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Abstract  
 

The likelihood ratio (LR) framework has been widely adopted in voice (and other forensic) 

evidence evaluation. However, in developing any forensic comparison system, it is necessary 

to make subjective and pragmatic decisions, which in turn may affect the results that system 

produces. One such decision relates to not only the size of the samples used for training and 

testing the system, but also which specific individuals are used in the samples. The current 

study explores the relationship between sampling variability (i.e. the choice of speakers used 

for training and testing systems, rather than sample size) and the choice of linguistic features 

used. The first three formants and f0 from the vocalic portion of the filled pause um were used 

as input, as well as both vowel and nasal durations. 25 speakers were used in test, training and 

reference sets respectively. Experiments were carried out using all 31 logically possible 

combinations of features, and replicated 100 times using different configurations of 25 training 

and reference speakers. The results show that a) overall, Cllr mean reduces with more features 

involved and no clear pattern is observed in Cllr range; meanwhile, considerable fluctuation is 

observed within individual speakers; b) while the majority of speakers yield stronger mean 

LLRs in systems with three or more features, a few speakers can be well-separated using one 

or two features; c) sampling variability in the training and reference speakers has limited effect 

on individual test speakers’ LR outputs in same-speaker (SS) comparisons, but a marked effect 

on different-speaker (DS) LRs.  
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1 Introduction 

 

During the past few decades, the likelihood ratio (LR) framework has been widely adopted in 

forensic voice comparison (FVC) and other forensic sciences for evidence evaluation 

(Champod & Meuwly, 2000; Morrison, 2009b; Nolan, 2001; Rose & Morrison, 2009). The 

numerical LR framework relies on empirical data to estimate the strength of evidence and 

evaluate the validity and reliability of the system used to perform the comparison. Two crucial 

issues lie at the heart of such work: whether the LR is assessing what the analyst wants it to 

(validity), and whether one would get the same LR value if the comparison is repeated 

(reliability). Numerous empirical studies have explored the validity and reliability of LR output 

as a function of sample size (e.g. Hughes, 2017; Ishihara & Kinoshita, 2008; Kinoshita & 

Ishihara, 2015), sampling variability (e.g. Ali et al., 2015; Wang et al., 2019) and the choice of 

linguistic features (e.g. Hughes et al., 2016; Morrison, 2009a; Zhang et al., 2011). However, 

the majority of this research places a strong emphasis on assessing overall performance. By 

contrast, few have explored the behaviour of individual speakers within these systems (but see 

e.g. Lo, 2021) and the interaction between sample size, sampling variability and choice of 

features. Given what really matters in a real case is the specific voice of the speaker(s) under 

analysis, this raises issues about whether overall performance provides adequate insight into 

the validity and reliability of an LR system in a specific case, because we are often dealing 

with small sample sizes in the real world. In computing an LR, potential variability could be 

caused by a range of factors (see Morrison, 2016 for details). The current study explores the 

relationship between overall performance and individual speakers’ behaviour in relation to two 

sources of variability: sampling variability in the relevant population, and variability in the 

choice of linguistic features. The following sections give some background information on LR-

based FVC and previous studies in system testing. Detailed experimental methods are then 



presented in section 2, followed by results (section 3), discussion (section 5) and conclusion 

(section 6).  

 

1.1 Likelihood ratio based forensic voice comparison 

 

In forensic voice comparison (FVC), a typical scenario is to compare recordings, one of an 

unknown offender, and the other of a known suspect (in the UK the suspect recording is from 

a police interview). The role of the expert is to evaluate the suspect and offender speech 

samples to assist the trier-of-fact in determining the likelihood that the two speech samples 

came from the same person or different people. The linguistic-phonetic method is widely 

employed in casework around the world, where segmental (e.g. vowels, consonants), 

suprasegmental (e.g. f0, intensity, speech rate), and non-linguistic features, such as hesitation 

markers, are analysed (Gold & French, 2011, 2019). Applying the LR framework to FVC 

means that experts need to estimate the strength of evidence under the two competing 

propositions of the prosecution and defence (Robertson et al., 2016), i.e. what is the probability 

of observing the speech evidence had it come from the same speaker or different speakers ? 

The LR equation is expressed in [1]:  

 

		𝐿𝑅 = 	
!(#|%!,')

!(#|%",')
                                                                [1] 

 

where 𝑝(𝐸|𝐻!)  indicates the probability of the evidence given the suspect and offender 

samples come from the same person; 𝑝(𝐸|𝐻") represents the probability of the evidence given 

the suspect and offender samples come from different people; 𝐼  stands for background 

information about the case. Essentially, the numerator of the LR is an estimation of the 

similarity between the suspect and offender speech patterns, while the denominator is an 

estimation of their typicality in relevant population, i.e. what is the probability of observing the 



offender’s speech pattern had it not come from the suspect but some other randomly selected 

member of the relevant population?  

