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Abstract: The mechanism by which arthropods (e.g., spiders and many insects) can produce silk fibres
from an aqueous protein (fibroin) solution has remained elusive, despite much scientific investigation.
In this work, we used several techniques to explore the role of a hydration shell bound to the
fibroin in native silk feedstock (NSF) from Bombyx mori silkworms. Small angle X-ray and dynamic
light scattering (SAXS and DLS) revealed a coil size (radius of gyration or hydrodynamic radius)
around 12 nm, providing considerable scope for hydration. Aggregation in dilute aqueous solution
was observed above 65 ◦C, matching the gelation temperature of more concentrated solutions
and suggesting that the strength of interaction with the solvent (i.e., water) was the dominant
factor. Infrared (IR) spectroscopy indicated decreasing hydration as the temperature was raised,
with similar changes in hydration following gelation by freezing or heating. It was found that
the solubility of fibroin in water or aqueous salt solutions could be described well by a relatively
simple thermodynamic model for the stability of the protein hydration shell, which suggests that the
affected water is enthalpically favoured but entropically penalised, due to its reduced (vibrational
or translational) dynamics. Moreover, while the majority of this investigation used fibroin from B.

mori, comparisons with published work on silk proteins from other silkworms and spiders, globular
proteins and peptide model systems suggest that our findings may be of much wider significance.

Keywords: fibroin; native silk feedstock; protein hydration shell; gelation; thermodynamic model

1. Introduction

The enigmatic ability of some arthropods (notably spiders and many insects [1–8]) to
spin silk fibres from an aqueous protein solution (feedstock) under ambient conditions has
attracted much scientific interest. Yet, key questions remain concerning the physical state
of the protein in the feedstock and the mechanism by which it solidifies to the silk fibre.
Many previous authors have attempted to address these questions, although a complete
understanding remains elusive. Often, the explanations offered to date are not entirely
satisfactory, in that they do not fully encompass (or may even be contradicted by) other
experimental observations.

In previous work with native silk feedstock (NSF) from Bombyx mori silkworms, we
suggested the importance of a hydration shell on the fibroin, which stabilises the protein in
a solution [9]. This can be displaced under certain circumstances, allowing hydrogen bonds
(H-bonds) to form between peptide groups, leading to gelation. We proposed that this
hydration shell is thermodynamically stable (by up to about 150 J mol−1 of water), through
favourable H-bonding with the peptide groups, thereby protecting the silkworm from
premature gelation. The water molecules constituting this shell are entropically penalised
(by around −2.2 J mol−1 K−1, relative to free water); however, since their molecular motion
(rotation and translation) were reduced by being ‘enslaved’ to the protein. Remarkably, this
hypothesis can explain the various apparently disparate ways that silk gelation can occur.
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• By raising the temperature (T) [9–16], the entropic component (T·∆S) becomes more
important, eventually dominating the enthalpy (∆H) and rendering the hydration
shell thermodynamically unstable above about 65 ◦C.

• The addition of other water-soluble species (e.g., salts or alcohols [17–19]) reduces
the free energy of the bulk aqueous phase below that of the hydration shell, ‘enticing’
water molecules away from the protein.

• Similarly, freezing the protein solution [9,16,20–22] produces a lower energy state for
the water (i.e., as ice), thereby enticing it to leave the hydration shell. This example is
particularly instructive, as it is the increased entropy of liquid water overcoming the
stronger enthalpic component of ice crystals that defines its melting point.

• Most importantly, from the perspective of natural silk spinning, flow stress [8–10,20,23–31]
causes the fibroin chain to deform away from an equilibrium shape. Under these
conditions, the hydration shell becomes unstable through a further loss of entropy, or
due to some peptide groups being forced to adopt conformations incompatible with
the amount of H-bonding required to maintain stability.

Sceptics may claim that these ideas are somewhat fictive, conflicting with what is often
assumed regarding protein solutions. The conventional view is that soluble proteins adopt
precisely folded globular structures, with hydrophilic amino acids towards the exterior
(in contact with water), while hydrophobic amino acids are buried within the core (away
from bulk water) [32–39]. According to this view, denaturation involves ‘melting’ of the
coil structure, with aggregation following from unfavourable interactions between water
and the exposed hydrophobic amino acids.

By contrast, our hypothesis depends on understanding fibroin in NSF to be a ‘random-
coil’ polymer, undergoing uniform molecular motion under roughly ‘theta’ conditions.
In this respect, the native fibroin appears structurally similar to recently characterised
intrinsically disordered proteins (IDP), which perform various important physiological
roles in spite of not having fixed tertiary structure [40–44]. Moreover, this view of fibroin
is well supported in the literature. Over 50 years ago, using optical rotatory dispersion
(ORD) and circular dichroism (CD), Iizuka [45] demonstrated that B. mori fibroin in dilute
aqueous solutions (prepared directly from NSF or after dissolving fibre using concentrated
LiBr solution and dialysing) presents a disordered conformation. Based on various nuclear
magnetic resonance (NMR) methods, Asakura and co-workers [28,46–48] suggested that
‘the highly concentrated silk solution contained in the middle silk gland has residues
in energetically favored conformations close to average random coil values, but forms a
hydrogen-bonded network that keeps it in a repeated type II β-turn structure’. Other studies
have also demonstrated predominantly random coil, helical or β-turn conformations in
various native, recombinant or redissolved spidroin (spider silk protein) solutions [49–57].

In evaluating these various published results, it should be noted that several NMR
methods [58] and CD [59] are sensitive to the secondary structure of the protein (i.e.,
orientation of adjacent amino acids), whereas small-angle scattering (SAS) provides more
course-grained indications of tertiary structure (i.e., overall molecular shape). Hence, in
the recent study of spidroins by Greving et al. [57], CD suggests there may be limited
flexibility between some adjacent amino acids, leading to short-range structure, while
greater flexibility over longer segments allows the proteins to approximate to random coils
in SAS methods.

It may also be noted that fibroins appear to be exquisitely sensitive to mechanical or
chemical stimuli. In addition to gelation due to flow stress [8–10,20,23–31], the β-sheet
component may increase due to the natural passage of fibroin along the silk gland and
associated changes in pH or ionic environment [50–53]. Moreover, conformational changes
may arise as artefacts of inappropriate sample preparation methods (e.g., involving salts,
freezing or excessive stress during handling); thus, a certain amount of circumspection is
advisable when considering some of the claims reported in the literature.

Further support for our view can be found from small-angle neutron scattering (SANS)
data published by Greving et al. [60], for diluted fibroin sampled directly from B. mori
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silk glands. Using Guinier analysis, it appeared that the radius of gyration (RG) of fibroin
ranged from 8 to 16 nm, with larger values at lower concentrations. Taking an average
from their data (omitting the lowest concentration solution, which presented considerable
uncertainty), the average value of RG appeared to be around 11 to 12 nm.

Although those authors did not report it themselves, their data (from 2.5 to 37.6 mg mL−1)
can be fitted well using the Debye model [61], which provides a good approximation for
scattering from a ‘Gaussian’ chain adopting a ‘3-dimensional random walk’ conformation:

D(q) =
2I0·(e

−x + x − 1)
x2 (1a)

where:

x =
q2Nb2

6
= q2R2

G (1b)

I0 is a scaling factor that represents the overall strength of the scattering, sample
volume, acquisition time, intensity of illumination and the detector response, while q is the
scattering vector:

q =
4π·sinθ

λ
(1c)

where 2θ is the scattering angle and λ is the wavelength. Fitting this model to the published
scattering curves yielded values for RG around 11 to 12 nm, which agreed with the values
reported by Greving et al. based on their Guinier analysis. Moreover, that also concurs
with a predicted value of 12.1 nm, given by [62]:

RG =

√

Nb2

6
(2)

for a ‘freely jointed’ chain under ‘theta solution’ conditions, consisting of N = 5525 amino
acids (i.e., based on the published sequences for the conjoined ‘heavy’ Fib-H and ‘light’
Fib-L chains of B. mori [63]), with a monomer length (b) of 0.4 nm [64].

As all the solutions studied by Greving et al. were dilute (below 38 mg mL−1, i.e.,
concentrations too low for chain overlap), we speculate that apparent variations in RG may
have been due to the Ca2+ concentrations in the solutions. It is known that Ca2+ in the NSF
can form ionic crosslinks (calcium bridges) between carboxylate-substituted amino acids,
thereby raising the viscosity through ‘sticky reptation’ [65–67]. It is possible that a similar
mechanism in dilute solutions could resist coil expansion (i.e., giving smaller RG values).

Smaller values of RG have been reported for redissolved (regenerated) B. mori co-
coon silk. Martel and coworkers reported a slightly lower value (10.8 nm) [68], while
Greving et al. [60] reported considerably lower values (<5.5 nm). It seems likely, however,
that these differences can be explained by depolymerisation ding the degumming and
redissolution processes.

