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Abstract

The dynamics of photodissociation for vibrationally pre-excited deuterated pyrrole molecules is
simulated using ab initio multiple cloning (AIMC) approach. Total kinetic energy release (TKER)
spectra and dissociation times are calculated. The results for pyrrole and deuterated pyrrole molecules
with and without vibrational pre-excitation are compared. Calculations show that, as expected, the
kinetic energy of additional dissociation fragments is lower in deuterated pyrrole and mostly located
in the upper-middle part of the TKER spectrum. However, despite lower energy of dissociative bond
vibrations, pre-excitation of deuterated pyrrole leads to higher dissociation yield increase than in
pyrrole and significantly shortens dissociation time.

1. Introduction

The study of ultrafast excited state dynamics is essential to understand many fundamental biochemical
processes. Photosynthesis in plants, visual reception of cone cells in the retina and the photostability of biological
molecules, such as DNA, all take place by photochemical reactions, utilising electronic excitation and
nonadiabatic transitions. In photosynthetic plants and organisms, non-adiabatic transitions are present in
protein pumps which move electrons through a protein chain to a target area. The photoprotection mechanism
in DNA uses nonadiabatic transitions to prevent damage of DNA molecules from UVA and UVB light, which
would otherwise result in mutations leading to cancer and other genetic deformations. Pyrrole is a key building
block that is present in a large number of these biological molecules, including DNA and chlorophyll, and the
dynamics of its photodissociation (along with electron impact dissociation) has been a subject of extensive
experimental [1-13] and theoretical [14-31] studies.

Photofragment translational spectroscopy [32] is among the most efficient experimental tools used to study
the process of photodissociation. We previously demonstrated [23, 33, 34] that simulations using our ab initio
multiple cloning (AIMC) approach [35, 36] can reproduce the principal features of experimental total kinetic
energy release (TKER) spectra and velocity map images (VMI) for the photodissociation of pyrrole and other
heterocyclic molecules, including the isotopic effect for their deuterated isotopologues. The dynamics
calculations add valuable novel insight into the dissociation mechanism providing details that cannot be seen
directly in the experiment.

Recently we proposed [31] that, with appropriate initial conditions, AIMC approach can be used to simulate
the process of vibrationally mediated photodissociation (VMP) [37-39], when the molecule is vibrationally pre-
exited by IR laser pulse before electronic excitation by UL pulse. Our calculations for vibrationally pre-excited
pyrrole using this approach produced TKER spectra that show good qualitative agreement with VMP
experiment [12]. In this work, we report our simulations of photodissociation dynamics for vibrationally pre-
excited deuterated pyrrole molecules.

In section 2, we briefly outline AIMC computational approach and specify the initial conditions for
dynamics with and without vibrational pre-excitation. Section 3 provides computational details of our
simulations. In section 4, we present and discuss the results. Conclusions are given in section 5.

© 2022 The Author(s). Published by IOP Publishing Ltd
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2. Theory

The process of photodissociation is simulated using AIMC quantum non-adiabatic molecular dynamics
method, which was already described in details in a number of our previous works [23, 31, 35, 36]. Below we just
briefly outline the main features of AIMC approach.

The idea of AIMC s to represent the total electron-nuclear wave-function in a basis of Gaussian coherent
states moving along Ehrenfest trajectories:

iB(1) - (R — Ry(1))
h

[U® 1, ) = 3D, (1) exp (a(R — Ry + + %w))z a® @) |ér), O
n I

where R and r are nuclear and electron coordinates respectively. The electronic part is represented either in the
basis of R-dependent adiabatic states |¢; (r)) = |¢;(r; R))or, in the alternative version of the method [40], in
time-dependent diabatic basis (TDDB) |¢;) = |¢;(r; R,())) thatis changing with the motion of Gaussians. It
was shown [35] that for small molecules without abrupt changes of electronic eigenstates, such as pyrrole, the
dynamics for both adiabatic and TDDB ansatzes is described by exactly the same set of equation.

The equations of motion for Gaussians are solved simultaneously with equation for the evolutions of
Ehrenfest amplitudes:

a™ = *éZH]}(")a]("), )
J

where is Hj;™ is the electronic Hamiltonian for nth trajectory:
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and V; and Cj; are potential energies and non-adiabating coupling matrix elements (NACME).
The motion of Gaussians is guided by force:
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where the first term is the usual Ehrenfest state-average force and the second term, often called the Hellmann-
Feynman force, is associated with non-adiabatic electronic population transfer. The Gaussians are moving
independently from each other, and the coupling between trajectories is reflected only in the evolution of
amplitudes D, (¢), which is obtained by solve time-dependent Schrodinger equation in basis (1).

