (B.4)

When θx, θy, θz are very small, the rotation matrix R can be approximately expressed in the form of the
second-order Taylor expansion as follow

R =
[

r1 r2 r3

]

=









1 − θz
2

2 − θy
2

2 −θz + θyθx θzθx + θy

θz 1 − θz
2

2 − θx
2

2 −θx + θzθy

−θy θx 1 − θy
2

2 − θx
2

2









(B.5)

where

r1 =
[

1 − θz
2

2 − θy
2

2 θz −θy

]T

r2 =
[

−θz + θyθx 1 − θz
2

2 − θx
2

2 θx

]T

r3 =
[

θzθx + θy −θx + θzθy 1 − θy
2

2 − θx
2

2

]T

(B.6)

r1, r2, r3 represent the unit vectors of the CFO’s X, Y and Z axis in the RCF.

The derivatives of the MNSA cost function at r =
[

1 0 0
]T

, r =
[

0 1 0
]T

, r =
[

0 0 1
]T

are

∂E (r)

∂r
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∣

∣
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∂r

∣

∣

∣

∣
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0 1 0
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]T

∂E (r)

∂r

∣

∣

∣

∣

r=
[

0 0 1
]T

=
[

2B5 2C5 0
]T

(B.7)



Then, the derivative of MNMA cost function with respect to θx, θy, θz at θx, θy, θz = 0 is

∂E
(

Rrc

(

θx, θy, θz

))

∂
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θx, θy, θz

]T

∣

∣
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]T

∂r1

∂
[
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θx ,θy ,θz=0

+
∂E (r2)

∂r2

∣

∣
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∣

r2=
[

0 1 0
]T

∂r2

∂
[

θx, θy, θz
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∣

∣

∣

∣

θx ,θy ,θz=0

+
∂E (r3)

∂r3

∣

∣

∣

∣

r3=
[

0 0 1
]T

∂r3

∂
[

θx, θy, θz

]T

∣
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∣

∣

θx ,θy ,θz=0

=
[

2C4 − 2C5 2B5 − 2B4 2A4 − 2A5

]

(B.8)

R = I is a stationary point of the MNMA cost function, so the derivative (B.8) is a zero vector. Then we can
get

A4 = A5

B4 = B5

C4 = C5

(B.9)

Then

A4 = A5 = S′
112

B4 = B5 = S′
121

C4 = C5 = S′
211

S′
130 = S′

310

S′
103 = S′

301

S′
013 = S′

031

(B.10)

So the MNSA cost function (B.1) can be simplified to

E (r) = A1x4 + B1y4 + C1z4

+ A2x2y2 + B2x2z2 + C2y2z2

+ 2A3x2yz + 2B3xy2z + 2C3xyz2

+ 2A4xy
(

x2 + y2
)

+ 2B4xz
(

x2 + z2
)

+ 2C4yz
(

y2 + z2
)

(B.11)

Combining (B.6) and (B.11), and ignoring the small quantities of third order and above, we can obtain



E (r1) ≈ A1 + 2A4θz − 2B4θy + (A2 − 2A1) θz
2 + (B2 − 2A1) θy

2 − 2A3θyθz

E (r2) ≈ B1 + 2C4θx − 2A4θz + (A2 − 2B1) θz
2 + (C2 − 2B1) θx

2 − 2B3θxθz + 2A4θyθx

E (r3) ≈ C1 + 2B4θy − 2C4θx + (B2 − 2C1) θy
2 + (C2 − 2C1) θx

2 − 2C3θxθy + 2B4θzθx + 2C4θzθy

(B.12)

Combining (26) with (B.12), the MNMA cost function with respect to θx, θy, θz is

E
(

R
(

θx, θy, θz

))

≈ A1 + B1 + C1

+ 2 (C2 − B1 − C1) θx
2 + 2 (B2 − A1 − C1) θy

2 + 2 (A2 − A1 − B1) θz
2

+ 2 (A4 − C3) θxθy + 2 (B4 − B3) θxθz + 2 (C4 − A3) θyθz

(B.13)

The Hessian matrix of MNMA cost function with respect to θx, θy, θz at θx, θy, θz = 0 is

