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Summary

β-site amyloid precursor protein cleaving enzyme-1 (BACE1) research has historically

focused on its actions as the β-secretase responsible for the production of β-amyloid

beta, observed in Alzheimer's disease. Although the greatest expression of BACE1 is

found in the brain, BACE1 mRNA and protein is also found in many cell types includ-

ing pancreatic β-cells, adipocytes, hepatocytes, and vascular cells. Pathologically ele-

vated BACE1 expression in these cells has been implicated in the development of

metabolic diseases, including type 2 diabetes, obesity, and cardiovascular disease. In

this review, we examine key questions surrounding the BACE1 literature, including

how is BACE1 regulated and how dysregulation may occur in disease, and under-

stand how BACE1 regulates metabolism via cleavage of a myriad of substrates. The

phenotype of the BACE1 knockout mice models, including reduced weight gain,

increased energy expenditure, and enhanced leptin signaling, proposes a physiologi-

cal role of BACE1 in regulating energy metabolism and homeostasis. Taken together

with the weight loss observed with BACE1 inhibitors in clinical trials, these data high-

light a novel role for BACE1 in regulation of metabolic physiology. Finally, this review

aims to examine the possibility that BACE1 inhibitors could provide a innovative

treatment for obesity and its comorbidities.
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1 | INTRODUCTION

Beta-site amyloid precursor protein cleaving enzyme-1 (BACE1)

research has historically focused on the brain and its actions as the

β-secretase responsible for the production of amyloid beta (Aβ) pep-

tides. These Aβ peptides accumulate into senile plaques, characteristic

of Alzheimer's disease (AD), and cause neuronal death and cognitive

decline.1 Although the greatest expression of BACE1 is found in the

brain and pancreas, BACE1 mRNA and protein is also found at low

levels in many cell types.2,3 Pathologically, BACE1 has also been impli-

cated in the development of other diseases, including type 2 diabetes,

schizophrenia, and epilepsy.4,5 The phenotype of the BACE1 knockout

mice models, including reduced weight gain, hypomyelination, and

associations with metabolic diseases such as diabetes, proposes a

physiological role of BACE1 in energy metabolism and homeostasis.6

Together with the effects observed with BACE1 inhibitors in clinical

trials, this highlights the lack of understanding around the physiologi-

cal functions of BACE1. In this review we explore the dysfunction,

and physiological functions of BACE1, including its regulation, and

role in energy metabolism and homeostasis.

2 | BACE1 STRUCTURE

BACE1 is a type 1 membrane protein which, together with BACE2,

forms a subfamily of membrane anchored aspartyl proteases.7 The
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BACE1 gene is transcribed as a 501 amino acid preprotein, containing

five key domains, a signal peptide and pro-, catalytic, transmembrane,

and cytoplasmic domains (Figure 1A). The signal peptide traffics the

BACE1 preprotein to the endoplasmic reticulum (ER), where furin

cleavage of the pro-domain produces a mature BACE1 protein.6 The

transmembrane domain determines BACE1 localization to the late

Golgi, where in the trans-Golgi network BACE1 is post-translationally

activated. The protease activity of BACE1 is dependent on two

aspartyl active sites at D93 and D289, as well as the position of the

regulatory antiparallel-hairpin flap relative to the substrate binding

site (Figure 1B).8 The activated BACE1 protein subsequently operates

at the plasma membrane in endosomes and the Golgi apparatus, func-

tioning at an optimal pH of 4.5.8

3 | ESTABLISHED BACE1 SUBSTRATES
AND FUNCTIONS

Most knowledge and research around BACE1 is focused on its role in

the amyloidogenic pathway, where it is responsible for the initial rate

limiting cleavage of the APP protein. Sequential cleavage by BACE1

and γ-secretase produces Aβ-40 and Aβ-42 peptides. Despite having

around 64% homology to BACE1, BACE2 cleaves the APP protein at

an alternative site and therefore does not elicit the same β-secretase

action and Aβ production.9 BACE2 is also mainly found in peripheral

tissues, in contrast to BACE1 which, by comparison, is highly

expressed in the brain.10 BACE1 production of Aβ-42 is associated

with regulation of memory, synaptic function, myelin repair, and AD.5

AD is the most common form of dementia and presents with several

physiological changes in addition to the accumulation of Aβ-42 into

extracellular amyloid plaques, including neurofibrillary tangles (NFTs),

chronic inflammation, synapse loss, neuronal death, and

hypometabolism.11,12 The accumulation Aβ-plaques disrupts neuronal

and synaptic functions leading to detrimental cognitive effects.5

However, there is increasing evidence for non-neuronal functions of

Aβ and consequences of altered BACE1 activity. The increased pro-

duction of Aβ has been linked to cerebrovascular impairments includ-

ing capillary degradation, impairments in the blood brain barrier (BBB),

and response to vascular injury.13,14 Some of these effects may be

linked to the antimicrobial role of Aβ and its release into the blood

from activated platelets in response to inflammation and immune

responses.15

Furthermore, Aβ has been shown to regulate transcription of APP

and insulin-like growth factor receptors,16 and BACE1 has been impli-

cated in a range of metabolic functions.17–19 This suggests various

important physiological roles of BACE1 in different cells and organ-

elles, in addition to its role in AD. Although the expression of BACE1

is highest in the brain, it is found widely expressed at lower levels in

other tissues including endocrine tissue, the pancreas, muscle tissue,

respiratory tissue, bone marrow, and lymphoid tissue.20,21 As APP is

also widely expressed, the BACE1-mediated production of Aβ could

have an effect on many cells and tissues.20,21

It is well acknowledged that APP is a poor substrate for BACE1

and, through secretome enrichment experiments, nearly 70 BACE1

substrates have been identified to date.22–25 Many BACE1 substrates,

like APP, are type 1 membrane proteins whose function can be

enhanced or reduced following BACE1-mediated shedding.

