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Abstract. We present a novel and generalised notion of doping cleanness for cyber-
physical systems that allows for perturbing the inputs and observing the perturbed outputs
both in the time—and value—domains. We instantiate our definition using existing notions
of conformance for cyber-physical systems. As a formal basis for monitoring conformance-
based cleanness, we develop the temporal logic HyperSTL*, an extension of Signal Temporal
Logics with trace quantifiers and a freeze operator. We show that our generalised definitions
are essential in a data-driven method for doping detection and apply our definitions to a
case study concerning diesel emission tests.

1. Introduction

System doping, in our terminology, is an intentional intervention causing a change in the
system’s normal behaviour against the interests of the user or other stakeholders (such as
the society at large). Examples of system doping are widespread and range from vendors’
enforcing a monopoly on chargers and spare parts (by checking for and refusing third-party
chargers and spare parts, respectively) to tampering with exhaust emission in order to
detect and pass emission tests. Doping can be the result of embedding a piece of code or
smuggling a piece of electronic circuit into the system and it can be caused by the original
developers or by hackers. Software and system doping has been studied in the past couple of
years and rigorous theories for it have been developed [BDFH16, DBB+17, BDH18]. These
theories were subsequently adopted in order to detect doping, or formally, to check system
cleanness [HBDK18, BDH19] (corresponding to the absence of doping).
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Figure 1: Running Example: Specified (a) and Actual (b) Test Cycles and Emission Foot-

prints obtained from Different (Fictitious) Vehicles (c) and (d).

In the present paper, we extend the theory of doping to the setting of cyber-physical
systems (CPS) by exploiting the notions of conformance testing for CPS [AMF14, DMP17,
KM15]. The existing theories of software doping define doping in terms of drastic deviations
in output as a result of minor deviations in input, where the term “deviation” refers to
differences in validity of propositions or values of variables. However, the current notions
come short of properly dealing with the issues of retiming and delays, which are commonly
present in the signals of CPS. We observe that this is an essential aspect of detecting doping
for cyber-physical systems: often the traces to be tested for doping have subtly different
timing behaviour, e.g., due to measurement and calibration errors or due to the slight
deviations of human actors in acting upon the planned scenarios. The insufficient treatment
of retiming and delays can both lead to false negatives, i.e., missing cases of doping, as well
as false positives, i.e., reporting spurious doping cases.

To address these issues, we exploit the notion of conformance to devise a general
theory of being clean from doping and instantiate that theory with some existing notions
of conformance for hybrid systems. We show how these notions can account for retiming
and lead to more precise notions of cleanness. Furthermore, we show how the retiming can
be synchronized between input and output, leading to a refined notion of cleanness with a
rigorous account of the relation between the retiming of input and output.

We illustrate the usefulness of our theory by empirical analysis of diesel engine exhaust
emissions in the context of one of the official test cycles, the New European Driving Cycle
(NEDC) [Uni13]. In particular, we show that catering for retiming is essential in effectively
exploiting the actual driving cycles for performing doping analysis. We thus demonstrate
that our new theory remedies a major shortcoming in the existing notions from the literature.
To facilitate the presentation, we use throughout the remainder of this paper the following
simple running example, which is inspired by our case study.

Example 1.1. Fig. 1.(a) shows two test cycles (evolution of speed over time), designed to
detect whether the exhaust emission control of a particular vehicle is doped. The test cycle
ist , depicted with a black solid line, is the standard one prescribed by the (fictitious) official
regulation, while test cycle idev , depicted by a red dotted line, is a slight deviation thereof. If
the exhaust emissions measured during the test cycle idev turn out to be significantly higher
than the ones measured in test cycle ist , then we can conclude that the exhaust emission
system is potentially doped, since it appears tailored to the standard test cycle.

Fig. 1.(b) addresses a notorious problem of testing cars: a human tester is supposed to
drive the car as just described, however, she can do this only up to a certain imprecision.
Assume her driving of idev exhibits a slight time shift τ relative to the test cycle, as in iddev ,
while ist is being driven as intended.
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The result of a test is the emission footprint measured at the exhaust pipe of the car.
Fig. 1.(c) and Fig. 1.(d) show two different possible test results (obtained from different
cars) for the scenario in Fig. 1.(b). Intuitively, the footprints in Fig. 1.(c) provide significant
evidence for doping — a slightly different test cycle has resulted in significantly larger
footprint. However, due to the time shift on the input side in Fig. 1.(b) the point-wise
difference of the two driven test-cycles has grown very large. As we show in the remainder
of this paper, the existing theory of doping fails to detect such a clear evidence, due to the
minor delay during the execution of the driving cycle. The emission footprint in Fig. 1.(d) is
another (synthetic) example of a significant deviation which cannot be detected for the input
in Fig. 1.(b) using existing theories; this latter footprint sheds some light on the intricate
design decisions in the theory we develop in this paper.

The contributions for this paper can be summarized as follows:

• We define a general notion of conformance that can express different ways of comparing
execution traces by allowing deviations both in value and in time;

• We define a general notion of cleanness for hybrid systems, and show that it subsumes
the existing notion of robust cleanness [DBB+17];

• We define the notion of synchronized retiming, which provides a rigorous tool for relating
the retiming of input and output and use it to produce a refined notion of cleanness;

• We provide a logical account of cleanness (based on the notion of hybrid conformance) by
developing a temporal logic, called HyperSTL*, that extends Signal Temporal Logic (STL)
with a freeze operator and quantifiers over traces; and

• We demonstrate the usefulness of the proposed generic framework by applying it to software
doping tests in the automotive domain, where we show that the new cleanness definition is
able to flag a case of software doping that goes unnoticed when robust cleanness is used.

This paper substantially extends the theoretical material and the experimental results
published in the earlier conference publication [DGM+20]. In particular, the following
contributions of the present paper are new with respect to the earlier conference publication:

• the notion of cleanness with synchronised retiming in Section 5 and its application in
Section 7 for doping detection in our case study,

• the logical approach to cleanness in Section 6, the introduction of our logical formalism
HyperSTL*, its monitoring, and its application to specify hybrid conformance, and

• the redesign of our experimental setup to comply with the NEDC test cycle (with
preconditioning and control of ambient temperature), as well as several new experiments
to make full use of our theories of retiming. These new experiments led to much more
substantial and decisive evidence for our case study.

2. Related Work

The term “software doping” was coined around 2015 [HHB15] in media uncovering the diesel
exhaust emissions scandal. An informal problem formulation [BDFH16] pointed out the
general phenomenon of intentionally added hidden software behaviour, which is not in the
interest of the consumer. Shortly after, this observation has been complemented by a set
of formal cleanness definitions [DBB+17] laying the theoretical foundations upon which
formal methods to detect such software behaviour can be used. It is possible to detect
missing functionality and undesired existing functionality. The definitions support both
sequential programs and nondeterministic reactive programs. To check satisfaction of the
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definitions, it is necessary to compare two (or more) execution traces of the same system.
Such properties are called hyperproperties [CS08] (whereas classical properties are trace
properties). Tool support for analysing hyperproperties typically requires high computational
effort [CFK+14, FRS15]. There exist several temporal logics for analysing satisfaction of
trace properties of various kinds of systems, one of them being Linear Temporal Logic
(LTL) [Pnu77] for systems producing outputs in discrete time steps and properties that
do not consider the time passing between outputs. LTL has been extended to the logic
HyperLTL, which can express hyperproperties by allowing explicit quantification of execution
traces in front of an LTL formula [CFK+14]. Tools for model-checking boolean circuits,
satisfiability and monitoring of HyperLTL specifications have been developed [AB16, BSB17,
FRS15, FH16, FHS17, FHST17, FHST18, HST19].

Signal Temporal Logic (STL) [MN04] is an extension of LTL that adds support for
time constraints and real-valued signals. Tools exist that automatically try to falsify STL
formulas [Don10, ALFS11]. There has been an extension of STL to HyperSTL in a similar
fashion as it was done for HyperLTL [NKJ+17]. The syntax of HyperSTL, however, is not
able to express the cleanness definitions (for deterministic systems) in a way that allows
(efficient) falsification. Freeze Temporal Logic [AH94] introduces a freeze quantifier to
“record” the moment of time while evaluating a formula and later use the recorded time to
measure time lapse. The concept of freeze quantifier has been used to specify properties of
data-dependent systems (using models such as register automata) [DL09] and dynamical
systems [BDSV14, DMP17]. In the present paper, we introduce the concept of freeze
quantifier [BDSV14] into a logic that is inspired by HyperSTL [NKJ+17]. The combination
turns out to be expressive enough to specify cleanness with respect to hybrid conformance.
Moreover, we use a monitoring procedure inspired by an earlier extension of STL with
freeze operator [STB+19] to check for cleanness with respect to hybrid conformance. Robust
cleanness is defined for distance functions on inputs and outputs [DBB+17]. When used
with temporal logics the distance functions are restricted to those compatible with the logics.
To be fully independent, robust cleanness analysis has been embedded into the theory of
model-based testing [BDH19] with input-output conformance [Tre92, Tre96].

Notions of conformance for discrete event systems have been discussed for almost a
century. The earliest work on this topic dates back to 1960’s when researchers studied
model-based testing of digital circuits using Finite State Machine models [Hen64, LY96].
Concurrency theory contributed ideas to this field, such as decoupling (i.e., removing the
synchronised assumption between) inputs and outputs and observing failures to engage in a
communication (and more specifically quiescence) [DH84, Tre92]. A theory of conformance
testing for systems with continuous dynamics was developed by Michiel van Osch [vO06]; this
theory did not gain much popularity in practice, partly because of its insufficient treatment of
approximation (e.g., differences in values and retiming). Pappas and Girard [GJP08, GP11]
proposed the use of Metric Bisimulation for conformance checking in dynamical systems
and Pappas and Fainekos [FP09] developed a falsification framework for the same purpose.
This research led to two notions of conformance used in the present paper, namely hybrid
conformance by Abbas and Fainekos [AMF14] and Skorokhod conformance by Deshmukh,
Majumdar, and Prabhu [DMP17].
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3. Preliminaries

3.1. Semantic domain. In this section, we provide definitions regarding semantic domain,
conformance, and robust cleanness. We begin with the definition of our semantic domain,
called generalised timed traces [GM20]. This definition subsumes both discrete-time state
sequences and continuous-time trajectories. A generalised timed trace is a function with a
discrete or continuous domain (called time domain) and a co-domain which is a metric space.
Intuitively, a generalized timed trace maps each element of its time domain to a state. We
require that the set of possible states is a metric space since we study conformance notions
that compare traces based on the distance between the states of the traces.

Definition 3.1. Let (Y, dY) be a metric space. A Y-valued generalised timed trace (GTT)
is a function µ : T → Y such that T ⊆ R≥0. We call T the time domain of µ, denoted
dom(µ). GTT (Y) is the set of all Y-valued generalised timed traces.

For a GTT µ : T → Y and time t0 ∈ T , by µ[. . . t0] we denote the prefix of µ up
to t0, i.e., the restriction µ|t∈T :t≤t0 ; likewise, by µ[ts . . . te], we shall denote the restriction
µ|t∈T :ts≤t≤te

A hybrid system is a mapping from generalised (input) timed traces to sets of generalised
(output) timed traces.

Definition 3.2. A Y-valued hybrid system is a function H : GTT (Y) → P(GTT (Y)) such
that for all µ ∈ GTT (Y) and all µ′ ∈ H (µ) it holds that dom(µ′) = dom(µ). We define
H(Y) to be the set of all Y-valued hybrid systems.

In addition, we distinguish deterministic hybrid systems whose output values range over
singleton sets only. In what follows, we identify deterministic hybrid systems with functions
of the type GTT (Y) → GTT (Y).

For simplicity, we assume that the input and output domain are defined on the same
metric spaces. The generalisation to different spaces is straightforward.

3.2. Conformance relations. Recently, a number of notions of conformance for cyber-
physical systems have been proposed [ARM17, KM15]. It turns out that these notions, two
of which are quoted below, can provide a rigorous basis for doping detection.

Note that throughout the paper, the variables τ and ǫ (with possible subscripts) always
range over non-negative real numbers.

Definition 3.3. We say that Y-valued GTTs µ1 : T1 → Y and µ2 : T2 → Y are:

• trace conformant with tolerance threshold for signal value ǫ, notation TraceConfǫ(µ1, µ2),
if T1 = T2 and for all t ∈ T1, dY(µ1(t), µ2(t)) ≤ ǫ

• hybrid conformant with thresholds τ and ǫ, denoted HybridConfτ,ǫ(µ1, µ2), if:
– ∀t1 ∈ T1 ∃t2 ∈ T2 : |t2 − t1| ≤ τ ∧ dY(µ2(t2), µ1(t1)) ≤ ǫ
– ∀t2 ∈ T2 ∃t1 ∈ T1 : |t1 − t2| ≤ τ ∧ dY(µ1(t1), µ2(t2)) ≤ ǫ

• Skorokhod conformant with tolerance thresholds τ and ǫ, notation SkorConfτ,ǫ(µ1, µ2), if
T1 and T2 are intervals and there is a strictly increasing continuous bijection r : T1 → T2
called retiming, such that:
– for all t ∈ T1, |r(t)− t| ≤ τ , and
– for all t ∈ T1, dY(µ1(t), µ2(r(t))) ≤ ǫ.
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We show in the proposition below and also in our generalisation results in Section 4.2, that
these notions are closely related. However, they also have some fundamental differences,
that can be illustrated using the example in Fig. 1.

Example 3.4. Consider again the example shown in Fig. 1.
We can see that in Fig. 1.(a) ist and idev are trace conformant with value threshold ǫ,

as they only exhibit point-wise deviations by values less than ǫ. In contrast, ist and iddev in
Fig. 1.(b) are not trace conformant, yet they are hybrid conformant with time and value
margins τ and ǫ, respectively. The key difference is that the inputs depicted in Fig. 1.(b) are
very different if compared point-wise, but if one allows for retiming, they are close enough
in value after retiming.

The outputs o′(ist) and o′(iddev ) in Fig. 1.(d) illustrate the fundamental difference
between hybrid and Skorokhod conformance: although the order of rising and falling
signals are reversed in the two trajectories, they are still hybrid conformant, because hybrid
conformance disregards the order. However, Skorokhod conformance requires an order-
preserving retiming, and hence distinguishes these two trajectories. On the other hand, such
retiming exists, e.g., for ist and iddev in Fig. 1.(b), witnessing their Skorokhod conformance.

We shall use the following notation. We write Conf1 ⊑ Conf2 whenever for all µ1 : T1 → Y
and µ2 : T2 → Y, we have Conf1(µ1, µ2) =⇒ Conf2(µ1, µ2). We write Conf1 < Conf2
whenever Conf1 ⊑ Conf2 and ¬Conf2 ⊑ Conf1.

