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Abstract

Due to the ability to handle constraints systematically and predict system

evolution with models, model predictive control (MPC) methods have been

widely studied and implemented in many industries. At the same time, low-

cost MPC has received widespread attention due to its simple principle and easy

implementation. This paper proposes a new low-cost MPC method and uses

this method to put forward new insights on the performance improvement of

complex dynamic system control. Firstly, using the concept of preprocessing, a

novel MPC prediction structure is proposed under the independent model mode.

Then through rigorous proofs, the properties of the proposed MPC algorithm are

analyzed. Finally, through the study of three industrial cases, the proposal’s

deployment procedure and efficacy are illustrated in detail. Compared with

other low-cost predictive control algorithms, the effectiveness of the method has

been presented.
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1. Introduction

Model predictive control (MPC) [1, 2] has been one of the industry’s most

successful advanced process control techniques in recent decades. However, the

implied high computational loads and optimizations make MPC expensive, and

thus its use is primarily evidenced in high throughput processes. In consequence,5

even though MPC could potentially offer performance benefits more widely,

the cheaper and simpler PID still predominates in small-scale and fast-varying

industrial processes and feedback loops.

A popular low-cost MPC approach, namely Predictive Functional Control

(PFC) [3], is simplified by decreasing the degrees of freedom and avoiding com-10

plex optimization problems and thus is a major exception to the above. Specifi-

cally, it is competitive in price and complexity with PID, and being model-based,

PFC can also deal with constraints systematically. The PFC algorithm can be

implemented with very simple code, including handling typical input/output

rate and absolute constraints, on devices with limited computing resources such15

as Programmable Logic Controllers (PLCs). Of course it is unsurprising that

PFC, being a simple and very cheap MPC approach, is neither as flexible nor effi-

cient as Dynamic Matrix Control (DMC) [4] and Generalized Predictive Control

(GPC) [5]. In addition, the simplifications used to create a low-cost algorithm

remove the possibility of a priori generic and rigorous mathematical analysis20

and proofs of convergence, performance and feasibility, except for a few special

cases [6, 7, 8]. However, industrial practitioners appreciate the desired strong

link between the selected or desired behavior and what is achieved; unfortunate-

ly, this link is often weaker in practice than required to be useful. Consequently,

many researchers have proposed several modifications to PFC to improve the25

link between targeted and achieved behavior for various system types [9, 10].

As a low-cost MPC method, PFC has many attractive properties in specific

cases, which can be exploited in the proposed algorithm. The underlying princi-

ple of PFC is carefully explored in [6]. It suggests an effective strategy to choose

the coincidence point for good closed-loop performance. However, critically it30
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is noted that the desired tuning can rarely be achieved for high order system-

s. To improve the links between desired and achieved closed-loop poles with

high-order systems, the use of parallel first-order models was used in [11, 12]

to facilitate the use of a short coincidence point. However, this approach also

requires further design decisions that may not be intuitive, and extensions to35

handle complex poles are messy.

More recently, two novel and effective modifications have been proposed

that enable easier tuning and better closed-loop behavior. The first exploits

Laguerre functions, so the control input parametrization is reshaped to improve

the consistency between the predictions and the desired closed-loop behavior40

[13, 14, 15]. However, although a useful concept, the use of Laguerre functions

is not suitable for all open-loop dynamics, and an effective generalization is yet

to be proposed. The second proposal, namely output feedback PFC, was first

proposed in [16, 17] and an offline feedback gain parameter was used to success-

fully implement PFC in vessel level control with easy tuning. However, while45

the existing output feedback PFC proposals are suitable for integrator or unsta-

ble first-order systems, further developments are necessary for the application

to complex dynamic systems, which is the proposal that appears in this paper.

In summary, a unified low-cost MPC framework for higher-order system-

s does not exist in the literature; using inspiration and insight from PFC, a50

low- cost pole-placement MPC algorithm is proposed in this paper. The main

contributions of this paper are summarized next:

• A novel low-cost MPC algorithm based on transfer function model is pro-

posed, which offers better performance on complex dynamic systems but

remains cost-efficient and includes systematic constraints handling.55

• Model decomposition is introduced into MPC to achieve the goal of pole-

placement. With the pre-conditioning concept, the open-loop poles of an

internal closed-loop model are adjusted to the desired ones.

• The rigorous analysis and pseudocode of the proposed algorithm are given,

and in the industrial case studies, the approach is seen to outperform PID60
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and match more expensive MPC algorithms in various single-input-single-

output scenarios.

The rest of the paper is organized as follows. Section 2 begins with a brief

introduction to the conventional PFC algorithm, which is the foundation of this

research; the weak link between desired and achieved behavior is illustrated65

through a second-order example. Section 3 presents an interesting property of

PFC and then uses this to define a compact and efficient MPC algorithm for

achieving open-loop pole behavior in a closed-loop fashion. Then, section 4

introduces the pre-conditioning concept and algorithm to place the open-loop

poles where desired; some analysis and constraints handling principles are given.70

Section 5 shows the simulation results for several numerical cases. Following

that, conclusions and future work are stated in section 6.

2. Preliminaries

2.1. Conventional predictive functional control

This section will provide a brief introduction to PFC. It is commonly as-75

sumed that the predicted future input is constant in the conventional PFC

algorithm [3], which is practical and simplifies the formulation as well.