 

In order to generate a LR (be that numerical or verbal; or indeed any form of conclusion in a 

FVC case), the expert employs a system. This is defined broadly as the particular courses of 

action that are used to compare the suspect and offender samples (Morrison, 2013), e.g. data 

used to represent the relevant population, variables chosen for analysis, methods of analysing 

those variables, statistical models used for score generation, and calibration methods used for 

score-to-LR conversion. For an end user (e.g. court) to be able to interpret the conclusion 

provided by the expert appropriately, it is essential to understand the validity of the system 

used to generate that conclusion. The key question, therefore, is: to what extent does the system 

perform the task that it is designed to do? There is now growing pressure from within the 

forensic sciences and from external government and regulatory bodies for experts to validate 

their systems empirically using data where the ground truth is known, and to present the results 

of validation tests to the end user. Within data-driven LR-based FVC (and across other 

disciplines) there is now a widely accepted framework for validating systems (Morrison et al., 

2021). This involves two stages and three separate datasets, namely, test, training and reference 

datasets. In stage one (the feature-to-score stage), pairs of same-speaker (SS) and different-

speaker (DS) recordings taken from the test and training datasets are compared to produce 

training and test scores which indicate the similarity between the SS and DS samples, and 

assessing typicality with respect to a reference population. In stage two (the score-to-LR stage), 

the training scores are used to generate calibration coefficients which are then applied to the 

test scores to convert them to interpretable LRs. System validity and reliability metrics are 

generated from the calibrated LRs for the test set. 

 
 



 

1.1.1 Feature selection and overall performance  

Numerous previous studies have looked at the performance of FVC systems using different 

linguistic features as input, for example, Morrison (2009a) using the Australian diphthong /aɪ/; 

Zhang et al. (2011b) using the Mandarin triphthong /iau/, and Chen & Rose (2012) using the 

Cantonese triphthong /iau/. Polynomial curves were fitted to segmental features, and the 

coefficients of polynomial curves were used as the input for LR computation. Moreover, some 

studies also investigated the speaker-discriminatory power using consonants, for example Rose 

(2003) with Japanese nasals,  Rose (2011) with Japanese fricatives, and Kavanagh (2012) with 

English laterals. Other studies have looked into the speaker-discriminatory power using 

suprasegmental variables, e.g. Cantonese tonal f0 (Rose & Wang, 2016), long-term f0 

distribution (Kinoshita et al., 2008), voice quality (Hughes et al., 2019), and articulation rate 

(Lennon et al., 2019). In general, there is the tendency in the literature that higher formants 

outperform lower formants.  

 

1.1.2 Sampling variability, sample size and overall performance  

 

Sample size is one of the potential sources of variability in LR output. In principle, the larger 

the sample, the more precise the output. However, in linguistic casework analysts often deal 

with small sample sizes. The question for real casework then is, how do systems perform with 

limited data? Previous studies have explored overall performance as a function of the number 

of test, training and reference speakers used. For example, Ishihara & Kinoshita (2008) and 

Kinoshita & Ishihara (2014) used long-term distribution of f0 data (i.e. the overall shape of 

long-term f0 distribution) from 241 Japanese speakers. The Cllr and EER reduced from ca. 0.7 



to 0.4 and 17.2% to 8% respectively as the number of reference speakers increased from 10 to 

120. Due to the limited number of recordings per speaker, the credible interval (a Bayesian 

measure of reliability; Morrison, 2016) was calculated for DS comparisons only. Results 

showed that there was not much improvement in system precision once the number of the 

reference speakers reached 30. Similarly, Hughes (2017) used simulated data to investigate 

overall performance as a function of number of test, training and reference speakers. Midpoint 

F1, F2 and F3 values were simulated using the acoustic data measured for the filled pause um 

from 86 male speakers of Standard Southern British English. The system was tested by varying 

the number of speakers from 2 to 100 for test, training and reference sets respectively. The 

results from Hughes (2017) showed that system validity was more affected by the number of 

test and training speakers and less affected by the number of reference speakers. A relatively 

stable system can be achieved with large amounts of training and test speakers (e.g., 30 to 40 

speakers per set) and a moderate number of reference speakers (e.g., 15 speakers). 

 

Wang et al. (2019) showed that overall performance is not only affected by the number of 

speakers used in test, training and reference sets, but also which speakers are used in each set. 

They explored overall performance as a function of the configurations of test, training and 

reference speakers. It was predicted that stable systems would yield consistent results 

regardless of the different configurations of speakers in each data set. 155 Cantonese speakers 

and 73 SSBE speakers were used. The Cantonese sentence final particle (SFP) /a/ and English 

FP um were used as the linguistic variables, and fixed sets of acoustic features (F1 and F2 for 

/a/ and F1, F2 and F3 for um) were used as input for computing numerical LRs. 30 speakers 

were used for each of the test, training and reference sets for Cantonese data, while 20 speakers 

were used for each of the test, training and reference sets for English data. Four experiments 

were run, and each replicated 100 times. In each replication the choice of speakers in the data 



sets was randomly varied. In one experiment, test, training and reference speakers were all 

varied across replications. This mimics research practice in LR-based FVC where normally 

only one configuration of test, training and reference speakers is used. In the other three 

experiments only one of the test, training or reference groups was varied across replications. 

In varying only one of the data sets, the sensitivity of the overall performance was assessed in 

relation to different configurations of speakers in each data sets respectively. Results show that 

both Cantonese SFP /a/ and English FP um yielded the lowest system stability when varying 

speakers in all three datasets, with the Cllr values ranging between 0.60 to 0.97 for /a/ and 0.32 

to 1.33 for um. However, the variability was primariy caused by different configurations of test 

speakers. The Cllr ranged from 0.58 to 0.86 for /a/ and 0.33 to 0.94 for um when only test 

speakers were varied, while varying only training or only reference speakers had a limited 

effect on system stability. Given 1 is the logical threshold for Cllr (Morrison et al., 2021), i.e. 

systems with Cllr higher than 1 do not give much useful information, the overall performance 

shows a markedly wide range by simply randomly select different test speakers from the 

relevant population.  