Ehrenfest trajectories become unphysical when two or more uncoupled electronic states with significantly
different gradients have large amplitudes. In order to address this issue, we apply cloning procedure: we replace
one ‘mixed’ basis function by two new ones, each dominated by just one electronic state. Both new basis
functions have the same Gaussian part and, due to the appropriate choice of new amplitudes, their combined
contribution to the total wave-function (1) remains the same as that of the original basis function. The state is
cloned out when its breaking force F;®" = |a;|>(VV; — Z;' a;[> VV;) exceeds a threshold and, at the same
time, the magnitude of coupling between this state and all other states is below the second threshold. Cloning
results in the branching of trajectories, which reflects the bifurcation of wave-function on conical intersections.

In order to generate the initial conditions for the dynamics, we assume that ground electronic state
vibrational wave-function is simply ‘lifted’ into the exited electronic state. So, vibrational frequencies and
normal modes are calculated for ground state potential energy surface, which are used to generate a random set
of initial positions and momenta using quasiprobability distribution for harmonic oscillator. The effect of
vibrational pre-excitation is modelled by using an excited state vibrational wave-function for a particular mode.
As Wigner distribution takes negative values for excited vibrational states, it cannot be used here and, similar to
our previous simulations for vibrationally pre-excited pyrrole [31], we use Husimi distribution which was
appropriately scaled to provide correct average energy for both ground and first excited vibrational states:

2
Py(x, p) = W—lhexp(—%(% + mwxz)]

2 2
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One can see that distribution (5) gives correct classical energy for trajectories, which is important considering
extremely small size of the basis used in on-the-fly AIMC quantum dynamics. For ground state, Py(x, p)

coincides with Wigner distribution providing compatibility with our previous simulations of pyrrole
photodissociation dynamics [23-25].

Pi(x, p) =
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Figure 1. The comparison of normalized calculated TKER spectra for the photodissociation of pyrrole and deuterated pyrrole.

3. Computational details

Asbefore [23-25, 31, 33-35], the simulations were run using AIMS-MOLPRO [41] computational package
modified to incorporate Ehrenfest dynamics with electronic structure date provided by complete active space
self-consistent field (CASSCF) calculations at SA4-CAS(8,7)/cc-pVDZ level. The CASSCF method typically
overestimates the excitation energies due to the lack of dynamic electron correlation. As a result, calculated
kinetic energies are on average about 1.5 times higher than experimental values, which leads to the shift of
calculated TKER spectrum. Nevertheless, as we show before [23], the AIMC calculations using CASSCF still
correctly reproduce the main features of experimental spectra.

The trajectories are started from first exited state with random initial positions and momenta generated
using distribution P, (x, p) for pre-exited vibrational mode and Py (x, p) for all other modes. Then, they were
propagated for 200 fs, or until the N-D bond exceeded 3.5 &, which was defined as the point of dissociation.

Each trajectory is initially guiding a basis of one Gaussian coherent state with width o taken [42] equal to 4.7,
22.7 and 19.0 Bohr* for hydrogen, carbon and nitrogen atoms respectively. The basis is growing at cloning
points and the evolution of amplitudes D, reflects the interaction between branches. As before, we used values
of 5+ 107® atomicunitsand 2 - 1072 atomic units as cloning thresholds for the magnitudes of breaking force
and non-adiabatic coupling respectively.

In TKER spectra calculations, we find kinetic energy at the end of each trajectory branch leading to
dissociation. The weight of each branch contribution into TKER spectrum is defined as | D, |? in the final point.
The spectrum is then averaged over an ensemble and smoothed using Gaussian functions with o = 1200 cm~"
We use an ensemble of 500 trajectories for molecules without vibrational pre-excitation and with pre-excitation
of dissociative bond vibrations. According to our previous experience, this number of trajectories is optimal for
TKER spectrum calculation: using larger ensemble, although computationally expensive, does not significantly
improve the accuracy of the spectrum. For pre-excitation of other vibrational modes, we use a smaller ensemble
of 300 trajectories, which is nevertheless sufficient to provide more or less correct shape of the spectrum.

For all trajectories, we determine raw dissociation times t,, which are defined as the times when N-D bond
length exceeds the dissociation threshold. To calculate dissociation kinetics, these times are then smoothed with
Instrument Response Function (IRF) Girp(t — t,) = exp (—(t — t,)?/20%c), which reflects the temporal
widths of pump and probe pulses in the experiment. For the comparability with our results for H-pyrrole,
we take here the dissociation threshold of 3.5 A and oy = 51fs, the same as in our previous simulations [31].
The dissociation time constants 7 is then calculated by fitting the dissociation kinetic to the model [9]
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Figure 2. Calculated TKER spectra for the photodissociation of pyrrole (top) and deuterated pyrrole (middle) with and without pre-
excitation of dissociative bond vibrations. The integral yield is normalized to 1 for both spectra without vibrational pre-excitation. The
difference between spectra with and without vibrational pre-excitation (bottom).

AGrr(t) & [(1 — exp(—t/7))0(t)], where 6 (¢) is Heaviside unit step function. More details can be found
in [33, 34].