For unification of illustration, at time instant k, the i-step ahead prediction

with a constant future input (u(k + i) = u(k), ∀i ≥ 0) for a transfer function

model with delay D takes the following form for input u(k):

ym(k +D + i|k) = H u−→(k) + P u←−(k) +Qym←−(k +D), i = 1, 2, ... (1)

where ym is the model output, H, P and Q depend on the model parameters1

1Prediction is standard in the literature, but readers could also refer to the Chapter 2 in

[2] for further details.
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and for a model of order l:
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Remark 1. Note that notation yp is used for the actual process output measure-

ment and ym is the model output, d(k) is an offset correction term; generally

one uses d(k) = yp(k) − ym(k) to estimate a suitable correction value. The

actual process prediction is then given as:

yp(k + i|k) = ym(k + i|k) + d(k); (2)

Assume the system output is yp(k) and the setpoint is R, the desired refer-

ence trajectory r(k +D + i|k), which is also the desired closed-loop behaviour,

is denoted by:

r(k +D + i|k) = yp(k) + (R− yp(k))(1− λi), i = 1, 2, · · · (3)

where λ is the desired closed-loop pole (which is equivalent to the desired closed-

loop time response (CLTR) parameter) and one notes some lag in response is

included in this to cater for the delay D.80

The user needs to select a coincidence point ny in a conventional PFC

algorithm where the prediction (2) is forced to match the desired trajectory

r(k +D + ny|k) and thus the PFC control law is defined by ensuring:

yp(k +D + ny|k) = r(k +D + ny|k) (4)

Substituting prediction eqns.(1,2,3) into (4) gives the control law of a conven-

tional PFC algorithm as:

u(k) =
1

H1

[

(R− yp(k))(1− λny ) + yp(k)−Qym←−(k +D)− P u←−(k)− d(k)

]

(5)

where H1 = H ·[1, 1, · · · ]T due to the the constant future input assumption. The

reader should note that as ym(k) is based on a model, one can determine the

future value of ym←−(k +D) based on solely earlier values of the input at sample

k.
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2.2. The weak effect of the PFC tuning parameters85

The intuitive selling point of conventional PFC is designed to have just

one tuning parameter, which is the desired closed-loop pole λ (equivalently

CLTR). However, the influence of coincidence point ny cannot be neglected in

the algorithm [6]. The effect of λ and ny on high-order systems will be discussed

in this subsection, presenting some novel analyses of the scenario for a second-90

order system.

For a second-order stable system such as:

(1− a1z
−1 − a2z

−2)y(k) = (b1z
−1 + b2z

−2)u(k), (6)

Take the nominal case so that ym = yp, then the control law according to (5) is

given as2:

u(k) = [(R− y(k))(1− λny ) + (1−Q1)y(k)−Q2y(k − 1)− P1u(k − 1)] · 1

H1

where it is easy to show that:

Q1 =

[

1

2
+

a1

2
√

a21 + 4a2

](

a1 +
√

a21 + 4a2
2

)ny

+

[

1

2
− a1

2
√

a21 + 4a2

](

a1 −
√

a21 + 4a2
2

)ny

Q2 =
a2

√

a21 + 4a2

(

a1 +
√

a21 + 4a2
2

)ny

− a2
√

a21 + 4a2

(

a1 −
√

a21 + 4a2
2

)ny

P1 =
b2

√

a21 + 4a2

(

a1 +
√

a21 + 4a2
2

)ny

− b2
√

a21 + 4a2

(

a1 −
√

a21 + 4a2
2

)ny

H1 = −

(

b1 − b1+b2
1−a1−a2

)

(

a1−
√

a2

1
+4a2

2 − 1

)

− a1b1 − b2
√

a21 + 4a2

(

a1 +
√

a21 + 4a2
2

)ny−1

+

(

b1 − b1+b2
1−a1−a2

)

(

a1+
√

a2

1
+4a2

2 − 1

)

− a1b1 − b2
√

a21 + 4a2

(

a1 −
√

a21 + 4a2
2

)ny−1

+
b1 + b2

1− a1 − a2

Consequently, the closed-loop pole can be obtained by solving the following

2Readers should refer to Appendix 1 for a fuller derivation.
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equation:

H1z
3 + [P1 −H1a1 + b1(Q1 − λny )]z2

+ [Q2b1 − b2(λ
ny −Q1)− P1a1 −H1a2]z + (Q2b2 − P1a2) = 0

Critically, it is observed that λ has totally lost its effect on closed-loop behavior,

except for some specific choices of ny (specifically ny = 1), which partially

explains why tuning for high-order systems can be difficult. Although this95

section has focussed on a second-order system for ease of illustration, the core

point is that the roles of λ and ny become weak and ambiguous in controlling

complex dynamic systems. Consequently, before developing a novel low-cost

MPC, it is necessary to improve the tuning transparency and at the same time

retain any positive attributes such as cost efficiency and systematic constraints100

handling.

3. Low-cost MPC for achieving open-loop behavior

In this section, a low-cost MPC algorithm (denoted as open-loop MPC,

OLP-MPC) is introduced to realize that the closed-loop behavior of a system is

similar to the open-loop behavior of the controlled process as shown in Fig.1.105

Controlled

Process
Controller

Controlled

Process

(a)

(b)

u y

u yr

Figure 1: (a) The open-loop behavior of the controlled process; (b) The closed-loop behavior

of a system: the controller and the controlled process are connected by feedback control.