The published sequence gives a molecular weight of around 419.6 kDa for the complete
Fib-H-Fib-L chain. Hence, to put this in context, a RG of 12 nm corresponds to a density of
around 0.045 g cm−3 for amino acids within each protein coil in the diluted NSF. Clearly,
this suggests considerable scope for water to be incorporated within the coil; thus, the
highly polar peptide groups (dipole moment = 3.45 D [69,70]) in the backbone are likely to
be extensively hydrated. Even at the much higher protein concentration in undiluted NSF
(ca. 0.25 g cm−3 [65]), the water to peptide ratio is around 12.6:1 (using the average amino
acid formula weight of 75.9 g mol−1, based on the published sequences [63]). In view of the
uniform dynamics revealed by NMR of intact silkworms [47,48], this implies considerable
hydration of the protein backbone in NSF.

Several relations have been proposed between the chain length (i.e., the number of
amino acids) and radius of gyration for proteins [71–75]. These predict RG values around
4.5 nm, for B. mori fibroin as a natively folded globular protein, 16 to 23 nm as a chemically
denatured globular protein (e.g., using urea or guanidine hydrochloride), or 28 to 32 nm



Molecules 2022, 27, 551 4 of 34

as an IDP. Thus, the fibroin coil appears to be considerably more expanded than a typical
globular protein, suggesting a greater level of hydration; yet the effect is not as great as that
achieved for globular proteins in aqueous urea or guanidinium hydrochloride solutions, or
typical IDPs.

Several factors may contribute towards the smaller RG of the native fibroin chain
compared with chemically denatured proteins or IDPs. Firstly, as noted above, there
may be calcium bridges between carboxylate-containing amino acids in fibroin, which
resist chain expansion. Secondly, the greater expansion of IDPs may be due to their
compositional bias towards higher concentrations of polar (Asn, Gln) and charged (acidic:
Asp, Glu; basic: Lys, Arg) amino acids [43,76]. For example, Lys (an essential amino acid,
fairly abundant in mulberry leaves [77,78]) constitutes around 40% of the amino acids in
some IDP sequences [79], while fibroin contains a considerably smaller amount of alcohol
substituted amino acids (12% Ser and 1% Thr) but relatively few polar (1.2%) or charged
amino acids (1.4% acidic, 0.9% basic) [63]. Note: B. mori fibroin also contains a fairly large
(around 5.5%) amount of Tyr, which suggests it may have an important function; however,
the phenolic side group is expected to be considerably less hydrophilic than Ser or Thr. Polar
and charged side groups are likely to attract additional hydration. In addition, charged
amino acids (and their counter-ions) may also exhibit electrostatic repulsion. Hence, both
effects could contribute to the increased expansion of IDPs.

There may also be questions regarding structure within or interactions between the
terminal segments of fibroin. Several authors have suggested that the terminal segments un-
dergo pH-dependent aggregation, which plays an important part in spinning silkworm [80]
and spider silks [81–89]. This can be ruled out for the NSF solutions studied by Greving
et al. however, which were prepared using deionised water, so that the neutral pH (ca. 7)
is not expected to induce aggregation. As further support for this, the molecular weights
obtained from the scattering data were consistent with single fibroin molecules. Indeed,
it may be suggested that the higher abundance of ionisable amino acids may render the
terminal segments more like IDPs under these pH conditions, exhibiting greater swelling
compared with the more repetitive main segments of the fibroin chain, although the net
effect was insufficient to be revealed by the SANS data.

This picture of a hydrated fibroin coil in NSF appears to conflict with suggestions
from other authors that the protein is dominated by segments of hydrophobic amino
acids [12,14,90–95], based on the Kyte and Doolittle hydropathy index [96]. We suggest
this is a misinterpretation of Kyte and Doolittle’s original (1982) paper, however, which
considered the likelihood of finding the various amino acids in the core or at the surface of
globular proteins. While it is likely that hydrophobic amino acids would be accommodated
within the core, rather than being exposed at the hydrated surface, it is also likely that the
smaller amino acids (Gly and Ala) could be incorporated into the core, as their side groups
present less stereochemical restrictions to packing amongst the larger amino acids. Thus,
we suggest a more reliable picture emerges from more recent (1993) work by Privalov and
Makhatadze [97,98], which found that the main amino acid units in fibroin (Gly, Ala and Ser)
are strongly hydrophilic, largely due to the H-bonding capabilities of the peptide-linked
backbone.

To summarise, we suggest the evidence points to fibroin in NSF (from B. mori and other
animals) being largely hydrophilic, with characteristics (i.e., approximating to random coil
geometry and uniform dynamics) typical of a water-soluble polymer in solution [46–49,99].
Clearly, this precludes a number of suggestions for how the phase change to a solid
fibre occurs (e.g., through hydrophobic interactions or further interactions between liquid
crystalline aggregates pre-existing in the NSF). From this starting point, we examined our
‘hydration shell’ hypothesis [9] in greater detail in the present work, using a combination
of different approaches.

• Firstly, the molecular size of B. mori fibroin was investigated in dilute solution, using
small-angle X-ray scattering (SAXS) and dynamic light scattering (DLS), at room
temperature and during heating to 80 ◦C.
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• Infrared (IR) spectroscopy was used to probe thermally driven changes in the hydra-
tion of NSF and several amide-containing model compounds.

• Changes in hydration associated with gelation of NSF by freezing and thawing were
also investigated using IR spectroscopy.

• Turbidity and protein aggregation measurements were used to investigate the solubil-
ity of diluted fibroin in salt solutions, where the free energy of the bulk aqueous phase
can be determined.

We demonstrate that these results can be explained remarkably well by our hypothesis,
based on restricted dynamics of water within the hydration shell, which is discussed in the
broader contexts of protein and polymer science.

2. Results

2.1. Protein Coil Size by SAXS

SAXS data for NSF taken directly from MP silk glands and diluted in water (to
around 1.2% w/w of protein) are shown in Figure 1a, on logarithmic axes to reveal the
most important features. As commonly found for scattering in the small-angle range, the
intensity decreased along a smooth curve towards larger angles (larger q). Nevertheless,
several important details could be inferred from the data.

 

 

 

 

Figure 1. SAXS data for diluted NSF specimens: (a) individual markers represent intensity data (on
logarithmic axes, to show the most important features) measured at 30 (blue)and 65 ◦C (brown); the
continuous lines represent the Debye model (Equation (1)) with the values of RG shown; the dashed
line shows the slope expected for ‘power law’ scattering from a polymer in solution; (b) values of
RG obtained for diluted NSF during heating; the different shapes and colours represent different
specimens; the dashed line merely provides a guide for the eye.

Notwithstanding the different scattering mechanisms of X-rays and neutrons (the
former interact with electrons through the electromagnetic force, while the latter interact
with nuclei through nuclear forces [61]), the SAXS data appeared essentially similar to the
SANS data for diluted NSF reported previously by Greving et al. [60]. In both cases, the
plots (on logarithmic axes) became significantly steeper beyond 0.16 nm−1 (0.016 Å−1) and
almost straight, with the scattered intensity following a q−2 power law dependence. This is
commonly observed for polymer chains in solution, which may be regarded as ‘fractal-like
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objects’ incompletely filling 3-dimensional space. (The associated solvent fills the rest of
the space.)

It was found that the SAXS intensity could be fitted well using the Debye model
(Equation (1), [61]), which allowed RG to be evaluated. Results from individual specimens
ranged from around 8 to 17 nm, consistent with the variation observed by Greving et al. [60]
and appeared to remain constant between 25 and 55 ◦C. Since the variation of results from
individual specimens were smaller (standard deviation, SD < 1.4 nm) than between speci-
mens (SD = 2.7 nm), this may reflect differences between the original NSF samples [97], such
as that caused by the naturally occurring Ca2+ and K+ contents [65], or other unidentified
issues during the dilution process. Nevertheless, the value obtained from independent
specimens was 12.5 ± 2.7 nm (average ± SD), in good agreement both with the results
by Greving et al. [60] and expectations based on a protein of 5525 amino acids from the
published sequences [63] in a random coil configuration under theta-conditions, with a
monomer length of 0.4 nm [64], calculated using Equation (2) [62].

It should also be noted that at the concentration used, the values of RG obtained were
consistent with the solution being ‘dilute’ (i.e., the protein coils were sufficiently separated
that they did not overlap). As noted by Greving et al. [60] this criterion is essential in order
to obtain the molecular dimensions from small-angle scattering measurements.

During heating, the scattering curves did not change significantly below 60 ◦C, suggest-
ing that RG remained constant up to this temperature. Above this temperature, however,
the intensity at low q increased, such that the plot (on double-logarithmic axes) became
almost a straight line across the entire scattering range, as shown by the data at 65 ◦C in
Figure 1a. While some curvature persisted, it was possible to fit the Debye model; the re-
sulting values of RG are shown in Figure 1b. This rapidly ceased to be possible above 65 ◦C,
however, which was consistent with aggregation of the protein chains in the diluted NSF.