Neuregulin 1 (NRG1) is a signaling protein involved in various cel-

lular functions, including cell growth and differentiation. BACE1 cleav-

age of NRG1 regulates myelination,26,27 and increased BACE1

cleavage of NRG1 has been implicated in the development of schizo-

phrenia.28 BACE1 cleavage of Jagged 1 (Jag1) regulates the

Jag1-Notch signaling pathway important in the control of astrogenesis

and neurogenesis.29 Seizure protein 6 (SEZ6) and seizure-like protein

6 (SEZ6L) proteins influence ER functions in neurons, control synaptic

connectivity, and motor coordination and therefore may likely be

responsible for the seizures, motor deficits, and reduced spinal defi-

ciency observed in BACE1 null mice.24 Cache domain containing

F IGURE 1 The structure and domains of
BACE1. (A) The primary structure of BACE1
with functional domains labeled. There are
five domains: signal peptide (1–23), pro-
peptide (23–47), catalytic domain (47–454),
transmembrane domain (454–478), and the
cytosolic domain (478–501). Created with
BioRender.com. (B) BACE1 crystal structure
made using structure 3TPR on RSCB Protein

DataBank (https://www.rcsb.org/). The
unannotated structure (left) and inhibitor C3
binding (red), the two aspartyl protease
active sites (blue) at D93 and D289, and the
antiparallel-hairpin flap (green) between
Y128-G138, are shown (right). The structure
is missing 62 residues
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protein-1 (CACHD1) and neural cell adhesion molecules (NCAM1 and

2) are involved in synapse formation, maturation, and mainte-

nance.22,30 L1 cell adhesion molecule (L1CAM) and neural cell adhe-

sion molecule L1-like protein (CHL1) are BACE1 substrates involved

in axon guidance.31 Substrates SEZ6, L1CAM, leucine rich repeat neu-

ronal 1 (LRRN1), neurotrimin, and CHL1 are all involved in neurite

outgrowth.23 BACE1 has also been implicated in regulation of sodium

channel metabolism in neuronal cells, via its cleavage of voltage-gated

sodium channel β2 subunit (Navβ2).32

To date, the BACE1 substrates identified are primarily associ-

ated with neurological function and the central nervous system.

However, this might be more representative of experimental

designs. Therefore, the true extent of non-CNS functions may not

yet be fully known.

4 | NON-NEURONAL BACE1 SUBSTRATES

The phenotype of the BACE1 knockout mice suggests BACE1 plays

additional roles to regulation of neuronal function. Accordingly, non-

neuronal physiological effects of BACE1 have come to light recently.

P-selectin glycoprotein ligand-1 (PSGL-1) is a BACE1 substrate that

plays an important role in immune defenses by recruiting white blood

cells to the site of infection.25 Another BACE1 substrate, interleukin-1

receptor II (IL-1R2), an interleukin-1 decoy receptor, presents a mech-

anism for abnormal inflammation in response to changes in BACE1

activity.33 It is therefore evident that BACE1 is involved in many path-

ways and processes, and its effects on a single protein can have a

complex cascade effect on other functions of the body. Through these

additional substrates, BACE1 has been implicated in inflammation,

cardiovascular function, glucose homeostasis, and insulin signal-

ing18,34–38 (Table 1). This highlights the importance of investigating all

substrates and pathways BACE1 is involved in, both to understand

implications of its dysfunction and to benefit the development of

effective therapeutics.

5 | CONSEQUENCES OF CHANGES IN
BACE1 EXPRESSION AND ACTIVITY

Numerous physiological effects are observed in response to changes

in BACE1 expression and activity in disease models, and potential

therapeutics. In a variety of pathological conditions, including AD,

cerebral amyloid angiopathy, and metabolic diseases such as type

2 diabetes and obesity, BACE1 expression and activity are increased

and drive disease progression.3,34,39,40 Accordingly, BACE1 knock-in

mice display an AD-like pathology including elevated levels of Aβ

plaques, synaptic impairments, decreased cognitive function,41 and

systemic diabetes.34 Conversely, BACE1 knockout mice display

reduced birth weight, hypomyelination, memory deficits, behavioral

alterations, axon guidance impairment, impaired midbrain dopaminer-

gic signaling, seizures, and abnormal electroencephalograms

(EEGs).42,43 Some of the observed phenotypes, such as impaired axon

guidance, are more severe when BACE1 is deficient in the develop-

mental stages.43

In addition to its neuronal roles, changes in BACE1 activity have

been associated with physiological functions including maintenance of

the blood–brain barrier (BBB), angiogenesis, protection against obe-

sity, immune and antimicrobial properties, inflammatory response, and

tumor suppression.44–47 This proposes a metabolic function of

BACE1, and further research into BACE1 and its substrates is

unveiling further physiological functions, which will be further dis-

cussed below.

6 | REGULATION OF BACE1 AT THE
TRANSCRIPTIONAL, TRANSLATIONAL, AND
POST-TRANSLATIONAL LEVEL

BACE1 activity is regulated at the transcriptional, post-transcriptional,

and translation level, with post-translational modifications (PTMs)

required to produce the mature BACE1 protein.48 At the transcrip-

tional level, BACE1 is tightly regulated by its promoter region, which

contains numerous transcriptional binding sites. Of specific interest to

this review are the metabolically regulated transcription factors

hypoxia-inducible factor-1 (HIF-1), cAMP-response element binding

protein (CREB), signaling transducer and activator of transcription

1 (STAT1), and peroxisome proliferator-activated receptor gamma

(PPARy).1 BACE1 levels and activity increase in response to hypoxia,

energy disruption, and mitochondrial stress, owing to HIF-1 binding

the BACE1 promoter.49 Hypoxia causes the hypoxia-responsive ele-

ment (HRE) to bind the HIF-1 transcription factor, stimulating gene

activation. Overexpression of BACE1 has been shown to decrease

CREB phosphorylation, in turn decreasing protein kinase A (PKA)

activity, and cyclic adenosine monophosphate (cAMP) levels.50

Although not well characterized, the presence of a CREB binding site

within the BACE1 promoter suggests that BACE1 regulation of the

cAMP/PKA/CREB pathway, significant in glucose metabolism and

lipid homeostasis, may feedback to regulation of BACE1 gene

expression.51

Inflammation is closely associated with metabolic disease, and

increases in BACE1 expression in response to inflammation have been

attributed to transcriptional regulation. The pro-inflammatory cyto-

kine interferon-gamma (IFNy) causes an increase in BACE1 through

subsequent Janus Kinase 2 (JAK2) and mitogen activated protein

(MAP) kinase signaling causing phosphorylation of STAT1.52 The

phosphorylation of STAT1 leads to its binding of the BACE1 pro-

moter, increasing BACE1 gene expression.52 This action of STAT1 can

be inhibited by suppressor of cytokine signaling (SOCS) 1 and 3, which

prevent phosphorylation of STAT1 on the Tyrosine 701 residue.52

Additionally, studies showed that NSAIDs, used to decrease inflamma-

tion, lower BACE1 activity, likely by reducing PPARy levels.53,54

PPARy is a transcriptional regulator, which acts upon the BACE1 pro-

moter increasing gene expression. Regulation of expression by tran-

scription factors is therefore an important factor in the physiological

function of BACE1, as well as its dysregulation in disease.