The proposed OLP-MPC algorithm uses an internal model control structure

as shown in Fig.2, where the controller in Fig.1 is described in detail.
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OLP MPC
u

p
y

r

Controlled

Process

Internal

Model

1( )
p
G z

1( )mG z
m
y

Figure 2: The control structure of OLP-MPC. The controller part in Fig.1(b) is expanded.

For a system as shown in Fig.2, some terminologies are defined as follows.

Definition 1. Controlled process. An arbitrary stable causal controlled process

(m ≤ n) is defined as:

Gp(z
−1) ,

b1z
−1 + b2z

−2 + · · ·+ bmz−m

1 + a1z−1 + a2z−2 + · · ·+ anz−n
,

B(z−1)

A(z−1)
, (7)

where z−1 is the shift operator. Given the input u, the output yp can be denoted

by

yp(k)+a1yp(k − 1) + a2yp(k − 2) + · · ·+ anyp(k − n)

= b1u(k − 1) + b2u(k − 2) + · · ·+ bmu(k −m)

Definition 2. Internal model. The model used by the model predictive control

is often obtained by some identification methods. In the internal model control110

structure, the model output ym is parallel to the process output yp.

Remark 2. Model-plant mismatch may exist between the controlled process

and the internal model. For the sake of clarity, the mismatch is neglected in the

analysis of OLP-MPC, which can be handled by the feedback correction (e.g.,

Eq.(2)).115

As mentioned before, the OLP-MPC can realize that the closed-loop be-

havior of a system is similar to the open-loop behavior of the controlled pro-

cess. The similarity is reflected in that the Bode plots of the two differ only
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in amplitude-frequency characteristics, but there is no difference in the phase-

frequency characteristics. Hence, given a closed-loop system such as Fig.1, an

OLP-MPC controller should be designed as

C(z−1)G(z−1)

1 + C(z−1)G(z−1)
= KG(z−1)

=⇒ C(z−1) =
K

1−KG(z−1)

where K is a real-number gain between the closed-loop system and the controlled

process. Since the steady-state gain from the setpoint r to the output y should

be 1, K should satisfies

K =
1

G(1)

where G(1) is the asymptotic output of G(z−1). Then the control law is

u(z−1) =
K

1−KG(z−1)

(

r(z−1)− y(z−1)
)

(8)

Remark 3. Here the plant-model mismatch between the controlled process and

the internal model is not considered in (8), which is important in practice. On

the basis of control law (8), the OLP-MPC algorithm is given in Algorithm 1 to

handle this issue.

The first three steps in Algorithm 1 correspond to model prediction, feedback120

correction and rolling optimization of MPC methodology. When the algorithm

in initialized, the input u(z−1) can be regarded as zero.

Remark 4. It should be pointed out that with Algorithm 1 there is no perfor-

mance improvement of the closed-loop system since the phase-frequency char-

acteristics has not been changed. However, it may be useful if the open-loop125

behaviour are satisfactory, assumed stable, and the algorithm will give offset-

free control with minimal coding.

4. Pole-placement MPC

Through the proposed algorithm in the last section, the behavior of the

closed-loop system can be similar to that of the controlled process or the in-130

ternal model, i.e., the phase-frequency characteristics are consistent. Based on
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Algorithm 1 Open-loop poles MPC algorithm (OLP-MPC)

Input: The identified model Gm(z−1) = B(z−1)
A(z−1) , setpoint r(z

−1).

1: Given the input u(z−1), predict the internal model output.

ym(z−1) = Gm(z−1)u(z−1)

2: Correct the controlled process prediction according to the mismatch correc-

tion term d(z−1):

yp(z
−1) = ym(z−1) + d(z−1)

3: Calculate the control law.

u(z−1) =
K

1−KG(z−1)

(

r(z−1)− yp(z
−1)
)

=
r(z−1)− d(z−1)

Gm(1)

4: Go back to step 2.

the OLP-MPC algorithm, this section will discuss how to realize the pole place-

ment of the closed-loop system to achieve faster response. The innovative core

idea is to make the behavior of the closed-loop system consistent with that of

the internal model. At the same time, the forward channel part of the internal135

model is the same as the controlled process. First the decomposition of the

internal model is introduced. Then the pole-placement-based OLP-MPC (de-

noted as Pole-Placement MPC, PP-MPC) is elaborated. Some details such as

poles design and constraints handling are also discussed.

4.1. Decomposition of the internal model140

First, the internal model in Fig.2 is decomposed into two part, as shown in

Fig.3.

The main difference between Fig.2 and Fig.3 is the expansion of the internal

model. The internal model is decomposed into two series components. For the

internal model Gm(z−1), Gm1(z
−1) is minimum phase part and with no delay,

10



OLP MPC
u

p
y

r

Controlled

Process

Internal Model

1( )
p
G z

myin

m
y

1

1( )mG z
1

2 ( )
m
G z

Figure 3: Expand the internal model of the OLP-MPC. Gm(z−1) = Gm1(z−1)Gm2(z−1).

and the non-minimum phase zeros part and delay are extracted into Gm2(z
−1).

Gm(z−1) =
B(z−1)

A(z−1)
=

B−(z
−1)B+(z

−1)z−D

A(z)
= Gm1(z

−1)Gm2(z
−1)

Gm1(z
−1) ,

B−(z
−1)

A(z)

Gm2(z
−1) , B+(z

−1)z−D

(9)

The importance of this decomposition is that pole-placement design for

Gm1(z
−1) can be done relatively simply, as the difficult dynamics are inGm2(z

−1).

