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We report on measurements of the hyperfine A, B and C-constants of the 3d4s2 2D5/2 and 3d4s2
2D3/2 atomic states in 45Sc. High-precision atomic calculations of the hyperfine fields of these states 
and second-order corrections are performed, and are used to extract C5/2 = −0.06(6)kHz and C3/2 =

+0.04(3)kHz from the data. These results are one order of magnitude more precise than the available 
literature. From the combined analysis of both atomic states, we infer the nuclear magnetic octupole 
moment � = −0.07(53)μNb, including experimental and atomic structure-related uncertainties. With a 
single valence proton outside of a magic calcium core, scandium is ideally suited to test a variety of 
nuclear models, and to investigate in-depth the many intriguing nuclear structure phenomena observed 
within the neighbouring isotopes of calcium. We perform nuclear shell-model calculations of �, and 
furthermore explore the use of Density Functional Theory for evaluating �. From this, mutually consistent 
theoretical values of � are obtained, which are in agreement with the experimental value. This confirms 
atomic structure calculations possess the accuracy and precision required for magnetic octupole moment 
measurements, and shows that modern nuclear theory is capable of providing meaningful insight into 
this largely unexplored observable.

 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The application of laser spectroscopic techniques to elucidate 
the subtle perturbations of atomic energy levels due to the nuclear 
electromagnetic properties has given rise to the study of funda-
mental nuclear structure, in particular magnetic dipole moments 
(μ), electric quadrupole moments (Q ) and changes in the mean-
squared nuclear charge radii δ

〈

r2
〉

. These methods, in combination 
with modern radioactive ion beam (RIB) facilities, offer a powerful 
probe of changes in the structure of exotic nuclei. They provide in-
formation on nuclear shell evolution, nuclear shapes and sizes, and 
single-particle correlations [1–6]. The majority of the experimental 
techniques in current use at RIB facilities provide measurements 
of hyperfine frequency splittings with a precision of the order of 
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1MHz [7]. This limitation restricts the sensitivity to higher order 
terms in the electromagnetic multipole expansion of the nuclear 
current densities, as well as to higher order radial moments of the 
charge density distribution. The progress in the development of 
higher precision methods along with ongoing development of the-
oretical tools has the potential to provide new perspectives which 
could help shape our understanding of the atomic nucleus.

Recently, high-precision isotope shift measurements combined 
with improved atomic calculations were proposed for a determina-
tion of the fourth-order radial moment of the charge density [8], 
which can in turn be directly linked to the surface thickness of 
nuclear density [9]. The hyperfine anomaly, only measured for 
a handful of radioactive isotopes (see e.g. [10–14]), would shed 
light on the distribution of magnetisation inside the nuclear vol-
ume [15,16]. In addition to the M1 and E2 moments, μ and Q
respectively, the M3 magnetic octupole moment � is in princi-
ple accessible using existing techniques for radioactive isotopes. 
To our knowledge, this observable has only been measured for 18 

https://doi.org/10.1016/j.physletb.2022.136930
0370-2693/ 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
SCOAP3 .
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Fig. 1. a) Schematic illustration of the experimental setup. The atom beam is produced from a tantalum oven mounted in the bottom vacuum vessel, intersects with the 
optical pumping laser beam, and then crosses the RF interaction region in the second vessel. After passing through a collimating slit, the atoms are then ionized using three 
lasers and subsequently counted using an ion detector. The laser ionization scheme used to study the D5/2 state is shown in b), indicating also the hyperfine structure 
schematically. Figures c) and d) show an example spectra obtained by scanning the first step in the laser ionization scheme, for the transitions starting from the D3/2 and 
D5/2 states respectively.

stable isotopes [17–30]. The general features of these values can 
be understood in terms of the Schwartz limits [31]. There are a 
few notable exceptions: the recently measured � of 133Cs [24] and 
173Yb [27] are significantly larger than expected from shell model 
theory. For 173Yb, we recently performed an experiment to vali-
date the earlier measurements, where a value of � which is zero 
within experimental uncertainties was obtained [32]. In this Letter, 
we aim to further contribute to this ongoing work with an experi-
mental and theoretical investigation of the hyperfine structure and 
nuclear electromagnetic moments of 45Sc.