Proposition 3.5. For any τ, ǫ ∈ R≥0, the following relations hold:

TraceConfǫ < SkorConfτ,ǫ < HybridConfτ,ǫ

3.3. Robust cleanness. We shall now state the original definition of robust cleanness
from [DBB+17], adapted to our framework of hybrid systems. It is based on Definition 7 and
Proposition 19 from [DBB+17]; the phrasing below abstracts from the so-called parameters
of interest and standard inputs. Moreover it is cast in the setting of generalised timed
traces rather than discrete-step programs, and stated using trace conformance with different
thresholds for inputs and outputs, κI and κO.

Intuitively, a hybrid system is robustly clean if for every pair of input prefixes on which
no difference in the inputs exceeding κI has occurred so far (i.e., all sub-prefixes are trace
conformant), the corresponding sets of output prefixes are also conformant with respect to
κO. As we consider nondeterministic systems, Hausdorff distance is used to compare sets of
outputs (see [DBB+17] for details).

Definition 3.6. A hybrid system H is robustly clean, denoted
RobustClean(κI , κO), whenever:
∀i1, i2 ∈ GTT (Y) : ∀t ∈ dom(i1) ∪ dom(i2) :
(

∀t′ ≤ t : TraceConfκI
(i1[. . . t

′], i2[. . . t
′]) =⇒

(

(∀o1 ∈ H (i1) ∃o2 ∈ H (i2) : TraceConfκO
(o1[. . . t], o2[. . . t])) ∧

(∀o2 ∈ H (i2) ∃o1 ∈ H (i1) : TraceConfκO
(o1[. . . t], o2[. . . t]))

)

Note that in the above definition we do not require that dom(i1) = dom(i2). In practice,
robust cleanness is typically applied to pairs of traces that are both defined over N. Here,
however, for the sake of generality we impose no such restriction. In particular, when the
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time domains of two traces are different, for example disjoint, the predicate RobustClean will
trivially evaluate to true.

Example 3.7. Consider the traces depicted in Fig. 1. The input prefixes ist and iddev are
given in Fig. 1.(b), and the corresponding pair of outputs is shown in Fig. 1.(c). For t ≤ t0,
we have iddev (t) = 0 and o(iddev )(t) = 0. The trace ist results in output o(ist) and iddev
results in o(iddev ). Suppose that ǫ < |ist(t0)− iddev (t0)|, and for every t < t0 it holds that
|o(ist)(t) − o(iddev )(t)| ≤ |ist(t) − iddev (t)|. Furthermore, ǫ < |o(ist)(t1) − o(iddev )(t1)| at
some time t1 ≥ t0. Consider Def. 3.6 instantiated with κI = κO = ǫ. Clearly, for every t < t0
the implication in Def. 3.6 is satisfied, since |o(ist)(t

′) − o(iddev )(t
′)| ≤ |ist(t

′) − iddev (t
′)|

for all t′ ≤ t < t0, and κI = κO. For t ≥ t0 the implication is true as well: for t′ < t0
the reasoning is as above, and for all t′ ≥ t0 the left-hand side of the implication is false.
Hence, regardless of the difference in the output values at t1, this pair of inputs satisfies the
condition of RobustClean(ǫ, ǫ), and, if these are the only traces in a hybrid system H then
we can conclude that H is RobustClean(ǫ, ǫ).

4. Conformance-Based Cleanness

We now define a general notion of conformance-based cleanness and provide two instantiations
based on the conformance notions defined in the previous section.

4.1. Motivation. The need for considering disturbance in time as well as in value is
motivated by our running example from Fig. 1. One of the challenges in performing doping
tests for cyber-physical systems is that in such systems timing is rarely perfectly precise, due
to imprecision in measurements, or caused by the interaction with the physical world. As
illustrated in Example 1.1, for instance, when checking for software doping in a car [BDH19],
the input to the system is the value of the car’s speed over time, which is under the control
of a driver, and can thus vary from one execution to the other, even if the driver is trying
to execute the same input sequence. Clearly, those variations can be in value, as well as in
time.

Example 4.1. Consider the test setup sketched in Fig. 1. There, ist and iddev , depicted in
Fig. 1.(b) define the speed of a car as a function of time. These two input sequences follow
a trajectory of values differing by a small margin ǫ (the difference in value allowed by the
standard defining the doping tests), but also shifted by a small unit of time τ . Observe
further that |ist(t0) − iddev (t0)| ≫ ǫ. Thus, without allowing for deviations in time when
comparing these input sequences, they will be considered sufficiently different, and as a result
their respective exhaust emission outputs will fall out of the comparison when checking
for doping according to Def. 3.6, even if the outputs H (ist(t)) and H (iddev (t)) are vastly
different, as depicted in Fig. 1.(c). This results in a false negative, i.e., failing to detect a
clearly doped system.

In the above example, we demonstrated that not accounting for timing disturbances
when relating input trajectories can result in false negatives in doping detection. Dually,
using the traditional comparison for output traces can result in false positives by requiring
overly strict matching of outputs.
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The above example motivates the need to account for timing deviations in trajectories.
Intuitively, for input trajectories this relaxation results in considering more traces as con-
forming, and thus enforcing more comparisons when checking if a system is clean. For output
trajectories this means relaxing the conformance requirement by considering two output
sequences as conforming even if their values are not perfectly aligned in time. Furthermore,
different types of timing deviations need to be considered in different scenarios, for example,
depending on whether the order in which values occur is important or not.

Example 4.2. Consider the testing workflow from Example 1.1 and Fig. 1, where inputs ist
and iddev are passed to a car. In the second experiment, depicted in Fig. 1.(d), the outputs
of the car are o′(ist) and o′(iddev ), which are hybrid conformant for ǫ and τ . Hence, this
observation of the system is classified as clean under hybrid output conformance. However,
the output o′(iddev ) is clearly suspicious, as the values in o′(iddev ) and o′(ist) are reversed.
This motivates considering conformance notions that require retimings to be order-preserving.
Indeed, using Skorokhod conformance we can detect that the system is doped.

The above examples show that in order to be useful in a diverse set of applications,
a software cleanness theory should allow for using a variety of conformance notions. To
this end, we next take a more general view on conformance notions, in order to be able to
develop a generic conformance-based cleanness framework.

4.2. Retimings and a more generic view on conformance notions. So far, we have
defined three specific notions of conformance which either coincide, or are closely inspired
by ones that have appeared in the literature. In order to define a general framework for
cleanness, we also wish to treat notions of conformance in a more generic manner. To this
end, we propose an abstract definition of conformance predicates. As conformance predicates
admit variations in time, as well as in value, our definition is based on retimings, a device
that will play a key role in the context of this work. In its general form a retiming is a
pair of functions between two time domains. Intuitively, given two GTTs, a retiming will
define a mapping from points in each of the traces to points in the other trace. Note that
in general the mappings are not required to be injective; this way we can cater for notions
of conformance allowing for the so-called local disorder phenomenon (in particular hybrid
conformance — see Proposition 4.5).

Definition 4.3. A retiming is a pair of functions between two time domains, i.e., a pair
of the form (r1, r2), where r1 : T1 → T2 and r2 : T2 → T1, with time domains T1, T2 ⊆ R≥0.
Given two time domains T1 and T2, we denote the set of all retimings between T1 and T2
with RET (T1, T2).

Retiming is explicitly present in the definition of Skorokhod conformance; there, each
Skorokhod retiming is required to be a strictly increasing continuous bijection. We can
express a Skorokhod retiming r as an instance of our definition as the pair (r, r−1). In fact,
one can also define hybrid conformance, as well as a whole class of conformance notions,
using a suitable family of retimings.

A family of retimings Ret can be further constrained by τ to a subset Retτ of Ret
containing only functions that shift time by at most τ time units. In order to use a family
of retimings for concrete sequences µ1 and µ2, it is necessary to consider only functions
that match the domains of the sequences. This leads to a generic notion of conformance
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associated with a given family of retimings Ret, a given time threshold τ and a given value
threshold ǫ.

Definition 4.4. Let Ret be a family of retimings, and let

Retτ
△
= {(r1, r2) ∈ Ret | ∀t ∈ dom(ri) : |ri(t)− t| ≤ τ (i = 1, 2)},

Retτ (T1, T2)
△
= Retτ ∩RET (T1, T2).

A conformance notion with time threshold τ and value threshold ǫ induced by Ret is a
predicate Conf Retτ,ǫ on pairs of GTTs such that, for µ1 : T1 → Y, µ2 : T2 → Y:

Conf Retτ,ǫ (µ1, µ2) ⇐⇒ ∃(r1, r2) ∈ Retτ (T1, T2) : ∀t ∈ T1 : dY(µ1(t), µ2 ◦ r1(t)) ≤ ǫ
∧ ∀t ∈ T2 : dY(µ2(t), µ1 ◦ r2(t)) ≤ ǫ.

A conformance notion with unbounded time deviation and value threshold ǫ induced by
Ret is a predicate Conf Ret∞,ǫ on pairs of GTTs such that, for µ1 : T1 → Y, µ2 : T2 → Y:

Conf Ret∞,ǫ(µ1, µ2) ⇐⇒ ∃(r1, r2) ∈ Ret(T1, T2) : ∀t ∈ T1 : dY(µ1(t), µ2 ◦ r1(t)) ≤ ǫ
∧ ∀t ∈ T2 : dY(µ2(t), µ1 ◦ r2(t)) ≤ ǫ.

Unless we state explicitly otherwise, we consider conformance notions with finite time
threshold τ ∈ R≥0. Using the above definition, we can easily express the specific notions of
conformance defined in the previous section by selecting a suitable family of retimings.

Proposition 4.5. The conformance predicates below coincide with the notions of confor-
mance induced by the corresponding families of retimings:

• TraceConfǫ is induced by the family of retimings containing only identity functions: Retid =
{(id, id) | id : T → T is the identity on some T ⊆ R≥0}.

• SkorConfτ,ǫ is induced by the family of retimings
Ret = {(r, r−1) | r is a strictly increasing continuous bijection}.

• HybridConfτ,ǫ is induced by pairs of arbitrary functions.

Definition 4.4 also enables us to define other notions of conformance, such as, for instance a
“shift conformance”, which, intuitively, shifts all time points by a given constant c ∈ R, i.e.,
Retc = {(r, r−1) | r(t) = t+ c}.

Next, we define a generic notion of cleanness, parametrised by conformance predicates
for the input and for the output traces. Instantiating these predicates with existing or
new conformance notions, yields different conformance-based notions of cleanness that can
capture a variety of cleanness specifications.

4.3. Definition of Conformance-based Cleanness. We now extend the notion of robust
cleanness [DBB+17] to allow for “small” variations in time, in addition to the variations
in value. To this end, the new notion makes use of two conformance predicates, one that
postulates when two input traces should be considered close enough, and another one that
specifies when two output traces are close enough.

Our starting point, the notion of robust cleanness in Definition 3.6, is based on comparison
of matching prefixes of a pair of input traces and the corresponding prefixes of the associated
output traces. As we now want to accommodate for distance in time, we (1) compare prefixes
using a conformance relation, and (2) allow for variation in the length of the compared
prefixes that is within the corresponding time-distance threshold. More precisely, when
comparing two prefixes, we allow for discarding start and end segments of length at most τ .
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This intuition is formalized by the predicate PrefConf for relaxed comparison of GTT
prefixes using a notion of conformance Conf with tolerance threshold τ for time disturbance.
We use cascaded notation to define PrefConf as a higher-order function taking Conf as its
first argument. The predicate PrefConf compares two prefixes µ1 and µ2 by requiring that
there exist traces µ1[t

s
1 . . . t

e
1] and µ2[t

s
2 . . . t

e
2] obtained from them, that are conformant with

respect to Conf. These traces are obtained by possibly removing a sub-prefix of length at
most τ , and/or removing extending with a suffix of length at most τ .

Definition 4.6. Let Conf be a notion of conformance on GTTs with tolerance threshold
τ ∈ R≥0 for time disturbance. For any pair of GTTs µ1 : T1 → Y, µ2 : T2 → Y, and
t ∈ T = T1 ∪ T2, the predicate PrefConf is defined as:

PrefConf(µ1, µ2, t) ⇐⇒ ∃ts1 ∈ [0, τ ] ∩ T1, ∃t
e
1 ∈ [t− τ, t+ τ ] ∩ T1,

∃ts2 ∈ [0, τ ] ∩ T2, ∃t
e
2 ∈ [t− τ, t+ τ ] ∩ T2:

Conf(µ1[t
s
1 . . . t

e
1], µ2[t

s
2 . . . t

e
2]).

For conformance notions with unbounded timing deviation PrefConf coincides with Conf.
The predicate PrefConf provides a generic notion of prefix-conformance. By instantiating

it with conformance relations ConfI and ConfO for input and output traces respectively, we
define the notion of (ConfI ,ConfO)-cleanness.

For deterministic systems (ConfI ,ConfO)-cleanness requires that for all pairs of input
prefixes for which all sub-prefixes are prefix-conformant w.r.t. ConfI , the corresponding pair
of output prefixes are prefix-conformant w.r.t. ConfO .

Definition 4.7. A deterministic system H is (ConfI ,ConfO)-clean if

∀i1, i2 ∈ GTT (Y) : ∀t ∈ dom(i1) ∪ dom(i2) :
(∀t′ ≤ t : PrefConfI (i1, i2, t

′)
)

=⇒ PrefConfO(H (i1),H (i2), t).

The above definition naturally generalises to nondeterministic hybrid systems, by comparing
sets of possible output prefixes using Hausdorff distance as in [DBB+17].

Definition 4.8. A system H is (ConfI ,ConfO)-clean if

∀i1, i2 ∈ GTT (Y) : ∀t ∈ dom(i1) ∪ dom(i2) :
(

∀t′ ≤ t : PrefConfI (i1, i2, t
′)
)

=⇒
(

(∀o1 ∈ H (i1) ∃o2 ∈ H (i2) : PrefConfO(o1, o2, t)) ∧
(∀o2 ∈ H (i2) ∃o1 ∈ H (i1) : PrefConfO(o1, o2, t))

)

.

Robust cleanness [DBB+17] can be now formulated as conformance-based cleanness,
which establishes that (ConfI ,ConfO)-cleanness is a generalisation. Using hybrid confor-
mance, we define hybrid-conformance cleanness, and similarly, plugging in Skorokhod
conformance, we define Skorokhod-conformance cleanness. Formally:

• A hybrid system H is robustly clean, denoted RobustClean(κI , κO), if and only if H is
(TraceConfκI

,TraceConfκO
)-clean.

• A hybrid system H is hybrid-conformance clean with conformance thresholds (τI , ǫI ,
τO, ǫO), which we denote by HybridClean(τI , ǫI , τO, ǫO), if and only if H is (HybridConfτI ,ǫI ,
HybridConfτO,ǫO

)-clean.
• A hybrid systemH is Skorokhod-conformance clean with conformance thresholds (τI , ǫI , τO, ǫO),
denoted SkorClean(τI , ǫI , τO, ǫO), if and only if H is (SkorConfτI ,ǫI , SkorConfτO,ǫO)-clean.
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4.4. Properties. We will now establish some key relations between the cleanness notions
defined previously. We begin by lifting the implication between conformance relations to
implication between cleanness notions defined using those relations.

