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Abstract—Self-integrating and self-improving system are re-
quired to verify their state in order to understand whether
they have achieved their goal or need to adapt themselves to
reach it. In this short position paper, we outline the main
challenges specifically when verifying systems interacting with
each other and operating under uncertainties. A short outline of
the uncertainties is given as well as a brief roadmap to overcome
the main challenges faced by autonomous interwoven systems,
operating in an open world with incomplete knowledge.

Index Terms—self-integrating systems, verification, self-
improving, systems-of-systems, self-assembling

I. INTRODUCTION

Computing systems, particularly Cyber-physical systems,

are constantly interacting with their environment. In order to

operate efficiently these systems need to integrate themselves

properly and improve over time. This can be achieved by

optimising their individual activities but also by combin-

ing their efforts in achieving their individual and common

goals [1]. Along with their own adaptation, the environment

may change and adapt accordingly, further increasing the

challenges of the integration and improvement process. To

tackle this problem, each system is required to be aware

of its capabilities, deal with the uncertainty of deployment

environments that change over time, and check their state and

performance during runtime [2]. Many concepts which support

these core mechanics of self-integration and self-improvement

have been well explored by the community.

However, verification for these kinds of systems has re-

ceived very little attention by comparison. Verification pro-

vides guarantees about the behaviour of a deployed system.

For self-integrating systems it is a concern both for each

individual system and for the collective of systems. To perform

verification of self-integration systems, a range of different

flavours of formal verification techniques is available, such

as model checking, theorem proving, co-simulation, runtime

monitoring, testing, and managing system assurance cases

in combination with digital twins. Our vision for system

verification is to bring a set of these techniques together into

a sound toolchain to provide a novel semantic framework for

unifying best practice methods, models, and formalisms [3],

[4]. Each tool will use notations and verification algorithms

most suited to their application, but there will be sound and

practical interfaces between the tools to permit exchange and

composition of results. Bounded verification will be carried

out using any of the tools in the chain and these will be

generalised by proving theorems for larger bounds and even

unbounded systems. The added expense of theorem proving

will be justified by overcoming the state-explosion problem.

The toolchain will include humans, software, hardware, com-

ponents, systems, and environments in the loop, as necessary.

In this short position paper, we discuss verification of SISSY

systems. We identify the main challenges in verifying these

systems using two different examples: emergent software

systems and self-assembling robots.

II. SELF-INTEGRATING EXEMPLARS

Emergent software systems [5] are assembled from a large

pool of potential building blocks. Many building blocks have a

set of potential implementation variants. These could include

different scheduling policies or cache eviction strategies. The

functionality of each building block can be verified in iso-

lation. Real-time learning determines in deployment which

combination of building blocks best suits each environment

encountered by the system. This could be the different request

patterns in a data centre, for example. System design is there-

fore an emergent property relative to the current environment.

The deployed system may undergo hot-swaps of individual

logic units and entire architectural sub-areas during execution.

Emergent software systems exist on compute nodes. This

could be a single compute node built from individual software

blocks. It could also be on multiple compute nodes with

multiple systems interacting to provide a common service.

The individual systems could be a load balancer, a replicated

collection of web servers, a cache layer, and a database. The

decision-making on how each system is composed, and how

the distributed graph of interconnected systems is formed,

may be centrally orchestrated or may rely on decentralized

local controllers. In such systems, there is usually a set

of capabilities that must always be present and a set of

capabilities that can be used if available. In the data-centre

example, at least one web server and one database instance

would represent a minimal viable system, while the presence

of a load balancer, replicated web servers, and a cache layer,

can all provide added utility if available.

Self-assembling robots are autonomous devices, able to

interact with the environment through sensors and actuators



and contain the required control software locally. They can

operate with other systems and change the environment in

the absence of a central controller. Self-assembly itself is

observed in nature with social insects (e.g., ants and termites)

creating different types of physical structures. Here individuals

combine their competencies to achieve a common, collective

goal through coordination and/or self-organisation. Often, this

goal is to establish a specific structure, such as a bridge, raft,

or tower. Self-assembling robots create a specified structure

through self-organisation [6], [7]. In contrast to our emergent

software system example, each robot may be able to provide

some useful function in isolation, without the presence of any

other robots, but may have value-added capabilities when other

robots are encountered. We can consider robots performing

search and rescue operations. Individual robots can search for

victims, together, multiple robots can transport the victim or

create an autonomous communication network to alarm human

rescue personnel [8]–[10].