Our approach is threefold. Firstly, we describe a measurement 
protocol which combines the efficiency of resonance laser ion-
ization spectroscopy (RIS) [4,33,34] with the precision of radio-
frequency (RF) spectroscopy [35]. The efficiency provided by the 
RIS method is vital for future applications on radioactive isotopes 
due to limited production rates of radioactive ion beams at on-line 
facilities. The combination with RF spectroscopy offers a dramatic 
improvement in the precision as compared to conventional optical 
methods, by at least three orders of magnitude. We demonstrate 
this with a high-precision measurement of three nuclear electro-
magnetic moments of 45Sc, including �.

Secondly, we combine these measurements with state-of-the-
art atomic-structure calculations to evaluate the sensitivity of the 
3d4s2 2D3/2,5/2 states in neutral scandium to the nuclear oc-
tupole moment �. We evaluate the impact of off-diagonal HFS 
effects, essential to extract � from the measurements. We note 
that both the D3/2 and meta-stable D5/2 state are expected to 
be well-populated in a fast-beam charge exchange reaction [36]. 
Therefore, radioactive scandium isotopes could be studied using 
collinear laser-double resonance methods [35,37] in the future.

Thirdly, with a single proton outside a doubly-magic calcium 
(Z = 20) core, comparison of � for a chain of scandium isotopes 
provides a first important testing ground for nuclear theory cal-
culations. Furthermore, such measurements could help shed light 
on the many intriguing nuclear structure phenomena observed in 
the calcium isotopes [3,38–40]. The proximity to proton- and neu-
tron shell closures makes it possible to perform both e.g. shell-
model and Density Functional Theory (DFT) calculations. As we 
seek to eventually examine all existing values of � in one consis-
tent framework, with measurements for nuclei scattered through-
out the nuclear landscape, developing a reliable global theory for 
magnetic properties would be highly advantageous. So far, very lit-
tle is known regarding the overall performance of standard nuclear 
DFT in describing μ, cf. Refs. [41–43], and nothing is known about 
the DFT values of �. Here, we thus start this investigation with 
45Sc. The comparison to nuclear shell-model calculations, which 
have a more well-established track record in computing both μ
and � (see e.g. [44]), serves to benchmark these developments.

These three aspects are all required ingredients for a system-
atic study of � throughout the nuclear chart. The extraction of 
a higher-order electromagnetic moment from the evaluation of 
atomic spectra in a nuclear-model independent manner has the 
potential to provide new insight into the distribution of protons 
and neutrons within the nuclear volume. � is affected by correla-
tions (core polarization and higher order configuration mixing) dif-
ferently than the magnetic dipole moment, as was highlighted via 
calculations of the nuclear magnetization distribution of 209Bi [45]. 
Measurements of � may thus furthermore help to address open 
questions related to e.g. effective nucleon g-factors and charges.

2. Overview of the experiment

The value of � can be extracted from the first-order shift (E(1)
F ) 

in the hyperfine structure (HFS) interval, governed by the hyperfine 
interaction Hamiltonian:

Hhyp = AI · J+ B
3(I · J)2 + 3

2 (I · J) − I(I + 1) J ( J + 1)

2I(2I − 1) J (2 J − 1)

+C

[

10(I · J)3 + 20(I · J)2

I(I − 1)(2I − 1) J ( J − 1)(2 J − 1)

+
2I · J{I(I + 1) + J ( J + 1) − 3N + 3} − 5N

I(I − 1)(2I − 1) J ( J − 1)(2 J − 1)

]

, (1)

where N = I(I + 1) J ( J + 1), and noting 〈F ,mF | I · J |F ,mF 〉 =
1
2 [F (F + 1) − I(I + 1) − J ( J + 1)]. In these expressions, I , J and 
F are the nuclear, atomic, and total angular momentum, while A, 
B and C are the magnetic dipole (M1), electric quadrupole (E2) 
and magnetic octupole (M3) HFS constants, respectively. These are 
all proportional to their corresponding nuclear moment, in a way 
which depends on the field distribution generated by the electrons 
at the site of the nucleus. Thus, accurate atomic structure calcula-
tions of C/� have to be performed to extract � from C .