Proposition 4.9. Suppose that Conf 1I ⊒ Conf 2I and Conf 1O ⊑ Conf 2O. Then for any system
H: H is (Conf 1I ,Conf

1
O)-clean =⇒ H is (Conf 2I ,Conf

2
O)-clean.

The proposition above has two important corollaries. The first one explains the relation-
ships between the original robust cleanness, and notions of cleanness based on Skorokhod
conformance and hybrid conformance, in particular stating the conservative generalisation
property for the latter notions. The second corollary compares cleanness notions with
different conformance thresholds.

Corollary 4.10. For all τI , τO, ǫI , ǫO ∈ R≥0, the following implications hold:

(1) RobustClean(ǫI , ǫO) =⇒ SkorClean(0, ǫI , τO, ǫO) =⇒ HybridClean(0, ǫI , τO, ǫO),
(2) HybridClean(τI , ǫI , 0, ǫO) =⇒ SkorClean(τI , ǫI , 0, ǫO) =⇒ RobustClean(ǫI , ǫO).

Also, RobustClean(ǫI , ǫO) = SkorClean(0, ǫI , 0, ǫO) = HybridClean(0, ǫI , 0, ǫO) and hence
SkorClean and HybridClean are conservative extensions of robust cleanness.

Corollary 4.11. For all ǫI , ǫ
′
I , ǫO , ǫ

′
O , τI , τ

′
I , τO , τ

′
O that satisfy the inequalities

ǫ′I ≤ ǫI , τ ′I ≤ τI , ǫ′O ≥ ǫO , τ ′O ≥ τO the following implications hold:

(1) RobustClean(ǫI , ǫO) =⇒ RobustClean(ǫ′I , ǫ
′
O);

(2) HybridClean(ǫI , τI , ǫO , τO) =⇒ HybridClean(ǫ′I , τ
′
I , ǫ

′
O , τ

′
O);

(3) SkorClean(ǫI , τI , ǫO , τO) =⇒ SkorClean(ǫ′I , τ
′
I , ǫ

′
O , τ

′
O).

Example 4.12. Consider the testing workflow in Fig. 1. The inputs passed to a car are ist
and iddev , depicted in Fig. 1.(b). One of the test results is presented in Fig. 1.(c), where ist
reveals output o(ist) and iddev reveals o(iddev ). We assume that ǫ < |ist(t0)− iddev (t0)| and
ǫ < |o(ist)(t1)− o(iddev )(t1)| at some time t1 ≥ t0.

• As we saw in Example 3.7, for inputs ist and iddev , the car that emits the outputs depicted
in Fig. 1.(c) is deemed RobustClean(ǫ, ǫ). Note, that in the presence of other inputs the
car used for testing might not be RobustClean(ǫ, ǫ).

• As explained in Example 3.4, ist and iddev are hybrid conformant for ǫ and τ , i.e., the
predicate PrefConfI on the left-hand side of the implication in Def. 4.7 holds. PrefConfO,
however, fails at time t1 for signals o(ist) and o(iddev ). Hence, the system tested in
Fig. 1.(c) is not HybridClean(ǫ, τ, ǫ, τ).

We now discuss testing and falsification of conformance-based cleanness. For systems with
discrete time domains the existing methods for verifying [DBB+17] or testing [BDH19]
robust cleanness can be readily applied.

In the case of hybrid cleanness, existing methods for testing hybrid conformance, such
as [AHF+14] and [ACM+18] can be extended to testing and falsification of hybrid cleanness
of hybrid systems consisting of traces with finite time domains. Methods for checking
Skorokhod conformance were presented in [DMP17]. Due to the quantification over all
time-points t′ in our Definition 4.7 and Definition 4.8, it is not clear how to directly extend
them to testing Skorokhod cleanness.
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5. Cleanness with Synchronized Retimings

5.1. Practical motivation. An intuitive and useful notion of doping cleanness should
capture precisely what we expect from a clean system subject to disturbances in time and
value. In this regard, one can observe that even the more discriminating SkorClean predicate
has certain drawbacks. The following example motivates why one may want to resort to the
finer definition to be proposed in this section.

Example 5.1. Consider the scenario of particle emission cleanness presented in Example 3.4
and the input (velocity)- and output trajectories depicted in Fig. 2. Assume that for some
input trajectory i1, the vehicle shows the output (emission) profile o1; for a second input
i2(t) = i1(t− τ), consider two possible output trajectories: one output is o1(t− τ), i.e., it
is shifted in the same manner as input; this is assumed to be the best response to i2. The
other output is of the form o1(t− τ − δ), where δ > 0 can be arbitrarily small, i.e., it is the
optimal output with an arbitrary small shift to the right. Skorokhod-conformance cleanness
with τI = τO would accept the first output, but it would reject the second one. A potential
solution could be to increase the value of τO so that it is significantly larger than τI , but
this increases the imprecision by accepting too many trajectories shifted far to the left from
o1(t− τ).

Intuitively, when the input shifts by some τ , we would like to compare the corresponding
output trajectory with the one that is shifted accordingly. In the above-mentioned case, one
would therefore ideally like to perform conformance check of output against o1(t− τ), rather
than o1(t).

t

v(km/h)

i1

i2

τ

t

em(mg)

o1
o1(t− τ) !

o1(t− τ − δ) $

τ δ

Figure 2: Imprecision problem in Skorokhod-conformance cleanness without synchronisation
of retimings. While o1(t− τ) is the best expected response to i2, no trajectory to
the right of o1(t− τ) is accepted when τI = τO = τ .

5.2. Formal theory of synchronized retiming. In order to alleviate this imprecision,
we propose a definition of conformance-based cleanness with synchronised retimings, in
which we do not check the conformance of the resulting outputs directly, but rather check
conformance of each of the outputs against the transformation of the other output with
the retiming that is expected, based on the retiming of the corresponding input. Note that
the expected retiming of the output is not always precisely the same as that of the input.
Instead, we assume that the set of expected output retimings to a given input retiming is
available through a synchronisation function.
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As mentioned earlier, we can include in the set of conforming output trajectories the
best expected response o1(t− τ) by allowing a sufficiently large τO , but this comes at the
price of introducing imprecision in the conformance relation. By shifting the reference
point of conformance comparison, our cleanness with synchronised retimings avoids this
imprecision. What is more important, by performing the synchronisation independently of
τO , we introduce the opportunity to constrain the set of conforming output traces to those
traces that are as close as desired to the ideal expected output behaviour.

We proceed to formalise the enhanced notion of cleanness with synchronisation outlined
above. We start with two auxiliary definitions.

Definition 4.4 entails that whenever the conformance predicate Conf holds for certain
pair of timed traces, it is witnessed by at least one relevant retiming (r1, r2). The following
operator “extracts” all such witness retimings:

Wit Conf Retτ,ǫ (µ1, µ2)
△
= {(r1, r2) ∈ Retτ (T1, T2) |

∀t ∈ T1 : dY(µ1(t)− µ2 ◦ r1(t)) ≤ ǫ∧
∀t ∈ T2 : dY(µ1 ◦ r2(t)− µ2(t)) ≤ ǫ}.

Similarly, we define the collection of all retimings that witness prefix conformance
(PrefConf predicate, Definition 4.6):

PrefixWit Conf(µ1, µ2, t)
△
= {(r1, r2) ∈ Wit Conf(µ1[t

s
1 . . . t

e
1], µ2[t

s
2 . . . t

e
2]) |

ts1 ∈ [0, τ ] ∩ T1, t
e
1 ∈ [t− τ, t+ τ ] ∩ T1,

ts2 ∈ [0, τ ] ∩ T2, t
e
2 ∈ [t− τ, t+ τ ] ∩ T2}.

Note that the domains of the retimings in PrefixWit Conf(µ1, µ2, t) can be smaller than
the domains of µ1 and µ2.

Synchronisation is realised through a function Sync specifying all allowed pairs of
output retimings for a given pair of input retimings. With this, we can extend the defi-
nition of (ConfI ,ConfO) cleanness as follows. Given two inputs that are conformant, i.e.,
PrefConfI (i1, i2), we may pick any pair (r1, r2) from the set PrefixWit ConfI (i1, i2) of pairs
of retiming functions for which the input conformance holds. This pair induces another pair
(r′1, r

′
2) ∈ Sync(r1, r2) of retiming functions for the output timeline. For those, the prefix

conformance predicates ConfO(o1 ◦ r
′
2, o2) and ConfO(o1, o2 ◦ r

′
1) must hold. This is formally

expressed in the following definition.

Definition 5.2. A deterministic system H is (ConfI ,ConfO)–clean with synchronised re-
timing through Sync : RET (T1, T2) → P(RET (T1, T2)) if the following holds:

∀i1, i2 ∈ GTT (Y) : ∀t ∈ dom(i1) ∪ dom(i2)
(∀t′ ≤ t : PrefConfI (i1, i2, t

′)
)

=⇒
∃(r1, r2) ∈ PrefixWit ConfI (i1, i2, t) :
∃(r′1, r

′
2) ∈ Sync(r1, r2) :

PrefConfO(H (i1) ◦ r
′
2,H (i2), t)∧

PrefConfO(H (i1),H (i2) ◦ r
′
1, t)

Through the function Sync, which is a parameter to the above definition, we can specify
the allowed retimings for the output, such as, for example a scaling of the input retiming when
the timelines of the input and the output have different scales. It is the responsibility of the
cleanness tester or verifier to accurately specify the expected behaviour, as an inappropriately
chosen Sync function can result in declaring doped systems to be clean.
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One important aspect of this definition is that by selecting a suitable synchronisation
function Sync we can incorporate in the cleanness check any available knowledge regarding
the expected output behaviours for conforming input trajectories. The following proposi-
tion states how the conformance-based notions of cleanness can be recovered by choosing
appropriate retimings.

Proposition 5.3. For a given class of retimings Ret, an arbitrary induced conformance
relation on inputs ConfI = Conf Retτ,ǫ , and a conformance relation on outputs ConfO , there
exists a synchronised retiming Sync such that (ConfI ,ConfO)-cleanness (as per Definition 4.7)
is a special instance of (ConfI ,ConfO)-cleanness through Sync.

By setting Sync(r1, r2) = {(id, id)} we obtain the corresponding notion of (ConfI ,ConfO)–
cleanness, which, in particular, means that cleanness with synchronised retimings is also a
conservative generalization of robust cleanness.

Example 5.4. Consider the behaviour introduced in Example 5.1. As for the retiming
witnessing conformance between i1 and i2, let us take the most obvious one i.e. (r1, r2) =
(t − τ, t + τ). If (r1, r2) covers the whole domain of the output trace, then we can use
Sync(r1, r2) = {(r1, r2)}, according to which the output should be retimed in the same way
as the input is. By reusing the same retiming of input for output, o1(t− τ − δ) conforms to
the retimed output o1 with respect to the margin δ.

We use this theory in our experimental setup in Section 7 and show how it can lead to
a more accurate analysis of emission data in practice.

6. Expressing Cleanness in Timed Hyper Logics

In this section we introduce a logic that is capable of characterizing the notions of robust and
hybrid cleanness. Since robust cleanness can be characterized in the logic HyperLTL [CFK+14],
the logic we propose is a temporal logic for hyperproperties. Our semantic domain consists
of generalized timed traces, and thus, our logic extends Signal Temporal Logic (STL) [MN04]
with quantifiers over traces. In order to be able to express deviations in time, our logic uses
freeze quantifiers as the mechanism for comparing values at different time points. More
precisely, the proposed logic is obtained by extending STL* [BDSV14] with trace quantifiers.
In the remainder of the section we provide the formal definition of the logic and discuss its
applicability in the context of specifying and monitoring cleanness of hybrid systems.

6.1. Preliminaries. For the presentation in this section it will be convenient to consider
hybrid systems as sets of GTTs, where each GTT represents a pair of input and output
GTTs. The reason for this is that we will define a logic whose formulas refer to both the
inputs and the outputs of a hybrid system over time, and are therefore interpreted over sets
of such combined traces that contain both the input to the system and the system’s output.

Formally, we will represent a Y ′-valued hybrid system H : GTT (Y ′) → P(GTT (Y ′))
as a subset of GTT (Y) where Y = Y ′ × Y ′, defined as {µ ∈ GTT (Y ′ × Y ′) | ∃µI , µO ∈
GTT (Y ′), µO ∈ H (µI), µ(t) = (µI(t), µO(t)) for all t ∈ dom(µI)}. The definition of the
GTTs µ in this set is possible since according to Definition 3.2 we have that for all µI ∈
GTT (Y ′) and all µO ∈ H (µI) it holds that dom(µI) = dom(µO).

For the rest of this subsection, whenever we refer to a GTT µ ∈ H of a Y ′-valued hybrid
system H , we mean a function µ : T → Y defined as above, with Y = Y ′ ×Y ′. Given µ ∈ H
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such that µ(t) = (µI(t), µO(t)) for t ∈ dom(µ), we denote with µI : T → Y ′ the projection of
µ on the input component and with µO : T → Y ′ its projection on the output component.

Let µ : T → Y be a GTT. If T is an interval of the form [0, b] ⊆ R≥0 with b ∈ Q>0, or
of the form [0,∞), and Y = Rn for some n ∈ N, we say that µ is a real-valued signal, and
define length(µ) = b, respectively length(µ) = ∞, to be the time length of µ. If T is instead
a strictly increasing sequence t0, t1, t2, . . . of rational numbers such that t0 = 0 we say that
µ is a timed word and similarly define its time length as length(µ) = max T if T is finite
and length(µ) = ∞ otherwise.

Let X be a finite set of real-valued variables. We denote with RX the set of possible
valuations of X. In the rest of this section we assume that the range of all GTTs that
we consider is RX for a given finite set of real-valued variables. We will assume that the
variables in X are indexed, i.e., X = {x1, x2, . . . xn} for some n ∈ N, and use Rn instead of
RX with the expected interpretation. An atomic predicate over X is a function α : RX → B.
Recall from Definition 3.1 that a GTT µ : T → Y is defined for a metric space (Y, dY).
When Y = RX for some set of variables X, we assume that the metric d can be expressed
as an arithmetic expression dY(X,X ′) over the variables X ∪X ′, where X ′ = {x′ | x ∈ X}.
More precisely, we have that the expression dY(X,X ′) evaluates to u ∈ R for valuations

v ∈ RX and v′ ∈ RX′

of X and X ′, respectively, if and only if dY(v, v
′) = u. For a Y ′-valued

hybrid system H we denote with dI and dO the arithmetic expressions that define the metrics
associated with the underlying metric spaces for the input and output values of H.

