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A B S T R A C T   

A homogenisation scheme based on inclusion modelling is coupled with constitutive laws for damage and 
implemented in a finite element model for the simulation of concrete and reinforcement bar damage in rein-
forced concrete structures. The scheme is employed for simulating the behaviour of evenly distributed rein-
forcement and adapted for the simulation of zones with concentrated reinforcement in structural members. 

The model is validated against experimental tests from the literature carried out on reinforced concrete 
members subjected to bending and direct tension. The model captures the main characteristics of the behaviour 
of and damage in the constituent materials of reinforced concrete without resorting to individual meshing of the 
embedded bars and with very low computational cost.   

1. Introduction 

Modelling the damage initiation and propagation in reinforced 
concrete structures is critical for predicting their behaviour against a 
variety of actions. Cracks caused by mechanical loading, exposing the 
reinforcement bars to environmental effects and chemical attack, can 
significantly reduce durability and service life [26]. Additionally, 
excessive loading scenarios leading to cracking of the concrete can lead 
to a reduction of residual stiffness and strength in reinforced concrete 
members against future high demands, such as those arising during 
earthquake events [27]. 

Reinforced concrete can be treated as a composite material consist-
ing of two readily distinguishable phases with vastly different me-
chanical properties, behaviour and geometrical arrangement: the quasi- 
brittle concrete matrix and the ductile steel reinforcement. In a finite 
element analysis context, both material phases can be constitutively 
modelled and geometrically meshed individually [7,15,17]. While 
adopting this approach for nonlinear analysis can produce comprehen-
sive results on the stresses, strains and damage of the individual com-
ponents of reinforced concrete, it can be demanding in terms of 
generating the geometry of the model as well as in computational terms 
for executing the calculations and processing the results [14], especially 
when it becomes necessary to employ very fine finite element meshes for 
stable and accurate analysis [5]. Reduction of computational cost can be 

achieved through adopting a plane stress approach. However, this 
approach means that the embedded bars need to be either simulated as 
embedded truss elements or as continuum elements interrupting the 
continuity of the concrete matrix. Both these approaches, therefore, 
introduce errors in the volume ratio and overall geometrical disposition 
of the matrix near the location of the bars. 

Models for reinforced concrete members based on beam formula-
tions, coupled with appropriate nonlinear constitutive laws, can sub-
stantially mitigate computational cost issues in finite element analysis 
[13,24]. However, beam-based models are often unable to successfully 
capture all aspects of material nonlinearity in the components, espe-
cially in the rebars, due to inability of fully capturing the interaction of 
stress and strain between material phases in the composite. 

Micromechanical homogenisation methods, as developed for com-
posite materials consisting of inclusions embedded in a matrix [8], can 
be employed for nonlinear analysis of reinforced concrete structures as 
an alternative to a pure finite element micromodel. These methods ac-
count for the full interaction of the phases in the composite and can often 
be expressed in closed form. While readily applicable for analysing the 
microstructure of plain concrete, namely modelling the interaction of 
hardened cement, aggregates, pores and cracks within the concrete [19, 
20,29,31,32], homogenisation of the reinforced concrete itself has not 
received the same amount of attention. Specifically, while nonlinear 
analyses of reinforced concrete representative volume elements and 
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structures with evenly distributed reinforcement have been performed 
[4,25,28], the simulation of reinforcement zones with concentrated 
reinforcement bars is not equally advanced within the context of 
micromechanical homogenisation. The presence of structural elements 
in building structures with clearly distinguishable reinforced zones, such 
as beams, limits the applicability of these homogenisation schemes in 
their present form. 

In this paper a micromechanical homogenisation scheme based on 
the equivalent inclusion method is combined with nonlinear constitutive 
laws for concrete and reinforcement bar damage for simulating rein-
forced concrete elements under mechanical loading. A method for 
modelling reinforced zones is proposed and tested, in contrast to the 
typical micromechanical approach of assuming evenly distributed 
reinforcement. The homogenisation scheme and constitutive laws are 
subsequently implemented in a plane stress finite element model. The 
method is validated against experimental data from the literature 
involving full structural elements. The purpose of the proposed 
approach is to fully account for the interaction of the concrete with the 
embedded bars while maintaining computational complexity and costs 
low. 