There are three stages in our experiment, schematically illus-
trated in Fig. 1. First, by tuning a continuous wave (cw) laser into 
resonance with a transition from one of the hyperfine levels (F ) of 
the atomic ground state into a corresponding hyperfine level of an 
excited J state, population may be optically pumped. Through de-
excitation from the excited state into either another level (F ′) of 
the ground-state hyperfine manifold, or into other dark states, the 
population of the state F is depleted. If RIS is subsequently per-
formed starting from the same F state, a reduced ion count rate 
is observed. If now, prior to the laser ionization stage, an RF field 
is tuned into resonance with a (F , mF ) → (F − 1, mF ) transition, 
the observed ion count rate increases. By scanning the frequency 
of the RF and recording the ion count rate, the hyperfine spacing 
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Fig. 2. RF scans of several (F , mF ) → (F −1, mF ) transitions in the D5/2 and D3/2 hyperfine manifolds. Green vertical lines indicate the �mF = 0 resonance locations governed 
by Eq. (3) with the best-fitting hyperfine constants and magnetic field values. The y-axis represents the ratio of RF-on and RF-off datapoints, as described in the text.

between the levels F and F ′ of the ground-state manifold can thus 
be measured precisely. Due to the relative orientation of the oscil-
lating magnetic field and the earth’s magnetic field, both pointing 
along the atom beam axis, only �mF = 0 resonances are observed.

The vacuum chamber used for the experiments is shown in 
Fig. 1a. It consists of three cylindrical vessels, one to produce 
the atom beam, a second one for optical pumping and RF spec-
troscopy, and the third and final one for laser ionization and ion 
detection. These vessels are separated by metal walls with a thin 
slit (1x20mm) used to collimate the atom beam. We produced 
an atomic beam of stable scandium in the bottom chamber by 
resistively heating a tantalum furnace. In the second chamber, 
up to 15mW of cw laser light crossed the atom beam orthogo-
nally, in order to optically pump the atoms. This light was pro-
duced with a frequency-doubled Sirah Matisse Ti:Sapphire laser, 
focused to a ∼1mm spot. The laser was tuned to drive either the 
25 014.190 cm−1 3d4s(3D)4p 2D◦

5/2 state or the 24866.172 cm−1

3d4s(3D)4p 2D◦
3/2 , starting from respectively the thermally pop-

ulated 3d4s2 2D5/2 state at 168.3371 cm−1 and the 3d4s2 2D3/2

ground state. The atomic beam then passed through a loop of wire, 
8 cm above the optical pumping region. This wire was terminated 
with 50 � in order to ensure good impedance matching, minimiz-
ing reflected RF power. The voltage standing wave ratio (VSWR) 
was measured using a Rhode&Schwarz ZVL Network analyser, and 
was found to vary negligibly within the scan range. The generator 
is a DS instruments DS6000 pro PureSine signal generator, refer-
enced to an internal 10MHz reference with a quoted accuracy of 
280 parts per billion. For the measurements, the generator was 
set to output 5 mW of RF power. The atoms are exposed to the 
RF field for an estimated few 10 µs, which thus leads to expected 
linewidths of a few 10 kHz.