It is interesting to note that these changes in the diluted NSF also coincided with
thermally induced gelation of (undiluted) NSF at similar temperatures, as observed previ-
ously by rheology (above 60 ◦C) [9,12] and calorimetry (60–68 ◦C) [11,13,16]. This apparent
insensitivity to concentration suggests that the configurational entropy of mixing, which
constitutes a significant part of the Flory–Huggins model for polymer solubility [62,100],
is not applicable to fibroin in NSF. Instead, it appears that solubility of fibroin in NSF is
dominated by the strength of interaction between the protein and water (i.e., the interaction
parameter term in the Flory–Huggins model).

2.2. Protein Coil Size by DLS

The size of protein chains in diluted NSF and their behaviour during heating were
investigated by DLS. Although this method also uses scattering, DLS measures the auto-
correlation of the scattered light over time at a fixed angle, from which the autocorrelation
function and RH of the scatterers can be obtained [100–103]; thus, the results from DLS
may be regarded as providing an independent check on the results from SAXS. It should
be emphasised, however, that RH obtained by DLS depends on the diffusion rate of the
molecules while RG obtained by SAXS or SANS represents the distribution of mass within
an average molecular coil. Hence, for any given molecular geometry, the values of RG and
RH should be related but may not be identical.

DLS data for NSF diluted in water is shown in Figure 2. First, in order to check whether
concentration affected the results, specimens were measured multiple times at the starting
concentration (1.9% w/w, determined gravimetrically) and after further dilution with type
1 water. The results in Figure 2a suggested a small effect over the concentration range used,
with further dilution producing smaller RH (Z-average values from around 21.4 ± 1.1 nm
at 1.9% w/w, to around 15 nm at 1.3%). This result appears to fit with previous findings by
Ochi, Hossain and coworkers [12,91,104], who assigned values between 12 and 20 nm to
individual fibroin chains from different parts of the silk gland.



Molecules 2022, 27, 551 7 of 34

Figure 2. DLS data for diluted NSF solutions (a) Effect of concentration on (apparent) hydrodynamic
radius, (b) change in RH with temperature, different colours and shapes of symbols represent different
specimens; (c) size distributions extracted from data at 25 ◦C (in blue) and 70 ◦C (in red). The dashed
lines in (a,b) serve only as guides for the eye.

Some variation was seen between initial specimens at 25 ◦C (range: 10.8–14.9 nm;
SD = 1.3 nm), similar to that observed using SAXS. During heating, the values of RH

appeared to remain essentially constant below 60 ◦C, but increased rapidly above that
temperature (Figure 2b)—also reminiscent of the SAXS data (Figure 1b). Thus, the thermal
behaviour revealed by DLS corroborated that observed by SAXS. Using both techniques, the
protein aggregation in dilute solution coincided with thermal gelation in NSF [9,11–13,16],
thereby emphasising the apparent insensitivity of fibroin solubility to concentration.
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Further examination of DLS data suggested that RH at room temperature was essen-
tially distributed about a single mode of around 12.5 nm (as in Figure 2c), which may be
ascribed to individual fibroin chains. Slight deviations from the baseline at lower and higher
values of RH are not thought to be significant. In this respect, the DLS results presented
here conflict with those presented earlier by Ochi, Hossain and coworkers [12,91,104], who
reported significant populations with larger RH in freshly prepared fibroin solutions, which
they ascribed to complexes containing multiple protein chains. Taken together with the
rheology they reported [12], however, it appears that their preparation methods may have
resulted in some premature fibroin gelation.

Heating above 60 ◦C caused the appearance of a second mode, centred around 90 nm
(Figure 2c), consistent with aggregation of the fibroin. Interestingly, the residual population
of individual chains appeared to show a slight reduction in RH, which may indicate a
decrease in hydration as a precursor to aggregation.

2.3. Observing Silk Protein Hydration by Mid-IR Spectroscopy

Unsurprisingly, the IR spectra of NSF was dominated by water, as demonstrated in
Figure 3. The molar ratio of water to peptide groups in NSF was around 14: 1 (for 23%
w/w fibroin, using the average amino acid formula weight of 75.9 g mol−1, based on
the published sequences [63]). Consequently, the strongest feature in the NSF spectrum
(green curve) was the broad peak (between 2800 and 3800 cm−1) due to water (blue
curve). Although this can be ascribed mainly to O-H stretching vibrations, the apparent
simplicity of the water molecule belies the complexity of this absorbance band. The
symmetric and asymmetric O-H stretching vibrations of water vapour occur at 3657 and
3756 cm−1, but these are shifted to lower frequency through strong H-bonding in the
liquid state [105–112]. The subsequent overlap with the first overtone of the bending mode
(fundamental around 1640 cm−1 in liquid water) then allows further contributions due
to Fermi resonance [109–112]. Consequently, the assignment of individual bands in this
region remains uncertain.
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Figure 3. Mid-range IR data, collected using ATR: (a) NSF (green) and water (blue, scaled to match
concentration in NSF); (b) dried fibroin film (brown) and difference spectra (NSF–water, various
shades of turquoise) with the weighting factors for the water spectrum shown, then scaled to match
the amide II peak intensity in the spectrum of the dry film.
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Only the strongest peptide bands (amide I, II and III, around 1642, 1540 and
1242 cm−1 [113–115]) were immediately obvious, although closer scrutiny revealed other
small protein bands around 1000 to 1500 and 2800 to 3000 cm−1. While the problem of a
weak spectrum being obscured by a stronger one could, in principle, be solved by acquiring
high quality data and performing a careful subtraction, it was not possible to obtain a
reliable spectrum for silk fibroin simply by subtracting a suitably weighted contribution
due to pure water from the spectrum of NSF, as demonstrated in Figure 3b. Based on the
expected composition of NSF (around 77% water), the difference spectrum (in turquoise)
was weaker than the dry fibroin spectrum (in brown) below 1500 cm−1, but more intense
above 3000 cm−1. Consequently, the amide A and B (around 3280 and 3075 cm−1, due to
Fermi resonance of N-H stretching and the first overtone of the amide II bending mode) and
C-H stretching bands (around 2980 cm−1) of the fibroin remained largely hidden within
the broad absorbance envelope of water. A somewhat better match was obtained after
subtracting a larger water contribution (0.88). In this case, the amide A and B and the
C-H stretching peaks were clearer and more closely matched the peak heights in the dry
fibroin spectrum, although residual intensity around 3410 cm−1 remained in this spectrum.
Moreover, subtracting an even larger water contribution (0.92) reduced the height of the
amide A peak unreasonably (relative to the C-H stretching peaks), while excess absorbance
still persisted above 3410 cm−1.

The problems associated with subtracting a water spectrum were observable more
clearly using NMAc, a secondary amide commonly used as a model for the peptide group.
Since NMAc is miscible with water in all proportions, it was quite simple to explore
amide concentrations much higher than in NSF. Conveniently, the formula weight of
NMAc (73.1 g mol−1) is also close to the average for an amino acid repeat unit in fibroin
(75.9 g mol−1), so direct comparisons of concentrations may be made.

For each of the compositions investigated (25, 50 or 75% w/w NMAc), subtracting
a water spectrum based on the solution concentration resulted in reasonable, though not
perfect, matches to the pure NMAc spectrum below 3290 cm−1, but left a clear excess
absorbance around 3450 cm−1 (Figure 4). This improved for more concentrated NMAc
solutions as the spectral contributions due to water decreased; nevertheless, considerable
excess absorbance remained even for a 75% NMAc solution (corresponding to a weighting
of 0.25 for the subtraction of the water spectrum).
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Figure 4. ATR-IR spectra of pure (liquid)NMAc (brown) and aqueous (25, 50 and 75%) NMAc
solutions (turquoise), after subtraction of a pure water spectrum, using the weightings expected (as
shown) and scaled to match the amide II peak intensity in the dry NMAc spectrum.
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Various ‘practical’ issues could affect the spectra acquired by ATR [114–120]; for
example, band shapes and positions can be distorted due to insufficient differences in
refractive index between the specimen and ATR element. Differences in refractive index
between specimens would affect the ‘sampling depths’ (i.e., penetration of the evanescent
electric field of the IR photons). Furthermore, phase separation in the NSF specimen could
allow composition changes (e.g., water enrichment) near the ATR element—although this
can be ruled out for the NMAc solutions. Nevertheless, these effects do not appear to
provide a convincing explanation for the difficulties in obtaining a difference spectrum
matching that of dry fibroin or NMAc (in particular, the persistence of excess aborbance
above 3410 cm−1).