Figure 1 contains a specific scenario with self-assembling

robots. The four robots in green belong to the same stake-

holder, with an intended structure shown at the bottom. The

robots can move in two dimensions on the ground. They can

rotate and reorient themselves in place. Over time, the robots

will approach each other (b) and start to connect. A new robot

(in red) is coming close and joining the structure at time (c),
achieving the required structure.

In this example, the individual robots have to be able to

localise themselves in the environment as well as relative to the

other robots. They can use their sensors or mutual information

exchange leading to absolute or at least relative positioning.

The three robots have to be able to understand that they are

connected. In the best case, they also know that they have

completed the task with the external red robot and constructed

the desired pattern. In the worst case, the green robots operate

under the assumption that they have not completed the task as

there are only three connected robots. In this case, situation

(e) could occur, where the fourth robot will add itself to the

existing structure. If the intended structure needs to be oriented

in a certain way, the collective of robots now has to reorient

itself, possibly including the external red robot.

III. UNCERTAINTY AND VERIFICATION

Based on our two examples, we provide an initial analysis of

the verification space for self-integrating systems that operate

under uncertainty.

Verification can assure that a deployed system satisfies its

expected requirements. In practice, this can be achieved at

either (or both) development time or runtime. Verification has

classically been achieved at development time, using a mixture

of static analysis and execution testing. Both phases are typ-

ically performed during development and before deployment.

In this classical sense verification problems are usually solved

by dividing the problem into what can reasonably be solved by

static assertions, and what must be solved by dynamic tests.

Static assertions are often underpinned by language design

theorems such as static typing. They reduce how a system can
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Fig. 1. Self-assembling robots at different time-steps a, b, c, d. Four green
robots are intending to generate a specified structure. The red robot joins the
environment (step b) and integrates with three of the green robots (step c).

go wrong during execution. These assertions tend to reduce the

volume of unit tests needed to assure well-defined behaviour.

Over the last decade, the concept of runtime verification

[11] has gained significant interest as an additional tool in the

verification kit. Runtime verification can be used when certain

information about a system’s deployment environment is not

known in advance such that a test suite could not represent

complete coverage of a system; in these cases runtime verifi-

cation uses injected monitors to determine whether the actual

state of a system within a finite execution period matches the

expected state—and specification—of the system according to

its current execution conditions.

To perform verification, either a priori or during runtime,

digital twins can be utilised. A digital twin for a CPS aims

to represent the physical system as closely as possible and

includes a simulation model that allows prediction of how

a physical system should behave [12]. Sensor and actuation

signals are streamed from the CPS (the physical twin) to

the multi-model co- simulation (the digital twin). The digital

twin can then predict how the physical twin should behave.

However, the predictions can never be 100% accurate. This

is because the multi-models cannot capture the full detail of

physical reality: the sensor data is noisy and sampled at a finite

frequency; the numerical solution of the multi-models is an

approximation; and the environment for the physical twin may

be different from the one used for prototyping. This introduces

sources of uncertainty. One approach to handling this is to



quantify and characterise violation events for a given safety

property for the physical system. The digital twin can use a

runtime monitor to check whether the noise and violations

observed fall within expected statistical distributions. It can

then take corrective action: to tune the multi-models or to

modify the physical system’s behaviour.

Runtime verification can be used to measure discrepancies

between a system and its digital twin. Signal Temporal Logic

(STL) [13], an extension of LTL, is a popular language for

specifying dense-time, real-valued signal properties with quan-

titative timing constraints. Efficient algorithms exist for check-

ing STL specifications during runtime verification. For exam-

ple, Maler and Nickovic provide a simple efficient algorithm

for checking satisfaction for the future fragment of STL by

backward interval marking [13]–[15]. Extending STL to cope

with discrepancies is a significant theoretical challenge [16].