6.2. The logic HyperSTL*. We now define the logic HyperSTL*, which extends the logic
STL* [BDSV14] with quantifiers over traces, that are used to relate multiple GTTs in a
hybrid system. To this end, let Vtrace be a countably infinite set of trace variables. For a set
X of real-valued variables and a given trace variable π ∈ Vtrace , let Xπ = {xπ | x ∈ X} be
the set of variables indexed with π.

Let I = {1, . . . ,m} for some m ∈ N be a finite index set. As in the logic STL*, the index
set I consists of the indices of the positions in the frozen time vector. Intuitively, at each
position of the frozen time vector a time point can be stored. For a trace variable π ∈ Vtrace

and an index i ∈ I, let X∗i
π = {x∗iπ | x ∈ X} be the set of variables indexed with π and ∗i.

6.2.1. Syntax. Let X be a finite set of real-valued variables, and AP be a set of atomic
predicates over the set of indexed variables

⋃

π∈Vtrace
Xπ ∪

⋃

π∈Vtrace ,i∈I
X∗i

π .

HyperSTL* formulas are defined according to the following grammar.

Φ ::= ∃π.Φ | ∀π.Φ | ϕ,
ϕ ::= α | ⊤ | ¬ϕ | ϕ ∨ ϕ | ϕUJ ϕ | ϕSJ ϕ | ∗i ϕ,

where π ∈ Vtrace is a trace variable, α is an atomic predicate from AP , J ⊆ R≥0 is an interval
with endpoints in Q≥0 ∪ {∞}, and i ∈ I is an index.

The operators U and S are the temporal operators Until and Since. The ∗i operator, for
i ∈ I is the signal-value freeze operator. Their semantics is formally defined below. When
the interval J is of the form [0,∞) we often omit it for convenience.

The Boolean constant ⊥ (false), additional Boolean operators, as well as additional

temporal operators are defined in the usual way. More concretely, we define J ϕ
△
= ⊤UJ ϕ,

J ϕ
△
= ¬ J ¬ϕ, J ϕ

△
= ⊤SJ ϕ, and J ϕ

△
= ¬ J ¬ϕ.
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A HyperSTL* formula is well-formed if each occurrence of a trace quantifier introduces a
unique variable name, and it is closed if every occurrence of a variable in Xπ is in the scope
of a quantifier for π. We will consider only well-formed HyperSTL* formulas.

Note that in HyperSTL*, unlike [BDSV14], we also allow the past operator S, as well as
arbitrary intervals J in the operators U and S. We define HyperSTL*fin to be the fragment
of HyperSTL* such that every interval J is of the form [a, b], where a, b ∈ Q≥0 and a < b.

6.2.2. Semantics. HyperSTL* formulas are interpreted over trace assignments and register
valuations. A trace assignment is a partial function with finite domain from Vtrace to the set
of GTTs in a given hybrid system. Formally, given a hybrid system H represented as a set
of input-output GTTs, a trace assignment Π is a partial function Π : Vtrace → H . Register
valuations are |I|-dimensional vectors over R≥0.

Let Π be a trace assignment with domain Utrace ⊆ Vtrace , and let α be an atomic
predicate defined over the variables in

⋃

π∈Utrace
Xπ ∪

⋃

π∈Utrace ,i∈I
X∗i

π . Consider a time
point t ∈ R≥0 such that for each π ∈ Vtrace for which a variable from Xπ occurs in α it holds
that t ∈ dom(Π(π)), and a register valuation T such that for each pair π ∈ Vtrace and i ∈ I
such that a variable from X∗i

π occurs in α it holds that T (i) ∈ dom(Π(π)). Then, the value
of the atomic predicate α at the tuple (Π, T, t) is defined as:

α(Π, T, t)
△
= α((Π(π)(t))π∈Utrace

, (Π(π)(T (i)))π∈Utrace ,i∈I).

Intuitively, the atomic predicate is evaluated using the signal values at time point t and at
the time points stored in the frozen time vector T . If for some of the indexed variables that
occur in α the corresponding time point is not in the time domain of the corresponding
trace, then the value of the atomic predicate is undefined.

To define the semantics of HyperSTL*, we define the function Value that maps a formula
Ψ, a trace assignment Π, a register assignment T and a time point t to a value in the set
{T,F,U}, which indicates whether Ψ is true (T), false (F) or undefined (U) at (Π, T, t).
Formally, for a hybrid system H, a trace assignment Π, a register valuation T , and t ∈ R≥0,
the value Value(Ψ, H,Π, T, t) is defined by induction on the structure of HyperSTL* formulas.

• If Ψ = α, then

Value(Ψ, H,Π, T, t) =

{

α(Π, T, t) if the value of α is defined at (Π, T, t),

U otherwise.

• If Ψ = ⊤, then Value(Ψ, H,Π, T, t) = T.
• If Ψ = ¬ϕ, then

Value(Ψ, H,Π, T, t) =











T if Value(ϕ,H,Π, T, t) = F,

F if Value(ϕ,H,Π, T, t) = T,

U if Value(ϕ,H,Π, T, t) = U.

• If Ψ = ϕ1 ∨ ϕ2, then

Value(Ψ, H,Π, T, t) =











T if Value(ϕ1, H,Π, T, t) = T or Value(ϕ2, H,Π, T, t) = T,

F if Value(ϕ1, H,Π, T, t) = F and Value(ϕ2, H,Π, T, t) = F,

U otherwise.
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• If Ψ = ϕ1 UJ ϕ2, then

Value(Ψ, H,Π, T, t) =



















T if for some t′ ≥ t such that t′ − t ∈ J : Value(ϕ2, H,Π, T, t′) = T and

for all t′′ ∈ [t, t′) : Value(ϕ1, H,Π, T, t′′) ∈ {T,U} or

t′′ − t ∈ J and Value(ϕ2, H,Π, T, t′′) = T,

F otherwise.

• If Ψ = ϕ1 SJ ϕ2, then

Value(Ψ, H,Π, T, t) =



















T if for some t′ ∈ [0, t] such that t− t′ ∈ J : Value(ϕ2, H,Π, T, t′) = T and

for all t′′ ∈ (t′, t] : Value(ϕ1, H,Π, T, t′′) ∈ {T,U} or

t′′ − t ∈ J and Value(ϕ2, H,Π, T, t′′) = T,

F otherwise.

• If Ψ = ∗iϕ, then

Value(Ψ, H,Π, T, t) =

{

Value(ϕ,H,Π, T [i 7→ t], t) if t ∈ dom(Π(π)) for all x∗iπ that appear in ϕ,

U otherwise.

where T [i 7→ t](j)
△
= t if j = i and T [i 7→ t](j)

△
= T (j) if j 6= i.

• If Ψ = ∃π.Φ, then

Value(Ψ, H,Π, T, t) =

{

T if for some µ ∈ H : Value(Φ, H,Π[π 7→ µ], T, t) = T,

F otherwise.

• If Ψ = ∀π.Φ, then

Value(Ψ, H,Π, T, t) =

{

T if for all µ ∈ H : Value(Φ, H,Π[π 7→ µ], T, t) ∈ {T,U},

F otherwise.

Note that if a formula is closed, then its value is always either T or F.
For a hybrid system H, a trace assignment Π, a register valuation T , t ∈ R≥0, and a

HyperSTL* formula Φ we can define the satisfaction relation |= where

(H,Π, T, t) |= Φ if and only if Value(Φ, H,Π, T, t) = T.

We say that a hybrid system H satisfies a closed formula Φ, denoted H |= Φ, if and
only if it holds that (H,Π∅, T0, 0) |= Φ, where Π∅ is the empty trace assignment and T0 is
the register valuation in which 0 is stored at every index.

Example 6.1. Let H = {µ1, µ2} be a hybrid system that consists of two generalized timed
traces, µ1 with dom(µ1) = {0, 2, 4} and µ2 with dom(µ2) = {0, 1, 3}, where µ1(t) = 0 for all
t ∈ {0, 2, 4}, and µ2(0) = µ2(1) = 1 and µ2(3) = 0.

Consider the HyperSTL* formula Φ1 = ∀π1.∀π2. [0,4](xπ1 = xπ2) that states that for
every pair of timed traces and every time point in the interval [0, 4] the value of the two
traces must be equal (i.e., they agree on the value of variable x). We have that H 6|= Φ1

since the two traces differ at time point t = 0. If, on the other hand we consider the formula
Φ2 = ∀π1.∀π2. [1,4](xπ1 = xπ2) obtained from Φ1 by replacing the interval [0, 4] by [1, 4],
we have that H |= Φ2. The justification behind this is that there is no time point in the
interval [1, 4] where we witness a violation of the atomic predicate xπ1 = xπ2 . In particular,
in the time interval [1, 4] there is no point at which both traces are defined.
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Now, consider the HyperSTL* formula Φ3 = ∀π1.∀π2. [0,4](xπ1 = xπ2) that states that
for every pair of traces, in the interval [0, 4] there exists a time point where the values of
the two traces are the same. We have that H 6|= Φ3, as expected, since there is no point in
this interval where both traces are defined and have the same value. Note that we also have
H 6|= ∀π1.∀π2. [1,4](xπ1 = xπ2) for the interval where the value of xπ1 = xπ2 is undefined.

Finally, let Φ4 = ∀π1.∀π2. [0,3] ∗1 [0,1] x
∗1
π1

= xπ2 . The formula Φ4 states that for
every pair of traces there exists a time point t1 in [0, 3] such that there is a time point t2 at
most 1 time unit later, such that the value of the first trace at t1 is equal to the value of
the second trace at time t2. Here t1 is the frozen time point per the semantics of the freeze
operator ∗. We have that H |= Φ4. To see this, when π1 is µ1 and π2 is µ2 let t1 = 2 and
t2 = 3, and when π1 is µ2 and π2 is µ1 let t1 = 3 and t2 = 4.

Remark 6.2. Due to the generality of our semantic domain, which generalizes both
continuous signals and timed words, we have to address the issue of having to define
the interpretation of HyperSTL* formulas over all time points in R≥0 while the considered
traces might not be defined at all points. Furthermore, the semantics of the logic has to
account for the fact that formulas, even atomic propositions, refer to different traces which
are possibly defined over different time domains. To this end, we defined the function
Value that assigns values in the set {T,F,U}. For instance, if Value(α,H,Π, T, t) = U, then
Value(α ∨ ¬α,H,Π, T, t) = U. For the temporal operators, our semantics is reminiscent of
that in [GM20], in the sense that for evaluating ϕ1 U ϕ2 the subformula ϕ1 is evaluated only
in time points where its value is defined, and the time point where the obligation ϕ2 must
hold is one where its value is defined. The treatment in S is analogous. Our semantics
interprets trace quantifiers over the traces for which the formula has a defined value.

Other temporal logics for timed hyperproperties face similar issues, which we discuss
in Remark 6.4. The logic HyperSTL [NKJ+17], on the other hand is not affected by such
difficulties, since its semantics is defined over continuous signals defined over a whole interval.

Remark 6.3. In our definition of the semantics of ϕ1 UJ ϕ2, similarly to [DMP17] and [GM20],
we account for the fact that in a dense time domain there might not exist a first time point
where ϕ2 is satisfied. Therefore we allow for ϕ1 to be violated at intermediate time points
as long as at those points the value of ϕ2 is T and the constraint imposed by J is satisfied.
More precisely, ϕ1 UJ ϕ2 is T at time point t if there exists a time point t′ ≥ t such that
t′ − t ∈ J , ϕ2 is T at t′, and for all intermediate points t′′ ∈ [t, t′) it holds that if ϕ1 is F at
t′′, then t′′ must be such that t′′ − t ∈ J and ϕ2 is T at t′′. The analogous holds for S.

Remark 6.4. Existing temporal logics for timed hyperproperties have also faced the
challenge of dealing with timed traces that are defined over different sets of time points.

In [HZJ19] this leads to the consideration of two different semantics of their logic
HyperMTL: an asynchronous semantics that does not require the time stamps in two timed
traces to match, and a synchronous semantics in which the range of quantifiers is restricted
to the traces that synchronize with the current trace assignment. The logic HyperMTL
includes for each trace variable a Boolean constant ⊤ (true) indexed with that variable,
which allows for expressing syntactically in formulas the requirement that the current time
point is in the domain of the corresponding trace. In contrast, in our logic HyperSTL* we
account for undefined values on the semantic level in the definition of the value function, and
values at different points in time on different traces can be related via the freeze operator.

The authors of [BPS20] provide an alternative logic HyperMTL by extending the logic
MTL with quantifiers over traces in the point-wise semantics. The semantics of their logic
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has both a synchronous and an asynchronous layer. At the synchronous layer, traces are
compared at the same points in time, and if a trace is undefined at a given point, the value
at the closest previous event is used. At the asynchronous layer, an asynchronous version of
the U operator allows for a bounded difference in the time points when the obligation of
the Until formula is fulfilled in different traces. Our logic, on the other hand, allows for a
general and flexible way of relating time points on different traces via the freeze operator.

6.3. Expressing robust and hybrid cleanness. Using the logic HyperSTL* we can
express trace and hybrid conformance and robust and hybrid cleanness. We begin by first
formalizing the conformance notions, and then provide the characterization of cleanness.

Let π1 and π2 be two trace variables, and let τ and ǫ be non-negative rational constants.
We can express hybrid conformance with thresholds τ and ǫ, i.e., HybridConfτ,ǫ, as follows:

ϕHybridConf
τ,ǫ =

(

∗1
(

[0,τ ] dY(Xπ2 , X
∗1
π1
) ≤ ǫ ∨ [0,τ ] dY(Xπ2 , X

∗1
π1
) ≤ ǫ

)

)

∧
(

∗2
(

[0,τ ] dY(Xπ1 , X
∗2
π2
) ≤ ǫ ∨ [0,τ ] dY(Xπ1 , X

∗2
π2
) ≤ ǫ

)

)

where dY(X,X ′) is an arithmetic expression characterizing the metric dY . Note that in the
above formula the trace variables π1 and π2 are not quantified, and hence it is not closed.

Intuitively, the formula states that for every time point on the trace described by π1 it
holds that within τ time units in the past or in the future, there exists a point on the trace
described by π2 where the value is ǫ-close to the value of π1 at the current time point, and
symmetrically for the other direction with traces π1 and π2 swapped.

Proposition 6.5. Let H be a deterministic hybrid system defined over a set of real-valued
variables X such that 0 ∈ dom(µ) for each µ ∈ H. Let τ, ǫ ≥ 0 be rational constants, and
µ1, µ2 ∈ H. Let π1 and π2 be trace variables and Π = {π1 7→ µ1, π2 7→ µ2}. Then

HybridConfτ,ǫ(µ1, µ2) if and only if (H,Π, T0, 0) |= ϕHybridConf
τ,ǫ .