TAYLOR ET AL. 3 of 17
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In addition to regulation by transcription factors, BACE1 gene

expression is positively regulated at the transcriptional level by the

BACE1 antisense transcript (BACE1-AS).55 BACE1-AS is reported to

stabilize BACE1 through competitive binding of miR-485-5p which

would otherwise repress BACE1 mRNA translation.56 It is therefore

possible that, by acting as a sponge, BACE1-AS regulates other

miRNAs in a similar manner, significant as numerous miRNAs are

reported to repress BACE1.57–63 The action of BACE1-AS has been

implicated in AD pathology, with increased BACE-AS in turn increas-

ing BACE1 and Aβ-42.64 Dysregulation of the BACE1/BACE1-AS axis

TABLE 1 BACE1 substrates involved in non-neuronal physiological functions

Gene Protein Physiological function Experimental evidence

APP Amyloid precursor protein Aβ contributes to vascular impairments,

inflammation and insulin resistance.

sAPPβ causes ER stress, inflammation and

insulin resistance

Aβ and APP overexpression induce

endothelial dysfunction.37 Aβ levels in

human plasma correlate with vascular

function and diabetes.39

sAPPβ administration mimics palmitate

induced ER stress, inflammation and

insulin resistance in skeletal muscle and

adipose tissue, which is reduced with

BACE1 inhibition.40

IL-1R2 Interleukin-1 receptor I Regulates inflammatory and

immunoregulatory cytokine IL-1 function

through NFκB signaling.

Increased BACE1 expression in in vitro

models show increased levels of IL-1R2

shedding. Soluble IL-1R2 is released into

the circulation and modulates systemic

IL1 activity.33

Jag1 Jagged 1 protein Plays role in hematopoiesis and

cardiovascular development through

interactions with Notch 1 receptors.

BACE1 cleavage sites mapping and site-

directed mutagenesis assays, confirmed

Jag1 as BACE1 Substrate.41

The function of the soluble Jagged 1

ectodomain is unclear, however most

likely to antagonize Notch signaling.

Jag2 Jagged 2 protein Homolog of Jag1, also involved in Notch

signaling.

Jag 2 was less effectively cleaved by BACE1

but also confirmed as its substrate.41

Functions similar to Jag1.

PSGL-1 P-selectin glycoprotein ligand-1 Involved in mediating leukocyte adhesion to

endothelial cells during inflammation and

tissue injury.

Cleavage site of PSGL-1 by BACE1 was

mapped through deletion constructs and

enzymatic deglycosylation of the C-

terminal PSGL-1 fragment.25

Soluble PSGL-1 may disrupt leukocyte

adhesion and diapedesis

ST6Gal 1 α2,6-Sialyltransferase Terminal step of N-glycan biosynthesis of

glycoproteins and plays a role in

formation of atherosclerosis

In vitro experiments show that STGal 1 is

cleaved by BACE1 between Leu37 and

Gln38.42

Soluble ST6Gal1 may disrupt leukocyte

adhesion and diapedesis

APLP1 and

APLP2

Amyloid beta precursor-like protein

1 and 2

Regulate glucose and insulin homeostasis In vivo experiments show that APLP

knockout mice show the same AD-like

symptoms that APP knockout mice

experience.43

APLP knockout mice display improved

glucose clearance and insulin

production.44

IR Insulin receptor Regulates glucose homeostasis and insulin

sensitivity

IR is cleaved by BACE1, producing IRsol and

reducing functional cell surface IR.

Cleavage has been confirmed in both in

vitro and in vivo experiments.18

VEGFR1 (Flt-

1)

Vascular endothelial growth factor

receptor 1

Decoy receptor for VEGF signaling,

negatively regulates angiogenesis

BACE1 knockout mice have retinal

pathology owing to reduced sFlt-1 and

enhanced angiogenesis.45

Soluble Flt-1 plays a role in termination of a

pregnancy.

Note: This table shows confirmed BACE1 substrates with physiological roles, their functions, and experimental evidence.
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also has been implicated in both cardiac dysfunction and epilepsy.38,65

The BACE1 mRNA transcript is further regulated by alternative splic-

ing, reported to influence the activity of the resulting protein. There

are six relatively established BACE1 isoforms (A–F), in addition to

reports of various less well-characterized forms including BACE1-455

and BACE1-12766–69 (Figure 2). Isoform A is 501 amino acids long

and is reported to have superior protease activity.68 Although BACE1

isoforms B–F are reported to have reduced A□ producing activity in

comparison with isoform A, their relative levels of protease activity

are less well defined. The different isoforms have been reported in

varying abundance in different tissues and ages.70,71 This suggests

that alternative splicing may be an important mechanism of regulation

of BACE1 activity and may underlie cleavage of different substrates

and tissue-specific effects; however, this requires further

investigation.

Post-translationally, BACE1 is subject to numerous modifications

that have important effects on trafficking, stability, activity, and

degradation48,72(Figure 3). Alterations in PTMs are a way of inducing

changes in function and activity in response to physiological changes.