Next subsection will show how to develop a PP-MPC algorithm.145

4.2. Pole-placement control structure

This subsection gives the proposed PP-MPC control structure and illustrates

how to place the given desirable poles. The core point is that an inner feed-

back loop will only be placed around Gm1(z
−1), which makes a classical design

relatively straightforward. As Gm2(z
−1) is FIR (Finite Impulse Response), it150

is stable for any convergent input and thus an input giving good asymptotic

stability for Gm1(z
−1) will necessarily give equivalent asymptotic stability for

Gm(z).

The proposed PP-MPC control structure is now shown in Fig.4, where

K(z−1) is a feedback function which closes the loop around Gm1(z
−1) to form

11



the inner loop Gin
m . Define a new control law input v(z−1) as the target to this

inner loop so that:

u(z−1) = v(z−1)−K(z−1) · yinm (z−1)

= v(z−1)
(

1−K(z−1)Gin
m (z−1)

)

(10)

Remark 5. In Algorithm 1, the control law of u is pretty simple, which is

mainly associated with the setpoint. Inspired by this, in Fig.4, the control law155

of v should be simple as well. On the other hand, input v cannot be delivered to

Gp(z
−1) directly, but with the relationship (10), the behavior from system Gp(z)

is consistent with that of the internal model since the transfer functions from u

to ym and u to yp are the same.

OLP MPC
u

p
y

r

Controlled

Process

Internal

Model

1( )
p
G z

myin

m
y

1

1( )mG z
1

2 ( )
m
G z

1( )K z

1( )in

mG z

v

Figure 4: The control structure of PP-MPC. After decomposing the model Gm(z−1), a feed-

back function K(z−1) is added around Gm1(z−1).

Similar to the control law in Algorithm 1, a simple control law form of v can

be given by

v(z−1) =
r(z−1)− d(z−1)

Gin
m (1)Gm2(1)

(11)

where v is mainly dependent on the setpoint. Given a desired closed-loop be-
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havior Gd(z
−1). The controller should be designed as

C(z−1)G(z−1)

1 + C(z−1)G(z−1)
= Gd(z

−1)

=⇒ C(z−1) =
Gd(z

−1)

Gp(z−1)(1−Gd(z−1)

Hence the control law of u is

u(z−1) =
Gd(z

−1)

Gp(z−1)
r(z−1) (12)

Combine equations (10) (11) and (12), the control law of v is given by

v(z−1) =
r(z−1)

Gin
m (1)Gm2(1)

=
1

1−K(z−1)Gin
m (z−1)

Gd(z
−1)

Gp(z−1)
r(z−1)

(13)

Then the feedback function can be represented by

K(z−1) =
Gm1(z

−1)Gm2(z
−1)−Gd(z

−1)Gin
m (1)Gm2(1)

Gin
m (z−1)Gm1(z−1)Gm2(z−1)

=
1

Gin
m (z−1)

− Gd(z
−1)Gin

m (1)Gm2(1)

Gin
m (z−1)Gm1(z−1)Gm2(z−1)

(14)

In the Gin
m (z−1) loop, the transfer function can be denoted by

Gin
m (z−1) =

Gm1(z
−1)

1 +K(z−1)Gm1(z−1)

=⇒ K(z−1) =
1

Gin
m (z−1)

− 1

Gm1(z−1)

Here it is assumed that the Gin
m (z−1) can be represented by

Gin
m (z−1) ,

∑m̃

i=1 b̃iz
−i

1 +
∑ñ

i=1 ãiz
−i

(15)

And the desired closed-loop behavior Gd(z
−1) is

Gd(z
−1) =

Gin
m (z−1)Gm2(z

−1)

Gin
m (1)Gm2(1)

(16)

By comparing (15) and (16), it can be found that the behavior of Gd(z
−1)160

is similar to that of Gin
m (z−1), hence, the core part of the PP-MPC is the design

of Gin
m (z−1), which will be introduced in the next subsection.
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Algorithm 2 Pole-placement MPC algorithm

Input: Take the identified model Gm(z−1) = B(z−1)
A(z−1) , select the setpoint r(z

−1)

and choose desired model Gin
m (z−1).

1: Decompose the identified model.

A,B−, B+, D ← Decompose(A,B)

2: Solve for K(z−1) as in (14).

3: Given the input v(z−1), predict the internal model output:

ym(z−1) = Gin
m (z−1)Gm2(z

−1)u(z−1)

4: Correct the controlled process prediction according to the mismatch correc-

tion term d(z−1):

yp(z
−1) = ym(z−1) + d(z−1)

5: Calculate the control law

v(z−1) =
r(z−1)− d(z−1)

Gin
m (1)Gm2(1)

(17)

6: Determine the control input value of u(z−1) from eqn.(10).

7: Go back to step 3.

Function DECOMPOSE(A,B)

1: D ← 0

2: while B(1) == 0 do

3: D ← D + 1

4: B ← B[2 : end]

5: end while

6: roots plus ← the roots of B(z) which is greater than one.

7: roots minus ← the roots of B(z) which is less than one.

8: B− ← polynomial expansion of roots minus.

9: B+ ← polynomial expansion of roots plus.