Proof. (=⇒) First, suppose that HybridConfτ,ǫ(µ1, µ2).
By Definition 3.3, we have that for all t1 ∈ dom(µ1) there exists t2 ∈ dom(µ2) such

that |t1 − t2| ≤ τ and dY(µ2(t2), µ1(t1)) ≤ ǫ. Hence, when t1 ∈ dom(µ1), we have that
Value

(

∗1
(

[0,τ ] dY(Xπ2 , X
∗1
π1
) ≤ ǫ ∨ [0,τ ] dY(Xπ2 , X

∗1
π1
) ≤ ǫ

)

, H,Π, T0, t1
)

= T.
If t1 6∈ dom(µ1), then, from the definition of the semantics of the operator ∗1 we have

that Value
(

∗1
(

[0,τ ] dY(Xπ2 , X
∗1
π1
) ≤ ǫ ∨ [0,τ ] dY(Xπ2 , X

∗1
π1
) ≤ ǫ

)

, H,Π, T0, t1
)

= U.

Thus, Value
(

∗1
(

[0,τ ] dY(Xπ2 , X
∗1
π1
) ≤ ǫ ∨ [0,τ ] dY(Xπ2 , X

∗1
π1
) ≤ ǫ

)

, H,Π, T0, 0
)

= T.

Value
(

∗2
(

[0,τ ] dY(Xπ1 , X
∗2
π2
) ≤ ǫ ∨ [0,τ ] dY(Xπ1 , X

∗2
π2
) ≤ ǫ

)

, H,Π, T0, 0
)

= T can be
shown by applying the same reasoning as above, this time for µ2.

From the two facts we showed, we can conclude that (H,Π, T0, 0) |= ϕHybridConf
τ,ǫ .

(⇐=) For the other direction, assume that (H,Π, T0, 0) |= ϕHybridConf
τ,ǫ .

Let t1 ∈ dom(µ1). Since (H,Π, T0, 0) |= ϕHybridConf
τ,ǫ , by the semantics of we have that

Value
(

∗1
(

[0,τ ] dY(Xπ2 , X
∗1
π1
) ≤ ǫ∨ [0,τ ] dY(Xπ2 , X

∗1
π1
) ≤ ǫ

)

, H,Π, T0, t1
)

∈ {T,U}. Taking
into account that we are considering the case when t1 ∈ dom(µ1), and that by definition

• Value
(

[0,τ ] dY(Xπ2 , X
∗1
π1
) ≤ ǫ,H,Π, T0, t1

)

6= U and

• Value
(

[0,τ ] dY(Xπ2 , X
∗1
π1
) ≤ ǫ,H,Π, T0, t1

)

6= U ,
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we conclude that Value
(

∗1
(

[0,τ ] dY(Xπ2 , X
∗1
π1
) ≤ ǫ∨ [0,τ ] dY(Xπ2 , X

∗1
π1
) ≤ ǫ

)

, H,Π, T0, t1
)

=
T. Therefore, there exists t2 ∈ dom(µ2) such that |t1 − t2| ≤ τ and dY(µ2(t2), µ1(t1)) ≤ ǫ.

The reasoning for the other conjunct when t2 ∈ dom(µ2) is symmetric. We hence obtain
HybridConfτ,ǫ(µ1, µ2), which concludes the proof.

As a special case, we can express TraceConfǫ as

ϕTraceConf
ǫ =

(

∗1
(

[0,0] dY(Xπ2 , X
∗1
π1
) ≤ ǫ

)

)

∧
(

∗2
(

[0,0] dY(Xπ1 , X
∗2
π2
) ≤ ǫ

)

)

.

Note that the formula ϕǫ = dY(Xπ1 , Xπ2) ≤ ǫ does not characterize trace conformance
as it does not assert the requirement that the time domains of the two traces must be the
same. The formula ϕTraceConf

ǫ , on the other hand, requires that each time point where one of
the traces is defined, must be matched by a value of the other trace at the same time point.

Proposition 6.6. Let H be a deterministic hybrid system defined over a set of real-valued
variables X such that 0 ∈ dom(µ) for each µ ∈ H. Let ǫ ≥ 0 be a rational constant, and
µ1, µ2 ∈ H. Let π1 and π2 be trace variables and Π = {π1 7→ µ1, π2 7→ µ2}. Then

TraceConfǫ(µ1, µ2) if and only if (H,Π, T0, 0) |= ϕTraceConf
ǫ .

Proof. (=⇒) First, suppose that TraceConfǫ(µ1, µ2).
By Definition 3.3, we have that dom(µ1) = dom(µ2) and for all t1 ∈ dom(µ1) it holds

that dY(µ2(t1), µ1(t1)) ≤ ǫ. This is equivalent to the conjunction of the following statements:

• for all t1 ∈ dom(µ1), it holds that t1 ∈ dom(µ2) and dY(µ2(t1), µ1(t1)) ≤ ǫ, and
• for all t2 ∈ dom(µ2), it holds that t2 ∈ dom(µ1) and dY(µ1(t2), µ2(t2)) ≤ ǫ.

Therefore, if t ∈ dom(µ1) = dom(µ2) it holds that

Value
(

∗1
(

[0,0] dY(Xπ2 , X
∗1
π1
) ≤ ǫ

)

, H,Π, T0, t
)

= T and

Value
(

∗2
(

[0,0] dY(Xπ1 , X
∗2
π2
) ≤ ǫ

)

, H,Π, T0, t
)

= T.

When t 6∈ dom(µ1) = dom(µ2) we have that that

Value
(

∗1
(

[0,0] dY(Xπ2 , X
∗1
π1
) ≤ ǫ

)

, H,Π, T0, t
)

= U and

Value
(

∗2
(

[0,0] dY(Xπ1 , X
∗2
π2
) ≤ ǫ

)

, H,Π, T0, t
)

= U.

Thus, Value
(

ϕTraceConf
ǫ , H,Π, T0, 0

)

= T, which is what we had to prove.

(⇐=) For the other direction, assume that (H,Π, T0, 0) |= ϕTraceConf
ǫ .

Let t1 ∈ dom(µ1). We have that Value
(

∗1
(

[0,0] dY(Xπ2 , X
∗1
π1
) ≤ ǫ

)

, H,Π, T0, t1
)

= T.

This implies that t1 ∈ dom(µ2) and Value
(

dY(Xπ2 , X
∗1
π1
) ≤ ǫ,H,Π, {1 7→ t1}, t1

)

= T.
Thus, we can conclude that for all t1 ∈ dom(µ1), it holds that t1 ∈ dom(µ2) and

dY(µ2(t1), µ1(t1)) ≤ ǫ. Analogously, we can show that for all t2 ∈ dom(µ2), it holds that
t2 ∈ dom(µ1) and dY(µ1(t2), µ2(t2)) ≤ ǫ. Hence, by Definition 3.3, TraceConfǫ(µ1, µ2).

We use the idea of the above encoding to define a closed HyperSTL* formula that
characterizes hybrid cleanness, HybridClean(τI , ǫI , τO, ǫO), for deterministic hybrid systems.

For the rest of the section we consider hybrid systems H such that for every µ ∈ H it
holds that 0 ∈ dom(µ), that is, we assume that all traces are defined at time point 0.

Furthermore, we assume that the set of variables X defining the states of the hybrid
system H contains an explicit clock variable c representing the current time, that is never
reset. That is, c simply captures the time-stamps of the values of the GTTs in H . Formally,
for every GTT µ ∈ H, and every t ∈ R≥0, it holds that µ(t)(c) = t. With that, the atomic
propositions in AP can refer to the current time point, and the freeze operator captures the
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current time-stamp together with the current values of the other variables. Let α ∈ AP be
an atomic proposition and r, ri ∈ R≥0 for i ∈ I be non-negative real constants. We denote
by α[r, r1, . . . , r|I|] the atomic predicate obtained from α by replacing each variable cπ by
r, and each variable c∗iπ by ri, for all π ∈ Vtrace and i ∈ I. By the definition of the clock
variable c, for every trace assignment Π, register valuation T , and t ∈ R≥0 we have that

Value(α,H,Π, T, t) = Value(α[t, T (1), . . . , T (|I|)], H, π, T, t),

when for every π ∈ Vtrace for which cπ occurs in α it holds that t ∈ dom(Π(π)) and for every
π ∈ Vtrace and i ∈ I for which c∗iπ occurs in α it holds that T (i) ∈ dom(Π(π)).

Let τI and ǫI be non-negative rational constants defining the threshold values for the
input conformance relation, and τO and ǫO be the ones for the output conformance.

Let π and π′ be trace variables and i, s, e ∈ I. First, we define the formulas

ϕmatchI
τI ,ǫI

(π, i, π′, s, e) = ∗i
(

[0,τI ](dI(Xπ′ , X∗i
π ) ≤ ǫI ∧ cπ′ ≥ c∗sπ′ ∧ cπ′ ≤ c∗eπ′ )∨

[0,τI ](dI(Xπ′ , X∗i
π ) ≤ ǫI ∧ cπ′ ≥ c∗sπ′ ∧ cπ′ ≤ c∗eπ′ )

)

,

ϕmatchO
τO,ǫO

(π, i, π′, s, e) = ∗i
(

[0,τO](dO(Xπ′ , X∗i
π ) ≤ ǫO ∧ cπ′ ≥ c∗sπ′ ∧ cπ′ ≤ c∗eπ′ )∨

[0,τO](dO(Xπ′ , X∗i
π ) ≤ ǫO ∧ cπ′ ≥ c∗sπ′ ∧ cπ′ ≤ c∗eπ′ )

)

,

where dI(X,X ′) and dO(X,X ′) are the arithmetic expressions characterizing the metrics on
the sets of input and output values of the considered hybrid system.

Intuitively, the formula ϕmatchI
τI ,ǫI

(π, i, π′, s, e) evaluated at time point t and register valua-
tion T is true if and only if there exists a time point t′ ∈ [t− τI , t+ τI ] ∩ [T (s), T (e)] such
that the input value at time t on the trace represented by π and the input value at time t′

on the trace represented by π′ are ǫI -close. The formula ϕmatchO
τO,ǫO

(π, i, π′, s, e) states the same
for the output values. The need to constrain the time t′ where the match of the values at t
must be found comes from the fact that in the definition of cleanness in Section 4, prefixes
are compared using the predicate PrefConf. Recall that PrefConf compares two prefixes µ1

and µ2 by requiring that there exist segments µ1[t
s
1 . . . t

e
1] and µ2[t

s
2 . . . t

e
2] obtained from

them, that are conformant. In the above formulas, the frozen values of the clock variable c
represent the end points of the interval for the trace assigned to π′.

Using the formula ϕmatchI
τI ,ǫI

(π, i, π′, s, e) we define the formula ϕPrefConfI
τI ,ǫI

(π1, π2) which is
true if and only if the current time point defines a pair of prefixes of the traces represented
by π1 and π2 for which there exist hybrid conforming segments obtained from the prefixes by
possibly removing a prefix/suffix of length at most τI or adding a suffix of length at most τI .

The formula is defined as a disjunction over the possible ways in which the end-points
of the two segments are ordered on the time line. Let P be a set of 4-tuples of the indices
{3, 4, 5, 6} ⊆ I such that (s1, e1, s2, e2) ∈ P if and only if s1, e1, s2, e2 are pairwise different,
and s1, s2 ∈ {3, 4} and e1, e2 ∈ {5, 6}. For p = (s1, e1, s2, e2) ∈ P , abusing notation we define
p(s1) = p(e1) = π1 and p(s2) = p(e2) = π2. That is, the function p maps each endpoint
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index to the trace variable with which it is associated. We now define

ϕPrefConfI
τI ,ǫI

(π1, π2) =
∨

p=(s1,e1,s2,e2)∈P

(

∗7 ϕπ1 ∧ ∗7ϕπ2

)

ϕπ1 =
(

cp(3) ≤ τI ∧ ∗3
(

cp(4) ≤ τI∧
∗4

(

cp(5) ≥ (c∗7π1
− τI) ∧ cp(5) ≤ (c∗7π1

+ τI)∧

∗5
(

cp(6) ≥ (c∗7π1
− τI) ∧ cp(6) ≤ (c∗7π1

+ τI) ∧ ∗6 ϕ
ConfI

))))

ϕπ2 =
(

cp(3) ≤ τI ∧ ∗3
(

cp(4) ≤ τI∧
∗4

(

cp(5) ≥ (c∗7π2
− τI) ∧ cp(5) ≤ (c∗7π2

+ τI)∧

∗5
(

cp(6) ≥ (c∗7π2
− τI) ∧ cp(6) ≤ (c∗7π2

+ τI) ∧ ∗6 ϕ
ConfI

))))

ϕConfI =
(

(

cπ1 ≥ c
∗s1
π1 ∧ cπ1 ≤ c

∗e1
π1 ) → ϕmatchI

τI ,ǫI
(π1, 1, π2, s2, e2)

)

∧
(

(

cπ2 ≥ c
∗s2
π2 ∧ cπ2 ≤ c

∗e2
π2 ) → ϕmatchI

τI ,ǫI
(π2, 2, π1, s1, e1)

)

.

The conjunct ∗7ϕπ1 handles the case when the current time point t (i.e., the last time point
for the considered prefixes) is in the domain of π1. The second conjunct handles the case
when t is in the domain of π2. If neither is the case, then the value of the conjunction is
U. Since the formulas ∗7ϕπ1 and ∗7ϕπ2 differ only in the trace on which the time-point t is
frozen, if both of them have a defined value, than these values are necessarily the same.

Each of ϕπ1 and ϕπ2 asserts the existence of a sequence of time points defining the
compared segments of the two traces and their input conformance (formula ϕConfI). The
formula ϕConfI captures the requirement that the two input prefixes ending at the current
time point have segments (defined by the pairs of time points c

∗s1
π1 and c

∗e1
π1 , and c

∗s2
π2 and

c
∗e2
π2 , respectively) that are hybrid conformant, as in Definition 4.6.

The formula ϕPrefConfO
τO,ǫO

(π1, π2) is defined analogously using ϕmatchO
τO,ǫO

(π, i, π′, s, e).

Proposition 6.7. Let H be a deterministic hybrid system defined over a set of real-valued
variables X that includes an explicit clock variable c, and such that 0 ∈ dom(µ) for each
µ ∈ H. Let τI , τO, ǫI , ǫO ≥ 0 be rational constants, and the predicates PrefConfI and
PrefConfO be instantiated using HybridConfτI ,ǫI and HybridConfτO,ǫO

respectively. That is,
let ConfI = HybridConfτI ,ǫI and ConfO = HybridConfτO,ǫO

. Let µ1, µ2 ∈ H, let π1 and π2 be
trace variables and Π = {π1 7→ µ1, π2 7→ µ2} a trace assignment.

(1) If t ∈ dom(µ1) ∪ dom(µ2), then

PrefConfI(µ
I
1, µ

I
2, t) is true if and only if Value

(

ϕPrefConfI
τI ,ǫI

(π1, π2), H,Π, T0, t
)

∈ {T,U}.