This is true for BACE1, with various PTMs strongly influencing activ-

ity. In order for the mature BACE1 protein to be produced, glycosyla-

tion and transient acetylation in the ER are required. This promotes

trafficking of the immature protein to the trans-golgi network,

preventing its degradation.73 The BACE1 protein has four N-linked

glycosylation sites, which are targeted in the Golgi and facilitate pro-

peptide processing, maturation, and transportation.74 Missing glyco-

sylation sites in alternatively spliced isoforms of BACE1 are reported

to contribute to reduced secretase activity.75 Glycosylation has also

been implicated in the pathological increases in BACE1 stability seen

in response to oxidative stress, with bisecting N-acetylglucosamine

(GlcNAc), catalyzed by GlcNAc transferase Gnt-III having been shown

to prevent lysosomal degradation of BACE1.76,77 BACE1 is also phos-

phorylated, with phosphorylation at threonine 252 via p25/Cdk5

pathways found to stimulate protease activity.78 Another important

phosphorylation site is located as serine 498, by casein kinase 1. Phos-

phorylation is important in intracellular trafficking, recognition by

Golgi-localized γ-ear-containing ARF-binding (GGAs), and retention in

acidic compartments when activated, enabling substrate

interactions.79–81 Furthermore obesity increases cdk5 and casein

kinase 1 activity is enhanced. The BACE1 protein is also acetylated at

seven different lysine residues mediated by CoA:lysine

acetyltransferase 1 and 2 (ATase 1 and ATase 2), and ubiquitinated at

K501 which causes translocation to the lysosomes for degradation.6

The ubiquitination site at 501 is also competitively SUMOylated,

which stabilizes the protein and promotes its activity.72 Dysregulation

of PTMs therefore has a substantial impact on BACE1, either altering

enzyme activity or cellular localization, and may play an important role

in alterations in BACE1 activity in response to physiological stimuli.48

F IGURE 2 Alternative splicing of BACE1 produces different isoforms. (A) BACE1 is alternatively spliced at four variable regions; 190–214
(green), 146–189 (blue), 21–120 (yellow), and 1–20 (purple). Alternative splicing of these regions produces at least six distinct isoforms, the most
characterized being Isoforms A–F: Isoform A (501aa), Isoform B (476aa), Isoform C (457aa), Isoform D (432aa), Isoform E (401aa), Isoform F
(376aa) are depicted. Isoforms E and F contain an alternative Exon 1 (pink). (B) The variable regions shown on the BACE1 crystal structure with
inhibitor C3 (red) made using structure 3TPR, on RSCB Protein DataBank (https://www.rcsb.org/). Variable regions 1 (190–214) (green), 2 (146–
189) (blue), and 3 (21–120) (yellow) show close proximity to the inhibitor binding site. The structure is missing 62 residues, including variable
region 1–20, which therefore could not be labeled
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7 | A METABOLIC ROLE OF BACE1: THE
LINK BETWEEN TYPE 2 DIABETES AND AD?

Metabolic dysfunction and type 2 diabetes mellitus (T2D) are long

established risk factors for AD, with T2D sufferers having a 50%

increased risk of developing AD.82 Although the mechanisms underly-

ing this connection are not fully understood, the increasing evidence

for a role of BACE1 in metabolism and T2D presents a possible link.

The prevalence of T2D is significant, with the World Health Organiza-

tion (WHO) reporting 422 million cases worldwide in 2014, with this

only expected to increase. T2D is caused by decreased sensitivity to

insulin, leading to hyperglycemia which can cause serious damage

especially to nerves and blood vessels. Recent studies implicate

BACE1 in alterations in insulin and leptin signaling, presenting BACE1

action as a potential link between AD and T2D.83 BACE1 has been

implicated in T2D via Aβ-dependent and independent processes,

which will be reviewed below.

8 | BACE1 REGULATION OF INSULIN
PATHWAYS

BACE1 is implicated in the pathogenesis of T2D through the insu-

lin pathway. Ordinarily, high blood glucose levels stimulate insulin

production in the pancreas and release into the bloodstream,

where it then travels to insulin responsive tissues such as skeletal

muscle, liver, and adipose tissue.84 Cells detect increased levels of

insulin through insulin receptors, which then stimulates a phosphor-

ylation cascade.85 This leads to tissue-specific effects such as pre-

vention of lipolysis, glucose uptake, stimulation of glycogenesis and

lipogenesis, promotion of protein synthesis, and upregulation of

genes such as fatty acid synthase and malic enzyme genes.84 Col-

lectively, this lowers blood glucose levels, maintaining homeostasis,

and vasodilation.86

BACE1 plays a pivotal role in effective insulin signaling, with high

levels of BACE1 leading to reduced insulin signaling and glucose

uptake, and vice versa. The influence of BACE1 on insulin signaling is

in part through negative regulators PTEN and PTP1B, which are found

to decrease in response to BACE1 inhibition.18,19 Furthermore,

BACE1 can reduce the cell surface expression of biologically active

IRs via cleavage of its ectodomain, in a glucose-dependent manner18

(Figure 4A). The released soluble IR (IRsol) is able to bind insulin,

reducing the abundance of bioavailable insulin, and further impairing

insulin signaling. Tissue expression of BACE1 and plasma levels of the

IRsol are higher in patients with T2D, supporting the theory that

BACE1 cleavage of IR drives the disease.4,87 In zebrafish, BACE2 has

also been implicated in the negative regulation of insulin signaling

through the cleavage and trafficking of the IR.88 Furthermore, thera-

peutic inhibition of BACE2 in mice, has been linked to increased pan-

creatic β-cell function and mass, enhanced insulin production and

F IGURE 3 Post-translational
modifications on BACE1. (A) Diagram
showing all post-translational modifications
reported in the literature, and predicted
phosphorylation sites from Phosphosite
(https://www.phosphosite.org/). This
includes phosphorylation (green) at T47, S59,
S71, S83, S243, S245, S252, S260, S308,
and S498. SUMOylation (red) at K501.

Ubiquitination (orange) at K285, K300 and
K501. Acetylation (blue) at K126, K136,
K275, K279, K285, K299, K300, and K307.
Palmitoylation (yellow) at C478, C482, C485,
and C474. N-linked glycosylation (purple) at
N153, N172, D223, and D354. (B) BACE1
crystal structure with inhibitor C3 (red) made
using structure 3TPR on RSCB Protein
DataBank (https://www.rcsb.org/). Not all
modifications are shown as 62 residues are
missing, including N- and C-terminal regions.
Phosphorylation (green), ubiquitination
(orange), acetylation (blue) and N-linked
glycosylation sites (purple) are labeled on the
BACE1 crystal structure
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F IGURE 4 The role of BACE1 in the
insulin signaling pathway. (A) BACE1 can
impact insulin signaling through the negative
regulators of the insulin signaling pathway,
PTBP1 and PTEN (left), and through cleavage
of the insulin receptor (IR) (right). PTBP1 and
PTEN inhibit PI3K/Akt signaling affecting
glucose uptake, glycogen synthesis, protein
and lipid synthesis, and vasodilation.

Cleavage of the insulin receptor prevents
signaling in response to insulin binding.
(B) BACE1-mediated Aβ production can also
impact insulin signaling. The accumulation of
Aβ causes inflammation, which in turn
stimulates the JAK/STAT3 signaling cascade,
increased SOCS-1 expression and inhibition
of insulin signaling. PI3K/Akt signaling can
also be inhibited by ER stress and Aβ
mediated interruption of phosphoinositide-
dependent kinase-1 (PDK) activity through
binding with its target protein kinase B
(PKB/Akt). Additionally, Aβ competitively
binds the insulin receptor (IR) preventing
insulin binding. Elevated BACE1 activity and
Aβ can therefore lead to dysregulated insulin
signaling. Created with BioRender.com
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improved glucose homeostasis, likely via its role in the cleavage of