H
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R
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θx, θy, θz
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θx ,θy ,θz=0
=











∂2E(R)

∂θx
2

∂2E(R)
∂θx∂θy

∂2E(R)
∂θx∂θz

∂2E(R)
∂θx∂θy

∂2E(R)

∂θy
2

∂2E(R)
∂θy∂θz

∂2E(R)
∂θx∂θz

∂2E(R)
∂θy∂θz

∂2E(R)

∂θz
2











∣

∣

∣

∣

∣

∣

∣

∣

∣

θx ,θy ,θz=0

= 2
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(B.14)

Based on the assumption (B.3), the Hessian matrix (B.14) is positive definite. So θx, θy, θz = 0, and thus R = I,
is a minimum point of the MNMA cost function.

In order to analyze whether R = I is the global minimum point of the MNMA cost function, firstly, the
distribution characteristic of MNSA cost function’s stationary points is analyzed. For the convenience of
description, the terms related to A3, B3, C3, A4, B4, C4, A5, B5, C5 in MNSA function are ignored, then the
MNSA cost function is simplified to

E (r) ≈ A1x4 + B1y4 + C1z4 + A2x2y2 + B2x2z2 + C2y2z2 (B.15)

Define

E (r, λ) = E (r) + λ
(

x2 + y2 + z2 − 1
)

(B.16)

Take the derivative of E (r, λ) and make its derivative zero, as follows



∂E (r, λ)

∂x
= 2x

(

2A1x2 + A2y2 + B2z2
)

+ λ · 2x = 0

∂E (r, λ)

∂y
= 2y

(

A2x2 + 2B1y2 + C2z2
)

+ λ · 2y = 0

∂E (r, λ)

∂z
= 2z

(

B2x2 + C2y2 + 2C1z2
)

+ λ · 2z = 0

∂E (r, λ)

∂λ
= x2 + y2 + z2 − 1 = 0

(B.17)

Then we can get

xy
(

(2A1 − A2) x2 + (A2 − 2B1) y2 + (B2 − C2) z2
)

= 0

yz
(

(A2 − B2) x2 + (2B1 − C2) y2 + (C2 − 2C1) z2
)

= 0

xz
(

(2A1 − B2) x2 + (A2 − C2) y2 + (B2 − 2C1) z2
)

= 0

x2 + y2 + z2 = 1

(B.18)

When two coordinates of r are zero, (B.18) holds, there is

r =
[

0 0 ±1
]T

or
[

0 ±1 0
]T

or
[

±1 0 0
]T

(B.19)

In order to analyze whether (B.19) are the minimum points, r =
[

0 0 1
]T

is taken as an example, with

λ = −2C1. Set r (∆x, ∆y) =
[

∆x ∆y 1
]T

, where ∆x, ∆y are small quantities. The Hessian matrix of (B.16)
about ∆x, ∆y at ∆x, ∆y = 0 is

H (E (r (∆x, ∆y) , λ))|∆x,∆y=0=





∂2E(r,λ)
∂∆x2

∂2E(r,λ)
∂∆x∂∆y

∂2E(r,λ)
∂∆x∂∆y

∂2E(r,λ)
∂∆y2





∣

∣

∣

∣

∣

∣

∆x,∆y=0

=

[

2 (B2 − 2C1) 0
0 2 (C2 − 2C1)

]

(B.20)

B2 − 2C1 and C2 − 2C1 are all positive, so the Hessian matrix defined by (B.20) is positive definite. Therefore,

r =
[

0 0 1
]T

is a minimum point of the MNSA cost function (B.15). Through the similar analysis process,
it can be shown that (B.19) are all minimum points of the MNSA cost function (B.15).