The paper sets off with the presentation of the homogenisation 
scheme for reinforcement bars embedded in concrete, with comments on 
the applicability of the scheme in reinforced concrete. Next, the 
constitutive laws for the damage models employed for the concrete and 
the bars are presented, along with the way these laws are incorporated in 
the overall modelling method. Next, the implementation of the scheme 
in a finite element context is described, along with a presentation of the 
modelling method adopted for reinforced zones. The verification of the 
model against experimental data involving reinforced concrete beams in 
bending and pure tension is subsequently presented, accompanied by 
general comments on the results produced by the model. Finally, the 
conclusions of this work are summarised and comments on future work 
are provided. 

2. Micromechanical model 

Reinforced concrete is treated as a composite material composed of a 
concrete matrix with orthogonally oriented embedded steel rebar in-
clusions (e.g., in case of a beam; flexural reinforcement: longitudinal 
bars, shear reinforcement: vertical or inclined bars), with their length 
being much larger than their cross-sectional dimensions. In the context 
of the modelling approach adopted, an isolated inclusion embedded in 
an infinitely large matrix undergoes deformation when the matrix itself 
is subjected to an average strain ε as a result of mechanical loading. In 
the general case where the matrix and inclusion have different elastic 
properties, the deformation of the inclusion is different from the average 
deformation of the matrix which constrains it. Removal of this constrain 
results in a strain state in the inclusion known as eigenstrain ε*. The 
relation between the strain of the matrix and of the inclusion is 
expressed as: 

εij = Sijklε*
kl (1)  

where Sijkl are the components of Eshelby’s fourth order tensor S [8]. 
Initial work on inclusion modelling was performed on ellipsoidal in-
clusions embedded in a three-dimensional matrix [33]. The values in 
Eshelby’s tensor are dependent on the dimension ratios of the ellipsoids. 
In the xy plane the ellipsoid reduces to an ellipse, the boundary of which 
is defined by the equation: 

x2

a1
2 +

y2

a2
2 = 1 (2)  

where a1 and a2 are the half-length and half-height of the ellipse in x and 
y respectively. Closed form expressions for Eshelby’s tensor have been 
derived for elliptic inclusions in plane stress, the second order tensor 
being simply defined as [11]: 

S =

⎡

⎣
S11 S12 0
S21 S22 0
0 0 S33

⎤

⎦ (3)  

where: 

S11 =
1
k
( − 3ϕ − 2 + 2νϕ + 2ν)

S22 =
1
k
ϕ( − 2ϕ − 3 + 2νϕ + 2ν)

S12 = −
1
k
(− ϕ + 2νϕ + 2ν)

S21 = −
1
k
ϕ(− 1 + 2νϕ + 2ν)

S33 =
1
k
(
ϕ + (ν − 1)(1 + ϕ)2)

(4)  

with: 

k = 2(ν − 1)(1 + ϕ)2

ϕ =
a1

a2

(5) 

Plane stress conditions are deemed adequate for a wide variety of 
applications where the transversal dimension of the simulated structural 
elements is small or when the confinement of the concrete is not of 
primary importance. 

Needle-shaped, or cylindrical, inclusions oriented along the x axis 
are derived from elliptical inclusions with dimension a1 being much 
greater than a2, to the effect that in the present context φ→ + ∞. Based 
on this assumption, the values of Eshelby’s tensor for needle inclusions 
oriented along the x in plane stress are as follows: 

S =

⎡

⎢
⎢
⎢
⎣

0 0 0
νm

1 − νm
1 0

0 0 0.5

⎤

⎥
⎥
⎥
⎦

(6)  

where νm is the Poisson’s ratio of the matrix m. The S tensor for needle 
inclusions oriented along the y axis can be simply produced by substi-
tution between the 1 and 2 indices in Eq. (4) while the 3 indices cor-
responding to the shear component of the eigenstrain remain unaltered. 
A conceptual illustration of a composite material C in xy two-dimen-
sional space with two networks of evenly spaced needle inclusions ix and 
iy oriented along the x and y axes within a matrix m is shown in Fig. 1. 