It also raises a number of practical challenges. For example,

the statistical analysis required to check discrepancies can

be computationally expensive, even though the simulations

needed may be run in parallel. The analysis requires noise

in physical devices, actuators, and sensors to be appropriately

quantified. The standard deviations for noisy signal can be

obtained from empirical data and requires sound physical

experimentation with the real system and its components.

We conjecture that self-improving and self-integrating sys-

tems involve two specific challenge dimensions to verification.

The first is that the way in which system elements may

interact is difficult to predict pre-deployment. Because the

set of possible interactions may be very large (or may be

infinite), exhaustively testing all of them may be prohibitively

expensive or impossible to test. The second is that the de-

ployment environment itself may exhibit properties that are

hard to capture and model in advance. The set of all possible

deployment environment conditions are also therefore difficult

to test before deployment.

This leads us to our two exemplars of self-integrating and

self-improving systems in the light of classical verification and

runtime verification. We can argue that emergent software is

mostly cast as a good place to classical verification in how to

control state machine coherence between interacting elements

during design time. While self-assembly systems are also

subject to verification at design time, the state-space explosion

coming about the highly dynamic environment further requires

verification at runtime. This allows to verify states that might

not have been covered during design-time verification. We

note that self-integrating systems – particularly those which

are distributed – entail a wide range of other challenges, such

as partial failures. In this paper we specifically focus only on

those elements that relate to the actual integration of systems

rather than other non-functional concerns.

A. Unplanned interaction

We define unplanned interaction broadly as the situation in

which two system elements interact in a way that could not

be predicted or tested in advance.

A foundation for emergent software systems is the ability

to hot-swap logic while the system is running. This should

be possible without any observable interruption to ongoing

service and without leaving the system in an undefined state.

Although each building block has a well-defined and statically

typed interface, the internal state machines of different build-

ing blocks may not necessarily be in a mutually compatible

state when introduced to one another at an arbitrary time

during execution [17]. Consider a system formed from three

building blocks a, b, c, where a drives state transitions in b and

c. At time t we can hot-swap a to an alternative implementa-

tion a
′ but keep b and c in the system as their implementations

have not changed. In this scenario, we are relying on whatever

states b and c hold being acceptable to the test envelope of a′.

If this is not the case, then we have a system in an untested set

of collective states. This is equivalent to undefined behaviour

about which we can make no assertions. Hot-swaps at time

ti and tj may result in different sets of states. In general,

this requires an infinite set of test cases, and so is untestable.

Solving this problem relies on using a programming model that

can guarantee mutual compatibility of state machines between

different system elements that are introduced to one another

at arbitrary times.

In self-assembling robots, we encounter a similar situation

when behaviour or structures emerge during runtime. Illus-

trated in Figure 1, a red robot joins the environment and

creates the desired structure in step c already. In this case

collective of robots is now relying on a component that was

not designed for the task at hand by the developer of the green

robots. This does not necessarily mean that the structure is not

already achieved and complying with all required properties.

However, similar to emergent software systems, this new,

previously unexpected state is untested and unverified and it

is unclear if this unexpected component complies with the

requirements of the emergent structure. Solving this from

a structural viewpoint, the collective of robots need to be

able to form an consensus or utilise an external evaluator,

able to perceive the entire structure. The external evaluator

might be able to verify some of the global parameters (e.g.

the shape of the structure). Verifying internal (e.g. required

stability of each individual robot) and intra-robot properties

(e.g. required stability across connected robots) will be more

challenging and relies on the information provided by the

respective components.

B. Unplanned uncertainty

We define unplanned uncertainty as the potential for en-

vironments about which we have limited knowledge before

deployment. Such uncertainty can be further classified as

epistemic uncertainty (insufficient knowledge) and aleatoric

uncertainty (environments with inherent randomness).