Tmem27.89

BACE1 and BACE2 activity can modulate insulin sensitivity

indirectly via the production of Aβ. APP, BACE1, and BACE2 are

all expressed in the liver, and a 30% increase in circulating Aβ was

observed when APP expression was restricted to hepatocytes in a

mouse model.90 The production of Aβ is known to happen in

numerous cell types, with platelets being responsible for 90% of

circulating Aβ,91 and glial cells being a major source of Aβ.92 Insulin

and Aβ have a similar tertiary structure and both bind to IR, mak-

ing Aβ a competitive inhibitor able to reduce cellular insulin sensi-

tivity93,94 (Figure 4B). Insulin sensitivity is also affected by Aβ-

mediated upregulation of SOCS-1, an inhibitor of the interferon-

gamma pathway.95 SOCS-1 is upregulated by Aβ via the JAK2/

STAT3 pathway, leading to insulin resistance.95,96 Notably,

JAK/STAT3 signaling is also regulated by leptin, providing a link to

other aspects of the metabolic syndrome.97 Lee et al showed that

Aβ causes insulin resistance by interruption of phosphoinositide-

dependent kinase-1 (PDK) activity through binding with its target

protein kinase B (PKB/Akt).98 Furthermore, palmitate induced

inflammation and ER stress impairs insulin signaling, as observed in

obese individuals with T2D. BACE1 inhibition can restore insulin

signaling in this setting, while mimicked by sAPPβ.44

BACE1 and BACE2 have been shown to be expressed in skele-

tal muscle, where they have been found in the neuromuscular

junctions of normal adult muscle,99 and found to colocalize with

Aβ in a pathological setting in muscle.100 This is notable as around

70%–80% of circulating glucose is transported into skeletal muscle

via GLUT4 glucose receptors, which are predominately expressed

in muscle and adipose tissue. Muscle glucose transport is impaired

in DIO mice,101 and transport via GLUT4 receptors is compromised

in insulin-resistant diabetes,102 with signaling events downstream

of the insulin receptor being linked to trafficking of GLUT4. If

BACE1 is expressed at a great enough level to produce pathologi-

cal levels of Aβ in the skeletal muscle, this suggests it may be pre-

sent at an abundance able to cleave the IR receptor, and impact

insulin signaling both directly through IR cleavage and indirectly

through Aβ production, in skeletal muscle. This is supported by the

findings that APP processing in C2C12 myotubes directly affects

glucose uptake and GLUT4 translocation.103 Therefore, as APP and

BACE1 are widely expressed, local Aβ production could impact sig-

naling in many cells and tissues.

Taken together, this presents a strong physiological role of

BACE1 in insulin signaling. This may have important implications in

the context of T2D and obesity, as well as providing a potential mech-

anistic explanation for the increased risk of AD in T2D patients.

9 | LEPTIN PATHWAY

In addition to insulin signaling, other metabolic changes associated

with BACE1 have been observed, including lowered plasma leptin and

restored hypothalamic leptin sensitivity in obese mice.19 Leptin is a

hormone released by adipocytes, with the principal role to suppress

hunger and increase fat breakdown through β-oxidation.104 The leptin

receptor (LepR) is localized to the cell membrane, and when bound by

leptin, dimerizes, and initiates JAK/STAT signaling (Figure 5). As leptin

functions via binding of the leptin receptor, changes in its expression

and splicing can reduce metabolism at a given concentration of lep-

tin.104 The Janus Kinases (JAK) associated with the LepR phosphory-

late the receptor, which in turn phosphorylates signal transducer and

activator of transcription 3 (STAT3) proteins. Subsequently, two phos-

phorylated STAT3 proteins dimerize and bind target genes in the

nucleus, leading to a feeling of satiety. Generally, a greater fat deposit

in adipocytes results in greater leptin release, and therefore, theoreti-

cally, increased lipids should equate to decreased hunger.104–106

Leptin signaling can also increase lipid breakdown via thermogen-

esis using β-oxidation, through innervation of adipocytes by

β-adrenergic receptors.107 β-adrenergic signaling stimulates G protein

coupled receptor (GPCR) mediated increase in cAMP production,

stimulating PKA, which upregulates the uncoupling protein 1 (UCP1)

gene expression. The UCP1 gene encodes an uncoupling protein

important in leptin-induced decreases in white adipose tissue.108 In

brown adipose tissue (BAT), β-oxidation produces energy in the elec-

tron transport chain, which is given off as heat, thus decreasing the

levels of adiposity and maintaining a constant weight.

Impaired leptin signaling is frequently observed in obesity and has

been implicated in the development of T2D, with evidence leptin

resistance and hyperleptinemia play a pivotal role.107,109,110 However,

the mechanisms behind this are poorly understood. As plasma leptin

levels function as a signal for stored energy levels, the increases in

adipose tissue observed in obesity lead to hyperleptinemia

(Figure 5B).106 This hyperleptinemia is associated with inflammation,

hyperglycemia, hyperinsulinemia, insulin resistance and high circulat-

ing triglycerides, and an increased risk of atherosclerosis.111 In addi-

tion to hyperleptinemia, there is evidence that impairments to leptin

sensitivity can result from inflammation, including ER stress.112,113

There is evidence of an inverse relationship between BACE1 and lep-

tin signaling. BACE1 expression is suppressed by leptin signaling,

whereas BACE1 levels are increased by both obesity and T2D.114

Therefore, BACE1 may play a role in the mechanisms behind changes

in leptin levels and sensitivity.4,19 Inhibition of BACE1 in diet-induced

obese (DIO) mice normalized the STAT3 response, alongside improv-

ing glucose homeostasis, reducing hypothalamic inflammation, and

normalizing hypothalamic leptin sensitivity via NPY, AgRP, and POMC

signaling.19 Supporting this, BACE1 knock-in was found to increase

adipogenesis, hyperleptinemia, PTP1B, and ER stress.34 Interestingly,

both BACE1 knockout and inhibitor-treated mice show no change in

daily food intake while presenting with decreased body weight,

suggesting body weight changes are likely through increased energy

expenditure.4,19 This is supported by increased heat production

observed in BACE1 knockout mice and is likely a result of the impact

of BACE1 on UCP1 expression.4,115 By contrast, BACE2 knockout is

associated with an adverse metabolic phenotype, including enhanced

weight gain, hyperphagia, hyperinsulinemia, and leptin and insulin

resistance.116 This presents a role for the BACE1 in leptin sensitivity
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and responsible for energy expenditure and thermogenesis and sug-

gests that the homologous BACE2 enzyme may also play an

alternative role.