 

1.2 The current study 

 

Most previous studies have placed a strong emphasis on generic system testing (i.e. testing 

different linguistic/signal processing features for lower Cllr/EER). The current study explores 

the relationship between overall performance and individual speaker behaviour under two 

different conditions. First, we explore how overall performance and the LRs for individual 

speakers are affected when different features and sets of features are used; in this regard we 

compare single-feature systems (using individual vowel formants F1, F2 or F3) and various 

multi-feature systems (using different combinations of formants, e.g. F1 and F2 or F2 and F3). 



This is because, in real cases, the speech data available for analysis varies (Gold & French, 

2011) and not all features are reliable in different conditions, e.g. the estimates of F1 are 

artificially raised by telephone transmission by an average of 14% for landlines (Künzel, 2001) 

and 29% for mobiles (Byrne & Foulkes, 2004). Second, we explore how system and individual 

speakers’ results are affected by the random effects of inter- and intra-speaker variation within 

the relevant population. Throughout our experiments, the test speakers are held constant (i.e. 

the same test speakers are used with different configurations of training and reference speakers) 

to allow analysis of results across the same set of comparisons (see 2.2 for detailed 

experimental procedure).  

 

2 Method 

 

2.1 Speech materials and feature extraction 

 

The data used in the current study is an extension of that used by Hughes et al. (2016), 

containing the FP um from 90 SSBE speakers (drawn from the DyViS corpus; Nolan et al., 

2009). All speakers were aged between 18 and 25. The FP um was extracted from spontaneous 

non-contemporary speech in two tasks, a mock police interview (Task 1) and a telephone 

conversation with an ‘accomplice’ (Task 2). All tasks were recorded in high-quality studio 

conditions (44.1 kHz sampling rate, 16-bit depth).  

 

For each token, the data consists of nine raw Hz measurements for each formant and f0 taken 

at +10% steps across the duration of the vowel, as well as nasal and vocalic duration (see 

Hughes et al. 2016 for detailed data extraction procedure). There are on average 35 FP um 

tokens per speaker per task. The first three formants and f0 of each token were fitted using 



quadratic polynomial curves, as no single formant or f0 was expected or observed to display a 

more complex shape. Figure 1 shows an example of quadratic fitting to five tokens from 

speaker #114 in Task 1 (we refer throughout the paper to DyViS speaker codes in the form 

#114). The quadratic coefficients of the first three formants and f0 as well as the vocalic and 

nasal durations were then used as the input features for score generation and LR computation.  

 

 

Figure 1. Quadratic curve fitting to F0, F1, F2 and F3 of five tokens from speaker #114 in 

DyViS Task 1.  

 

2.2 Experiment procedure  

 

25 speakers were randomly sampled to act as the test, training and reference data respectively. 

Task 1 and Task 2 were used as the nominal suspect and offender samples respectively. The 

SS and DS pairs of test and training data were compared using the MVKD formula (Aitken & 

Lucy, 2004) to produce test and training scores. The training scores were then used to train a 

logistic regression model (Brümmer et al., 2007; Morrison, 2011) which was then applied to 

the test scores to produce calibrated LRs. The implementation of the current experiment was 

carried out in R (R Core Team, 2020) using the fvclrr package (Lo, 2018). In order to 

●●

●● ●●

●● ●● ●●
●●

●● ●●

●●

●●
●● ●● ●●

●●
●● ●● ●●

●●
●● ●● ●● ●●

●● ●● ●● ●●

●● ●● ●● ●● ●● ●● ●● ●● ●●

●● ●●
●● ●●

●● ●● ●● ●●
●●

●● ●●
●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●
●●

●●

●●

●●

●●
●●

●●
●●

●●

●●

●●

●●
●● ●● ●●

●●

●●

●●

●●●●

●●
●● ●● ●●

●●
●●

●●
●●

●●

●●

●●
●●

●●

●● ●●

●●

●●

●●

●●

●● ●● ●● ●●
●●

●●
●●

●●

●●

●●

●●
●● ●●

●●
●●

●●

●●

●●

●●
●●

●●
●● ●● ●●

●●

●● ●●
●●

●● ●●

●● ●●

●●

●●

●●

●● ●●

●●

●●
●●

●●

●●

●●

●●

●●
●●

●●

●● ●● ●●

●● ●●
●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●
●●

●●

●● ●●

●●
●●

●●

●●

●● ●●
●● ●●

●● ●● ●●
●●

F2 F3

F0 F1

10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90

500

600

700

2200

2400

2600

100

110

120

130

140

1200

1300

1400

1500

Measurement (+ 10% step )

F
o
rm

a
n
t(

H
z
) Token

●

●

●

●

●

a

b

c

d

e



explore overall performance and individual speaker behaviour with respect to the choice of 

linguistic features and sampling variability in the relevant population, experiments were carried 

out using all 31 possible combinations of features. i.e. 5 single-feature systems, 10 two-feature 

systems, 10 three-feature systems, 5 four-feature systems and 1 five-feature system. 