The atoms are then further collimated and orthogonally over-
lapped with the ionization lasers which are focused into a 
1x1mm2 spot, 13 cm above the RF interaction region, in the 
third chamber. A three-step resonant laser ionization scheme was 
used to ionize the scandium atoms, derived from the scheme 
in [46], shown in Fig. 1b. The first step is provided using a ∼5% 
pick-off from the cw laser beam used for the optical pumping 
stage. The other two steps were produced by pulsed Ti:Sapphire 
lasers (10 kHz repetition rate), tuned to the 25014.190 cm−1 →

46989.493 cm−1 transition or the 24866.172 cm−1 → 46914.540

cm−1 transition, and to a broad auto-ionizing state at ∼58104 cm−1

or 58037 cm−1 . The laser powers used for the laser ionization were 
approximately 0.75mW, 50mW and 500mW for the first, second 
and third steps, respectively.

Prior to performing any double-resonance measurements, an 
estimate of the HFS constants can be obtained by scanning the 
frequency of the first laser step, as shown in Fig. 1c, d. During the 
RF scans, the laser wavelength was kept fixed to pumping wave-
lengths suitable for the different RF lines, and the RF field was 
introduced and scanned. Fig. 2 shows examples of the RF lines 
which were obtained. The Zeeman splitting observed in wider-
range scans can be used to determine the magnetic field strength. 
As the measurements presented in this work were performed over 
a time scale of two years, different values of this field are obtained 
between the different datasets: 1.03G for the first set of mea-
surements, 80mG for a second set, and 0.83G for the third. The 
measurements with a field of 80mG were performed only for the 
(1, 0) → (2, 0) transition of the D5/2 state, where the external field 
was partially shielded with mu-metal foils. This was done in order 
to evaluate possible systematic errors, since this line is more sen-
sitive to the B-field than the others (e.g. at 1G the (1, 0) → (2, 0)
line shifts by as much as 39 kHz). The data from all measurements 
was found to be consistent, indicating the measurement protocol 
is reliable and the magnetic field strengths can be accurately as-
sessed from the Zeeman splitting.

3. Analysis

Extracting accurate HFS constants requires atomic structure cal-
culations to estimate the second-order shift (E(2)

F ) due to M1-M1, 
M1-E2 and E2-E2 interactions. These calculations will be discussed 
first.

3.1. Calculation of hyperfine constants and second-order shifts

The relativistic coupled-cluster (RCC) theory, known as the 
gold-standard of many-body theory [47], is used to evaluate C/�

and the matrix elements involving the second-order hyperfine in-
teraction Hamiltonians. In this work, we expand on earlier calcula-
tions [48] presenting A/g I (with g I = μ/I), B/Q and C/� with a 
larger set of orbitals, using up to 19s, 19p, 19d, 18 f , 17g , 16h and 
15i orbitals in the singles- and doubles-excitation approximation 
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Table 1

Theoretical HFS constants of the 3d4s2 2D3/2,5/2 state. The dominant off-diagonal reduced matrix elements Tk = 〈3/2||T (k)
e ||5/2〉 = −〈5/2||T (k)

e ||3/2〉 required for the estima-
tion of the second-order corrections to the hyperfine intervals are provided in the last two rows.

Dirac-Fock RMBPT(2) RCCSD + Triples + QED + Breit + BW Extrapolation Total

D3/2

A/μ 49.520 54.008 56.172 0.656 0.013 0.153 -0.002 0.055 57.0(6) MHz/μN

B/Q 107.037 122.824 126.343 -0.787 0.000 -0.046 0.000 0.000 125(2) MHz/b
C/� 1.91 -5.85 -4.86 -0.65 -0.02 -0.35 0 0.09 -5.8(3) 10−2 kHz/(μN b)

D5/2

A/μ 21.066 19.744 22.416 0.179 0.013 0.057 0.002 0.021 22.7(4) MHz/μN

B/Q 151.39 173.84 176.11 -1.30 0.05 0.09 ∼ 0 -0.60 175(2) MHz/b
C/� 0.78 2.33 -17.09 0.58 ∼ 0 0.80 ∼ 0 -0.14 -15.9(2) 10−2 kHz/(μN b)

T1 83.52 176.18 145.03 10.15 -0.1 0.61 0.1 156(6) MHz/μN

T2 311.27 355.29 376.17 -11.27 0.19 0.48 0.02 366(7) MHz/b

Table 2

Experimental and theoretical HFS constants and � values, without and with the second-order corrections. HFS constants beyond the octupole term were found to be zero 
within errors, and were thus not included in the fit.