In emergent software systems, epistemic uncertainty arises

in how machine learning attempts to classify the environment

into discrete classes that are of high utility to online reinforce-

ment learning. Here we can have uncertainty in two different

ways: uncertainty over what characteristics of the environment



matter to the performance of the system; and uncertainty over

which compositions of a system are likely to perform best

in each environment. In the former category, for a generic

classifier deployed against an unknown set of building blocks

in an unknown environment, generic environment information

such as request names must be translated into higher-level

classes such as ‘cacheability of stream’ that are relevant

to how the overall system performs. In the latter category,

unless all the environment classes are known in advance,

determining which composition of build blocks works best in

each environment must be performed at runtime as and when

those environments occur — when the longevity and stability

of each such environment may challenge effective learning.

Self-assembling robots, operating in changing environmen-

tal conditions are constantly prone to aleatoric uncertainties.

Rapidly unfolding and previously unexperienced situations

cannot be learned and systems can only respond to the best of

their understanding of the situation. Composing homogeneous

robots into a specific shape does not need to take the order

and position of each robot into consideration as they are

interchangeable and the solution space is mostly affected by

the aleatoric uncertainties of the environment. However, with

heterogeneous robots, the position of each robot becomes

relevant and may affect the final structure, adding an additional

dimension to the potential solution space. Furthermore, when

the location of the assembled structure is variable, having

sufficient information about the environment allows the robots

to select the most suitable location to build the structure.

Having a heterogeneous set of robots can provide an advantage

when different types of robots bring about different benefits,

as well as drawbacks, depending on the environment. Un-

known environmental conditions will require machine learning

techniques to explore and discover new knowledge and later

exploit the gained knowledge. Verifying the best solution

becomes hard if the situation remains rare and does not allow

for learning of alternative solutions over time.

The main challenges to verification here are (i) environmen-

tal characteristics that break the assumptions against which

compositions were tested; and (ii) environmental volatility

under learning, which presents a risk to the length of time

for which a system will remain in explorative learning more

versus exploiting learned information – where such timings

would have been assumed to fall within certain bounds for

effective system operation.

IV. CHALLENGES AND ROADMAP

Supporting verification of self-integrating and self-

improving systems opens up several new challenges. In the

following we give a rough outline of the identified challenges

and how they relate to the verification process and the

underlying goal of the verification. We scope our challenges

to those that specifically relate to self-integration, rather than

to tangential and more general issues such as fault tolerance.

Information exchange among individual systems about their

own state, their abilities, and their observed environ-

mental conditions needs to be facilitated. Protocols and

standards will help to alleviate this problem, however,

this requires all systems, even those deployed by other

developers, to adhere to them. Furthermore, information

exchange needs to be technically possible. That would

include established communication links and common

communication technologies. Systems might initially not

be aware of their own abilities to communicate with

others [18] and the capabilities of others in their environ-

ment. This requires them to be able to explore approaches

to interact and communicate with each other [19]. Sys-

tems belonging to the same owner might not encounter

the problem of knowing and communicating their abili-

ties. Communication protocols are in most cases clear and

exploration of such aspects among those systems may not

be required. With a new system (such as the red one in

our Fig. 1), this might be different as its abilities might

be unknown. Finally, information exchange among two

or more systems brings about challenges well explored

from distributed systems such as broken communication

links [20] or dealing with quiescence [21].

Semantic alignment of the exchanged information is re-

quired by all participants that need to be verified. En-

abling systems to establish semantics through play and

controlled experimentation, can alleviate the need for

dedicated domain models and ontologies. Now such

mutual play or controlled experimentation brings about

a challenge of enabling systems to engage in this mutual

play to explore their and align their semantics. Systems

need to explore semantics without compromising the

safety as well as security of themselves and other par-

ticipating systems. All participants are required to follow

specific rules which need to be defined and agreed upon

a priori [22], [23]. As in the previous challenge, systems

belonging to the same owner are most likely able to

understand each other’s semantics. Systems belonging to

different owners however might not be able to compre-

hend and understand each other.

Consensus approaches may be useful as first-class entities to

help reason about state machine alignment and integration

between different parts of a system or across all systems.