Experiments were replicated 100 times using different configurations of training and reference 

speakers, but keeping the 25-speaker test set fixed. This enables us to assess the LRs for the 

same test speakers using different input features and different configurations of training and 

reference speakers. 50 out of the remaining 65 speakers were used in each replication to allow 

for different configurations of training and reference speakers. As such, overall sample size 

remained fixed throughout. The choice of using 25 speakers per set is driven by the size of the 

available database and realistic expectations for how much data would be available in casework. 

Indeed, in much FVC research, it is typical for sets of around 20 speakers to be used (e.g. Zhang 

et al., 2013).  A schematic diagram of experimental procedure is given in Figure 2. 

 

 

 

 
 
 
 
 
 
 
 
Figure 2. A schematic diagram of experiment procedure in LR computation.  
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contemporaneous recordings and truly independent samples of speakers. However, given the 

limitations on the availability of ideal data, it is likely that any type of replication study of this 

sort would use samples which are not entirely independent. Therefore, our results should be 

treated as ‘base case scenario’ for variability in system performance as a function of sampling. 

Even wider variability in system performance can be expected where poor quality recordings 

are used and independent samples are drawn from a much larger database. 

 

2.3 Evaluation 

 

Overall performance was evaluated using the log LR cost function (Cllr; Brümmer & du Preez, 

2006), and the mean and range of Cllr values were used to assess the system validity and 

stability  respectively.  A Cllr threshold of 1 was used for determining whether the system is 

capturing any information (Morrison et al. 2021). To avoid confusion, the term stability is used, 

instead of reliability. Individual speaker behaviour was assessed using mean Log10 LR (LLR) 

and root-mean-square-error (RMSE) values with reference to the LR verbal scale (Table 1; 

Champod & Evett, 2000). Although we acknowledge the drawbacks in using verbal scales, e.g. 

cliff edge effects, subjective interpretation (See Marquis et al., 2016; Morrison & Enzinger, 

2016 for more discussion on verbal and numerical scales). RMSE error is used to measure the 

overall variability in LLRs across replications. The RMSE equation is expressed in equation 

[2], where n is the total number of SS or DS comparisons, xi is the SS/DS LLR of individual 

speakers in each comparison, yi is the mean SS/DS LLR of individual speakers across 100 

replications. The RMSE values of SS and DS comparisons were calculated for each test speaker 

in each system measuring how far each comparison LLR is from the mean for that speaker. A 

stable system and speaker would have low Cllr range and low RMSE value respectively, which 



indicates that the system and speaker are less sensitive to sampling variability in training and 

reference speakers.  

 
LLR Verbal Expression  

±4: ±5 Very strong support 

±3: ±4 Strong support 

±2: ±3 Moderately strong support 

±1: ±2 Moderate support 

 0: ±1 Limited support 

 
Table 1.  LLR verbal scale 
 
 

𝑅𝑀𝑆𝐸 = 	-#

$
∑ (𝑥% 	− 	𝑦%)&$
%'(                                                                                               [2] 

 
 

3 Results  

 

3.1 Overall performance  

 

The boxplots in Figure 4 show the distributions of Cllr values across the 100 replications for 

each of the 31 systems. The x-axis displays the different systems, based on different 

combinations of input features. For example, ‘F0’ refers to the system where only f0 was used 

as input, while ‘F01’ indicates the combination of f0 and F1. The y-axis shows the Cllr values. 

The top panel shows the Cllr range of systems with one and two features, and the bottom panel 

shows the Cllr range of systems with three, four and five features respectively.  

 

For single feature systems, F2 yields much the lowest Cllr mean (0.39) and range (0.04). The 

other four single feature systems yield similar overall performance, with the mean Cllr around 

0.7. F1 yields the least stable overall performance with an overall Cllr range of 0.47, while F0, 

F3, and DUR (both vowel and nasal duration) systems yield a Cllr range between 0.12 and 0.18. 



Comparison across the single feature systems shows that F2 is the least sensitive to different 

configurations of training and reference speakers. 

Figure 4. Cllr variation across 31 systems (Top panel: systems with one or two features; bottom 

left: systems with three features; bottom middle: systems with four features; bottom right: 

system with five features). 

 

The Cllr patterns are more variable across systems with two features. The F23 system yields the 

lowest mean Cllr (0.27), while the F0DUR system gives the highest mean Cllr (0.64). In terms 

of system stability, the F13 system yields the lowest Cllr range (0.11), and the F1DUR system 

yields the highest (0.35). A consistent pattern in the two-feature systems is that systems which 

include F2 outperform systems without F2 in terms of mean Cllr. In terms of the overall 

performance (i.e. lowest Cllr mean and range), the F23 system is the best. It can be observed 
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that the F13 system has a lower Cllr range than the F23 system; however, all of the Cllr values 

in the F23 system are lower than those in the F13 system and the Cllr range of the F23 system 

is only marginally higher than that of the F13 system. It is worth noting here that the effects 

seen here with regard to F1 cannot be explained by the telephone effect (Künzel, 2001) as all 

recordings are high-quality samples.  

 

Among systems with three features, the F023 system yields the lowest mean Cllr (0.20), while 

the F01DUR and F13DUR systems yield the highest (0.46). Similar to systems with single and 

two features, systems with F2 involved again outperform those without in terms of mean Cllr, 

e.g. the F012, F123, and F023 systems have lower mean Cllr values than the F013 and F01DUR 

systems. In terms of Cllr range, the F013 and F123 systems yield the lowest Cllr range (0.13), 

while the F012 system yields the highest due to extreme outliers (0.53). The systems with the 

duration feature, i.e. F01DUR, F12DUR, F23DUR, F02DUR, F03DUR and F13DUR yield 

similar Cllr range varying from 0.16 to 0.24. Overall, the F023 system has a marginally lower 

mean Cllr and higher Cllr range than the F123 system, and these two systems have similar overall 

performance and are less sensitive to different configurations of training and reference speakers 

than other systems.  