Theory 
this work

Expt. Ref. [17] Expt. this work

Uncorrected Corrected Uncorrected Corrected

D3/2 A [MHz] 271(3) 269.556(1) 269.558(1) 269.55817(5) 269.55844(7)[3]
B [MHz] -27.5(5) -26.346(4) -26.360(8) -26.3531(9) -26.3596(5)[5]
C [kHz] – – -0.010(22) 0.039(28)[2]
� [μNb] – – 0.17(38) -0.68(49)[6]

D5/2 A [MHz] 108(2) 109.032(1) 109.033(1) 109.03275(7) 109.03297(5)[3]
B [MHz] -38.5(5) -37.387(12) -37.373(15) -37.3954(12) -37.3745(8)[15]
C [kHz] 1.7(10) 1.5(12) 0.31(8) -0.062(59)[17]
� [μNb] -10.7(63) -9.4(75) -1.92(51) 0.39(37)[11]

in the RCC theory (RCCSD method). Due to limitations in computa-
tional resources, we correlate electrons up to g-symmetry orbitals 
in the singles-, doubles- and triples-excitation approximation in 
the RCC theory (RCCSDT method). We quote the differences in the 
results from the RCCSD and RCCSDT methods as ‘+Triples’. Contri-
butions from the Breit and lower-order quantum electrodynamics 
(QED) interactions are determined using the RCCSD method, and 
added to the final results as ‘+Breit’ and ‘+QED’, respectively. Con-
tributions due to the Bohr-Weisskopf (BW) effect are estimated in 
the RCCSD method considering a Fermi-charge distribution within 
the nucleus and corrections are quoted as ‘+BW’. We also extrap-
olated contributions from an infinite set of basis functions and 
present these as ‘Extrapolation’.

The A/μ, B/Q and C/� values of the 3d4s2 2D3/2,5/2 states 
are tabulated in Table 1. To obtain A and B , listed in Table 2, 
recommended literature values of the moments were used (μ =
+4.75400(2) μN [49] and Q = −0.220(9) b [50]). Uncertainties are 
estimated from the neglected higher-level excitations of the RCC 
theory. The shift E(2)

F due to M1-M1, M1-E2 and E2-E2 interaction 
terms is given by [51]:

E
(2)
F = EM1−M1

F + EM1−E2
F + E E2−E2

F

=
∑

J ′

∣

∣

∣

∣

{

F J I

1 I J ′

}∣

∣

∣

∣

2

η

+
∑

J ′

{

F J I

1 I J ′

}{

F J I

2 I J ′

}

ζ

+
∑

J ′

∣

∣

∣

∣

{

F J I

2 I J ′

}∣

∣

∣

∣

2

ǫ (2)

where

η =
(I + 1)(2I + 1)

I
μ2 |〈 J ′||T

(1)
e || J 〉|2

E J − E J ′
,

ζ =
(I + 1)(2I + 1)

I

√

2I + 3

2I − 1
μQ

〈 J ′||T
(1)
e || J 〉〈 J ′||T

(2)
e || J 〉

E J − E J ′

and

ǫ =
(I + 1)(2I + 1)(2I + 3)

I(2I − 1)
Q 2 |〈 J ′||T

(2)
e || J 〉|2

E J − E J ′
.