Inclusions with identical properties, shape and orientation in a 
composite material can be considered in groups. Under the dilute 
approximation for inclusions, the dilute estimate Ti of the i-th group of 
inclusions is equal to: 

Ti =
(
I + Si(Cm)

− 1
(Ci − Cm)

)− 1
(7)  

where I is the 3 × 3 identity tensor and Cm and Ci are the plane stress 
stiffness tensors of the matrix and the inclusion respectively, functions of 

Fig. 1. Composite material C composed of needle inclusions ix and iy embedded 
in matrix m. 
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the Young’s moduli and Poisson’s ratios of the individual materials. The 
matrix strain concentration factor AC is a function of the dilute estimates 
of all inclusion groups present in the composite and is equal to: 

AC =

(

ωmI +
∑n

i=1
ωiTi

)− 1

(8)  

where ωi is the volume ratio of the i-th group of inclusions, ωm the 
volume ratio of the matrix with respect to the total volume of the 
composite and n is the total number of inclusion groups. The sum of all 
volume ratios is equal to 1. The strain concentration tensor Ai of the i-th 
inclusion group within the composite material is equal to: 

Ai = TiAC (9) 

Finally, the effective stiffness tensor CC of the composite material can 
be calculated in closed form according to the equation [16]: 

CC = Cm +
∑n

i=1
ωi(Ci − Cm)Ai (10) 

Having calculated the effect of the inclusions on the matrix, the 
stresses and strains in all components of the composite material can be 
calculated, which is essential for damage analysis. As such, the strain 
vector in the matrix εm is equal to [18]: 

εm = ACεC (11)  

where εC is the macroscopic strain vector in the composite. The stress 
vector σm in the matrix is equal to: 

σm = Cmεm (12) 

The strain vector εi in the i-th group of inclusions is equal to [2]: 

εi = Aiεc (13)  

and the stress vector σi is equal to: 

σi = CiAi(CC)
− 1σC (14)  

where σC is the macroscopic stress vector in the composite, equal to: 

σC = CCεC (15) 

In the present work, the concrete serves as the matrix in which the 
embedded reinforcement bars serve as the inclusions in two groups. The 
typically large ratio of the length of the bars over their diameter lends 
itself to the assumption of their being needle-shaped in this context. 
Further, the typical orthogonal orientation of the bars with respect to the 
orientation of cuboid shaped reinforced concrete elements, such as 
slabs, beams, columns and walls, allows the homogenisation calcula-
tions to be performed without complex consideration of the orientation 
of the inclusions. This fact, coupled with the assumption of needle 
shaped inclusions, allows the expression of the entire homogenisation 
scheme in closed form, thus further reducing computational complexity. 
Application of the same homogenisation scheme in three dimensions is 
identical to the presented process, with only Eshelby’s tensor S assuming 
different size and values [23] and the stiffness tensors for three 
dimensional elasticity needing to be adopted. In such an approach a 
third inclusion group, oriented in the z axis, can also be included while 
maintaining the closed form of the scheme. 

3. Constitutive modelling 

Concrete can fail in compression and tension, while reinforcement 
bars can yield in compression or tension. Loss of stiffness in the com-
ponents of the composite material is calculated in a damage mechanics 
approach [12,30]. In this context, the stiffness tensors of the components 
are multiplied with integrity variables, which start off from 1 for an 
undamaged material and tend towards zero for a completely softened 

material. These integrity variables express the ratio between the actual 
damaged stress and the effective stress, which is proportional to the 
strain. Damage in these components results in a loss of stiffness of the 
composite material as calculated according to Eqs. (7)–(10). 

Failure of concrete in compression is modelled through a stress strain 
curve consisting of an initial linear part followed by a parabolic 
hardening-softening curve [10] based on compressive fracture energy. 
As such, the integrity variable of the concrete matrix in compression Ic as 
a function of the strain ε is equal to: 

Ic(ε) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 εl ≤ ε ≤ 0

−
fc

σe

1
3

(

1 + 4
ε − εl

c

εp
c − εl

c
− 2
(

ε − εl
c

εp
c − εl

c

)2
)

εp
c ≤ ε ≤ εl

c

−
fc

σe

(

1 −

(
ε − εp

c

εu
c − εp

c

)2
)

εu
c ≤ ε ≤ εp

c

0 ε ≤ εu
c

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(16)  

where fc is the compressive strength of the component (negative value), 
σe is the effective stress and εl

c, ε
p
c and εu

c being the limit of proportion-
ality, peak strain and ultimate strain in compression respectively, equal 
to: 

ϵl
c =

fc

3Ec

ϵp
c = 5ϵl

ϵu
c =

Gc

fch

(17)  

where Ec is the Young’s modulus of the concrete, Gc is its compressive 
fracture energy and h is the bandwidth, meaning the length at which the 
constitutive law is being evaluated. 