Elevated levels of circulating fatty acids in the setting of obesity

and leptin resistance increase palmitoylation of proteins.117 The

palmitoylation of BACE1, a modification that has been linked to meta-

bolic dysfunction, namely fatty acid and cholesterol levels, may cause

increased BACE1 activity in response to increases in circulating tri-

glycerides. BACE1 is palmitoylated at four cysteines found in C-

terminal cytosolic and transmembrane domains, which consequently

stabilizes and increases protein levels.6 When palmitoylated, BACE1

localization to lipid rafts is enhanced, promoting Aβ production.118

Aberrant palmitoylation in response to metabolic dysfunction has

been suggested to extend BACE1 half life, a theory supported

by the colocalization of BACE1 and cholesterol in

hypercholesterolemia.119–121 This suggests that altered palmitoylation

in response to metabolic dysfunction could be an important mecha-

nism behind pathological increases in BACE1 activity.

Taken together, this suggests BACE1 is a pivotal enzyme in the

development of cellular leptin resistance observed in obesity and

T2D; however, the mechanism is unclear. Administration of Aβ has

been shown to cause leptin resistance (Figure 5).122,123 While

BACE1-mediated proteolysis of the leptin receptor is yet to be

determined.

10 | THE ROLE OF BACE1 IN BAT
DIFFERENTIATION

In addition to β-oxidation via leptin signaling, BACE1 has also been

implicated in body weight regulation via thermogenesis and its role

in BAT differentiation.124 BAT generates heat through lipid break-

down, via UCP1-mediated mitochondrial uncoupling, a function that

has become a therapeutic target for obesity.125 The abundance of

BAT is greatest in infants and hibernating animals, to protect

against hypothermia, as it contains a greater amount of mitochon-

dria than white adipose. BAT dysfunction is associated with dys-

regulation of glucose metabolism and is observed in aging and

metabolic disease.124,126,127 This decline in BAT function has been

attributed to reduced expression of the microRNA-processing node,

Dicer1.124,128 Although the reasons for downregulation of Dicer1

have not been fully elucidated, it has been shown to occur in

response to hypoxia.128 Dicer1 is an important enzyme in the pro-

duction of small interfering RNA (siRNA) and microRNA (miRNA),

via cleavage of double stranded RNA. Downregulation of Dicer1

leads to reduced expression of functional microRNAs (miRNA).

These small non-coding RNAs regulate stability, degradation and

translational ability of target mRNAs and can alter adipocyte differ-

entiation.129 In DIO models, Dicer1 downregulation resulted in

decreased expression of miR-328.124 This reduction is miR-328

F IGURE 5 The role of BACE1 in the
leptin pathway. BACE1 contributes to
dysregulated leptin signaling directly and
indirectly. Elevated BACE1 expression is
associated with increased PTP1B and
SOCS3, which negatively regulate JAK2/
STAT3 signaling, preventing leptin-
stimulated gene regulation. When BACE1 is
reduced, energy expenditure is increased

likely via increases in UCP1 expression and
□-oxidation. Aβ-mediated inflammation can
cause JAK/STAT3 signaling and ER stress,
which can increase PTP1B and SOCS-3
transcription, and regulate genes important
in appetite and body weight regulation and
β-oxidation. Created with BioRender.com
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was accompanied by a decrease in genes associated with BAT

function, including UCP1.124 The action of miR-328 in promoting

BAT function and differentiation is believed to occur via its silenc-

ing of BACE1, preventing BACE1 promotion of myogenesis and

therefore inhibition of BAT commitment (Figure 6). Significantly,

overexpression of miR-328 was found to counteract the BAT

downregulation seen in obesity.124 In addition to the Dicer1/miR-

328/BACE1 axis in BAT function and differentiation, BACE1 over-

expression has also been previously linked to reduced miR-328

activity in the context of AD.62 Furthermore, in vivo silencing of

BACE1 was found to delay DIO induced weight gain, improve glu-

cose tolerance, increase energy expenditure and insulin sensitivity,

and elevate UCP1 expression in brown fat.4 This suggests that

obesity induced Dicer1 downregulation decreases miR-328,

preventing BACE1 silencing and causing a decrease in BAT differ-

entiation and thermogenesis as well as BACE1-mediated impair-

ments in glucose metabolism and homeostasis. This presents an

important metabolic role for BACE1 and highlights BACE1 as a

potential therapeutic target for the treatment of obesity induced

diabetes.

11 | THE EFFECT OF BACE1 ON THE
VASCULATURE

BACE1 has been associated with the cardiovascular system via vari-

ous mechanisms, including angiogenesis, vasculogenesis, vasodilatory

pathways, and atherosclerotic plaques. The action of BACE1 has been

linked to notch signaling, important in angiogenesis.130 BACE1 regu-

lates Notch3 signaling via direct cleavage of JAG1, in turn, increasing

aberrant angiogenesis and vessel sprouting.131 In addition to the

direct action of BACE1, overexpression of Aβ also coincides with a

decrease in JAG1/Notch3 signaling.46 Although it requires further

investigation, it has been suggested that Aβ interact directly with

Notch genes.132 The injection of Aβ-42 into the rat hippocampus was

found to increase angiogenesis, likely via vascular endothelial factor

(VEGF) and an inflammatory response.133 However, contradictory

studies have shown that both Aβ and BACE1 inhibitors can inhibit

angiogenesis in tumor models.134 Furthermore, BACE1 is also respon-

sible for ectodomain cleavage of vascular endothelial growth factor

receptor 1 (VEGFR1), a receptor important in the regulation of angio-

genesis and vascular permeability.135 Whether BACE1 can regulate

adipose tissue angiogenesis in the setting of metabolic dysfunction is

an interesting concept that requires further investigation.

Atherosclerosis is an important factor in the development of car-

diovascular disease, including myocardial infarction, cerebrovascular

accident, and stroke.136 BACE1 is implicated in atherosclerotic plaque

formation and is increased in the presence of increased cholesterol.

High cholesterol has been shown to affect endocytic trafficking of

BACE1 and APP, resulting in increased Aβ production.137,138 The pro-

duction of Aβ is enhanced in atherosclerotic development, with APP

knockout mouse models exhibiting a decrease in atherosclerotic plaque

formation and increased stability in the aorta.139–141 BACE1 cleavage

of ST6Gal-1, a protein involved in the terminal step of N-glycan bio-

synthesis of glycoproteins, contributes to preventing monocyte trans-

endothelial migration, a pivotal mechanism in the initial stages of

atherosclerosis.142 ST6Gal-1 increases adhesion between endothelial

cells and monocytes as well as aids monocyte penetration into the

endothelial tissue.17,143 ST6Gal-1 is found at decreased levels in ath-

erosclerosis development, this suggests a role for BACE1 in its regula-

tion. Furthermore, the dysregulation of the BACE1/BACE1-AS/Aβ axis

is associated with heart failure, with both BACE1-AS and BACE1 found

upregulated.38 This demonstrates the close relationship between

BACE1 action, atherosclerosis formation, and cardiovascular disease.