10: return A,B−, B+, D

end function

14



According to the assumption that the internal model is stable, it is obvious

that it is stable from u(z−1) to ym(z−1), and the key point is to explore the

stability from v(z−1) to u(z−1).165

Theorem 1. There exists a feasible K(z−1) such that Gin
m (z−1) can be designed

to a stable model:

Proof. In Fig.4, Gin
m (z−1) can be presented as (15) Then we have:

K(z−1) =
1

Gin
m (z−1)

− 1

Gm1(z−1)

=
1 +

∑ñ

i=1 ãiz
−i

∑m̃

i=1 b̃iz
−i

− A(z−1)

B−(z−1)

(18)

By definition Gin
m (z−1) is stable, so we need only ensure that K(z−1) does not

incorporate unstable modes into the loop. Computation of u(z−1) gives:

u(z−1) =
1

1 +K(z−1)B−(z−1)
A(z−1)

v(z−1)

=

∑m̃

i=1 b̃iz
−i

1 +
∑ñ

i=1 ãiz
−i

A(z−1)

B−(z−1)
v(z−1)

(19)

which is obviously stable as by definition B−(z
−1) has stable roots and the roots

of 1 +
∑ñ

i=1 ãiz
−i = 0 are also stable by definition.

The proposed PP-MPC algorithm is the combination of both Algorithm 1170

and Theorem 1 together, which is given in Algorithm 2. Theorem 1 allows us

to form an inner loop, or internal model Gin
m (z−1) with desirable poles. If the

OLP-MPC algorithm is applied to Gin
m (z−1), then clearly both ym and yp will

behave according to those poles.

Remark 6. Compared to the PFC algorithm, there are no parameters λ and175

ny anymore, instead of which the user selects the desired model Gin
m (z−1). It

should be noted that the transient closed-loop behaviour is also influenced by

Gm2(z
−1), and this could be taken into account of in the offline stage while

assessing different choices for Gin
m (z−1).
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4.3. Poles design180

This subsection introduces the design of the model Gin
m (z−1). Since the

closed-loop poles in Gd(z
−1) is consistent with the poles of Gin

m (z−1), the core

part is to determine the form of Gin
m (z−1).

Given a stable S-domain transfer function Gm(s), it can be discretized to a

Z-domain transfer function Gm(z−1) at a given sampling time. Then Gm(z−1)185

is decomposed into two part as (9). The part Gm1(z
−1) can be designed into

Gin
m (z−1) with proper K(z−1). In summary, the main step of placing the desired

poles are

• Determine the form of the process model and the desired internal model.

If the two models are with the form in S-domain, discretize them. The190

poles of the desired internal model can be chosen according to Bode plot

analyze or other methods. In addition, the desired poles are usually not

expected slower than open-loop poles [18]. In our practice, the closed-loop

poles that are 3 to 5 times faster than the open-loop poles is a good choice.

That is, the real part of the slowest pole should be further away from the195

imaginary axis, and the imaginary part of the pole should not be too far

from the real axis to cause oscillations.

• Calculate the feedback function according to the process model and the

desired internal model.

4.4. Constraints handling200

Predictive control algorithms are widely applied in industry for their ability

to handle constraints. For PP-MPC, a simple method to deal with rate or abso-

lute constraint is adopted instead of solving a linear or quadratic programming

problem.

Theorem 2. All the input constraints on u(k) and the output constraints on

y(k) in the future can be converted to equivalent constraints on v(k) such as:

vmin(k) ≤ v(k) ≤ vmax(k)

16



Proof. For suitable parameters ni, di, eqn. (19) can be reformulated as:

u(z−1) =
n0 + n1z

−1 + n2z
−2 + · · ·

1 + d1z−1 + d2z−2 + · · · v(z
−1)

Assuming umin ≤ u ≤ umax, ∆umin ≤ ∆u ≤ ∆umax and ymin ≤ y ≤ ymax,

∆ymin ≤ ∆y ≤ ∆ymax, one can map these to constraints on v(k) as follows:

umin +Σ1 ≤ n0v(k) ≤ umax +Σ1

∆umin + u(k − 1) + Σ1 ≤ n0v(k) ≤ ∆umax + u(k − 1) + Σ1

ymin +Σ2 ≤ hiv(k) ≤ ymax +Σ2

∆ymin + ym(k − 1) + Σ2 ≤ hiv(k) ≤ ∆ymax + ym(k − 1) + Σ2

where Σ1 =
∑

i=1 diu(k − i) −
∑

i=1 niv(k − i), Σ2 = pi v←−(k) + qiym←−(k + D)205

and hi, qi, pi (i = 1, 2, ... and should be large enough) are prediction parameters

relative to the internal model. hi is the sum of the ith row of H. qi and pi

are the ith row of Q and P respectively defined in Eq(1). It is implicit that

predictions over a suitable constraint horizon are needed for both y(k) and u(k),

but this detail is now standard in the MPC literature.210

Remark 7. It is very important to analyse the stability of the PP-MPC algo-

rithm especially when constraints are considered. Readers can refer to Appendix

2 for the detail. Nevertheless the following remarks are in order:

• For the nominal case, infeasibility of the inequalities is caused by changes

in the target and thus simple reference governing, that is slowing down215

target changes, is sufficient to maintain feasibility and thus implicitly also

stability.

• Guarantees of recursive feasibility and thus stability in the presence of

uncertainty and constraints are non-trivial in general and do not exist even

for common but far more expensive MPC implementations in practice.220

However, again simple reference governing is known to be very effective.