(2) If t ∈ dom(µ1) ∪ dom(µ2), then
PrefConfO(µ

O
1 , µ

O
2 , t) is true if and only if Value

(

ϕPrefConfO
τO,ǫO

(π1, π2), H,Π, T0, t
)

∈ {T,U}.

(3) If t 6∈ dom(µ1) ∪ dom(µ2) then Value
(

ϕPrefConfI
τI ,ǫI

(π1, π2), H,Π, T0, t
)

= U.

(4) If t 6∈ dom(µ1) ∪ dom(µ2) then Value
(

ϕPrefConfO
τO,ǫO

(π1, π2), H,Π, T0, t
)

= U.

Proof. We show (1), the proof for (2) is analogous.
(=⇒) Suppose that PrefConfI(µ

I
1, µ2,

I t) is true. By Definition 4.6, there exist ts1, t
s
2 ∈

[0, τI ] and te1, t
e
2 ∈ [t− τI , t+ τI ] such that ConfI(µ

I
1[t

s
1 . . . t

e
1], µ

I
2[t

s
2 . . . t

e
2]) is true.

Let t3, t4, t5, t6 be a permutation of ts1, t
s
2, t

e
1, t

e
2 such that t3 ≤ t4 ≤ t5 ≤ t6. Then,

t3, t4 ∈ [0, τI ] and t5, t6 ∈ [t− τI , t+ τI ]. Let p = (s1, e1, s2, e2) ∈ P be defined according to
the permutation t3, t4, t5, t6, that is, s1 = i where ts1 is ti, and so on. Let t7 = t. We define
the register valuation T = {i 7→ ti | i ∈ {3, 4, 5, 6, 7}}.

Since ConfI(µ
I
1[t

s
1 . . . t

e
1], µ

I
2[t

s
2 . . . t

e
2]), we have that Value

(

ϕConfI, H,Π, T, t6
)

= T.
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Since t ∈ dom(µ1)∪dom(µ2), assume, without loss of generality that t ∈ dom(µ1). By the
choice of t3, t4, t5, t6 we have that t3 ≤ t4 ≤ t5 ≤ t6, and t3, t4 ∈ [0, τ ] and t5, t6 ∈ [t−τI , t+τI ]
which, together with the definition of ϕπ1 implies that Value

(

ϕπ1 , H,Π, {7 7→ t7}, t7
)

= T.
If t ∈ dom(µ2) we can show as above that the value of ∗7ϕπ2 is T. Otherwise, the value

of ∗7ϕπ2 is U. Hence, we conclude that Value
(

ϕPrefConfI
τI ,ǫI

(π1, π2), H,Π, T0, t
)

∈ {T,U}.

(⇐=) Now, suppose that Value
(

ϕPrefConfI
τI ,ǫI

(π1, π2), H,Π, T0, t
)

∈ {T,U}. Hence, there

exists p = (s1, e1, s2, e2) ∈ P for which we have Value
((

∗7 ϕπ1 ∧∗7ϕπ2

)

, H,Π, T0, t) ∈ {T,U}.
Since t ∈ dom(µ1) ∪ dom(µ2), assume, without loss of generality, that t ∈ dom(µ1). Then
we must have that Value

(

∗7 ϕπ1 , H,Π, T0, t
)

= T. Let t7 = t. Then, Value
(

ϕπ1 , H,Π, {7 7→

t7}, t
)

= T. Therefore, according to the definition of ϕπ1 we have that there exist
t3 ≤ t4 ≤ t5 ≤ t6 such that t3, t4 ∈ [0, τ ] and t5, t6 ∈ [t − τI , t + τI ], and, furthermore,
Value

(

ϕConfI, H,Π, T, t6
)

= T for the valuation T = {i 7→ ti | i ∈ {3, 4, 5, 6, 7}}.
We define ts1, t

s
2, t

e
1, t

e
2 to be the permutation of t3, t4, t5, t6 determined by p, that is ts1 =

ts1 , and so on. Then, since Value
(

ϕπ1 , H,Π, {7 7→ t7}, t
)

= T, we have that ts1 ≤ te1, t
s
2 ≤ te2,

and ts1, t
s
2 ∈ [0, τI ] and te1, t

e
2 ∈ [t − τI , t+ τI ]. Hence, Value

(

ϕConfI, H,Π, T, t6
)

= T implies

that ConfI(µ
I
1[t

s
1 . . . t

e
1], µ

I
2[t

s
2 . . . t

e
2]), which allows us to conclude that PrefConfI(µ

I
1, µ

I
2, t).

(3) and (4) follow directly from the semantics of the operators ∧ and ∗.

We now define the formula characterizing hybrid cleanness as

ΦHybridClean
τI ,ǫI ,τO,ǫO

= ∀π1.∀π2.
(

(

ϕPrefConfI
τI ,ǫI

(π1, π2)
)

→ ϕPrefConfO
τO,ǫO

(π1, π2)
)

.

Proposition 6.8. Let H be a deterministic hybrid system defined over a set of real-valued
variables X that includes an explicit clock variable c, and such that 0 ∈ dom(µ) for each
µ ∈ H. Let τI , τO, ǫI , ǫO ≥ 0 be rational constants. It holds that

H is HybridClean(τI , ǫI , τO, ǫO) if and only if H |= ΦHybridClean
τI ,ǫI ,τO,ǫO .

Proof. (=⇒) First, suppose that H is HybridClean(τI , ǫI , τO, ǫO). Let µ1, µ2 ∈ H be two
arbitrarily chosen traces. Let π1 and π2 be trace variables, and let Π = {π1 7→ µ1, π2 7→ µ2}.

Let t ≥ 0 be an arbitrary time point. If Value
(

ϕPrefConfO
τO,ǫO

(π1, π2), H,Π, T0, t) ∈ {T,U},

then it holds that Value
((

ϕPrefConfI
τI ,ǫI

(π1, π2)
)

→ ϕPrefConfO
τO,ǫO

(π1, π2), H,Π, T0, t
)

∈ {T,U}. If,

on the other hand we have that Value
(

ϕPrefConfO
τO,ǫO

(π1, π2), H,Π, T0, t) = F, then it holds

that t ∈ dom(µ1) ∪ dom(µ2) and by Proposition 6.7 we have that PrefConfO(µ
O
1 , µ

O
2 , t)

is false. According to Definition 4.7, this means that there exists t′ ≤ t such that
PrefConfI(µ

I
1, µ

I
2, t

′) is false. Applying Proposition 6.7 we obtain for the time point t′ that
Value

(

ϕPrefConfI
τI ,ǫI

(π1, π2), H,Π, T0, t
′) = F, and hence Value

(

ϕPrefConfI
τI ,ǫI

(π1, π2), H,Π, T0, t) =

F. This implies that Value
((

ϕPrefConfI
τI ,ǫI

(π1, π2)
)

→ ϕPrefConfO
τO,ǫO

(π1, π2), H,Π, T0, t
)

= T.

Therefore, since t ≥ 0 was chosen arbitrarily, (H,Π, T0, 0) |=
((

ϕPrefConfI
τI ,ǫI

(π1, π2)
)

→

ϕPrefConfO
τO,ǫO

(π1, π2)
)

. Since µ1 and µ2 were arbitrary, we conclude (H,Π∅, T0, 0) |= ΦHybridClean
τI ,ǫI ,τO,ǫO .

(⇐=) Now, suppose that (H,Π∅, T0, 0) |= ΦHybridClean
τI ,ǫI ,τO,ǫO . Let µ1, µ2 ∈ H be two arbitrarily

chosen traces. Let π1 and π2 be trace variables, and define Π = {π1 7→ µ1, π2 7→ µ2}.
Let t ∈ dom(µ1) ∪ dom(µ2) be such that for every t′ ≤ t with t′ ∈ dom(µ1) ∪

dom(µ2) it holds that PrefConfI(µ
I
1, µ

I
2, t

′) is true. By Proposition 6.7, for every such
t′ we have Value

(

ϕPrefConfI
τI ,ǫI

(π1, π2), H,Π, T0, t
′
)

∈ {T,U}. If t′ 6∈ dom(µ1)∪dom(µ2), we have

Value
(

ϕPrefConfI
τI ,ǫI

(π1, π2), H,Π, T0, t
′
)

= U. Thus, Value( ϕPrefConfI
τI ,ǫI

(π1, π2),Π, T0, t) = T.
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By assumption, Value
((

ϕPrefConfI
τI ,ǫI

(π1, π2)
)

→ ϕPrefConfO
τO,ǫO

(π1, π2), H,Π, T0, t
)

∈ {T,U}.

Therefore, Value
(

ϕPrefConfO
τO,ǫO

(π1, π2), H,Π, T0, t
)

∈ {T,U}. Since t ∈ dom(µ1) ∪ dom(µ2), by

Proposition 6.7, this implies that PrefConfO(µ
O
1 , µ

O
2 , t) is true. Since t ∈ dom(µ1)∪ dom(µ2)

was chosen arbitrarily, we conclude that HybridClean(τI , ǫI , τO, ǫO).

In the special case when τI = τO = 0, i.e., when we consider robust cleanness, the
characterization of cleanness is simpler, since in the definition of PrefConf we only need
to consider the actual compared prefixes (and not their truncated or extended versions)
because the timing deviation is 0. As per the definition of robust cleanness, we consider
PrefConf instantiated with TraceConf.

Thus, we can characterize robust cleanness as

ΦRobustClean
ǫI ,ǫO

= ∀π1.∀π2.
(

(

ϕI
ǫI

)

→ ϕO
ǫO

)

, where

ϕI
ǫI

=
(

∗1 [0,0] dI(Xπ2 , X
∗1
π1
) ≤ ǫI

)

∧
(

∗2 [0,0] dI(Xπ1 , X
∗2
π2
) ≤ ǫI

)

and

ϕO
ǫO

=
(

∗3 [0,0] dO(Xπ2 , X
∗3
π1
) ≤ ǫO

)

∧
(

∗4 [0,0] dO(Xπ1 , X
∗4
π2
) ≤ ǫO

)

.

Proposition 6.9. Let H be a deterministic hybrid system defined over a set of real-valued
variables X such that 0 ∈ dom(µ) for each µ ∈ H. Let ǫI , ǫO ≥ 0 be rational constants. It
holds that

H is RobustClean(ǫI , ǫO) if and only if H |= ΦRobustClean
ǫI ,ǫO

.

Proof. (=⇒) First, suppose that H is RobustClean(ǫI , ǫO). Let µ1, µ2 ∈ H be two arbitrarily
chosen traces. Let π1 and π2 be trace variables, and let Π = {π1 7→ µ1, π2 7→ µ2}.

Let t ≥ 0 be an arbitrary time point. If Value
(

ϕO
ǫO
, H,Π, T0, t) ∈ {T,U}, then it holds

that Value
( ((

ϕI
ǫI

)

→ ϕO
ǫO

)

, H,Π, T0, t
)

∈ {T,U}. If, on the other hand we have that

Value
(

ϕO
ǫO
, H,Π, T0, t) = F, then it holds that at least one of the conjuncts of ϕO

ǫO
is false.

Suppose that, without loss of generality, Value
(

∗3 [0,0] dO(Xπ2 , X
∗3
π1
) ≤ ǫO, H,Π, T0, t) = F.

Hence, t ∈ dom(µ1) ∪ dom(µ2) and according to Definition 4.7, this means that there exists
t′ ≤ t such that Value

(

ϕI
ǫI
, H,Π, T0, t

′) = F. Therefore, Value
(

ϕI
ǫI
, H,Π, T0, t) = F. Thus,

in this case we obtain that Value
((

ϕI
ǫI

)

→ ϕO
ǫO
, H,Π, T0, t

)

= T.

Therefore, since t ≥ 0 was chosen arbitrarily, we have (H,Π, T0, 0) |=
((

ϕI
ǫI

)

→ ϕO
ǫO

)

.

Since µ1 and µ2 were arbitrary, we can conclude (H,Π∅, T0, 0) |= ΦRobustClean
τI ,ǫI ,τO,ǫO

.

(⇐=) Now, suppose that (H,Π∅, T0, 0) |= ΦRobustClean
τI ,ǫI ,τO,ǫO

. Let µ1, µ2 ∈ H be two arbitrarily
chosen traces. Let π1 and π2 be trace variables, and define Π = {π1 7→ µ1, π2 7→ µ2}.

Let t ∈ dom(µ1) ∪ dom(µ2) be such that for every t′ ≤ t with t′ ∈ dom(µ1) ∪
dom(µ2) it holds that Value

(

ϕI
ǫI
, H,Π, T0, t

′) = T. If t′ 6∈ dom(µ1) ∪ dom(µ2), we have

Value
(

ϕI
ǫI
, H,Π, T0, t

′) = U. Therefore, we have that Value( ϕI
ǫI
,Π, T0, t) = T.

By assumption, Value
((

ϕI
ǫI

)

→ ϕO
ǫO
, H,Π, T0, t

)

∈ {T,U}. Therefore, we obtain that

Value
(

ϕO
ǫO
, H,Π, T0, t

)

= T, since t ∈ dom(µ1) ∪ dom(µ2). Since t was chosen arbitrarily, we
can conclude that RobustClean(ǫI , ǫO).

6.4. Monitoring HyperSTL*fin over finite-length real-valued signals. We now con-
sider the fragment HyperSTL*fin and describe a method for offline monitoring of HyperSTL*fin
properties on finite sets of finite-length signals.
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If the given traces are finite timed words, we can obtain from them piecewise linear
signals by linear interpolation, or piecewise constant signals by fixing the value for each
half-closed interval between time points to be the value at the starting point of this interval.

If the signals in the set are of different time length, we take the minimum length across
the set, and consider the traces up to that length. Thus, we ensure that for some B, all traces
are defined over the interval [0, B]. Furthermore, we only consider formulas in HyperSTL*fin
for which the bounds of the temporal operators are such that every subformula has a defined
value when the formula is evaluated over traces with time domain [0, B].

Our method handles the trace quantifiers similarly to the algorithm for offline monitoring
of HyperLTL formulas on finite traces given in [FHST17, FHST19]. The method iterates
over tuples of generalized timed traces. The arity of the tuples is determined by the
quantifier prefix of the formula. For instance, for monitoring a formula of the form Φ =
∀π1 . . . ∀πn∃π

′
1 . . . ∃π

′
m.ϕ we will evaluate ϕ on tuples of GTTs of arity n + m, to either

determine that Φ is satisfied over the given set of traces, or return an n-tuple witnessing
a violation. In order to evaluate the trace-quantifier-free formula ϕ on an (n+m)- tuple
of traces we compute a satisfaction evidence by using the method proposed in [BDSV14].
Note that unlike [FHST17, FHST19] we consider finite traces and formulas with bounded
temporal operators. Since we assume that the length of the traces is sufficient for all
subformulas of a given HyperSTL*fin formula of interest to have a defined value, the truth
value of the quantifier-free part of the formula is defined. As we consider a fixed set of
recorded traces, we can check offline the satisfaction of HyperSTL*fin formulas with arbitrary
quantifier alternations similarly to [FHST17, FHST19], as outlined above.