Another impact BACE1 can have on the cardiovascular system is

through the Aβ-induced vascular dysfunction. Aβ binds RAGE (recep-

tor for advanced glycation endproducts) or CD36 receptors, activating

NADPH oxidase, leading to production of reactive oxygen species

(ROS).35,36,144 An excess of ROS causes oxidative stress and

decreased expression of endothelial nitric oxide synthase (eNOS).145

This results in decreased production of the vasodilatory molecule nit-

ric oxide (NO), and increased endothelin-1, which impairs the

vasodilatory ability of blood vessels.146 It has also recently been dem-

onstrated that BACE1 is also modified by the vasodilator NO, which

S-nitrosylates BACE1 at high levels inactivating the enzyme.147

F IGURE 6 The role of BACE1 in brown adipose fat commitment.
Dicer1 cleavage of pre miRNA produces the miR-328. miR-328 binds
BACE1 mRNA, regulating the stability of the transcript and therefore
BACE1 expression. BACE1 promotes myogenesis and consequently
inhibits brown adipose tissue (BAT) differentiation. Silencing of
BACE1 by miR-328 therefore increases pre-adipocyte commitment to
brown adipose tissue. Created with BioRender.com
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Furthermore, accumulation of Aβ in blood vessels, as seen in cerebral

amyloid angiopathy (CAA), leads to arterial stiffness.148

The action of Aβ on vascular endothelial cells can lead to impair-

ments in tight junctions and BBB dysfunction, capillary degradation,

inflammation, impaired vascular clearance, and atherosclerotic plaque

formation.148–150 Together, this presents an important physiological

role for BACE1 within the cardiovascular system and as an important

enzyme in cardiovascular disease.

12 | BACE1 IN IMMUNE FUNCTION

AD and cardiometabolic diseases share chronic inflammation and

immune cell activation as comorbidities. Immune cells, including T

cells and macrophages, important contributors to inflammation,

hyperglycemia and obesity-associated T2D,151 have recently been

found to be abundant in BACE1 protein suggesting it might play a role

in their function.

The inflammation observed in Alzheimer's and cardiometabolic

diseases may be both an upstream and downstream effect of BACE1.

Nuclear factor-kappa B (NFκB) is a key regulator of the innate immune

system and plays a role in gene expression, inflammation, and oxida-

tive stress.152,153 Increases in NFκB activation are associated with

obesity,154 T2D,155 and AD.152 NFκB-associated inflammation has

also been experimentally linked to insulin resistance.156 The BACE1

promotor has an NFκB binding site. When phosphorylated, NFκB

increases BACE1 promotor activity and transcription.152 Thus, inflam-

mation induced activation of NFκB, facilitates the upregulation of

BACE1 expression, and subsequently increase Aβ production. Activa-

tion of NFκB in response to inflammation is observed in macrophages,

astrocytes, and microglia and has been implicated in a positive feed-

back loop in astrocytes whereby increased BACE1 leads to increases

levels of neurotoxic Aβ, in turn increasing astrocyte activation and

inflammation.157 Furthermore, treatment with non-steroidal anti-

inflammatory drugs (NSAIDs) was found to decrease BACE1 transcrip-

tion and subsequent production of Aβ.152 Therefore, a positive feed-

back loop of inflammation induced NFκB activation, and increases in

BACE1, may be fundamental in cardiometabolic function and disease.

BACE1 has been shown to be important in Th17 differentia-

tion.158 BACE1 expression is upregulated in macrophage foam cell

regions of atherosclerotic plaques.141 In vitro experimentation clari-

fied that the role of BACE1 was predominantly attributed to foam cell

development. Foam cells, created through the ox-LDL activation of

macrophages, presented significantly elevated BACE1 levels com-

pared with unstimulated cells. Additionally, once BACE1 was knocked

down, the resultant foam cells had significantly less lipid droplets,

demonstrating that BACE1 has a role in foam cell differentiation and

consequent atherosclerotic plaque formation. Conversely, reduced

BACE1 expression in macrophages has been shown to increase mac-

rophage phagocytosis following peripheral nerve injury.159 Collec-

tively, this points to BACE1 regulating immune cell function; however,

this may be disease and/or stimulus dependent and warrants further

investigation.

13 | ACTION OF METABOLIC DRUGS ON
BACE1

The proposed metabolic roles of BACE1 are supported by the com-

mon mechanisms and treatment targets between T2D, obesity, and

AD, with the use of various antidiabetic and metabolic therapies in

the treatment of AD showing promising results.160

Although research has proved contradictory, the use of NSAIDs

has been tested in the treatment of both AD and T2D.161–163

NSAIDs function by reducing the disease associated inflammation,

via inhibition of NF-κB signaling; however, they notably also reduce

BACE1 transcription.152,164 The antidiabetic drug liraglutide, in addi-

tion to use in treating T2D, has been investigated for the treatment

of AD, obesity, and weight loss.165 Liraglutide is a long-acting

glucagon-like peptide-1 (GLP)-1 receptor agonist, which functions

via increasing the release of insulin from the pancreas while simulta-

neously decreasing glucagon release. Liraglutide reduces Aβ plaque

production and the severity of AD symptoms.166–168 The action of

liraglutide regarding both Aβ production and alleviating insulin resis-

tance has been shown to occur via reducing BACE1 activity.169

Improvements in AD are similarly seen with other antidiabetic drugs,

for example Glimepiride, which when used on patients with AD

shows improved memory and cognitive functions.170 Lixisenatide

also shows positive effects on glucose homeostasis and improve-

ment of cognitive functions suggesting a possible therapeutic effect

for both AD and T2D.171,172 The T2D drug Pioglitazone, a PPAR-γ

agonist, has demonstrated control of plasma Aβ levels, cerebral

blood flow, and shown improvements in cognitive function.173 This

action of Pioglitazone is thought to be through its increasing low-

density lipoprotein receptor-related protein 1 (LRP1) levels and in

turn increasing Aβ clearance.174

Metabolic drugs are known to downregulate BACE1, including

statins and metformin, and although it requires further investigation,

it is possible the desired action of these drugs occurs via their impact

on BACE1 expression. The increasing evidence for insulin resistance

and glucose metabolism playing an important role in dementia led to

the investigation of metformin in AD treatment, where it was found

to reduce neuronal insulin resistance and improve glucose uptake via

activation of AMPK, IR, and PI3/Akt signaling, and attenuate produc-

tion of Aβ.175 It is important to note other studies have only reported

a reduction in Aβ production in response to metformin when in com-

bination with insulin.176,177 Significantly, the increased risk of AD seen

in patients suffering with T2D is reduced with metformin treat-

ment.178 In August 2020 the Metformin in Alzheimer's Dementia Pre-

vention (MAP) study started a multicenter phase 2/3 prevention trial

to evaluate the benefit of metformin treatment on AD development.