A more likely explanation involves interactions between the solute (NMAc or fibroin)
and water. A considerable body of work [113–115,121–143] has explored the hydration
of amides; much of this has been directed towards understanding how it affects the
vibrational spectrum of the amide, but a corresponding effect of the amide on the bonding
and, consequently, the spectrum of water can be expected [123–128,133]. In particular, it
appears that these interactions increased the absorbance due to water in the region of 3410 to
3450 cm−1, since a simple shift in peak position on its own would result in a corresponding
negative band after subtracting the pure water spectrum. That is, O-H stretching bands
of water interacting with amides are more intense and at higher wavenumber, compared
with pure water. This concurs with recent observations of stretching bands between 3468
and 3536 cm−1, for water H-bonded to amides, isolated in inert media [126]. It is also
consistent with the suggestion of stronger H-bonding between peptide groups and water,
compared with pure water [123–125,129]. It is not clear, however, whether this increased
intensity can be attributed to a specific vibration, or whether it originated from more
complex interactions within the amide-water system. The amide group can form two
H-bonds (as proton acceptor) via the amide oxygen, and another (as proton donor) via
N-H [123,127,129,131]. Hence, around 21% (3 out of 14) of the water molecules in NSF
may be directly H-bonded to the peptide. Due to the extensive H-bonding in liquid
water [105–112], however, the majority of the other water molecules in NSF may also be
affected by the peptide groups.

The absorption spectrum is likely to be further complicated, however, through exten-
sive coupling and resonance in the water-amide system:

• Fermi resonance between O-H stretching and the first overtone of the water bending
mode [105–109];

• Fermi resonance between N-H stretching and the first overtone of the amide I band
(giving rise to the amide A and B bands) [113–115];

• sufficient strength of H-bonding between water and amide groups to allow reso-
nance between the amide I (mainly C=O stretch) and the water bending mode, fa-
cilitating rapid transfer of vibrational energy between the protein and its hydration
shell [121,122,128];

• possibly also resonance between O-H stretching bands of water and the amide A and
B bands.

Thus, the amide-water system appears to be exquisitely set up to allow the rapid
transfer of vibrational energy.

The increased absorbance above 3400 cm−1 may be regarded as complementary to
the changes observed in the spectra of the solutes: the amide II and III bands of fibroin
(Figure 3b) and NMAc (Figure 4) were at higher wavenumber in the solutions, while the
amide I band of NMAc in solution was at lower wavenumber compared with the dry state.
Conversely, spectral bands associated with other groups in protein or NMAc (e.g., C-H
stretching or bending) did not change significantly between solution and dry states, which
emphasises the role of H-bonding in these systems.
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2.4. Changes in Hydration during Heating

The amide II and III bands (around 1540 and 1242 cm−1, asymmetric and symmetric
resonance combinations of >N-H bending and C-N stretching [113–115]) are well separated
from the water bending band, hence, these bands should be free from resonance. They are
still affected by coupling to the hydration shell, however, and may be used to investigate
changes in solvation with temperature.

The IR spectra between 1450 and 1750 cm−1 for NSF, measured at 27 (green) and 81 ◦C
(red) are shown in Figure 5a. Little change was observable for the band around 1640 cm−1,
which included absorbance due to both the amide I of the protein and the water bending
mode. Consistent with previous observations [105,106], however, the water bending band
in pure water changed little over this temperature range, which may have obscured any
potential change in the amide I position. Consequently, no further attempt was made to
analyse movement in the amide I peak for NSF specimens.

By contrast, a clear shift of the amide II was evident, from around 1545 cm−1 at 27 ◦C,
to around 1540 cm−1 at 81 ◦C. The change in the amide II position was examined more
closely by fitting a Gaussian model to the IR absorbance data:

S(ν) = [a + mν] + ∑
i

Ai. exp

(

−

(

υ − νi

2∆i

)2
)

(3)

where Ai, νi and ∆i represent the intensity, centre position and breadth of the i-th component,
ν is the wavenumber and the first term in square brackets (with a and m constant) is a
linear baseline approximation under this part of the spectrum. Although both peaks may
contain several contributions, due to overlapping vibrations and different conformations
or H-bonding environments, it was found that using only two Gaussian components (i.e.,
one centred around 1640 cm−1 and the other for the amide II) generally produced the most
reliable results. Thus, the changes in the amide II peak position were evaluated (Figure 5b).

The peak position at room temperature appeared to vary slightly (from around 1544 to
1547 cm−1) between NSF specimens. This variation was considerably larger than could be
ascribed to uncertainty in the peak fitting procedure; repeated attempts on the same data
generally converged to within 0.1 cm−1. Close examination of the example in Figure 5a
also shows that the model curve (in magenta) closely matched the experimental data
(exemplified using the data at 81 ◦C, in red). Thus, the variations in peak positions appear
to reflect real differences between specimens, although it is uncertain whether they were
due to the conditions of the silkworms used or as a result of how the specimens were
extracted. (The reader may note that unexplained variations between specimens were also
observed by SAXS and DLS).

In all cases, the amide II peak moved to lower wavenumber as the temperature was
increased. Moreover, starting at higher temperatures, the peak moved back towards a
higher wavenumber as the specimens were cooled (shown in red). This demonstrates that
the effect was not merely due to the time since the specimens had been dissected from the
silkworms and placed on the ATR device. It may also be noted that the locus of the data
during cooling fell along the lower limit of the data during heating, which may reflect that
these specimens had undergone changes associated with gelation during the initial heating.
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Figure 5. Effect of temperature on the IR spectra of NSF and NMAc: (a) amide I and II region for NSF
measured at 27 (green) and 81 ◦C (red), with a Gaussian model fitted to the 81 ◦C data (magenta);
(b) plot of amide II peak position vs. temperature for NSF; the different symbols represent different
NSF specimens, blue points were measured during heating from room temperature, red points were
measured during cooling from 81 ◦C; (c): amide II and (d) amide I peak positions for 50 and 75%
w/w aqueous NMAc solution; blue open points were measured during heating, the red filled points
were measured after subsequent cooling of the 75% NMAc solution.

Further evidence of the effect of temperature on the amide band positions was obtained
by examining the spectra of other secondary amides. Movement of the amide II peak
to lower wavenumber at higher temperatures and returning to the original position on
cooling was observed for 50 and 75% w/w NMAc solution (Figure 5c); similar changes
were also found with 25% w/w NMAc solutions and 33% w/w pNiPAm solutions (data
not shown). Movement of the amide III band (also involving C-N stretching [113–115]) to
lower wavenumber at higher temperature was also observed, consistent with the changes
in amide II position. This was not analysed in more detail in the present work, however,
due to the relatively small intensity of this band and its proximity to other bands in the
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fibroin or NMAc spectra. Movement of the amide I peak was also observable in the more
concentrated (50 or 75% w/w) NMAc solutions. Curve fitting indicated movement to higher
wavenumber during heating, returning to the original position on cooling, i.e., opposite to
the behaviour of the amide II and III bands (Figure 5d).

The differences in the amide (I, II and III) peak positions in the presence of water or
during heating can be explained by considering the effects of H-bonding on the electron
density distribution across the peptide group (Figure 6) [103–105,126,129–132]. Using
valence bond formalism, there is significant overlap between the electron lone pair on the
N atom and the C=O π-bond. This delocalisation gives a significant double-bond character
across the entire amide group, which explains its planar geometry and the significant energy
barrier (around 80 kJ mol-1) that impedes rotation about the C-N bond [132,133]. Hydration
changes the electron density within the amide group, corresponding to an increase in the
double-bond character between C and N, but a decrease between C and O. Amunson
and Kubelka [134] suggested a different hypothesis in which a solvent of higher dielectric
strength favours the zwitterionic form of the peptide group. In either case, the amide I
band (mainly due to the carbonyl stretching vibration) moves to lower wavenumber and
the amide II and III (both combination bands involving the C-N stretching vibration) move
to a higher wavenumber.

π

−

−

−

−

‘Free’ peptide group: 

• more electron density between 

C and O; 

• less electron density between C 

and N; 

• amide I at higher wavenumber; 

• amide II and III at lower 

wavenumber 

Zwitterion   Hydrated peptide group: 

• less electron density between C and O; 

• more electron density between C and N; 

• amide I at lower wavenumber; 

• amide II and III at higher 

wavenumber 

Figure 6. Valence band formalism to describe the changes in electron density around the peptide
group in the zwitterionic form (centre) or due to hydration (right): R indicates a methyl group in
NMAc or the rest of the chain in a protein, solid lines indicate complete bonds, dashed lines indicate
partial and H-bonds.

Consequently, the changes observed in amide I, II and III band positions with temper-
ature provide strong indication that interactions between the amides and water become
weaker as the temperature is increased. Moreover, it should be emphasised that this
occurred in the absence of a phase change with NMAc solutions, or before any phase
change in NSF (i.e., while still below 60 ◦C). Hence, the decrease in hydration at higher
temperatures appears to be a precursor to, rather than a consequence of gelation.