 

For systems with four and five features, the F013DUR system gives the highest mean Cllr (0.37), 

while other systems have similar mean Cllr values. Combining all features does not improve 

overall performance, as the mean Cllr (0.2) of the F0123DUR system is slightly higher than that 

of the F0123 (0.18) system, and the Cllr range of the F0123DUR system (0.26) is higher than 

all other systems with four features.  

 



Figure 5 shows the relationship between Cllr mean (x-axis) and Cllr range (y-axis) of the 31 

systems. The general pattern shows that system validity and stability improve when more 

features are involved, i.e. systems with more features have a tendency of shifting to the bottom 

left corner. However, this is not always the case; for example, the system using F2 alone 

outperforms two-feature (e.g. F03, F13) and three-feature systems (e.g. F03DUR, F13DUR) in 

terms of both validity and stability; two-feature systems (F02, F12, F23) outperform three- and 

four-feature systems (e.g. F03DUR, F013DUR) in terms of validity (x-axis).  

 

 

Figure 5. Cllr mean and range across 31 systems (colour-coded according to the number of input 

features).  

 

3.2 Individual behaviour 

 

 

Since we also aim to explore how individual speakers behave when different features and 

configurations of training and reference speakers are used, we identified three specific speakers 

for further exploration whose results are representative of key patterns in the data.  
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Figure 6 shows the mean SS and DS LLRs for speakers #48, #51 and #53 across all 31 systems 

(see Appendix for all 25 speakers). The x- and y-axes display the SS and DS LLRs, and the 

legend indicates the number of features in the system. The vertical and horizontal lines indicate 

SS/DS LLR equal to 0 (the threshold between support for the prosecution and support for the 

defence on the LLR scale). Most speakers yielded a similar pattern to speaker #51, showing 

that speakers are more likely to yield more accurate performance (positive mean SS LLRs and 

negative mean DS LLRs) in systems with more features, i.e. the crosses, black circles and black 

triangles have a tendency to shift to the top right corner. The majority of speakers also produced 

consistent-with-fact results in systems with three or more features. However, exceptions can 

be found, as illustrated by speakers #48 and #53. Systems with four or five features do not 

produce stronger mean LLRs for these speakers. Instead, #48 and #53 can be well separated 

using a two-feature system (i.e. F02; indicated by arrows in Figure 6 lower panels). The 

maximum magnitude of LLRs exceeds 2.3 for SS comparisons, equivalent to moderately 

strong support for Hp, while the DS LLR is over -20, equivalent to very strong support for Hd. 

Moreover, speaker #48 produced contrary-to-fact LLRs in SS comparisons in the F013 (SS 

LLR = -0.38) and F13DUR (SS LLR = -0.02) systems and speaker #53 produced contrary-to-

fact results in the F13DUR system (SS LLR = -0.42).  

 



 

Figure 6. Mean SS and DS LLR of speakers #51, #48 and #53 across 31 systems. Arrows in 

lower panels indicate that speakers #48 and #53 can be well separated using a two-feature 

system (F02). 

 

Figure 7 shows the RMSE values in SS (upper panel) and DS (lower panel) comparisons across 

the 31 systems based on different combinations of input features, indicating the stability in 

individual speakers’ LLR within systems. The black dots represent the RMSE values of each 

individual speaker, and the coloured triangles are the mean RMSE values of all speakers in 

each system. The RMSE values were plotted from the highest (left end of the x-axis) to lowest 

(right end of the x-axis) in terms of the mean RMSE values. Higher RMSE values indicate that 
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speakers have more fluctuating LLRs relative to their own mean LLR for that system and thus 

are more sensitive to different configurations of training and reference speakers. Overall, all 

speakers tend to be more fluctuating in DS comparisons than SS comparisons (note the y-axis 

limits are different). This is likely due to the fact that speakers can only be so similar to 

themselves, but infinitely different from each other (Kinoshita et al., 2009). Furthermore, the 

data used in this study is derived from experimental materials where the stylistic and situational 

context is very similar, thus limiting the within-speaker variation that might be observed in the 

real world where individuals speak in very different circumstances and discourse styles. Based 

on the same LLR scale (Table 1), speakers fluctuate more in SS comparisons when more 

features are included in the system. However, the fluctuation in individual speakers’ SS LLR 

is relatively small, with all SS RMSE values less than 1 (i.e. within one verbal category; Table 

1) across the 31 systems. 

  

For DS comparisons, increasing the number of features does not necessarily lower the stability 

in individual speakers’ mean LLR outputs, e.g. the mean DS RMSE value is higher in the F2 

system (ca. 6.25) than in the F0123DUR system (ca. 5). However, among systems with the 

same number of features, speakers fluctuate more when F2 is involved, i.e. speakers in systems 

at the left end of x-axis, e.g. the F012, F0123, F0123DUR systems, fluctuate more than those 

at the right end, e.g. the F1, F1DUR, F3DUR, F3 systems. It is also worth noting that most 

speakers have DS RMSE values fluctuating between 2.5 and 7.5 in most of the systems (e.g. 