The likely mechanism behind this is the reduction in BACE1 activity in

response to metformin treatment.177 As insulin and Aβ competitively

bind to the IR, reducing BACE1 activity will in turn reduce Aβ and

should increase the insulin sensitivity of the IR. As well as presenting

BACE1 as an important target in the mechanisms of metabolic drugs,

this also highlights insulin insensitivity as an early stage of AD devel-

opment.179 This presents BACE1 as an important molecule in the
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potential repurposing of metabolic drugs, with the mechanism behind

their success arguably dependent on BACE1.

The same could be said for statins, a widely prescribed cholesterol

reducing drug. Statins are associated with decreased Aβ formation,

attributed to the reduction in cholesterol which in turn regulates

BACE1.180–183 Statins also reduce the levels of mevalonate, which

normally stimulates cholesterol transporter (apoE) secretion, a risk fac-

tor for AD.184 A reduction in apoE secretion therefore reduces plaque

formation and in turn improves cognitive function.180 It is arguable

that the metabolic approach to treatment via statins and metformin

work primarily via the subsequent downregulation of BACE1. In addi-

tion to highlighting the involvement of BACE1 in various physiological

functions, this presents BACE1 as an important therapeutic target.

14 | THERAPEUTIC BACE1 INHIBITION

Owing to its association with the production of Aβ and the devel-

opment of AD, BACE1 has long been an attractive therapeutic tar-

get. Unveiling physiological functions of BACE1 and consequences

of its dysfunction, alongside it's established role in AD, highlights

the importance of a successful BACE1 inhibitor. Several BACE1

inhibitory drugs have been developed, yet despite progression to

phase 3 clinical trials, none have made it to wide clinical use.185

This has been attributed to a lack of understanding of the physio-

logical function of BACE1, as highlighted in this review, with the

inhibitors either not proving effective or having undesirable effects,

including worsening of cognition. However, the BACE1 inhibitors

that have been developed have been studied focusing primarily on

AD, and arguably side effects deemed undesirable in the treatment

of AD may be beneficial in the treatment of metabolic dysfunction.

For example, Verubecestat is a BACE1 inhibitor tested in phase

3 clinical trials on patients with mild to moderate AD.186 Despite

showing a reduction in cerebrospinal fluid Aβ levels to 63%–81%,

no beneficial effect on cognition was observed for Verubecestat.186

Adverse side effects were seen including an increase in falls and

injuries, sleep disturbance, suicidal thoughts, hair color change and

weight loss along with decreased appetite.187 However, the side

effects of weight loss and the impact on appetite deemed negative

in the treatment of AD could be hugely beneficial for the treat-

ment of metabolic syndrome. These effects likely occur through

the action of BACE1 on the leptin pathway and insulin signaling

pathway, and could revolutionize the treatment of metabolic dys-

function. Similar effects were seen with Lanabecestat, another

BACE1 inhibitor undergoing clinical trials, with a lack of cognitive

improvement observed but with the side effect of weight loss.188

A greater number of individuals observed a weight loss of at least

7% when taking Lanabecestat, than individuals taking the placebo,

with mean weight loss at �1.9 kg for the 50-mg Lanabecestat

group compared with 0 for the placebo group.188 The potential of

Lanabecestat in obesity treatment has been recognized by

AstraZeneca, who have recently obtained a patent for obesity

treatment.189 In line with trial findings, the patent highlights

differences in weight loss based upon body mass index (BMI), an

effect supported by preclinical research.19 In trials, weight loss was

greatest in individuals with a higher BMI, suggesting Lanabecestat

could treat excess weight observed in obesity, without causing

extreme weight loss when BMI is reduced. Despite the promise of

this approach, it is important to consider the difficulties faced with

BACE1 inhibition. The broad expression and substrate profile of

BACE1 may be responsible for the various adverse effects on cel-

lular processes observed in clinical trials. However, a greater under-

standing on the physiological roles of BACE1 may help unravel

previous failings. It is also important to note that Verubecestat

shows greater selectivity for BACE2 than BACE1, with Lan-

abecestat having a similar selectivity for both.190 It may therefore

require further investigation into ensuring these effects are medi-

ated by BACE1. Given the extent of research into effective BACE1

inhibitors for AD, the repurposing of BACE1 inhibitory drugs for

treatment of metabolic syndromes such as diabetes and obesity, or

as a dual therapy against both diseases, could be a huge advance-

ment in the treatment of metabolic disorders.

15 | BACE1 AS A BIOMARKER

BACE1 protein or markers of activity have shown promise to be

blood-based biomarkers for a number of diseases, including AD.

BACE1 protein is detectable in plasma and levels are significantly

raised in patients with mild cognitive impairment, while also predicting

conversion of MCI to AD.191 Furthermore, plasma BACE1 protein

levels are elevated in people with T2D and correlate with glycemic

control, independently of cognition.192 The lncRNA species

BACE1-AS strongly correlates with BACE1 expression and is also

measurable in human plasma samples, with levels increased in patients

with AD193 and autism.194 Currently, there is a lack of consensus for

plasma Aβ as a useful biomarker for AD. However, Aβ levels are ele-

vated in patients with cardiometabolic diseases including obesity,

T2D, and heart failure.38,195,196

16 | FUTURE DIRECTIONS

It is clear that the BACE1-AS/BACE1/Aβ axis has important physio-

logical functions outside the brain. While, elevated BACE1 activity is

observed during the development of a number of diseases, in addition

to AD. This poses the exciting concept that current BACE1 inhibitors,

developed for the treatment of AD, could be repurposed for the treat-

ment of cardiometabolic diseases.

Whether expression and activity of BACE1 could be used as

potential prognostic and/or therapeutic biological marker(s) will

require further research into disease specificity and sensitivity but

remains a promising possibility.

Taken together, this demonstrates the underappreciated func-

tions of an enzyme primarily investigated for its role in AD. BACE1

clearly plays a role in multiple physiological and pathological cellular
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processes, and future studies are needed to fully understand this

important enzyme.
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