Let ϕ be a trace-quantifier-free formula. Let H be a finite set of Rl-valued finite-length
signals, and let K ∈ Hk be a tuple of traces of arity k. Then, we can interpret K as a
real-valued signal κ of order k × l. The satisfaction set of the formula ϕ over the signal
κ is defined analogously to [BDSV14]. Similarly to [BDSV14], we assume that the traces
in H are piecewise linear and that the atomic predicates are linear, in order to make the
computation of the satisfaction set tractable. Note that the atomic predicates used in the
characterization of hybrid cleanness in Section 6.3 are linear when the expressions dI(X,X ′)
and dO(X,X ′) are linear. The explicit clock variable defines a linear signal. Clearly, if the
traces in H are piecewise linear, then so is the signal κ. Thus, the satisfaction set for ϕ can
be calculated effectively, represented as convex polytopes.

The satisfaction set for the formula ϕ given the signal κ is a subset of R≥0×RI
≥0, defined

inductively with respect to structure of ϕ. Here, a signal κ of order k × l is interpreted as a
trace assignment for k trace variables, in which each trace variable is assigned a GTT in the
form of a real-valued signal of order l.

Sat(α, κ) = {(t, T ) ∈ R≥0 × RI
≥0 | Value(α,H, κ, T, t) = T};

Sat(⊤, κ) = R≥0 × RI
≥0;

Sat(¬ϕ′, κ) = (R≥0 × RI
≥0) \ Sat(ϕ

′, κ);
Sat(ϕ1 ∨ ϕ2, κ) = Sat(ϕ1, κ) ∪ Sat(ϕ2, κ);
Sat(ϕ1 U [a,b] ϕ2, κ) = {(t, T ) ∈ R≥0 × RI

≥0 | ∃t
′ ∈ [t+ a, t+ b] : (t′, T ) ∈ Sat(ϕ2, κ)∧

∀t′′ ∈ [t, t′) : (t′′, T ) ∈ Sat(ϕ1, κ) ∪ Sat(ϕ2, κ) ∩ [t+ a, t+ b]};
Sat(ϕ1 S [a,b] ϕ2, κ) = {(t, T ) ∈ R≥0 × RI

≥0 | ∃t
′ ∈ [t− b, t− a] : (t′, T ) ∈ Sat(ϕ2, κ)∧

∀t′′ ∈ (t′, t] : (t′′, T ) ∈ Sat(ϕ1, κ) ∪ Sat(ϕ2, κ) ∩ [t− b, t− a]};
Sat(∗iϕ

′, κ) = {(t, T ) ∈ R≥0 × RI
≥0 | (t, T [i 7→ t]) ∈ Sat(ϕ′, κ)}.
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Once the satisfaction sets for the atomic predicates appearing in the given formula have been
computed, the satisfaction sets for the composite formulas can be constructed by following
the inductive definition above. Under the assumptions we made above about the signals
and the atomic predicates, the satisfaction sets for the atomic predicates can be computed
directly using the method described in [BDSV14]. For further details, we refer to [BDSV14].

In order to perform monitoring for the formula ΦHybridClean
τI ,ǫI ,τO,ǫO defined in Section 6.3, we

bound the temporal operators based on the signal length B, and consider the case when
τI > 0 and τO > 0 which ensures that the intervals in the operators are non-singular.

7. Case Study

In this section we evaluate the proposed notion of conformance-based cleanness in a real
application context, known as the Diesel Emissions Scandal [BDH19, HBDK18, KHB18,
BDH18, DBB+17, CLP+17, BDFH16]: Starting in fall 2015, millions of diesel cars were
found being equipped with defeat devices reducing the effectiveness of emission cleaning
systems during real-world usage — in contrast to the regulator-defined driving scenarios
on a chassis dynamometer, where the amount of emitted pollutants stay well below the
applicable limits.

It was soon suspected, that the singularities of the testing procedure were straightforward
to identify and hence made cheating easy; in particular, there was only a single test cycle
for testing emission cleaning systems, to be executed under very particular conditions. In
the European Union, this was the New European Driving Cycle (NEDC) [Uni13], the speed
profile of which is shown in Fig. 3. The NEDC consists of four repetitions of an elementary
urban driving cycle (UDC) followed by one extra urban driving cycle (EUDC). Each test
run is preceded by a preconditioning phase (PreCon), in which three EUDCs are driven
consecutively. Between PreCon and the test, the vehicle has to cool down for 6 to 36 hours
at an ambient temperature between 20 and 30 degrees Celsius.

Robust cleanness gives us a way of deriving additional test cycles that are reasonable
w.r.t. the official NEDC. For a concrete context, “reasonable” is defined by an accompanying
formally defined contract. The contributions of this paper enable us to go beyond previous
work [BDH19] where a contract allowed inputs and outputs to deviate only in the value
domains, but not in the time domain.

7.1. Experimental Setup. Our empirical studies apply the theory developed in the pre-
vious sections in a very specific setting. The system under test is a Nissan NV200 Evalia
equipped with a Renault 1.5 dci (110hp) diesel engine and approved w.r.t. regulation Euro
6b. All tests were conducted in November 2020. As shown in Fig. 3, the car is fixed on a
chassis dynamometer and attached to a portable emissions measurement system (PEMS)
in preparation for the test. The PEMS is connected to the onboard diagnostics (OBD)
interface of the vehicle. During a test, the PEMS measures the amount of several gases at
the end of the car’s exhaust pipe and logs the data received from OBD. The PEMS is able to
internally synchronise the times of gas measurements and OBD data. We will not consider
the internal PEMS retiming and instead analyse the final data set. As input, we consider
the OBD speed data, as output, the sum of emitted NO and NO2 (abbreviated as NOx).
The input and output is sampled by 1 Hz. The amount of NOx emitted along different runs
is comparable only to a limited extend. This is because the emission cleaning system used
can have internal regeneration phases, which — from an external observer perspective — are
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Figure 3: Left: New European Driving Cycle (NEDC); Right: Test Setup with Nissan
NV200 Evalia on a chassis dynamometer attached to a PEMS.
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Figure 4: PermNEDC (solid, black line) compared to NEDC (dashed, blue line)

triggered nondeterministically. Hence, for the formal analysis we consider the accumulated
output over 1180 seconds (the length of a complete NEDC). This is also the value decisive
for type approval according to the official regulations.

Formally, a contract specifying clean behaviour for a system is given as a tuple. Previous
work [BDH19] proposes the concrete contract Ct = 〈dI , dO, ǫI , ǫO〉 for diesel doping tests,

where dI(i1, i2)
△
= |i1 − i2| and dO(o1, o2)

△
= |o1 − o2|, and ǫI = 15 km/h and ǫO = 180

mg/km. Ct is based on robust cleanness, i.e., TraceConfǫI and TraceConfǫO conformance
for inputs and outputs. In the following, we will add the designated conformance notions
to the tuple, i.e., instead of Ct we write C = 〈dI , dO,TraceConfǫI ,TraceConfǫO〉 (implicitly
encoding ǫI and ǫO). In C the degree of deviation is constrained by a threshold on the
pointwise difference of the new and the reference test input. Comparisons of data at different
time points are not possible. The theory of conformance-based doping tests developed in
this paper improves upon the previous testing methodology by enabling variation in the
time domain. This gives us the possibility of reordering NEDC segments, lengthening a
test beyond the time limits of the original NEDC, and of increased tolerance regarding
human-caused input distortions during test execution. With the parameters dI , dO, ǫI , ǫO
and TraceConfǫO in C fixed, we show how adaptations of C with different input conformance
relations are of benefit for software doping analysis.

NEDC Permutations: Based on the conformance notions in this work, we propose a new
test cycle PermNEDC in which NEDC segments are permuted on the time axis.
Fig. 4 shows the test cycle. In each of the four UDC segments the three non-zero
speed-phases are permuted. The transformation from NEDC to PermNEDC can be
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Figure 5: DoubleNEDC (solid, black line) compared to NEDC (dashed, blue line)

described by a retiming function rp. An explicit definition of rp is space consuming,
hence we omit it. Along with the new cycle, we propose two suitable variants of
contract C with different input conformances. Neither input conformance is constrained
by a time threshold; in other words, τ = ∞, so we omit τ in the index.
• Contract Ca is as C, but entails input conformance Conf RetaǫI

, where Reta = {(r, r−1) |
r ∈ T → T and r is total and bijective} is the family of retimings that allows any
reordering of the NEDC inputs. Notably, no inputs can be added or removed.

• Contract Cp adjusts C by enforcing input conformance Conf
Retp
ǫI , where Retp =

{(rp, r
−1
p )} is the family of retimings that only allows the particular retiming rp

used to design the test cycle as discussed above. This input conformance is stricter
than Conf RetaǫI

above; it enforces that PermNEDC is not permuted any further by
the driver.

NEDC Lengthening: Conformance-based doping tests can run longer than the NEDC;
this is not possible with robust cleanness. We propose the test cycle DoubleNEDC,
which consists of two consecutive NEDCs. In contrast to all other test cycles in this
paper, DoubleNEDC produces two outputs: the first after 1180 seconds, and the
second after 2360 seconds. The first half of this cycle is a classical “cold” NEDC (i.e.,
the engine cooled down before the test execution). The second half is a “hot” NEDC,
since the cool-down phase was implicitly skipped. Also, the PreCon phase is skipped
implicitly; there is only a single EUDC (instead of three) prior to the second NEDC.
The inputs of both NEDCs can be compared by using the retiming functions id and
rd = λ t. t mod 1180. rd maps time points of the global “test case clock” to the local
time point in the NEDC time domain. DoubleNEDC requires to adapt contract C
to Cd by replacing robust cleanness by cleanness with synchronised retiming: it entails
input conformance Conf RetdǫI

, which allows only id and rd as retiming functions, i.e.,
Retd = {(id, rd)}. Similarly, Cd must include the synchronisation retiming function
Syncd(r1, r2) = (id, rd), which enforces that both DoubleNEDC outputs are compared
to the single NEDC output (independent of the input retimings r1 and r2).

Human Time Imprecision Tolerance: Diesel doping tests are executed by humans driv-
ing a car. Humans tend to make mistakes when driving. Mistakes can be the over- or
undershooting of the targeted speed (the error is on the value axis), or accelerations or
decelerations happening too early or too late (the error is a shift on the time axis), or
superpositions thereof. To compensate for both value and time errors, we use hybrid
conformance. As a formal contract, this would be expressed by a variant of C, in which
the input conformance is replaced by HybridConfτI ,ǫI for some τI > 0. For the purpose
of demonstration, we will later analyse several such variants of C, each variant with a
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Figure 6: SineNEDC (solid, black line) compared to NEDC (dashed, blue line)

unique value for τI and ǫI , i.e., we consider the contract C(τI , ǫI) parametrised in τI
and ǫI . Concrete values for τI and ǫI must be specified when using the contract.

A test cycle that reflects drivings rich of acceleration and deceleration phases—
and is hence particularly prone to human driving errors—is SineNEDC [BDH19].
SineNEDC is defined as the NEDC superimposed by a sine curve, formally

SineNEDC(t) = max{0,NEDC(t) + 5 sin(0.5t)},

with a maximum input deviation from NEDC of 5km/h, compare Fig. 6. We will
evaluate SineNEDC under several variants of C(τI , ǫI).

Human time imprecision is as yet not considered in test cycles PermNEDC andDou-

bleNEDC, both cycles require a cycle-specific conformance predicate. However, toler-
ance for human imprecision can be added to these predicates by means of conformance
and retiming composition. Let Ret(1) and Ret(2) be two families of retimings. Then

Ret(2) ◦Ret(1)
△
= {(r

(2)
1 ◦r

(1)
1 , r

(2)
2 ◦r

(1)
2 | (r

(2)
1 , r

(2)
2 ) ∈ Ret(2) and (r

(1)
1 , r

(1)
2 ) ∈ Ret(1)} is

the component-wise function composition. The definition for conformance composition

is Conf Ret
(2)

τ2,ǫ
◦ Conf Ret

(1)

τ1,ǫ

△
= Conf Ret

(3)

∞,ǫ , where Ret(3) = Ret
(2)
τ2 ◦ Ret

(1)
τ1 composes the

individual retimings. The τ1- and τ2-constraints on Ret(1) and Ret(2) are applied
before the composition. It is not necessary to apply further timing constraints to the
resulting retiming, hence we allow infinite τ . To overcome the human imprecisions for
PermNEDC and DoubleNEDC, we use the parametrised contracts Cp(τI , ǫI) and
Cd(τI , ǫI), adaptations of Cp and Cd, with input conformances HybridPermConfτI ,ǫI =

HybridConfτI ,ǫI ◦ Conf
Retp
ǫI and HybridDoubleConfτI ,ǫI = HybridConfτI ,ǫI ◦ Conf

Retd
ǫI

, re-
spectively. As for hybrid conformance in C(τI , ǫI), we will specify concrete τI and ǫI
upon usage of the contracts. Notably, for DoubleNEDC, this does not have effects
on the output conformance, because Syncd does not consider the input retiming. This
is important, because outputs are available only at time points 1180 and 2360 and
must not be moved to time points different than that. We do not compose Conf RetaǫI
and hybrid conformance, because Reta allows any possible NEDC permutation, which
naturally reduces the effect of timing imprecisions.

Table 1 summarises the contracts presented above.
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C = 〈dI , dO, TraceConfǫI , TraceConfǫO 〉

Ca = 〈dI , dO, Conf
Reta
ǫI

, TraceConfǫO 〉

Cp = 〈dI , dO, Conf
Retp
ǫI , TraceConfǫO 〉

Cd = 〈dI , dO, Conf
Retd
ǫI

, TraceConfǫO , Syncd〉

C(τI , ǫI) = 〈dI , dO, HybridConfτI ,ǫI , TraceConfǫO 〉

Cp(τI , ǫI) = 〈dI , dO, HybridConfτI ,ǫI ◦ Conf
Retp
ǫI , TraceConfǫO 〉

Cd(τI , ǫI) = 〈dI , dO, HybridConfτI ,ǫI ◦ Conf
Retd
ǫI

, TraceConfǫO , Syncd〉

Table 1: Overview of the evaluated contracts. For C, Ca, Cp and Cd, ǫI = 15 km/h. For all
contracts, ǫO = 180 mg/km, dI(i1, i2) = |i1 − i2| and dO(o1, o2) = |o1 − o2|. Reta,
Retp and Retd are defined as explained in the text above.