F2, F12, F123, F0123), indicating that the LLRs of speakers in DS comparisons among 100 

sampling replications could be 5 above or below the mean LLR. For example, if one speaker 

has a mean LLR of -2 in DS comparisons in the F2 system, the possible LLR outputs in the 

100 replications could be between -7 and 3.  



 

Figure 7. RMSE values of individual speakers across 31 systems. 

 

Figure 8 shows the stability of individual speakers’ LLR in systems with the same number of 

features (the five-feature system is not included as there is only one such system). Each dot 

represents the difference between the maximum and minimum RMSE values (i.e., the range) 

of each speaker across systems with equal number of features. In DS comparisons, the majority 

of speakers tend to be the least stable in two- and three-feature systems and the most stable in 

systems with one and four features. Around half of the speakers yield DS RMSE values higher 

than 5 in one-feature systems, while most of the speakers have DS RMSE values lower than 5 

in systems with four features. However, speakers show different patterns in SS comparisons. 

Some speakers start with low SS RMSE values (high stability) in one-feature systems and end 

up with high SS RMSE values (low stability) in four-feature systems, while some other 

speakers show an opposite pattern. The remaining speakers show similar patterns to those in 

DS comparisons where they yield the most fluctuating performance in systems with two or 
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three features. All the speakers have SS RMSE values lower than 1, indicating that the 

fluctuation in SS comparisons caused by different combinations of features and configurations 

of training and reference speakers is lower than one magnitude in terms of strength of evidence.  

  

 

  

Figure 8. SS and DS RMSE ranges across different systems per test speaker.  

 

Pearson’s r was calculated to explore the correlation between the mean LLRs and RMSE 

values for each speaker, i.e. the correlation between the average strength of the evidence and 

stability of individual speakers’ LLR. Table 2 shows the correlation coefficients using 

individual speakers’ SS/DS LLR and RMSE values from systems with the same number of 

features. Among SS comparisons, the SS LLR shows a positive correlation with RMSE in the 

five-feature system (Pearson’s r = 0.41), indicating that speakers who yield higher LLRs (more 

likely to be separated in SS comparisons) also generally yield more unstable performance. In 

systems with one to four features, the SS LLR and RMSE values show little correlation. For 

DS comparisons, the DS LLR and RMSE are negatively correlated in all systems, meaning that 

speakers who can be well separated from others in DS comparisons also generally produce 

more unstable performance (note that the DS LLR scale is reversed).  
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SS LLR vs. SS RMSE DS LLR vs. DS RMSE 

Number of 
features 

Pearson’s r Pearson’s r 

1 0.16 -0.73 

2 0.14 -0.52 

3 0.14 -0.62 

4 0.13 -0.58 

5 0.41 -0.69 

Table 2. Correlation between the validity and stability of individual speakers.  
 
 

4 What happens in a real case?  

 

The results above show that some speakers are more affected by different combinations of 

features and configurations of training and reference speakers, while others are less affected. 

Under real case scenarios, there are likely to be limitations on the amount of data that is both 

available and analysable, especially given the labour-intensive nature of linguistic and phonetic 

analysis. Therefore, it is realistic to suppose that maximally around 30 training and reference 

speakers (and in reality, likely fewer) could be sampled from a relevant population (based on 

sample sizes in many forensic phonetic studies and in a casework report from Rose (2013) who 

used a total of 35 reference speakers to compute a LR). Although it depends on the specific 

defence proposition, the real size of the relevant population is likely much larger than the 

number of training and reference speakers sampled. In order to demonstrate the possible LLR 

ranges that one can obtain with such samples in a case, the following section shows the LLR 

ranges from speakers in the system with the best performance in terms of Cllr mean and range, 

i.e. the F0123 system. Based on the SS and DS RMSE values, the speakers who were the most 

and least fluctuating in SS and DS comparisons were selected. Table 3 shows the RMSE values 

of the selected speakers from the F0123 system,  

 



 

Speaker SS RMSE Speaker  DS RMSE 

#40 0.22 #20 2.21 

#30 0.84 #51 15.17 

Table 3. SS and DS RMSE values of speakers with the least and most variable LLRs.  

 

Figure 9 shows the ranges of SS LLRs of speakers #30 (most fluctuating) and #40 (least 

fluctuating) across the 100 replications, i.e. #30 and #40 are compared with themselves 100 

times with different configurations of training and reference speakers using F0, F1, F2 and F3 

as input. The x-axis is the SS LLR values and y-axis shows the speaker IDs. Both speakers 

yielded positive LLRs, i.e. consistent-with-fact results in all of the 100 replications. Speaker 

#40 yielded the least variable LLRs, varying from ca. 0.6 to 1.9, which is a difference between 

limited and moderate support for SS origin in terms of verbal LLR expression. However, the 

SS LLR of speaker #30 varies between 1.3 and 6.6, which is a difference between moderate 

and very strong support for SS origin. Comparatively, speaker #40 seems to be less problematic, 

while speaker 30 would be more problematic in a real case, given the much larger uncertainty 

in the computed LLR values as a function of sampling variability.  

 



 

Figure 9. SS LLRs of speaker #30 and #40 using different training and reference speakers in 

the F0123 system.  