4.5. Computational cost

The low cost of the proposed method is reflected in two ways. Firstly,

the proposed method needs not to solve the optimization problem. In the

17



constrained MPC algorithms, the optimization result is obtained by solving225

a quadratic programming (QP) problem or a nonlinear programming (NLP)

problem. Even if it is an unconstrained optimization problem, it is still nec-

essary to obtain the result through matrix calculation. Secondly, compared

with the conventional MPC algorithms, the proposed method is independent of

prediction horizon or control horizon in terms of time complexity. While the230

complexity of conventional MPC is often ”cubic in the horizon”[19].

5. Case studies: Applications of PP-MPC on high-order systems

In this section, three cases are studied to illustrate the effectiveness of the

PP-MPC algorithm. In the first case, PP-MPC is adopted to control the super-

heated steam temperature. Steps for constraints handling and design of desired235

model are described in detail. The second case is the control of an isothermal

continuous stirred tank reactor. Compared with other methods, it shows the

capability of the proposed method in dealing with nonlinear process and in-

terference. The third case is the tray temperature control case of distillation

column, which reflects the ability of the method in dealing with multiple input240

multiple output system.

5.1. Case I: Superheated steam temperature

This subsection shows how to implement Algorithm 2 taking superheated

steam temperature control as an example. A superheated steam temperature

model can be described by [20]:

G(s) =
1.4

(40s+ 1)5
. (20)

whose units are seconds. The dynamic of the superheated steam temperature

is slow for its high order and large time constant. The desired model should be

faster even with some overshoots, which is given by

Gin
m (s) =

s+ 0.5

s2 + s+ 2
(21)
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To get a relative fast closed-loop response, the desired closed-loop poles are

selected aa s1,2 = − 1
2 ±

√
7
2 i in (21), which is with an overshoot and a large

attenuation rate. Meanwhile, the order of the desired model is lower compared

with (20). With sampling period 0.1 sec, the parameters in Algorithm 2 are

given as


































A = 1 + a1z
−1 + a2z

−2 + a3z
−3 + a4z

−4 + a5z
−5

B− = b1z
−1 + b2z

−2 + b3z
−3 + b4z

−4

B+ = 1 + 1.2376z−1

D = 0

(22)

where

a1 = −0.0916, a2 = 0.0034, a3 = −6.1442× 10−5, a4 = 5.6268× 10−7,

a5 = −2.0612× 10−9, b1 = 5.7259× 10−9, b2 = 5.5344× 10−10, b3 = 6.5312× 10−12,

b4 = 6.9895× 10−15

and on basis of eqn.(18), the feedback function is:

K(z−1) =
N0 +N1z

−1 +N2z
−2 +N3z

−3 +N4z
−4 +N5z

−5

D0 +D1z−1 +D2z−2 +D3z−3 +D4z−4 +D5z−5
(23)

where

N0 = 1.7461× 108, N1 = −1.5991× 107, N2 = 5.8576× 105, N3 = −1.0729× 104,

N4 = 98.2509, N5 = −0.3599, D0 = 1, D1 = −1.7892, D2 = 0.7237,

D3 = 0.0853, D4 = 0.0010, D5 = 1.1043× 10−6

Taking the setpoint change as from 0 to 1, Fig.5 shows the result of this

numerical case. At the time 2 sec, the setpoint changes from 0 to 1. The blue

line shows the unconstrained closed-loop response which achieves the desired245

closed-loop poles. Fig.5 also shows the ability of PP-MPC to handle constraints

systematically; in this case output constraints (y ≤ 1.1) are emphasised to make

it clear that this is more challenging than simple input saturation; the PP-MPC

algorithm incorporates these effectively through Theorem 2.
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Figure 5: Comparison of constrained and unconstrained output in the superheated steam

temperature control case. The output (red line) is limited to 1.1 with a constraint.

5.2. Case II: Continuous stirred tank reactor250

In this case, an isothermal continuous stirred tank reactor (CSTR) is studied.

As shown in Fig. 6, the isothermal series/parallel Van de Vusse reaction [21, 22]

is taking place. Two reactions occur in the reaction scheme:

A
k1−→ B

k2−→ C

A+A
k3−→ D

where A is the reactant. The desired product B can be degraded to C, which is

a by-product and needs to be suppressed. In the second reaction, D is another

by-product. ki (i = 1, 2, 3) are the reaction rate constants for the two reactions.

The dynamic of the system can be described as:

dCA(t)

dt
=

Fr(t)

V
[CAi − CA(t)]− k1CA(t)− k3C

2
A(t)

dCB(t)

dt
= −Fr(t)

V
CB(t) + k1CA(t)− k2CB(t)

(24)

where Fr is the feed flow rate of reactant A, V is the reactor volume which can

be regarded as a constant during the reaction. C• is the concentration of the255

reactant or product. CAi is concentration of A in the feed flow. Consequently,
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to get desired CB (the controlled variable), one needs to adjust the feed flow

rate Fr to eliminate the disturbance CAi.

Choose k1 = 5/6 min−1, k2 = 5/3 min−1, k3 = 1/6 L ·mol−1 ·min−1 and

CAi = 10 mol · L−1, V = 700 L. The working point is CA = 2.917 mol · L−1,

CB = 1.1 mol · L−1, Fr = 380 L ·min−1. Then when the input increases 10%

on the basis of the input working point, the model identified by [22] is

Gm(s) =
0.3199(−0.3520s+ 1)

(0.5619s+ 1)(0.3086s+ 1)
(25)

Noted that the output of the model is the percentage deviation from the output

working point.260

Coolant

Product

AY

10

Feed

A/C

10

AV

10

I/P

AT

10

Figure 6: An isothermal continuous stirred tank reactor system.