2.5. Observing Changes in Amide and Peptide Hydration by Near-IR Spectroscopy

Due to the intensities of bands in the mid-range IR (400–4000 cm−1), spectroscopy of
aqueous materials is constrained to very thin specimens (<20 µm) or reflectance methods.
By contrast, the combination and overtone bands in the NIR range (>4000 cm−1) tend to
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be weaker, such that transmission measurements on thicker specimens (up to millimetres)
are possible [144–156]. Thus, NIR can be very useful for studying aqueous solutions of
proteins, peptides or models.

NIR spectra (from 4000 to 6000 cm−1) for water, NMAc and selected aqueous solutions
are shown in Figure 7a. These spectra were dominated by a (relatively) strong band (at
5180 cm−1 in pure water), which can be ascribed to a combination of O-H stretching and
bending [152–154]. (It should be noted that there was a molar excess of water in each of
these solutions; a 25% w/w NMAc solution corresponds to a molar ratio of 12:1, while 75%
w/w NMAc corresponds to a molar ratio of 1.35:1 water to amide). It may also be noted,
however, that this peak did not coincide with the sum of the stretching and bending peak
positions of pure water (3360 + 1642 = 5002 cm−1), possibly because the former contains
several components [105–112], of which the highest frequency vibration (around 3580 cm−1,
by peak fitting) dominates the combination.
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Figure 7. (a) NIR spectra for dry NMAc (brown) and aqueous NMAc solutions of the compositions
indicated, collected in transmission geometry; (b) difference spectra after subtracting the expected
water contributions and scaling to match the intensity of the peak around 4405 cm−1. The same
colours are used for the specimens in both graphs and the plots in (b) have been off-set vertically for
ease of viewing.

As this region is essentially free from NMAc bands, movement of the water band
to lower wavenumber with increasing NMAc concentrations (to 5140 cm−1, in 75% w/w
NMAc) could be clearly observed. This may be ascribed to progressively stronger or more
extensive H-bonding with the amide, causing a bathochromic shift of the O-H stretching
fundamental or through the suppression of the highest frequency modes.

Difference spectra (NMAc solutions minus water) are shown in Figure 7b. The changes
in the position of the water band with NMAc concentration caused a mismatch in the
subtraction, which produced a negative peak around 5250 cm−1 and a positive peak
around 5125 cm−1 in the difference spectra. The NIR spectrum of NMAc (dry or in
solution, after subtracting the water spectrum) was dominated by a peak around 4405 cm−1,
which appears to be composed of several absorbance bands. Other smaller peaks were
observed between 4000 and 6000 cm−1, as indicated in Figure 7b. By comparison with the
fundamental bands shown in Figure 4, the majority of these appear to be combinations
involving vibrations of the amide group, although the two bands at 5790 and 5925 cm−1

may be overtones of C-H stretching modes. Consistent with this, the majority of the bands
(i.e. excepting those at 5790 and 5925 cm−1) appeared to change position quite considerably
(by up to 40 cm−1, for the band around 4900 cm−1) between dry NMAc and aqueous
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solution, as shown in Figure 7b. In most cases, the peaks moved to a higher frequency in
aqueous solution, although the peak at 4600 cm−1 appeared to move to a lower frequency.

The water band also dominated the NIR spectrum of NSF (Figure 8a); however,
subtraction of a water spectrum produced a reasonably good spectrum for native fibroin,
as shown in Figure 8b. This spectrum appeared essentially identical to that for redissolved
fibroin, as reported previously by Mo et al. [155,156]. Rough similarities could also be seen
between the spectra for fibroin and NMAc (shown in Figure 7b), although the peaks were
in slightly different positions. The most significant difference was that the small peaks at
4600 and 4650 cm−1 in the NMAc spectra were replaced or obscured by a (relatively) large
peak at 4610 cm−1 in the fibroin spectrum, which may originate from combinations of C-H
stretching and alkyl bending modes of the various amino acid side groups [155].
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Figure 8. NIR spectra for silk fibroin: (a) NSF collected fresh from a silk gland and after gelation by
freezing or heating; (b) difference spectra, from the data in (a) after subtracting a water spectrum;
(c) difference spectra for, gelled specimens after subtracting the fresh NSF spectrum. All spectra were
recorded at room temperature (22 ◦C) and the same colours are used throughout for specimens of
fresh NSF (green) and gelled specimens produced by freezing (mauve, −28 ◦C for 30 min) or heating
(red, 82 ◦C for 5 min).
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Gelation by freezing (30 min at −28 ◦C, mauve) or heating (5 min at 82 ◦C, red)
produced some small changes in the water band, between 5000 and 5500 cm−1. Specifically,
the peak around 5152 cm−1 appeared to move to higher wavenumber, while the negative
peak around 5265 cm−1 increased for the gelled specimens. These features can both be
ascribed to the mismatch in water subtraction from the NSF spectra; hence, they appear to
indicate changes in hydration associated with gelation.

These changes are revealed more clearly by examining the difference spectra (gelled
minus fresh NSF, Figure 8c). In both cases, a single (positive) peak around 5270 cm−1

was produced, which suggests that the absorbance due to water was slightly stronger
and at higher wavenumber in the gelled specimens, compared with fresh NSF. To the
best of our knowledge, this is the first time changes in hydration have been revealed
by comparing NIR difference spectra of closed systems at the same temperature, before
and after gelation. Nevertheless, the inferences are similar to those made by many other
workers. For example, displacement of the hydration shell during gelation has also been
suggested by Mo et al. [156] based on NIR observations of water loss during heating.

Supporting evidence for the displacement of the hydration shell can also be found in
a previous publication by Mapelli et al. [157]. Using magnetic resonance imaging (NMR
microscopy), it was found that as NSF in an excised silk gland gradually gelled at room
temperature, the water signal became more intense. Although those authors did not
explore the phenomenon in more detail, it is consistent with an increase in water mobility,
corresponding to slower (transverse, T2) nuclear relaxation, such that a stronger water
signal persisted in their imaging method.

2.6. Cloud-Point and Aggregation Measurements in Salt Solutions

Thus far, we have demonstrated that the solubility of fibroin (in NSF or diluted so-
lutions) appears unaffected by concentration, but depends on the strength of interaction
between water and the peptide groups. Furthermore, a decrease in the interactions between
water and amide groups during heating precedes NSF gelation. In general terms, this
suggests that hydration of the fibroin is enthalpically favoured around room temperature,
but is entropically disfavoured, such that it becomes thermodynamically unstable above
a threshold temperature (around 65 ◦C, based on observations presented here and previ-
ously [9,16]). Moreover, if NSF is frozen, ice forms a lower energy phase, which draws
water out of the fibroin hydration shell. In either case, loss of the hydration shell from the
fibroin allows it to seek new intermolecular interactions, leading to protein aggregation
and gelation. An embryonic version of this conjecture was presented previously [9]; in
order to test it more thoroughly, however, the thermodynamics controlling hydration and
solubility are explored in this section.

Representative turbidity data for diluted NSF (ca. 0.1% w/w protein) in aqueous NaCl
solutions are shown in Figure 9. Similar results were also obtained with KCl solutions (not
shown). These salts were selected because they lie towards the centre of the Hofmeister
series [158–162] and are not expected to show any chemical affinity for the protein. In
particular, monovalent cations avoid any possibility of bridging between carboxylate
groups [65–67], which could affect aggregation and turbidity measurements.
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Figure 9. Representative examples of turbidity data vs. temperature, based on diluted NSF in NaCl
solutions of the salt concentrations (% w/w) shown on the graphs.

The turbidity is related to decreases in transmitted light, due to scattering from
inhomogeneities in the dilute solution [98,100,163–167].

τ(λ) = Q(λ)·
32π3{n0(λ)}

2

3NA λ4 ·cM

(

dn(λ)

dc

)2
(4)

where NA is Avogadro’s constant and n0 is the refractive index of the solvent. The ‘trans-
mittance dissipation factor’ Q(λ) is a dimensionless number that depends on the size of the
scattering particles relative to the wavelength, and is between 0.99 and 1 if the scatterers
are small relative to the wavelength of light, which appears to be valid for diluted fibroin
(RG ≃ 12 nm, RH ≃ 12.5 nm, based on results from this work) observed using visible light
(λ = 500 to 700 nm). The protein concentration (c, by weight) remained constant during
each experiment. Furthermore, significant changes in dn/dc (implying changes in chem-
ical composition) or Q(λ) (only expected after increased particle size towards λ) are not
expected to affect the initial onset of turbidity, although they cannot be excluded following
more extensive aggregation. Hence, the initial increases in turbidity at the cloud points can
be ascribed to increases in the masses (M) of the scattering particles, consistent with protein
aggregation revealed by SAXS and DLS. These data showed a clear ‘salting out’ effect, with
more concentrated salt solutions producing turbidity at lower temperatures.