Naturally this brings about additional challenges faced

in consensus finding algorithms. Achieving a consensus

on the position of a state machine involves both aspects

(a) to model relevant parts of a system as generic con-

sensus problems, and (b) to develop and select suitable

centralised or decentralised consensus algorithms to solve

those problems at runtime. However, finding a consensus

on the current position of the state machine allows them

collectively drive it towards a mutually verified holistic

position. With systems coming from a different owner,

different consensus algorithms might be utilised. Solving

the first two challenges might help to overcome this prob-

lem with systems belonging to a different owner. Another

aspect is that everyone needs to trust the input to the

consensus finding algorithm - this is further highlighted

with an additional challenges below.



Collaborative learning will support systems to tackle epis-

temic and aleatoric uncertainties by combining their

knowledge and covering a larger exploration space more

quickly. Approaches to coordinate the learning as well

as aggregating the knowledge afterwards are needed to

tackle this challenge. This leads again to challenges also

arising from consensus finding. One technique could

be federated learning using deep neural networks [24].

However, this introduces an overhead in generating and

processing neural networks giving rise to a trade-off

between utilised and available resources and the bene-

fit all systems can get from utilising the collaborative

learning approach. For such autonomous systems with

limited processing power, it will be important to de-

velop simple learning techniques that are as efficient

in combining learned information as federated learning

mechanisms. When systems belong to different owners

they might utilise different and incompatible learning

approaches – for example the red and green systems

in our robotics example may both be able to utilise

collaborative learning, but due to their different learning

approaches may not be directly compatible with each

other. It is therefore important to ensure that we avoid

combinations of incompatible learning outcomes.

Model calibration allows a system to adapt an established

model to better fit a new context. This may aid a sys-

tem in dealing with aleatoric and epistemic uncertainties

by introducing and refining probabilistic parameters in

a given model based on the observed environmental

conditions. By adapting models on an ongoing basis,

we expect systems to be able to deal with aleatoric

uncertainties due to the increased amount of data utilised

to build the model. This should allow them to verify their

current states more accurately. To deal with epistemic

uncertainties, more data from the same source will most

likely not be of help. However, model calibration can also

be performed by adding new information to the model

originating from new sources. These new sources can be

newly discovered capabilities of an individual system or

emerging from an entire collective. In the best situations,

all involved systems will share models and calibrate them

collaboratively. Mechanisms and techniques to do such

collaborative calibration and consequently utilising such

collaborative models are currently missing.

Trust among systems operating in a shared environment is

necessary, specifically when the systems are developed

and deployed by different developers. Relying on in-

formation from malign systems can lead to devastat-

ing results in self-integration processes. Trust can be a

shortcut to reduce verification costs and can be gained

by verifying outcomes rather than specific data [25].

Utilising probabilistic reasoning techniques can be one

way forward to tackle this problem. Additionally, there

are several models of trust that allow for systems to

collaborate on establishing trust among heterogeneous

and diverse members [26], [27]. Utilising such trust

models as a tool to improve collaboration and verification

in self-integrating systems requires those models to have

a minimal processing overhead in order to be useful.

Verification envelope distance functions may be needed to

describe the extent to which different potential integra-

tions have been verified to be correct under different

environments. Such an approach would allow a system

to combine the verification results from individuals into

a common, more coherent verification status for an entire

collective system. Nevertheless, a conversion mechanism

from the individual states of single systems to the com-

bined state of the collective is required as the collective

state might be the result of emergence rather then the sim-

ple sum of the individual states. If this can be achieved,

such verified intermediate states would be useful to allow

reasoning over how to drive a system towards an available

integration which has a higher verification confidence

under the currently observed environment conditions. To

make decisions on the actions of individual system from

an emerged collective state also requires the inverse con-

version mechanism potentially requiring an understanding

of causal relations of interactions initially leading to the

current state.

V. SUMMARY

In this paper we have highlighted to lack of research to

date in verification for self-integrating systems that operate

under uncertainty. Considering two motivating examples, of

emergent software systems and self-assembling robots, we

have derived a set of verification challenges and proposed a

roadmap of initial research challenges for the community to

consider. We hope that these challenges will serve as a useful

discussion point for the SISSY community and will motivate

further investigation of these important topics in the future.
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