When only one coordinate of r is zero, z = 0 is taken as an example. Combining with (B.18) and we can get

(A2 − 2A1) x2 = (A2 − 2B1) y2 (B.21)

Then we can get

r =
[

±
√

A2−2B1√
2A2−2B1−2A1

±
√

A2−2A1√
2A2−2B1−2A1

0
]T

(B.22)

To analyze whether (B.22) are the minimum points, r =
[ √

A2−2B1√
2A2−2B1−2A1

√
A2−2A1√

2A2−2B1−2A1
0
]T

is taken as an

example, with λ = − 2A1(A2−2B1)+A2(A2−2A1)
2A2−2B1−2A1

. Set
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−

√
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δ

∆z









(B.23)

where δ and ∆z are small quantities. The Hessian matrix of (B.16) with respect to δ, ∆z at δ, ∆z = 0 is

H (E (r (δ, ∆z) , λ))|δ,∆z=0=

[

∂2E(r,λ)
∂δ2

∂2E(r,λ)
∂δ∂∆z

∂2E(r,λ)
∂δ∂∆z

∂2E(r,λ)
∂∆z2

]∣

∣

∣

∣

∣

δ,∆z=0

=

[

8 (A1 + B1 − A2) 0

0
(B2−A2)(A2−2B1)+(C2−2B1)(A2−2A1)

A2−B1−A1

]

(B.24)

where A1 + B1 − A2 is negative, so r =
[ √

A2−2B1√
2A2−2B1−2A1

√
A2−2A1√

2A2−2B1−2A1
0
]T

is not a minimum point of

MNSA cost function (B.15). Through the similar analysis process, (B.22) are not minimum points.

When y = 0, the stationary points are

r =
[

±
√

B2−2C1√
2B2−2C1−2A1

0 ±
√

B2−2A1√
2B2−2C1−2A1

]T
(B.25)

When x = 0, the stationary points are

r =
[

0 ±
√

C2−2C1√
2C2−2B1−2C1

±
√

C2−2B1√
2C2−2B1−2C1

]T
(B.26)

Through the similar analysis process, it can be shown that (B.25) and (B.26) are not minimum points.

When all the coordinates of r are not zero, from (B.18), we can get

2A1x2 + A2y2 + B2z2 = A2x2 + 2B1y2 + C2z2 = B2x2 + C2y2 + 2C1z2 = −λ (B.27)

Then we can get

x2

k1
=

y2

k2
=

z2

k3

k1 = (2B1 − C2) (B2 − C2)− (C2 − 2C1) (A2 − 2B1)

k2 = (C2 − 2C1) (2A1 − A2)− (A2 − B2) (B2 − C2)

k3 = (A2 − B2) (A2 − 2B1)− (2B1 − C2) (2A1 − A2)

(B.28)

When the signs of k1, k2, k3 are the same, there are stationary points as follow



r =
[

±x0 ±y0 ±z0

]T

x0 =

√
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(2B1 − C2) (B2 − C2 − 2A1 + A2) + (C2 − 2C1) (2A1 − 2A2 + 2B1) + (A2 − B2) (A2 − 2B1 − B2 + C2)

∣

∣

∣

∣

y0 =

√

∣

∣

∣

∣

(C2 − 2C1) (2A1 − A2)− (A2 − B2) (B2 − C2)

(2B1 − C2) (B2 − C2 − 2A1 + A2) + (C2 − 2C1) (2A1 − 2A2 + 2B1) + (A2 − B2) (A2 − 2B1 − B2 + C2)

∣

∣

∣

∣

z0 =

√

∣

∣

∣

∣

(A2 − B2) (A2 − 2B1)− (2B1 − C2) (2A1 − A2)

(2B1 − C2) (B2 − C2 − 2A1 + A2) + (C2 − 2C1) (2A1 − 2A2 + 2B1) + (A2 − B2) (A2 − 2B1 − B2 + C2)

∣

∣

∣

∣

(B.29)

To analyze whether (B.29) are the minimum points, take r =
[

x0 y0 z0

]T
as an example, with λ =

−2A1x0
2 − A2y0

2 − B2z0
2. Set

r =
[

x0 +
1
x0

δx y0 +
1
y0

δy z0 − 1
z0

δx − 1
z0

δy

]T
(B.30)

where δx and δy are small quantities. The Hessian matrix of (B.16) with respect to δx, δy at δx, δy = 0 is

H
(

E
(

r
(

δx, δy

)

, λ
))∣

∣

δx ,δy=0
=





∂2E
∂δx

2
∂2E

∂δx∂δy

∂2E
∂δx∂δy

∂2E
∂δy

2



 =

[

8 (A1 + C1 − B2) 4 (A2 − B2 − C2 + 2C1)
4 (A2 − B2 − C2 + 2C1) 8 (B1 + C1 − C2)

]

(B.31)

where A1 + C1 − B2 and B1 + C1 − C2 are negative, so r =
[

x0 y0 z0

]T
is not a minimum point. Through

the similar analysis process, (B.29) are not minimum points.