According to our hypothesis, the driving force behind the stability of the hydration
shell can be considered in terms of the chemical potential of water:

µw =

(

dG

dnw

)

T,P,x
(5)

that is, the change in free energy per mol of water, keeping temperature, pressure and
composition constant. Thus, the hydration shell remains stable while the chemical potential
of the associated water is lower than that of the bulk aqueous phase, but becomes unstable if
its chemical potential is higher. The addition of salts (or other solutes) reduces the chemical
potential of water, which can be evaluated through the reduction in its vapour pressure (p):

µw = µ#
w + RT· ln

(

p

p#

)

(6)

where R is the gas constant and the # superscript indicates the value for pure water. This
calculation becomes particularly simple if non-volatile solutes are used, as only the water
contributes to the vapour pressure (otherwise, the partial pressures of water and the solute
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should be evaluated). Moreover, several studies reporting the vapor pressure over salt
solutions are available [168–172]; consequently, it is a relatively simple matter to obtain
aqueous solutions of diluted NSF in which the chemical potential of the bulk water phase
can be calculated.

The chemical potential of water in each salt solution was calculated using Equation (6),
based on published vapour pressure data. Graphs of chemical potential against cloud-point
temperature are shown in Figure 10. The curves for ice (grey dashed line) and water (blue
dashed line) were obtained using published data [173,174], relative to the values at the
triple point of water (273.16 K at 611.657 Pa). For the present purposes, it was found that
these properties could be fitted adequately using quadratic expressions:

µice(T) = 10.286 + 22.186T − 0.0717T2 (7a)

µwater(T) = 8.038 − 0.7842T − 0.1167T2 (7b)

for the chemical potential in J mol−1 and temperature in ◦C.
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Figure 10. Chemical potential vs. temperature for ice (grey dashed, Equation (7a)), liquid water (blue
dashed, Equation (7b)), cloud points in salt solutions (open squares) and the aggregation onset points
observed by DLS or SAXS (filled squares). Green points were obtained for NaCl solutions; magenta
indicates KCl solutions. The gelation points at high and low temperature, observed by rheology (red),
are assumed to indicate where the chemical potential of the hydration shell is equal to that of water
or ice. The uncertainty in the experimental data is expected to be similar to the sizes of the symbols.
Subsequently, an estimate for the chemical potential of the hydration shell (blue line) was obtained
by fitting Equation (8) to the turbidity and aggregation point data.

The temperatures where NSF was found to gel through freezing (at −6 ◦C) or heating
(65 ◦C) are marked (in red) on the ice or water curves. Close agreement was found between
gelation at elevated temperature observed by rheology [9] and the denaturation endotherm
shown by differential scanning calorimetry (DSC) [16]. In both cases, the processes began
around 60 ◦C and achieved their maximal rates around 65 ◦C. Less good agreement was
found for the low temperature gelation; however, rheology indicated freezing and gelation
around −6 ◦C, while ice melting was only observed by DSC after the specimen had been
cooled below −12 ◦C. In this case, the value indicated by rheology (i.e., by an increase
in dynamic moduli or a decrease in the phase angle below 45◦) is thought to be more
relevant, as it can be ascribed to a direct observation of the onset of ice formation and
protein aggregation. Thus, the gelation temperature for NSF by freezing is taken from
observations reported previously [9], which we have subsequently corroborated (data not
shown). The lower value indicated by DSC corresponds to the formation of sufficient
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ice in a form that gave a discernible melting endotherm. Close examination of the data
presented by Holland et al. [16] showed considerable depression of the melting point,
with the endotherm (Figure 4b in Holland et al. [16]) starting well below 0 ◦C (around
−10 ◦C). That may have been due to the Gibbs–Thompson effect [175–177], with ice crystals
constrained to nanoscopic size by the porosity of the fibroin gel. Thus, the ice formed
during the earliest stage of freezing may have remained undetected by DSC, due to its
limited amount and broadened melting endotherm.

Cloud and aggregation points for diluted fibroin in salt solutions are also marked
(Figure 10, green for NaCl, magenta for KCl solutions). Consistent with expectations based
on the hypothesis described above, it was found that all these various points (for NSF and
diluted fibroin) lay along a single curve.

A thermodynamic model for the chemical potential of the hydration shell was devel-
oped, containing only three adjustable parameters:

µhyd(T) = ∆Hhyd(T)− T·∆Shyd(T) (8a)

where:
∆Hhyd(T) = ∆H0

hyd + CP·(T − T0) (8b)

∆Shyd(T) = ∆S0
hyd + CP·ln

(

T

T0

)

(8c)

The constants ∆H0
hyd and ∆S0

hyd represent the changes in enthalpy and entropy from
pure water to the fibroin hydration shell at an arbitrary reference temperature (T0, chosen
as 0 ◦C). Further changes in enthalpy and entropy of water in the hydration shell, away
from T0, are described by the terms involving the heat capacity at constant pressure
(Cp) in Equations (8b) and (8c). For simplicity, Cp of water in the hydration shell was
assumed to be a constant in the present model, although this may not be strictly true as
the values for liquid water are known to change slightly across the relevant temperature
range (76.01 J mol−1 K−1 at 0◦C, to a local minimum 75.29 J mol−1 K−1, around 37 ◦C, and
75.41 J mol−1 K−1 at 62◦C [173]).

The constants were evaluated by fitting the model to the data (minimising deviations,
using ‘Solver’ in Microsoft Excel), giving ∆H0

hyd = −69.7 J mol−1, ∆S0
hyd = 0.2 J mol−1 K−1

and Cp = 57.9 J mol−1 K−1. Remarkably, in spite of the evident simplicity of this model,
it was found that the corresponding plot of the chemical potential for the hydration shell
fitted the data closely, as shown by the blue solid curve in Figure 10.

3. Discussion

From a wide-ranging set of experiments, we have demonstrated several important
features regarding the solubility of B. mori silk fibroin and its gelation.

(i) In dilute solution, the protein coil exhibits a three-dimensional Gaussian random walk
configuration, typical of a polymer in solution under theta conditions. This implies an
approximate equivalence between the strengths of monomer-monomer and monomer–
solvent interactions. Moreover, while it was not possible to observe the coil geometry
by SAXS (or SANS [60]) at higher concentration (the interpretation of scattering data
required non-overlapping coils), the configuration determined at low concentration
was consistent with previous NMR results [46–49] and rheology [9,99,178], which
demonstrated that the protein in NSF behaved as a typical polymer in solution,
albeit slightly modified by its natural propensity to form transient ‘sticky’ ionic
interactions [66,67].

(ii) Crucially, the combination of random coil geometry and uniform dynamics (from
NMR studies [46–49]) implies similar levels of hydration across the entire fibroin coil,
which precludes any explanation of gelation through interactions between hydropho-
bic regions.



Molecules 2022, 27, 551 20 of 34

(iii) The temperature at which the protein came out of solution (causing gelation of NSF
or aggregation and turbidity in diluted solutions) appears to be independent of
concentration. In terms of the Flory–Huggins theory [62,100], this implies that the
configurational entropy of mixing is negligible, with solubility being dominated by
the strength of monomer–solvent interactions (i.e., the interaction parameter, χ). It
should be noted that, contrary to earlier descriptions, it is known that χ is not a
constant describing purely enthalpic interactions, but varies with temperature and
includes both entropic and enthalpic contributions [179–182].

(iv) Coupling and resonance between vibrations of water and peptide groups affect much
of the mid-range IR spectrum. Nevertheless, changes in amide band positions of
fibroin in NSF and other amide models demonstrated that the strength of interaction
between water and peptide groups decreases with increasing temperature. Moreover,
this occurred as a precursor to—rather than a consequence of phase separation.

(v) Subtle changes in hydration associated with gelation of NSF (by heating or freezing)
were also demonstrated by NIR.

(vi) Based on our hydration shell hypothesis, a thermodynamic model was developed
that closely fitted the various data from gelation (of NSF) and aggregation or turbidity
measurements (of diluted fibroin).

The thermodynamic factors driving desolvation of the fibroin (from 0 to 70 ◦C)
were obtained from the differences between the values given for the hydration shell (by
Equation (8)) and the corresponding values for pure (liquid) water; the results are shown
in Figure 11. The values of ∆H and T·∆S (Figure 11a) are both negative across (most of)
this temperature range, consistent with the hydration shell being enthalpically favoured,
but entropically penalised relative to free water. Both terms increase in magnitude with
temperature. Moreover, the plots are almost parallel, producing a relatively small Gibbs
free energy change as the difference between them (∆G = ∆H − T·∆S). This approximate
balance between ∆H and T·∆S is commonly known as ‘enthalpy-entropy compensation’.
Similar phenomena have been observed in a wide range of systems [183–188], although a
certain amount of controversy remains about whether it results from a deeper underlying
mechanism. Particular insight has been provided by Dunitz [189] who suggested that for
interactions between molecules (i.e., typical of solvation), stronger attraction (i.e., more neg-
ative ∆H) correspond to deeper, narrower potential wells with fewer accessible vibrational
energy levels (causing more negative ∆S).