Cracking damage in concrete due to tension is modelled through 
linear behaviour up to peak stress and an exponential softening curve 
thereafter based on tensile fracture energy. The integrity variable for 
tension It is equal to: 

It (ε) =

⎧
⎪⎨

⎪⎩

1 0 ≤ ε ≤ εp
t

ft

σe
exp
(

−
ε − εp

t

εu
t

)

εp
t ≤ ε

⎫
⎪⎬

⎪⎭
(18)  

where ft is the tensile strength and εp
t and εu

t being the peak strain and 
ultimate strain in tension respectively. These are equal to: 

ϵp
t =

ft

Ec

ϵu
t =

Gt

fth

(19)  

where Gt is the tensile fracture energy. 
Yielding of the reinforcement in tension or compression is considered 

through an elastic and perfectly plastic response. The integrity variable 
Iy can be thus expressed as: 

Iy(ε) =

⎧
⎪⎨

⎪⎩

1 0 ≤ ε ≤ εy

fy

|σe|
εy ≤ ε

⎫
⎪⎬

⎪⎭
(20)  

where fy is the yielding strength of the reinforcement and εy is the 
yielding strain, equal to: 

εy =
fy

Es
(21)  

where Es is the Young’s modulus of the reinforcement. 
These constitutive equations for concrete and reinforcement damage 
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allow for the most typical failure modes observed in reinforced concrete 
members to be simulated. In this investigation bond-slip between the 
concrete and reinforcement is not considered since the homogenisation 
scheme in its present implementation assumes perfect bond between the 
bars and the concrete. However, bond-slip can be implemented in the 
same modelling context in future work. The implemented constitutive 
laws are illustrated in the stress-strain diagrams of Fig. 2. 

4. Finite element implementation 

The homogenisation scheme and constitutive stress-strain laws have 
been implemented in the FEniCS finite element platform [1] in plane 
stress conditions. The homogenisation approach employed allows for 
simulating the contribution of the reinforcement bars to the stiffness and 
strength of the reinforced concrete without the need to individually 
mesh the embedded bars, thus substantially reducing modelling 
complexity. For finite element analysis the homogenisation process is 
implemented differently for longitudinal (flexural) and transversal 
(shear) reinforcement, which are treated as different inclusion groups. 

Longitudinal bars in reinforced concrete beams are often concen-
trated in reinforced zones near the lower and upper regions of the cross 
section. Similar arrangements are often encountered in columns. 
Therefore, the volume ratio for the longitudinal bars was calculated 

according to the local amount of reinforcement in each reinforced zone. 
Outside of the reinforced zone the volume ratio of the longitudinal 
reinforcement is zero. This approach allows the correct assignment of 
volume ratios for reinforcement and concrete throughout the section, 
and for modelling the full stress and strain interaction of the compo-
nents, while remaining in plane stress conditions. An illustration of the 
concept of the reinforced zone is illustrated in Fig. 3. 

Transversal reinforcement is distributed along the length of the beam 
in regions with constant spacing. Therefore, a constant volume ratio can 
be applied in each region to take the effect of the transversal rein-
forcement into account, as is typical in micromechanical homogenisa-
tion of composites with evenly distributed oriented inclusions. 
Alternatively, the volume ratio of transversal reinforcement can be 
introduced in the model through simple spatial functions, allowing the 
modelling of structural elements with arbitrarily variable reinforcement 
spacing. 

Evaluation of the compressive integrity is done against the minimum 
principal strain while the tensile integrity is evaluated against the 
maximum principal strain in the concrete matrix, calculated from Eq. 
(11). Yielding in the reinforcement is evaluated along the orientation 
axis of the inclusion, thus accounting for axial yielding of the bars in 
tension or compression. 

An isotropic damage approach is adopted in this study. Conse-
quently, the stiffness tensor of the concrete is multiplied with the 
integrity variables in compression and tension while the reinforcement 
stiffness tensor is multiplied with the yielding integrity variable. As a 
result, damage in one direction results in loss of stiffness in all directions 
for the evaluated material component. Additionally, damage is consid-
ered irreversible. Thus, reduction in strain between load steps in a 
component does not lead to potential increase of the integrity. The 
approach of adopting integrity variables at the micro level of the indi-
vidual components means that loss of stiffness in the reinforced concrete 
is not directly expressed at the macro level of the composite material 
with a single variable. 