When the signs of k1, k2, k3 are not the same, there is no stationary point whose three coordinates are not
zero.

In summary, all minimum points of the MNSA cost function (B.15) are

r =
[

0 0 ±1
]T

or
[

0 ±1 0
]T

or
[

±1 0 0
]T

(B.32)

Because that the values of A3, B3, C3, A4, B4, C4, A5, B5, C5 are very small, the characteristics of the minimum
point of (B.1) and (B.15) are very similar. So it is considered that the MNSA cost function (B.1) has 6 minimum
points near MF axes. According to the definition of the MNSA cost function (4), the MNSA cost value far
away from the three MF axes is much greater than that near the three MF axes.

For the MNSA cost functions E (r1) , E (r2) , E (r3) in (B.12), there are included angles between the minimum
points of E (r1) , E (r2) , E (r3) and the corresponding axes of the RCF due to the elements of 2A4θz − 2B4θy,
2C4θx − 2A4θz and 2B4θy − 2C4θx. Based on the assumption (B.3), the included angles are very small and
the minimum points of E (r1) , E (r2) , E (r3) approximately coincide with the corresponding axes of the RCF.

The MNSA cost function has central symmetry, that is E (r) = E (−r), so the two minimum points close
to the positive and negative directions of the same MF axis are symmetrical about the center of the RCF’s
origin point. Therefore, near each of the three MF axes, there is a pair of centrosymmetric minimum points
of MNSA cost function with equal cost value.



When R = I, all the three coordinate axes of CFO are near a pair of minimum points of MNSA cost function,
and R = I is a minimum point of MNMA cost function. Obviously, in the definition domain of MNMA cost
function, there is no other value of R which can make the MNMA cost value smaller than that with R = I.
Therefore, R = I, is a global minimum point of the MNMA function. Thus, when CFO coincides with RCF,
the global minimum value of MNMA cost function is obtained.

Next, we analyse whether the proposed initial value determination method in section 3.4 can ensure the
initial value Rinit near a global minimum point of MNMA cost function. Assume that there is a unit vector r′′

in the camera coordinate system. Let v′′ be the vector with the smallest angle with vector r′′ in the candidate
vector set (37). Let r′′c be the coordinate vector of r′′ in the camera coordinate system. It can be shown that
when r′′c meets the following conditions, the angle between r′′ and v′′ obtains the maximum value which is
9.86 degrees.

r′′c =
1

√

2549 − 490
√

26

[

±5 ±5 ±7
(√

26 − 5
)]T

or
1

√

2549 − 490
√

26

[

±5 ±7
(√

26 − 5
)

±5
]T

or
1

√

2549 − 490
√

26

[

±7
(√

26 − 5
)

±5 ±5
]T

(B.33)

Therefore, the candidate vector set (37) can ensure that at least one candidate vector is included within
the angle range of 10 degrees of each MNSA minimum point no matter what the attitude of the camera
coordinate system is. In addition, the selection of vector v1 is to take the vector with the lowest MNSA cost
value for all candidate vectors, so r1,init will be selected close to one of the MNSA minimum points. Since
v2 is selected from the candidate vectors with an angle of 60 degrees to 120 degrees with v1, the candidate
vectors with a small angle with v1 will not be selected as v2. Therefore, the vector r2,init will be selected
near a MNSA minimum point different from that of r1,init. Since r3,init is perpendicular to r1,init and r2,init,
r3,init will be determined near the third MNSA minimum point according to the small angle assumption.
Therefore, the initial value selection method can ensure that Rinit is near a global minimum point of the
MNMA cost function.

In Summary, the proposed MF estimation method can ensure the global optimality when the Manhattan
scene assumption (B.3) holds.
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