In general terms, PFC always aims for a first-order reference trajectory which

is difficult to achieve when controlling a higher-order system, whereas it will be

shown that PP-MPC outperforms PFC in such scenario. In this case, a PID
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controller is also used for comparison which is with the following form:

GC(s) = Kc

τIs+ 1

τI
(26)

Fig. 7 shows the closed-loop step responses for a change in target when using265

PID, PFC, PP-MPC and OLP-MPC controllers. The parameters used in the

first three controllers are listed in Table.1. To make comparative results, the PID

parameters are well tuned on the basis of [23]. λ and ny are also chosen carefully

in PFC. Two poles are used for PP-MPC, namely s1,2 = −1.4920± 1.3542i.

PID Kc = 2.2087, τI = 1.3382

PP-MPC ã1 = −1.9702, ã2 = 0.9706

PFC λ = 0.9851, ny = 100

Table 1: Tuning parameters for the CSTR case study
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Figure 7: Results with different controllers in the continuous stirred tank reactor control case.

The setpoint changes from 1.1 mol ·L−1 to 1.13 mol ·L−1 at the first minute.270

The controlled output gets close to the setpoint increasingly without apparent

overshoot. Due to the prediction property, the convergence time of PFC and

PP-MPC is faster than PID (PP-MPC is faster). It should be noted that the

coincidence point of PFC should be selected carefully as too short a horizon
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can lead to even worse behaviour due to the non-minimum phase characteris-275

tic. At the sixth minute, the concentration of A in the feed flow changes from

CAi = 10 mol · L−1 to CAi = 9 mol · L−1 and this acts like a disturbance; all

four controllers can deal with the disturbance. Note that the process is simu-

lated in accordance with process (24) hence model parameters uncertainty and

nonlinearity may exist which also shows the robustness of the proposed method.280

The inverse part of the responses is also worth discussing. PFC has the

deepest inverse response, which is almost inevitable if one wants to get a fast

closed-loop response corresponding to a first-order reference. A large coinci-

dence horizon may improve this problem but tuning would default back to the

open-loop dynamic of the original system (essentially it becomes the OLP-MPC285

algorithm). PP-MPC and PID have similar inverse responses, although there-

after PP-MPC shows the best performance and convergence. This is readily

comprehensible since PP-MPC uses a pair of mild under-damped complex poles.

5.3. Case III: A distillation column

The distillation is a basic unit operation in the chemical/petrochemical

industry[24]. In this subsection, a MIMO process in distillation column con-

trol is studied to further evaluate the proposed method. As shown in Fig.8,

there are two inputs (reflux flow rate L and vapor boil up flow rate V ) and two

outputs (temperatures of the tray 21 T21 and the temperatures of the tray 7 T7)

in the process[25]. As the vapor boil up flow rate increases, the tray tempera-

ture rises, while an increase in the reflux flow rate causes the tray temperature

to drop. The system is identified as





T21

T7



 = G(s)





V

L



 (27)

where

G(s) =





G11(s) G12(s)

G21(s) G22(s)



 =





32.63
(99.6s+1)(0.35s+1)

−33.89
(98.02s+1)(0.42s+1)

34.84
(110.5s+1)(0.33s+1)

−18.85
(75.43s+1)(0.3s+1)




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The desired poles for the two outputs are placed as

GV (s) =
1

1000s2 + 20s+ 1

GL(s) =
−1

1000s2 + 20s+ 1

(28)

where the poles are at s = −0.01 ± 0.03i. In order to increase the output290

at the top of the tower, the temperature of tray 21 can be increased and the

temperature of tray 7 can be lowered. The target values of the system output

T21 and T7 are set as T21 = 1 and T7 = −1 with the desired dynamic (28). Fig.9

compares the step response of the open-loop model (27) and desired model (28).

The response time of the desired model is faster with a slight overshoot.

V

L

21
T

7
T

Figure 8: Distillation column control structure. Two inputs and two outputs control relation-

ship is established.

295

Fig.10 shows the input and output of the system. It is seen that with PP-

MPC algorithm, the output dynamic is improved effectively. The temperature

of the two trays converge to the target rapidly, and reflux flow rate decreases

to increase the output quantity of the distillation column. In Fig.10, two types
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Figure 9: Step response of the distillation column system. The open-loop model in the first

two rows, and the desired model in the third row.

control results of the PP-MPC algorithm are displayed: with no model mismatch300

and with model mismatch. It can be seen that under the no model mismatch

condition, the system output perfectly tracks the desired response. Then the

measurement of the system output is multiplied by 0.9 to simulate the model

mismatch and test the ability of the proposed method on tracking offset-free.

In summary, it is illustrated from this case that the proposed method has the305

potential to implement in MIMO systems.

6. Conclusion

A novel low cost pole-placement MPC Algorithm is proposed and its efficacy

is illustrated through some cases. The specific novelty lies in the combination

of open-loop predictive control and desired model to obtain two core attributes:310

(i) the closed-loop poles of the system can be analyzed and (ii) maintain the

ability to handle constraints. A further novelty is the structure used in desired

model, where a particular decomposition is used to ensure the conditioning

and reliability of the pole placement part. The case studies demonstrate that

good closed-loop performance is achieved and moreover, the proposed approach315

retains the simple coding and low implementation cost. It is also demonstrated
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Figure 10: The output and input results of setpoint tracking. Model mismatch is added to

show the offset-free property of PP-MPC.
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that, being model based, the approach can outperform the obvious competitor

of PID.