7.2. Computing Parameters of Hybrid Conformance. In some experiments we com-
pute, for a fixed time threshold τ and two test cycles, the minimal value error ǫ such that
hybrid conformance holds for the input. The implementation of this computation is inspired

by the the HyperSTL* formula ϕHybridConf
τ,ǫ , i.e., it computes minǫ ϕHybridConf

τ,ǫ for two test
executions π1 and π2. The algorithm is sketched below.

localMin(t1, µ1, µ2, τ) = min {dY(µ2[t2], µ1[t1]) | t2 ∈ [t1 − τ ; t1 + τ ] ∩ dom(µ2)}

globalMin(µ1, µ2, τ) = max {localMin(t1, µ1, µ2, τ) | t1 ∈ dom(µ1)}

ǫmin(µ1, µ2, τ) = max {globalMin(µ1, µ2, τ), globalMin(µ2, µ1, τ)}

Here, localMin(t1, x1, x2, τ) computes the minimal ǫ for subformula [0,τ ] dY(Xπ2 , X
∗1
π1
) ≤

ǫ ∨ [0,τ ] dY(Xπ2 , X
∗1
π1
) ≤ ǫ, where the value of X∗1

π1
is frozen at time t1. globalMin(x1, x2, τ)

reflects the Globally and Freeze operator: it finds the maximum by quantifying over all
t1 ∈ dom(x1) and by calling localMin with the frozen time value t1. To reflect the complete
formula, ǫmin(x1, x2, τ) returns the maximum of the conjuncts, which are the results of
globalMin for both combinations of x1 and x2.

The computations for HybridPermConf and HybridDoubleConf proceed in two steps.
Both Retp and Retd are singleton sets; it is known which retiming must be applied first.
For two traces µ1 and µ2 and retiming (r1, r2), there are shifted traces µ′

1 = µ1 ◦ r2

and µ′
2 = µ2 ◦ r1. The minimal ǫ for hybrid conformance is given by ǫ

(r1,r2)
min (µ1, µ2, τ) =

max {globalMin(µ1, µ
′
2, τ), globalMin(µ2, µ

′
1, τ)}.

7.3. Test Results & Verdicts. We executed each ofNEDC, PermNEDC,DoubleNEDC

and SineNEDC two times. We identify a concrete test execution by a suffix -1 or -2 to test
cycle identifier (e.g., NEDC-1 is the first and NEDC-2 the second execution of NEDC). Raw
data and the implementation of the analysis is available online [BFH20]. For NEDC, we
combined the result of both executions to an average value of 182 mg/km of NOx. Notably,
the Euro 6b regulation (to which our car is supposed to conform to) allows at most 80
mg/km, and the car under test is certified with 60.8 mg/km according to its documentation.
The car is 3 years old.
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Figure 7: PermNEDC-1 speed (black) and NEDC speed (blue) in km/h, and accumulated
NOx for PermNEDC-1 (red) and NEDC (orange) in mg/km.

For doping detection, a test verdict is only meaningful if its input trace is conformant
to that of the average NEDC execution; otherwise, the test is trivially passed. We will first
evaluate PermNEDC w.r.t. Ca and Cp, DoubleNEDC w.r.t. Cd, and SineNEDC w.r.t. C.
To demonstrate the effects of hybrid conformance, we then analyse the experiments w.r.t.
the parametrised variants of the contracts C, Cp and Cd, respectively. By definition of the
test cycles, the nominal value difference for PermNEDC and DoubleNEDC after retiming
is zero, and for SineNEDC it is 5 km/h. Though, due to human imprecisions, the actual
differences are significantly higher.

• The executions of PermNEDC are shown in Fig. 7 and 8. The amount of emitted NOx

were 392 mg/km for PermNEDC-1 and 316 mg/km for PermNEDC-2. Conf RetaǫI
does

hold for ǫI ≥ 3 km/h for both executions; with contract Ca, which defines ǫI = 15 km/h,
drastic deviations of NOx can be detected as doping. It is detected for PermNEDC-1,
i.e., the cleanness test fails, as the difference of NOx (compared to NEDC) is 210 mg/km
and hence greater than ǫO = 180 mg/km defined by Ca. Test PermNEDC-2 passes with
an NOx difference of 134 mg/km which is within the contract.

With contract Cp and input conformance Conf
Retp
ǫI , the test verdict for PermNEDC-1 is

different. Conf
Retp
ǫI would only hold for ǫI ≥ 16 km/h, which is above the contract defined

threshold of 15 km/h. Hence, PermNEDC-1 is not adduced and the test trivially passed.
• DoubleNEDC-1 and 2, shown in Fig. 9 and 10, lead to an average emission of 305
mg/km, respectively 308 mg/km of NOx. Executions of DoubleNEDC are twice as long
as regular NEDC tests and produce two outputs. The measurements for DoubleNEDC-1
report (229, 382) mg/km, for DoubleNEDC-2 (207, 408) mg/km. To determine the

verdicts for contract Cd, we first check if Conf RetdǫI
holds. This turns out not to hold for

DoubleNEDC-2, because we observed value deviations of up to 25 km/h. This test is
therefore trivially passed. For DoubleNEDC-1 all value deviations remain below the
15 km/h threshold; this test run is thus to be considered relevant for output comparison.
According to the retiming synchronisation in Cd, each of the outputs 229 and 382 must be
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Figure 8: PermNEDC-2 speed (black) and NEDC speed (blue) in km/h, and accumulated
NOx for PermNEDC-2 (red) and NEDC (orange) in mg/km.
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Figure 9: DoubleNEDC-1 speed (black) andNEDC speed (blue) in km/h, and accumulated
NOx for DoubleNEDC-1 (red) and NEDC (orange) in mg/km.

compared to the NEDC output 182. The output conformance is violated for the second
output, with a difference of 200 mg/km, exceeding the allowed ǫO = 180 mg/km threshold.
Hence, DoubleNEDC-1 fails — doping is detected.

• During the test executions of SineNEDC, we measured 483 mg/km and 632 mg/km. The
test progression is shown in Fig. 11 and 12. In SineNEDC-1, speed values deviate by
up to 18 km/h, which exceeds the ǫI threshold in C, so this test run is trivially passed.
SineNEDC-2 respects the ǫI threshold because inputs never deviate by more than 13
km/h. Consequently, SineNEDC-2 convicts our test car of doping, as the output difference
of 450 mg/km is 2.5 times the allowed threshold ǫO.

• As discussed, we use hybrid conformance to compensate for human driving imprecisions.
In this context, Table 2 details the effect of a choice of τ on the maximal value error.
We fix a maximum value that we allow for the time offset τI . For this τI we analyse
our dataset to find the minimal ǫI such that for the combination of τI and ǫI the input
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Figure 10: DoubleNEDC-2 speed (black) and NEDC speed (blue) in km/h, and accumu-
lated NOx for DoubleNEDC-2 (red) and NEDC (orange) in mg/km.
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Figure 11: SineNEDC-1 speed (black) and NEDC speed (blue) in km/h, and accumulated
NOx for SineNEDC-1 (red) and NEDC (orange) in mg/km.

Test Name Contract Input Conformance τI = 0 τI = 1 τI = 2 τI = 3 τI = 5 τI = 10 τI = 15 τI = 20

PermNEDC-1 Cp(τI , ǫI) HybridPermConf ǫI = 16 ǫI = 16 ǫI = 16 ǫI = 11 ǫI = 8 ǫI = 8 ǫI = 8 ǫI = 8

PermNEDC-2 Cp(τI , ǫI) HybridPermConf ǫI = 11 ǫI = 10 ǫI = 7 ǫI = 7 ǫI = 7 ǫI = 7 ǫI = 7 ǫI = 7

DoubleNEDC-1 Cd(τI , ǫI) HybridDoubleConf ǫI = 15 ǫI = 12 ǫI = 11 ǫI = 9 ǫI = 6 ǫI = 6 ǫI = 6 ǫI = 6

DoubleNEDC-2 Cd(τI , ǫI) HybridDoubleConf ǫI = 25 ǫI = 18 ǫI = 10 ǫI = 8 ǫI = 8 ǫI = 8 ǫI = 8 ǫI = 8

SineNEDC-1 C(τI , ǫI) HybridConf ǫI = 18 ǫI = 16 ǫI = 15 ǫI = 12 ǫI = 9 ǫI = 7 ǫI = 6 ǫI = 6

SineNEDC-2 C(τI , ǫI) HybridConf ǫI = 13 ǫI = 11 ǫI = 9 ǫI = 9 ǫI = 7 ǫI = 7 ǫI = 7 ǫI = 7

Table 2: Comparison of minimal value thresholds ǫI for fixed τI . Values are given as km/h
and time in seconds.

traces under consideration satisfy the cycle-specific hybrid conformance. For τI = 0 we

get exactly the ǫI for which the two traces satisfy Conf
Retp
ǫI (for PermNEDC), Conf RetdǫI

(for DoubleNEDC), and TraceConfǫO (for SineNEDC). Table 2 shows the computed ǫI
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Figure 12: SineNEDC-2 speed (black) and NEDC speed (blue) in km/h, and accumulated
NOx for SineNEDC-2 (red) and NEDC (orange) in mg/km.

values for τI = 0, 1, 2, 5, 10, 15 and 20 seconds. As expected, an increasing τI induces the
minimal ǫI to decrease. At τI = 5 the decrease in the value error reduces notably. This
happens because the error is only partially caused by the incorrect timing of the driver.
From the values reported in Table 2 we see that if we allow deviation for the input τI = 2,
and keep ǫI = 15, then we have that HybridDoubleConfτI ,ǫI (NEDC,DoubleNEDC-2)
and HybridConfτI ,ǫI (NEDC,SineNEDC-1) hold. For time threshold τI = 3 seconds
HybridPermConfτI ,ǫI (NEDC,PermNEDC-1) also holds. Thus, under hybrid conformance
these pairs of traces will be considered in the cleanness test for contracts Cd(2, 15), C(2, 15)
and Cp(3, 15), respectively, while under their original contract and input conformance they
are to be dismissed.

7.4. Evaluation and Discussion. The amounts of emitted NOx observed during our
experiments provide clear indications of software doping regarding the car’s emission cleaning
system. The conformance-based contracts provide the formal basis for this verdict, as
discussed above. We here complement this fact with a more intuitive explanation of the
behaviour observed.

• PermNEDC slightly reorders NEDC segments in the UDC part of the test cycle.
During this part, the measured NOx does not significantly differ from the NEDC reference.
However, during the (unmodified) EUDC part, the amount of emissions grows significantly.
It is very unlikely to find a physical explanation for the NOx increase; and very likely,
that the cleaning system is optimised specifically for the NEDC.

• The DoubleNEDC executions appear to reveal that the emission cleaning system
optimisation can also rely on engine temperature or execution time instead of speed data.
Physically, many of the common emission cleaning techniques require a hot engine to work
properly (and none of them requires a cold engine). Therefore, a lower NOx value can
be expected if the NEDC is run with a hot engine. In our experiments, however, the
NOx emissions in the hot half are almost two times higher than in the initial cold part. In
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other words, the emission cleaning performance is reduced after the first NEDC execution.
There is no physical explanation for this behaviour. Inside the software, detecting the end
of an NEDC trip can be implemented very easily, for instance with a timer counting from
1180 — the length of NEDC — to zero.

• With SineNEDC, we test the cleaning system during driving behaviour which is rich in
accelerations and decelerations. An increased amount of NOx can possibly be explained
by physical phenomena. However, we measured an increase of factors 2.7 and 3.5; these
numbers can be safely considered as too high for a trustworthy emission cleaning system.

Software doping theory provides the basis for detecting software behaviour violating a formal
contract. In this, physical aspects of the emission cleaning system should be considered
during the construction of test cases, and test cycles for which drastically higher emissions
can be explained physically, should not be considered. The test cycles we used for our
experiments were picked with automotive expertise to avoid physically stressful cycles. If
test cases are generated automatically from a contract, the physical constraints could be
captured by the contract.

The contracts we use for our experiments can be interpreted as very generous in favour
of the manufacturers. Input thresholds such as 15 km/h and 2 seconds appear as reasonable
values, keeping all tests close enough to the original NEDC. For the output threshold,
we use a very large deviation value of 180 mg/km, which allows NOx emissions to almost
double compared to the original NEDC value. Despite the generosity of the contracts, our
experiments have been able to reveal doping for all experiments except PermNEDC-2.

The analysis of the data shows that it is indeed necessary to not only consider a
deviation of value, but to also allow for timing deviations. Considering value and timing
deviations offers a rich set of potential test cycles for doping tests and allows to realistically
verify conformance of a test cycle and a reference cycle; especially when the quality of
the studied driving tests suffers from the human-caused input distortions. In this regard,
cleanness notions entailing hybrid conformance are more adequate than conformance notions
demanding punctual test executions, such as robust cleanness. Without hybrid conformance,
more of the doping cases we have detected would slip through.

Finally, while hybrid conformance is central to the case study considered here, our
generic theory of conformance-based cleanness allows for using other conformance notions
as appropriate for the CPS under test.
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testing, and runtime monitoring of automotive exhaust emissions. In Gilles Barthe, Geoff Sutcliffe,
and Margus Veanes, editors, LPAR-22. 22nd International Conference on Logic for Programming,
Artificial Intelligence and Reasoning, Awassa, Ethiopia, 16-21 November 2018, volume 57 of
EPiC Series in Computing, pages 1–17. EasyChair, 2018. URL: http://www.easychair.org/
publications/paper/xgqz.

[Hen64] F. C. Hennie. Fault detecting experiments for sequential circuits. In 5th Annual Symposium on
Switching Circuit Theory and Logical Design, Princeton, New Jersey, USA, November 11-13,
1964, pages 95–110. IEEE Computer Society, 1964. doi:10.1109/SWCT.1964.8.

[HHB15] Thorsten Hapke, Peter Hornung, and Joachim Becker. Schummeln auch in Europa. ARD / Nord-
deutscher Rundfunk, https://www.tagesschau.de/wirtschaft/vw-schummelsoftware-101.

html, 2015. Online; accessed: 2019-04-19.
[HST19] Christopher Hahn, Marvin Stenger, and Leander Tentrup. Constraint-based monitoring of

hyperproperties. In Tomás Vojnar and Lijun Zhang, editors, Tools and Algorithms for the
Construction and Analysis of Systems - 25th International Conference, TACAS 2019, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2019,
Prague, Czech Republic, April 6-11, 2019, Proceedings, Part II, volume 11428 of Lecture Notes in
Computer Science, pages 115–131. Springer, 2019. doi:10.1007/978-3-030-17465-1_7.

[HZJ19] Hsi-Ming Ho, Ruoyu Zhou, and Timothy M. Jones. On verifying timed hyperproperties. In
Johann Gamper, Sophie Pinchinat, and Guido Sciavicco, editors, 26th International Symposium
on Temporal Representation and Reasoning, TIME 2019, October 16-19, 2019, Málaga, Spain,
volume 147 of LIPIcs, pages 20:1–20:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.
doi:10.4230/LIPIcs.TIME.2019.20.
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