As a consequence, the resulting ∆G (Figure 11b) is negative across most of this range,
consistent with a thermodynamically stable hydration shell (by up to around 128 J mol−1

at 0 ◦C). The stability decreases as the temperature is raised, however, and ∆G becomes pos-
itive above about 68 ◦C, corresponding to the hydration shell becoming unstable and being
replaced by H-bonds between peptide groups, leading to gelation at elevated temperature.

Our model predicts an enthalpy penalty of around 1.27 kJ mol−1 of water at the
gelation temperature. Even though free energy renders the hydration shell unstable,
enthalpy is still required to release the water from the fibroin. We suggest this is the origin
of the denaturation endotherms observed by DSC [13,16].
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Figure 11. Thermodynamic values for the fibroin hydration shell, relative to free water, derived from
the thermodynamic model (Equations (8a)–(8c)) fitted in Figure 10. (a) Enthalpic (∆H, red) and en-
tropic (T·∆S, purple) components; (b) Gibbs free energy change is the difference (∆G = ∆H − T·∆S)
between the plots in (a).

Previous DSC studies of B. mori NSF suggested a value around 1.8 J g−1 (of protein) for
the denaturing endotherm [16], while slightly higher values (2.1 to 3.3 J g−1) were reported
for fibroin from several wild silkworm types [13]. In view of the protein compositions,
these correspond to relatively small values around 140 to 250 J mol−1 of amino acids.
It seems likely, however, that the endothermic peaks observed by DSC were partially
obscured by several simultaneous exothermic events (e.g., aggregation and crystallisation);
consequently, they may not provide a useful estimate of the hydration enthalpy. Indeed,
Hu et al. [190] observed exothermic crystallisation peaks during thermal analyses of silk
protein films. Instead, we suggest that various DSC studies of bovine or human serum
albumin [191,192] or hen’s egg ovalbumin [193] may provide more reasonable indications,
giving enthalpy values equivalent to 1.76 to 2.08 kJ mol−1 of amino acids. Thus, the ∆H
estimated by our model is consistent with gelation being initiated by the displacement of
around 1.5 molecules of water per amino acid residue. In view of the assumptions and
approximations used, this is encouragingly close to the expectation that two molecules of
water should be displaced from each peptide to allow β-sheet formation (with the third
water and amino acid side groups being accommodated between the sheets [194–196]).

Further insight can be gained by comparing the enthalpy released (∆Hsolution) when
NMAc is dissolved in water. This involves replacing the interactions between NMAc
molecules with H-bonds to water, which represents the converse of fibroin gelation. Values
of ∆Hsolution around −3.84 kJ mol−1 for crystalline [137,197,198], or −13.2 kJ mol−1 for
liquid NMAc [199,200] have been reported at 25 or 30 ◦C, the difference (9.36–10.11 kJ
mol−1) being the heat of fusion, ∆Hf [201,202]. Moreover, extrapolating from the data
published by Kreis and Wood [201] suggests ∆Hsolution = −9.45 kJ mol−1 for NMAc at
68 ◦C.

It is generally accepted that 2◦ amides (i.e., NMAc and peptide groups) can form
3 H-bonds: two involving the oxygen as proton acceptor and a third involving >N-H as
proton donor [123,127,129,131]. Modelling [129,130] suggests that the former are (60 to
90%) stronger than the latter. As β-sheet formation only involves two H-bonds between
peptide groups, fibroin gelation may only require displacement of the water bonded to



Molecules 2022, 27, 551 22 of 34

>N-H and one of the water molecules on the oxygen. Using these assumptions gives a
rough estimate of ∆H around 5.8 kJ mol−1 per peptide, equivalent to 2.8 kJ mol−1 of water.
Again, in spite of the obvious limitations of this estimate, including possible stereochemical
restrictions on the hydration of a peptide compared with NMAc, the proximity to the value
of ∆H suggested by our model (1.27 kJ mol−1) is encouraging.

Our model shows how ∆S and ∆H for the hydration shell change with temperature.
A more fundamental picture emerges, however, by considering the difference in heat
capacity between bulk water and the hydration shell. The specific heat capacity of water
(4.19 kJ kg−1 K−1) is considerably higher than many other common liquids [203,204]. On
a molar basis, this is equivalent to around 75.7 J mol−1 K−1 [173], which is considerably
higher than the value estimated by our model for the hydration shell (57.9 J mol−1 K−1).

By definition, heat capacity measures the change in energy with temperature. At
constant pressure:

Cp(T) =
dH(T)

dT
(9)

On a molecular level, the heat capacity depends on how quanta of energy can be ac-
commodated within the various (e.g., translational, rotational and vibrational) microstates
available. Hence, it appears that incorporation into the fibroin hydration shell limits some
of the microstates available in ‘free’ water, equivalent to approximately 2R out of roughly
9R of heat capacity for free water.

While the heat capacity of ideal gases is well understood (involving only transla-
tional states), the situation for poly-atomic molecules in a condensed state is consider-
ably more complex. In general, the heat capacity of liquids reflects the combination of
(translational, rotational and vibrational) motion and intermolecular interactions [205–212].
Moreover, the description for water is further complicated due to its extensive hydrogen
bonding [213–222]. A number of different (and not entirely consistent) explanations for
its ‘anomalously’ high heat capacity have been proposed, based on contributions due
to water clusters [213–215,219,220]; the distribution of rotational and vibrational energy
levels [216–218]; temperature-driven breaking of H-bonds [219] and vibrations in the H-
bonded network [220]. In the absence of a clear explanation applicable to ‘free’ water,
however, a precise explanation for the decrease in heat capacity through interaction with
fibroin (or other solutes) is somewhat speculative. Further investigations into these possi-
ble explanations may include measuring high frequency dielectric responses, vibrational
studies in the terahertz (THz) range, inelastic neutron scattering and nuclear relaxation
rates by NMR.

DSC provides the most direct method for observing changes in heat capacity, where
the energy required to raise the temperature of a material (or released on lowering the
temperature) is measured continuously [223–225]. This technique is commonly used to
observe energy intake or output associated with phase transitions (e.g., peaks due to
melting or protein denaturing), while changes in heat capacity appear as curvature in the
baseline (e.g., ‘steps’ associated with polymer glass transitions).

It is generally recognised that thermal denaturation causes proteins to gel [32–39].
Consequently, lower levels of vibrational activity of the gelled protein would be expected,
corresponding to its heat capacity decreasing. On the contrary, DSC shows that denat-
uration produces an increase in heat capacity [224–230]. The conventional explanation
invokes the ‘iceberg’ model, with water becoming structured around the newly exposed
hydrophobic groups, resulting in higher heat capacity. Clearly, this explanation would
not fit NSF gelation, however, as our work suggests that fibroin in solution is already
extensively hydrated. Instead, our model provides an alternative explanation, based on
an increase in heat capacity of the water released from the hydration shell. Since this is
likely to dominate any decrease in heat capacity due to the protein itself, there should
be a net increase in the heat capacity. Consequently, further DSC studies to investigate
changes in Cp associated with NSF gelation—particularly comparing fresh and re-heated
samples—could be insightful.
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Using the value obtained by fitting our model (∆Cp = 17.8 J K−1 mol−1 of water), the
release of two water molecules per amino acid residue from the hydration shell would
correspond to an increase in the heat capacity of 35.6 J K−1 mol−1 (of amino acid residues).
This is somewhat smaller than the increases in heat capacity reported for denaturing
various globular proteins, which range from about 41 to 76 J K−1 mol−1 (of amino acid
residues) [224–230]. This difference may be explained, however, if the hydration water
bound to a globular protein (i.e., with more restricted chain dynamics than silk fibroin)
experiences a larger decrease in heat capacity. Hence, while it may not be the only factor, it
appears that the release of hydration water may explain much of what has been observed
for protein denaturing.

It should be emphasised that the effects discussed here result from the strong H-
bonding interactions between the protein and its hydration shell. Consequently, they
are unlikely to be restricted to silk fibroin, but are expected to occur more generally. In
this respect, flow-induced fibril formation has recently been observed in various other
proteins and peptides [231], with obvious implications for various prion diseases. Indeed,
similar effects may also occur with a wider range of water-soluble polymers, such as
pNiPAm [232,233].

Moreover, the ideas underlying our hypothesis regarding the hydration shell are not
new, but have appeared chimera-like within the literature. For example, many studies have
demonstrated slower dynamics in hydration shells around proteins, peptides and other
polymers [234–251]. Furthermore, a quarter of a century ago, Dunitz [189] considered the
importance of the various modes of molecular motion in solvation complexes. Nevertheless,
hydration water has been overlooked, as an ‘innocent bystander’, whereas our work
suggests that it should be investigated more closely as the ‘prime suspect’ in protein
denaturing. This could include experimental measurements of water dynamics, using
methods such as dielectric spectroscopy, NMR or inelastic neutron scattering, in addition
to computational methods such as molecular dynamics simulations. Our continuing
investigations in this area will be reported at a later date.