Future work will be focused on the robust analysis of the proposed PP-MPC

algorithm and the extension to both open-loop unstable and MIMO systems320

as well as exploring systematic approaches for the pole placement part of the

design. It would also be interesting to explore subtle changes in the struc-

ture/decomposition scheme and the potential for adding simple feedforward to

improve fast transient performance.
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[20] R. Hỳl, R. Wagnerová, Design and implementation of cascade control struc-

ture for superheated steam temperature control, in: 2016 17th International

Carpathian Control Conference (ICCC), IEEE, 2016, pp. 253–258.380

[21] J. Van de Vusse, Plug-flow type reactor versus tank reactor, Chemical

Engineering Science 19 (12) (1964) 994–996.

[22] P. Balaguer, V. Alfaro, O. Arrieta, Second order inverse response process

identification from transient step response, ISA transactions 50 (2) (2011)

231–238.385

[23] W. L. Luyben, Tuning proportional- integral controllers for processes with

both inverse response and deadtime, Industrial & engineering chemistry

research 39 (4) (2000) 973–976.

[24] I.-L. CHIEN, B. A. OGUNNAIKE, Modeling and control of a temperature-

based high-purity distillation column, Chemical Engineering Communica-390

tions 158 (1) (1997) 71–105.

[25] A. N. Venkat, Distributed model predictive control: theory and applica-

tions, Ph.D. thesis, Citeseer (2006).

[26] J. B. Rawlings, K. R. Muske, The stability of constrained receding horizon

control, IEEE transactions on automatic control 38 (10) (1993) 1512–1516.395

29



[27] W.-H. Chen, P. J. Gawthrop, Constrained predictive pole-placement con-

trol with linear models, Automatica 42 (4) (2006) 613–618.

30



Appendix 1

The one step ahead prediction of the system 6 is:

y(k + 1) = a1y(k) + a2y(k − 1) + b1u(k) + b2u(k − 1). (29)

And the two step ahead prediction is:

y(k + 2) = a1y(k + 1) + a2y(k) + b1u(k + 1) + b2u(k)

= (a21 + a2)y(k) + a1a2y(k − 1) + (a1b1 + b1 + b2)u(k) + a2b2u(k − 1).

(30)

If regarding eqn.(29) as a parameter equation:

y(k + 1) = α1y(k) + β1y(k − 1) + γ1u(k) + λ1u(k − 1) (31)

and eqn.(30) as another parameter equation:

y(k + 2) = α2y(k) + β2y(k − 1) + γ2u(k) + λ2u(k − 1), (32)

More generally there exists prediction equations of the form:

y(k + n) = αny(k) + βny(k − 1) + γnu(k) + λnu(k − 1), (33)

The recurrence relations used to determine the parameters are:


































αn+2 = a1αn+1 + a2αn, α1 = a1, α2 = a21 + a2

βn+2 = a1βn+1 + a2βn, β1 = a2, β2 = a1a2

γn+2 = a1γn+1 + a2γn + b1 + b2, γ1 = b1, γ2 = a1b1 + b1 + b2

λn+2 = a1λn+1 + a2λn, λ1 = b2, λ2 = a1b2

(34)

since, for example:

y(k + 3) =a1y(k + 2) + a2y(k + 1) + b1u(k + 2) + b2u(k + 1)

=a1α2y(k) + a1β2y(k − 1) + a1γ2u(k) + a1λ2u(k − 1)

+ a2α1y(k) + a2β1y(k − 1) + a2γ1u(k) + a2λ1u(k − 1)

+ b1u(k + 2) + b2u(k + 1)

(35)

In the second order case, the recurrence relation can be solved to get the

general term formula of Fibonacci-like sequence.400
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Appendix 2

Similar to most of the existing MPC algorithms [26, 27], the regulation

problem is discussed in this section. A stable model (15) can be converted to a

state space model as follows:







x(k + 1) = Ax(k) +Bv(k)

y(k) = Cx(k)
(36)

According to eqn.(17), the objective function of PP-MPC can be described as:

J = min
v(k)
‖Cx(∞)‖2 (37)

Considering input and output(or states) constraints:




1 0

0 −1



 v(k) ≤





vmax

−vmin



 , k = 0





C 0

0 −C



x(k) ≤





ymax

−ymin



 , k = 1, 2, ...,

(38)

for a stable model, the input constraints are always feasible as long as v(k) is

in the finite set, while the state constraints may be infeasible, but they can be

converted into a feasible set by adjusting the horizon according to [26]. Then

the following result is stated.405

Theorem 3. In the nominal case, x(k) = 0 is an stable solution of the PP-

MPC controller with objective function (37) and feasible constraints (38) for

every x0.

Proof. Since the constraints are always feasible, once all constraints are inactive,

the value of the objective function at k is

Jk = xT (∞)CTCx(∞) (39)

where x(∞) = A∞x0 +
I−A∞

I−A
Bv(k) = B

I−A
v(k).

At k + 1, the value of the objective function is

Jk+1 = xT (∞+ 1)CTCx(∞+ 1) (40)
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where x(∞+1) = Ax(∞)+Bv(k+1) = B
I−A

v(k+1). In the nominal case, v(k)410

equals to v(k + 1) in PP-MPC hence Jk+1 is no worse than Jk. At the same

time, to minimize the objective function, v(k) should be zero, which means xk

will converge to zero according to the stable assumption and give the asymptotic

stability.

33