The bandwidth h for the softening curves in Eqs. (16) and (18) is 
taken as equal to the characteristic finite element length at the location 
of evaluation, namely the square root of the surface area of the element 
where the curves are evaluated. Nonlinear analysis is performed through 
the use of a Newton-Raphson method in force control. 

Fig. 2. Stress-strain constitutive laws for damage in components: a) concrete in compression, b) concrete in tension, c) reinforcement in axial tension/compression.  

Fig. 3. Cross section of reinforced concrete beam. Reinforced zones containing 
longitudinal bars shaded. 

Fig. 4. Geometric, loading and reinforcement layout of reinforced concrete beams MD1.3 and T0.2. Dimensions in mm.  
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5. Model validation 

5.1. Reinforced concrete beams in bending 

The proposed model is firstly validated against two experimental 
tests performed on reinforced concrete beams in three-point bending 
[22]. The beams were simply supported and loaded with a single 
concentrated vertical force applied at mid span. An illustration of the 
overall layout of these beams is shown in Fig. 4. The longitudinal rein-
forcement was constant in the tensile and compression zones. The 
spacing of the transversal reinforcement was constant in the span and 
reduced near the supports. The beams have been characterised as 
“under-reinforced” by the authors of the cited work, owing to the low 
amount of longitudinal reinforcement with respect to the total 
cross-sectional dimensions of the specimens. The low reinforcement 
ratio induces substantial strain on the longitudinal bars when the beams 
are subjected to bending. Therefore, these experiments are considered 
ideal for validating the proposed homogenisation scheme. 

The two specimens, designated MD1.3 and T0.2, had the same ge-
ometry, loading layout and transversal reinforcement, but different 
longitudinal reinforcement and mean material properties as shown in  
Table 1. Some material parameters necessary for nonlinear analysis 
based on the employed constitutive laws were missing from the reported 
properties. Values found in the relevant literature were used in their 
stead. Considering the reported value of the compressive strength fc as 
the mean value, the tensile strength of concrete ft was calculated as [3]: 

ft = 0.30( − fc − 8)2/3 (22) 

Similarly, the Young’s modulus of concrete Ec was calculated as [3]: 

Ec = 22000
(
− fc

10

)0.3

(23) 

The density ρ of reinforced concrete was taken as equal to 
2500 kg/m3. The Poisson’s ratio of steel νs was taken as equal to 0.280. 
The tensile fracture energy of concrete Gt was calculated based on the 
Model Code 2010 equation [9]: 

Gt = 0.073( − fc)
0.18 (24)  

while the compressive fracture energy of concrete in compression Gc was 
calculated using the equation [6]: 

Gc = − fcd (25)  

where d is a ductility index equal to 1 mm. 
The finite element model for simulating the beam experiments con-

sisted of a mesh of 1276 plane stress linear triangular elements. The 
properties within the lower and upper reinforced zones were assigned 
the appropriate volume ratios for the x oriented inclusions, as per the 
proposed reinforced zone concept. A single vertical axis of symmetry 
was employed at mid span for reduction of the model size. 

The results of the experimental tests are compared with the nonlinear 
analysis results in terms of peak force and vertical displacement at mid 
span at failure in Table 2. The predicted values are in good agreement 
with the experimental results, particularly in the MD1.3 case. An over-
estimation was obtained in the predicted displacement at failure, more 
notable in the T0.2 case. This discrepancy was considered minor as it 
could potentially be due to a difference between the actual Young’s 
modulus of concrete Ec and the values assumed in the analysis. 

An illustration of the numerically obtained failure mode is shown in  
Fig. 5. The MD1.3 case is used for illustrating the failure mode, with the 
T0.2 case producing similar results. The failure mode is presented in 
terms of the integrity variable of concrete in tension Ic, the loss of which 
can lead to the formation of visible tensile cracks. The development of 
the loss of integrity is shown for increasing applied load. Damage due to 
bending arises at the tensile zone at mid span. The damaged zone in-
creases in length and height for an increase in the load until the peak 
force is obtained, at which point the damage has propagated nearly to 

Table 1 
Properties of MD1.3 and T0.2 reinforced concrete beam components. Assumed 
values in italics.  