4. Results and discussion

Figure 1 compares calculated TKER spectra of pyrrole and deuterated pyrrole (referred below as H-pyrrole and
D-pyrrole). As one would expect, the spectrum for D-pyrrole has more intensive low-energy wing and its
maximum is shifted by ~1000 cm ™" in the low-energy directions. This effect of deuteration on the TKER
spectrum is similar to our previous results for imidazole and pyrazole [34], although significantly more
pronounced in the case of pyrrole.

Figure 2 presents TKER spectrum for D-pyrrole with pre-excitation of vibrational mode 20, which
corresponds to N-D vibrations. For comparison, we also show the spectrum for H-pyrrole with mode 24 pre-
excitation (N-H vibrations) from our previous work [31]. In order to compare spectra with and without
vibrational pre-excitation, we must consider that pre-excitation also increases the oscillator strength (and, asa
result, the share of photo-excited molecules) for symmetry prohibited S, — S, transition. This is taken into
account by scaling the spectra for pre-excited molecules by 1.277 for H-pyrrole and by 1.119 for D-pyrrole,

4
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Figure 3. Calculated TKER spectra for deuterated pyrrole with pre-excitation of different vibrational modes and without pre-
excitation. Mode 20 corresponds to N-D bond vibrations.

which is the ratio of the ensemble-averaged square of transition dipole momenta for molecules with and without
pre-excitation calculated at the starting points of the trajectories.

As one can see both for H-pyrrole and D-pyrrole, vibrational pre-excitation results in significant increase in
the dissociation yield in high-energy part of TKER spectrum while low-energy part does not change much.
However, the additional yield for D-pyrrole is mostly located around the maximum and the right slope of the
peak, while for H-pyrrole it also extended to the area of much higher energies where the spectrum is close to zero
without pre-excitation. This can be explained by lower energy of dissociative bond vibrations in D-pyrrole.
Nevertheless, despite lower vibrational energy, the integral increase of dissociation yield is surprisingly higher
for D-pyrrole and reaches 55%, versus 51% for H-pyrrole.

The selectivity of vibrational pre-excitation for the photodissociation of D-pyrrole is demonstrated in
figure 3, which compares TKER spectra for molecules with pre-excitation of vibrational modes 18-22, where
mode 20 corresponds to N-D bond vibrations. Due to expensiveness of calculations, we have not run the
dynamics for other vibrational modes. One can see that only pre-excitation of mode 20 results in the long
intensive high-energy wing in the spectrum, while the pre-excitation of other modes does not cause significant
changes in the spectrum shape. The same kind of selectivity was previously found [31] for H-pyrrole
photodissociation, where only pre-excitation of mode 24 corresponding to N-H vibrations resulted in similar
changes of TKER spectrum.

The dissociation kinetic is presented in figure 4, which compares normalized dissociation counts for
H-pyrrole and D-pyrrole molecules with and without vibrational pre-excitation of the dissociative bond.
From the insert showing raw dissociation counts, one can see that, similar to H-pyrrole, the photodissociation
of D-pyrrole is a combination of fast and slow processes: some molecules dissociate directly and the others
must first sample the potential energy surface to find a way. The pre-excitation of dissociative bond vibrations
creates favourable conditions for fast direct dissociation significantly reducing the dissociation time. This
effectis more pronounced for D-pyrrole, where the vibrational pre-excitation reduces dissociation time from
93.7fst0 46.5 s, versus 48.2 fs and 29.5 fs for H-pyrrole [31]. Considering lower surplus of vibrational energy
in deuterated pyrrole, this behaviour looks unexpected. This computational prediction is waiting for
experimental confirmation, as, to the best of our knowledge, the deuterated pyrrole has not been yet the
subject of VMP study.
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Figure 4. Simulated photodissociation kinetics for H-pyrrole and D-pyrrole with and without pre-excitation of dissociative bond
vibrations. The curves are smoothed using Gaussian IRF with oxc = 51 fs. Insert—raw dissociation times.

5. Conclusion

We have simulated the dynamics of vibrationally mediated photodissociation for deuterated pyrrole using
AIMC computational approach and compare the results with our previous similar calculations for pyrrole. As in
the case of pyrrole, calculations show that pre-excitation of N-D bond vibrations in deuterated pyrrole
significantly facilitates the process of fast direct photodissociation producing more high-energy fragments. This
reduces more that by half the dissociation time for deuterated pyrrole, significantly more than for pyrrole. The
integral increase of the dissociation yield in also higher for deuterated pyrrole despite the lower frequency of
dissociative bond vibrations, which manifest itself only in significantly less extended high-energy wing of its
TKER spectrum. These two features are somewhat counterintuitive. Calculations for different vibrational
modes demonstrate the selectivity of vibrationally mediated photodissociation, as only the pre-excitation of
dissociative bond vibrations induces noticeable changes in the shape the TKER spectrum. The unexpectedly
strong increase of dissociation yield in deuterated pyrrole along with strong decrease of its dissociation time,
larger than in nondeuterated molecule, are unexpected. We hope that our numerical results may encourage
future VMP experimental studies for deuterated pyrrole and other similar molecules.
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