 

Figure 10 shows the DS LLRs of the most and least variable speakers, i.e. speaker #20 and #51, 

in DS comparisons. The x-axis indicates the DS LLR values, while the y-axis shows the rest 

of the test speakers that are being compared (NB the x-axis scales are different for top and 

bottom panels). Each boxplot represents the variation in DS LLRs, e.g. the first boxplot in the 

top panel indicates the DS LLR ranges of speaker #20 compared with speaker #8, with different 

configurations of training and reference speakers across 100 replications. It is noted that 

speaker #20 yields the most stable LLRs in DS comparisons across 100 replications, but this 

speaker also gives the most contrary-to-fact results when compared with other test speakers. 

Contrary-to-fact DS LLRs are observed when speaker #20 is compared with 12 (out of 24) 

speakers (e.g. #17, #21, #26, #27, #30 etc). Among the 12 speakers, speaker #20 is classified 

as the same speaker as three other speakers in all of the 100 replications, i.e. speakers #27, #54, 

and #56. Clearly, the contrary-to-fact results for speaker #20 would be misleading under a real 
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case scenario. The highest DS LLR goes up to 2.12, which indicates a moderately strong 

support for SS origin (given the speech samples are from different speakers). For consistent-

with-fact results in speaker #20, the majority of DS LLRs vary between 0 and -5, which is a 

difference between limited and very strong support for DS origin. On the other hand, speaker 

#51 does not to have contrary-to-fact LLRs when compared with the remaining 24 speakers 

and the DS LLRs range between ca. -12 and -50 for most of the DS comparisons of speaker 

#51. This pattern indicates that speaker shows weaker strength of evidence also has less 

variability as well as more contrary-to-fact results.  

 

Figure 10. DS LLRs of speaker #20 and #51 using different training and reference speakers in 

the F0123 system.  
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5 Discussion   

 

5.1 Summary of general findings  

 

31 systems were evaluated and compared from the perspective of both overall performance 

and individual speakers’ behaviour. In general, Cllr mean reduces with more features involved, 

while no clear pattern is observed in Cllr range (Figure 5). Individual speakers display 

considerable fluctuation.  

 

5.1.1 Overall performance 

 

The performance of all 31 systems suggests that systems with more features in general yield 

better validity. However, in this study there were some exceptions in the F0123 and F0123DUR 

systems (Figure 4), i.e. the four-feature system outperforms the five-feature system. Therefore, 

it is important to acknowledge that simply adding extra features does not necessarily improve 

the overall system validity and stability (and this is especially true when considering 

individuals). The ranking of different input features also shows a similar pattern to McDougall 

& Nolan (2007), where F2 yielded the best discriminatory performance, which is inconsistent 

with other studies showing that higher formants (e.g. F3) have better speaker discriminatory 

performance. A comparison between the F0123 and F2 systems shows that the F2 system has 

a lower Cllr range (0.04) than that of the F0123 system (0.15). However, all of the Cllr values in 

the F0123 system across 100 replications are lower than those in the F2 system (Figure 4).  

 

 



5.1.2 Individual speakers  

 

In terms of individual speaker behaviour, all speakers yielded mean consistent-with-fact results 

in systems with four and five features, while contrary-to-fact results were observed in systems 

with fewer than four features (Figure 6 and Appendix). Furthermore, speakers have different 

fluctuating patterns in SS and DS comparisons. In SS comparisons, speakers are more likely to 

yield fluctuating performance in systems with more features (upper panel in Figure 7), 

indicating that combining multiple features has a chance to increase within-speaker variation, 

which makes speakers more sensitive to sampling variability. Moreover, Figure 8 shows that 

speakers have different fluctuating patterns across systems with different numbers of features, 

e.g. speaker #30 yield the most fluctuating performance in systems with four features, while 

speaker #51 yield the least fluctuating performance. This suggests that the effect of different 

combinations of features and configurations of training and reference speakers on the stability 

of individual speakers’ LLR is itself speaker specific. In DS comparisons, there does not seem 

to be any general relationship between the number of features and individual speaker stability 

(Figure 7 lower panel). However, when compared in systems with same number of features 

(Figure 8 right panel), individual speakers become less fluctuating when four features are used, 

indicating that different combinations of features and configurations of training and reference 

speakers have less effect on the stability of individual speakers’ LLR in DS comparisons. A 

comparison between the most (speaker #51) and least (#20) fluctuating speakers from the 

F0123 system in the DS comparisons show that validity and stability of individual speakers’ 

LLR are likely to be negatively correlated. It is worth noting that the results here are necessarily 

conservative as the random samples of training and reference data used in the current study are 

not independent of each other across the 100 replications. Therefore, we would expect even 



more variability in results if speakers are randomly sampled from other datasets, and truly 

independent samples are used. 

 

5.2 Implications for research  

 

Most previous studies in FVC have tested the speaker-discriminatory performance of linguistic 

and phonetic features, aiming for lower Cllr values. However, the current study shows that it is 

important to understand and acknowledge the trade-off between system validity (mean Cllr) 

and stability (Cllr range), e.g., how much variation/uncertainty are we willing to accept given 

validity? The trade-off between system validity and stability should be case-specific, as each 

case would have different prerequisites, e.g. the amount of speech available in the suspect and 

offender samples, the number of speakers available in training and reference data, and how 

narrowly or broadly defined is the relevant population. Moreover, individual speakers have 

often been overlooked in FVC research, with focus given to overall performance. The present 

study shows that while many test speakers will follow the general, group pattern (Figure 6), i.e. 

more features contribute to better performance, there will necessarily be exceptions (e.g. 

speaker 53). Thus, considerable variability in LR output may be introduced simply through the 

typically random selection of speakers to act as training, test and reference data (Figure 9 and 

10); variability which is also specific to the choice of input features. Future FVC studies should 

therefore explore the role of random effects on overall performance and individual speakers’ 

behaviour, rather than reporting Cllr with a single configuration of speakers where performance 

is treated as being representative of the input features and relevant population chosen. It is true 

that using an automatic speaker recognition (ASR) system might yield better performance 

when compared with linguistic analysis of a single segment or a group of segments, as is 

common in linguistic FVC research (although how ASR compares to the linguistic approach 



as used in real casework is an empirical question and one that has not been tested adequately). 