Component Property Symbol Units MD1.3 T0.2 

Concrete Young’s modulus Ec  N/mm2  33,093 32,118 

Poisson’s ratio νc  − 0.167 0.167 
Density ρ  kg/m3  2500 2500 

Compressive strength fc  N/mm2  -39.0 -35.3 

Tensile strength ft  N/mm2  2.96 2.72 

Steel Young’s modulus Es  N/mm2  189,000 220,500 

Poisson’s ratio νs  − 0.280 0.280 
Yield strength fy  N/mm2  341 507 

Tensile zone 
reinforcement 

As1  mm2  1256 226 

Compressive zone 
reinforcement 

As2  mm2  57 57 

Shear reinforcement Asw  mm2  100 100 

Shear reinforcement 
spacing 

s  mm  50–100 50–100  

Table 2 
Comparison of experimental with numerical results for beams in bending. 
Percentile difference in parentheses.   

Peak force Failure displacement at mid span 

Case Experiment 
(kN) 

Numerical Experiment 
(mm) 

Numerical 

MD1.3 140.38 146.68 kN 
(+ 4.49%) 

193.6 181.3 mm 
(− 6.35%) 

T0.2 41.90 44.80 kN 
(+ 6.92%) 

86.0 84.6 mm 
(− 1.63%)  

Fig. 5. Numerically obtained failure mode for reinforced concrete beams. 
Integrity variable of concrete in tension It at 25%, 50% 75% and 100% 
peak load. 
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the top of the cross section at mid span. This response is typical of simply 
supported beams and is in agreement with the behaviour obtained both 
in the experiments and in their numerical reproduction in the cited 
source [22]. 

For demonstrating the capacity of the proposed model to produce 
discretised damage in a clearer fashion, the tensile crack patterns can be 
visualised by plotting maximum principal strains at 100% peak load, as 
can be seen in Fig. 6 for case MD1.3. The average crack spacing for case 
MD1.3 is 73 mm while for case T0.2 it is equal to 66 mm. 

The behaviour of the longitudinal bars may also be readily evaluated 
through the model. The axial stresses of the longitudinal bars at peak 
force are shown in Fig. 7. It can be observed that the distribution of axial 
stresses is typical of simply supported beams at failure: yielding of the 
lower bars in tension at mid span, with the magnitude of stresses 
decreasing farther away from that location. Similarly, the upper bars are 
yielding in compression at mid span. 

The assumption of infinite aspect ratio does not hold for the trans-
versal reinforcement bars. The actual aspect ratio of the transversal 
reinforcement is equal to 42.5, which is, nevertheless, high. The dif-
ference in the terms of Eshelby’s tensor S between assuming an infinite 
aspect ratio and an aspect ratio equal to 42.5 is, at maximum, roughly 
6%. The numerical results were found to not be sensitive to this differ-
ence. Therefore, the infinite aspect ratio assumption was maintained for 
this case. 

Overall, the model validation demonstrates the viability of the 
reinforced zone concept for reinforced concrete elements with concen-
trated rather than evenly distributed bars. The plane stress assumption 
maintains computational cost very low, allowing for numerical experi-
ments and parametric studies. 

5.2. Reinforced concrete beams in tension 

A second validation study of the proposed model is performed 
against two experimental cases of reinforced concrete beams subjected 
to direct tension [21]. The beams, designated as NSC 3 × 9.5 and HSC 
3 × 9.5, standing for normal strength and high strength concrete 

respectively, are reinforced with three longitudinal bars, evenly 
distributed along the height of the element. Two notches, each 10 mm 
deep and 12.7 mm wide, were provided at the centre of the beams for 
localising the formation of the first cracks in the concrete. The experi-
mental cases are deemed ideal for validating the proposed homogeni-
sation approach. The experiments are controlled to a large extent by the 
plastic behaviour of the longitudinal reinforcement. The overall layout 
of the beams, their loading scheme and their cross section are shown in  
Fig. 8. 

The material parameters used for numerical analysis are presented in  
Table 3. For this case only the Poisson’s ratios of the components and the 
compressive fracture energy of the concrete (which does not play a 
substantial role in this test) needed to be assumed, as the remaining 
values were provided by the authors [21]. 

For this analysis the longitudinal reinforcement was considered 
evenly distributed across the height of the beam. Therefore, the concept 
of the reinforced zone was not employed, the longitudinal reinforcement 
ratio being considered constant throughout the area of the model. 
Transversal reinforcement was not included in the calculations. A coarse 
mesh of 416 linear triangular finite elements was employed for testing 
the capacity of the proposed model to perform accurately with low 
density meshes. 