4. Materials and Methods

4.1. Materials

Fresh specimens of NSF were dissected from the middle-posterior (MP) silk gland
sections of commercially reared 5th instar B. mori silkworms (four-way poly-hybrid cross of
two Japanese and two Chinese strains) that were in the initial stages of cocoon construction,
as described previously [9,65,99]. The protein concentrations (23 ± 2% of mainly fibroin)
were determined gravimetrically, by drying NSF specimens to constant weight, in an oven
at 60 ◦C under vacuum, on tared pieces of aluminium foil.

After peeling the membrane off the gland section (under a stereomicroscope, using
fine tweezers), the specimen was transferred to the relevant apparatus, excess water was
removed (by wicking away the liquid using the edge of a small piece of tissue paper) and
the NSF specimen was used immediately. (It was also found that intact glands could be
stored in contact with the silkworm hæmolymph for at least an hour at room temperature
within a closed Petri dish, and still used without any obvious problems. Thus, in some
cases, it was possible to perform two experiments with one silkworm.)

Where a concentrated protein solution was required (i.e., for IR spectroscopy), the NSF
specimen was used without further treatment. Where dilute (between 0.5 and 2% w/w)
protein solutions were required (i.e., for SAXS, DLS and turbidity measurements), a portion
of NSF was weighed into a tared 4 mL plastic sample vial, which was subsequently topped
up with type I (distilled and de-ionised) water. The sample vial was placed in a refrigerator
(ca. 4 ◦C) and gently agitated intermittently (the vial was manually inverted a few times);
the protein generally dissolved to give a clear solution within 24 h.

Where a protein film was required, a portion of NSF was placed in a polystyrene
weighing boat, water (ca. 2 mL) was added, the sample was covered loosely with tissue
paper and allowed to stand at ambient temperature in the laboratory. The NSF initially
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dissolved in the water, then a transparent protein film formed as the water evaporated.
Drying was completed in an oven at 60◦C under vacuum.

N-methylacetamide (NMAc, >99% purity), poly(N-isopropylacrylamide) (pNiPAm,
Mn = 40 kDa), sodium and potassium chlorides (both >99.5% pure) were commercial
materials (Sigma Aldrich, Gillingham, UK), which were used without further treatment.

4.2. Small-Angle X-ray Scattering (SAXS)

The SAXS pattern was collected from a portion of diluted NSF (ca. 1.2% w/w) at
ambient temperature (ca. 25 to 30 ◦C), held within a circular liquid cell (path length ca.
2 mm, aperture 10 mm diam.) fitted with mica windows (each 25 µm thickness). The
sample cell was loaded onto the sample stage of a modified Nanostar SAXS camera (Bruker,
Billerica, MA, USA), fitted with a GeniX-3D generator (Xenocs, Grenoble, France) run
at 50 kV and 0.6 mA, and a Hi-Star (1024 × 1024) wire grid detector. The X-ray spot
(approx. 1 mm diam.) was located near the centre of the sample cell, the sample-to-detector
distance was approximately 1.5 m and the scattering angular range was calibrated using a
silver behenate standard. Scattering from the diluted NSF was collected in 12 successive
‘frames’, each of 300 s; the similarity in scattered intensities observed between different
frames confirmed the absence of significant changes during the collection. Corrections for
background intensity were made, based on scattering collected from the empty cell and
after filling with water.

Changes in scattering with temperature were observed in a similar way, except that
the diluted NSF solution was placed in a glass capillary (ca. 1.5 mm internal diameter),
which was inserted into a Linkam heating stage. Heating rates of 0.6 or 1.0 ◦C min−1 were
used (equivalent to a 3 or 5 ◦C rise for each 5 min. frame). The scattering was collected
using either the modified Nanostar (as above) or a Xenocs Xeuss 2.0/Excillum camera
(Xenocs, Grenoble, France, with Ga metal jet generator, Pilatus 2M detector and 2.4 m
sample-to-detector distance).

4.3. Dynamic Light Scattering (DLS)

Diluted NSF solution was placed in a standard cuvette (10 mm path length) and loaded
(at 25 ◦C) into a Zetasizer Nano-ZS instrument (Malvern Panalytical, Spectris, Egham, UK).
Light scattering was measured at 633 nm (He-Ne laser) and a fixed scattering angle of
173◦. Following a pause (120 s) to allow thermal equilibration, measurements were made
in 3 blocks of 10 scans (10 s per scan). The autocorrelation function and the corresponding
values of hydrodynamic radius (RH) were calculated from the data, using the instrument
software, with the standard parameters for proteins in water (included in the software).
The effects of heating were observed by further DLS measurements at 5 ◦C intervals, after
allowing (120 s) thermal equilibration.

4.4. Infrared Spectroscopy (IR)

Infrared spectra were collected using a single beam spectrometer (Nicolet 380, Thermo-
Electron Corp. Thermo-Fisher Scientific, Waltham, MA, USA) fitted with a deuterated
triglycine sulphate (DTGS) detector. The optical path through the spectrometer and sample
environment were purged with dry, filtered air to minimize interference due to fluctuations
in atmospheric CO2 and water vapor. The background absorbance spectrum was collected
before every experiment.

Mid range IR spectra (from 800 to 4000 cm−1) were collected in attenuated total
reflectance (ATR) mode using a temperature-controlled, single bounce (45◦) diamond stage
(Golden Gate, SpecAc, Orpington, UK), fitted with ZnSe lenses. The specimen was placed
onto the diamond internal reflectance element (IRE); solid specimens (i.e., silk protein
films) were clamped in place; liquid specimens were covered with a glass coverslip to
prevent evaporation. Typically, a resolution of 4 cm−1 was used; 64 scans were collected for
‘static’ specimens, while 16 or 32 scans were collected for dynamic experiments. To study
spectroscopic changes with temperature, the ATR stage was programmed to heat or cool at
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(nominally) around 2 ◦C min−1; the actual temperature profile achieved (temperature vs.
time) was monitored manually, using the value reported by the internal thermocouple.

Spectra in the near infrared (NIR) range (4000 to 6000 cm−1) were collected in trans-
mission mode. Self-supporting films were held within a home-made sample holder. The
same device was used to clamp liquid specimens between two glass coverslips, within an
adhesive plastic ring giving a path length of around 0.25 mm. In all cases, 64 scans were
collected at 4 cm−1 resolution.

4.5. Turbidity Measurements

An aliquot of diluted NSF (0.2 to 0.5 mL) was added to aliquot (3.0 mL) of salt solution
(NaCl or KCl) of known composition, in a standard cuvette (10 mm path length), to give
an initially clear solution containing around 0.1% w/w of protein. Note: the mixing could
be performed at room temperature (ca. 23 ◦C) for solutions of NaCl below 6.5% w/w or
KCl below 10% w/w; for higher concentrations, the salt solutions had to be cooled to avoid
premature clouding.

Turbidity was measured (as a reduction in transmitted visible light) between 500 and
700 nm, using a home-made sample stage, heated by water circulation, in a UV/visible
spectrometer (Unicam UV2, Thermo-Electron Corp. Thermo-Fisher Scientific, Waltham,
MA, USA). The ‘cloud point’ was recorded as the temperature above which the turbidity
increased from the initial background level.

5. Conclusions

We have demonstrated that fibroin in diluted solution approximates to a random coil
configuration, providing capacity for extensive hydration. Thus, silk proteins appear to
form a distinct subset between globular proteins with relatively dense coil geometry and
IDP’s, which appear to be more expanded in aqueous solution. Comparison with other
work suggests that this is also a reasonable representation of (more concentrated) fibroin
in NSF.

Hydration appears to play a key role in stabilising fibroin in solution. Thermodynamic
control of the hydration shell, based on favourable enthalpy but an entropic penalty, appears
to be the dominant factor governing aggregation (in dilute solution) or gelation (in NSF),
irrespective of protein concentration. Thus, fibroin solution is rendered thermodynamically
stable under ambient conditions, but becomes unstable above 65 ◦C.

IR spectroscopy indicated that the hydration shell becomes less stable as the tem-
perature is raised. Moreover, this occurred in the absence of gelation (with NMAc) or
prior to gelation (in NSF), indicating that weakening of hydration is a cause (rather than
consequence) of gelation.

Following observations of aggregation in dilute solution or gelation in NSF using a
wide range of methods, our previous thermodynamic explanation [9] was refined. Remark-
ably, it was possible to express the stability of the hydration shell using a relatively simple,
three parameter model. Fitting this to the data suggested that the key parameter was the
reduction in heat capacity of the hydration water, which can be ascribed to its reduced
vibrational or translational dynamics, due to strong H-bonding with the protein. Thus, this
phenomenon is unlikely to be limited to silk fibroin, and is expected to arise with other
proteins and water-soluble polymers more generally, which may inspire topics for further
investigation. Indeed, these findings may point to the need to re-evaluate the foundations
of the conventional explanation of protein gelation.
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