However, a key message we are trying to convey in the current study is the issues of uncertainty 

and performance variability across individual speakers (section 4). 

 

5.3 Implications for casework  

 

In all forms of FVC (auditory-acoustic, semi-automatic or automatic), experts have degrees of 

freedom to make decisions and conduct analyses, i.e., analysts have to decide which features 

to be included in an analysis, the relevant population to be used, mathematical models for 

speaker modelling (e.g., MVKD, Gaussian Mixture Model -Universal Background Model 

(GMM-UBM) or number of Gaussians to be used for GMM-UBM, Jessen 2021a) and 

calibration methods (e.g., Morrison & Poh 2018; Wang & Hughes 2021). Those decisions will, 

in part, be determined by pragmatic considerations, such as whether there are comparable 

features available for analysis in the two samples. Meanwhile, decisions are also based on the 

analysts’ knowledge of which features carry the greatest speaker discriminatory power 

(knowledge which is gathered through experience and research, or via a specific validation 

exercise). For example, the current study has demonstrated how the different choice of 

linguistic features would affect overall performance and individual speakers’ behaviour in 

relation to sampling variability. Based on the variability observed in the current study, it is our 

opinion that experts’ decisions should be driven by reducing uncertainty in evidence evaluation 

rather than trying to maximise discrimination or the potential of producing a high validity (i.e., 

a very low Cllr in current context), and that it is crucial to recognise and acknowledge where 

there is uncertainty within the process. The focus on uncertainty rather than discrimination 

ultimately reflects the fact that the role of the expert is to aid the trier-of-fact in making better 



decisions, which in turn reduces the possibility of miscarriages of justice (Brümmer & Swart, 

2014). 

 

Using data-driven approaches allow us to explicitly measure/describe and possibly deal with 

uncertainty. The data-driven approach, of course, requires data and the implementation of 

complex mathematical models. Meanwhile, the data-driven approach also involves the issue of 

explaining and interpreting systems and results to an end-user (e.g., the court). This is not a 

criticism of the data-driven approach per se, but it is worth acknowledging that this introduces 

uncertainty in terms of the extent to which the evidence can be reliably used by the trier-of-

fact to make better decisions. Conversely, uncertainty does not go away just because the data-

driven approach is not employed. In auditory-acoustic analysis (Jessen, 2021b), experts can 

assess the typicality based on one’s expertise or relevant literature. This would result in 

different degrees of uncertainty in typicality assessments depending on the experts’ 

knowledge/experience or the degree by which data relevant to typicality are available. When 

it comes to acoustic analysis, different choices of linguistic features and methods, software and 

settings for measurements would lead to different evaluation results. This has been shown by 

Roettger (2019) in quantitative-based phonetic studies and in the current study as well. It is 

therefore important to acknowledge uncertainty and subjectivity, and potentially attempt 

compensation for that in some way, i.e., attach less weight to a variable when the number of 

tokens is small. Future work is needed to deal with the issue of uncertainty more systematically. 

 

6 Conclusion 

 

This study has examined both overall performance and individual speakers’ behaviour in LR-

based FVC using the first three formants, f0 and vocalic and nasal duration of the FP um. 



Furthermore, the possible ranges of LLR that one might obtain in real FVC case were also 

presented and discussed, which provides novel insights for forensic speech science. The 

ultimate question we have addressed was that whether generalisations drawn from generic 

system testing would hold for individual speakers under different conditions. Numerous studies 

(Gwo & Wei, 2016; Morrison, 2016; Morrison & Enzinger, 2016) have discussed the validity 

and reliability issues in forensic evidence evaluation; however, the variability in LR output 

observed in the current study has not been addressed in the field of FVC. We propose that 

overall performance should be tested multiple times using different sets/configurations of 

training and reference data and the individual speakers’ behaviour should be investigated and 

reported as part of the system testing. Given that all training, test and reference speakers are 

sampled from the relevant population following certain database selection guidelines (e.g. 

Morrison et al., 2012), the overall performance and individual speakers’ behaviour still vary to 

different extents. The variability observed in overall performance and individual speakers’ 

behaviour is partially due to statistical issues (e.g. sample size, data extrapolation) and 

numerous studies have proposed solutions (e.g. different calibration methods) to address this 

matter (Brümmer & Swart, 2014; Morrison & Poh, 2018; Vergeer et al., 2016). However, a 

bigger question for forensic phoneticians is that whether there are any systematic linguistic 

patterns that can be observed to predict or reduce the variability in LR output, e.g. whether a 

more tailored subset of the relevant population can be selected based on systematic linguistic 

patterns that would reduce the variability in LR output.  
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Appendix  

 
SS and DS LLR plots of 25 speakers across 31 systems.  
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