The results of the experimental test and the numerical results are 
presented in terms for force-displacement curves in Fig. 9. The initial 
stiffness, the stiffness after cracking of the concrete (namely the stiffness 
provided to the composite by the bars), the displacement at failure and 
the peak force are very well approximated by the model. The loss of 
stiffness immediately after the initial elastic part of the response is not 
equally well captured by the model, possibly due to the lack of model-
ling of the bond slip, meaning that the stiffness of the perfectly bonded 
bars is immediately activated after cracking of the concrete. Addition-
ally, the cracking load for the HSC 3 × 9.5 case is overestimated in the 
analysis, potentially due to a discrepancy between the average experi-
mental value of the tensile strength of concrete and the in-situ strength 
in the specimen. Finally, the strain hardening phase in the HSC 3 × 9.5 
case appears to last longer than in the experimental case, with the global 
structural stiffness reaching the experimentally obtained value near 

Fig. 6. Crack pattern of beam at 100% peak load in terms of maximum prin-
cipal strain. 

Fig. 7. Axial stresses (N/m2) in longitudinal bars at peak force.  

Fig. 8. Geometric, loading and reinforcement layout of reinforced concrete beams NSC 3 × 9.5 and HSC 3 × 9.5. Dimensions in mm.  

Table 3 
Properties of NSC 3 × 9.5 and HSC 3 × 9.5 reinforced concrete beam compo-
nents. Assumed values in italics.  

Component Property Symbol Units NSC 
3 × 9.5 

HSC 
3 × 9.5 

Concrete Young’s modulus Ec  N/mm2  27,349 36,624 

Poisson’s ratio νc  − 0.175 0.175 
Density ρ  kg/m3  2500 2500 

Compressive 
strength 

fc  N/mm2  -44.0 -99.1 

Tensile strength ft  N/mm2  3.19 5.52 

Steel Young’s modulus Es  N/mm2  191,584 191,584 

Poisson’s ratio νs  − 0.280 0.280 
Yield strength fy  N/mm2  508 508 

Axial 
reinforcement 

As  mm2  213 213  
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failure. This is potentially due to an overestimation of the tensile frac-
ture energy. 

The accuracy of the model in simulating this experimental case 
demonstrates the suitability of the proposed approach in capturing the 
behaviour of reinforced concrete structures with evenly distributed bars 
without resorting to the reinforced zone approach. This approach is 
accurate and efficient with coarse finite element meshes, thus signifi-
cantly reducing computational costs and modelling complexity for large 
structural elements. 

6. Conclusions 

A homogenisation scheme for reinforced concrete structures based 
on inclusion micromechanics, combined with constitutive modelling of 
material failure based on damage mechanics, is developed and imple-
mented in a finite context for nonlinear analysis. The proposed scheme is 
able to capture the salient characteristics of the behaviour of concrete 
and reinforcement bars in reinforced concrete without resorting to 
distinct meshing of the reinforcement bars embedded in the concrete. 
The model is able to predict the capacity of reinforced concrete beams 
with good accuracy, low computational cost and low geometrical 
modelling effort. 

The proposed scheme can account for both distributed reinforcement 
as well as for zones with concentrated reinforcement through a simple 
adjustment of material parameters assigned to specific regions of the 
finite element mesh. This allows for correct assignment of reinforcement 
and concrete volume ratios throughout the analysis domain and for 
complete simulation of stress and strain interaction between compo-
nents of the composite while remaining within plane stress conditions. 

One aspect of future work along this research path includes the 
simulation of bond-slip failure and dowel action of the bars. This can be 
accomplished through the introduction of the necessary longitudinal 
strain component in the bars and its evaluation against an appropriate 
constitutive model for slipping, while the latter can be achieved through 
evaluation of the shear stress and strain in the bars against a similarly 
appropriate constitutive law. Further constitutive modelling of confined 
concrete can be implemented for simulating the confinement effect 
provided by the reinforcement bars. 

A further aspect of future work is the simulation of mechanically 
anchored repair and strengthening measures, such as reinforced con-
crete jackets, or externally bonded composites, such as textile reinforced 
composites and mortars, again employing the homogenisation scheme 
proposed here for the bars. 
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