In these expressions, T(k)
e is the spherical tensor operator with rank 

“k (> 0)” in the electronic coordinates. We quote numerical val-
ues for these second-order matrix elements in Table 1. We only 
consider the dominant contributing matrix elements between the 
3d4s2 2D5/2 state and the 3d4s2 2D3/2 state. Intermediate results 
from the zeroth-order calculation using the Dirac-Fock method 
and the second-order relativistic many-body perturbation theory 
(RMBPT(2) method) are presented to demonstrate the propagation 
of electron correlation effects from lower to all-order RCC methods.

3.2. Analysis of hyperfine resonances

The data is processed and analysed as follows. For each value 
of the rf frequency, the number of ion counts is recorded for a 
time interval of typically one second, once with the output of the 
rf generator on, and once with the output of the generator off. 
By repeating this procedure for the desired range of frequencies, 
a spectrum is obtained by taking the ratio of the two measured 
counts. If needed, a rebinning of the data is performed in order to 
improve the signal-to-noise ratio. All spectra obtained in this way 
are then fitted by explicitly diagonalizing the following Hamilto-
nian:

H =Hhyp + B0 · (g JμB J z + gμN Iz), (3)

with Hhyp given in Eq. (1) and B0 the external magnetic field, and 
then correcting these eigenvalues using the expressions for the 
second-order shift given in Eq. (2). Resonance locations can then 
be calculated as differences of these eigenvalues, �F = ±1, �mF =

0, ±1. The best-fitting values of the hyperfine constants A, B and 
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C are found by comparing the calculated resonance locations with 
those observed in the experimental data using least-squares mini-
mization. Additional free parameters in the fit are the value of the 
magnetic field B0 and the heights of the resonances predicted by 
the above procedure, all of which are allowed to vary from one 
spectrum to the next in order to obtain the best goodness-of-fit. 
Note that the influence of the nuclear g-factor on the total Zee-
man splitting is negligible, but the effect was included explicitly 
for completeness.

The hyperfine constants of 45Sc, with and without use of 
second-order shifts, are given in Table 2, and the values extracted 
for the octupole moment are shown in Fig. 4. The systematic un-
certainty due to the atomic calculations is given in square brackets. 
This uncertainty was estimated by the change in hyperfine con-
stants obtained by varying the values of T1 and T2 within the 
theoretical error bar. Our results for A, B and C agree well with 
literature [17], and are at least an order of magnitude more pre-
cise.

4. Results and interpretation

Since scandium has a single proton outside of the magic shell 
of Z = 20, a single-particle shell model estimate for � [31] would 
be expected to be fairly good. We find �sm = 0.46 μNb, using 
〈

r2
〉1/2

= 4.139 fm as the radius of the f7/2 orbit (obtained from 
DFT calculations discussed later). This value is in good agreement 
with the experimental values. As a step towards a more complete 
understanding of � for 45Sc, and as a step towards understand-
ing this observable in general, we examine it in more detail using 
more realistic nuclear models.

4.1. Nuclear shell-model

Shell-model calculations were performed using different inter-
actions in a (sd)pf -shell model space [52–55]. The values of � are 
calculated by the nuclear shell model through the code KSHELL 
[56]. The expression of � is defined as

� = −M3 = −

√

4π

7

(

J 3 J

− J 0 J

)

×(g
(l)
p lp + g

(l)
n ln + g

(s)
p sp + g

(s)
n sn)

where lp(n) and sp(n) are the proton (neutron) angular momentum 

and spin terms of nuclear matrix elements, respectively, and g(l)
p(n)

and g(s)
p(n)

are corresponding proton (neutron) g factors. The struc-

ture of 45Sc is calculated using seven Hamiltonians, GXPF1 [52], 
GXPF1A [53], KB3 [54], and KB3G [55] for the pf -shell model 
space, and SDPF-M [57], SDPF-MU [58], and SDPFUSI [59] for the 
sdpf -shell model space.

The � for 45Sc is dominated by the proton contribution, with 
the angular momentum and spin contributions having the same 
sign. We obtain values in the range 0.41-0.49μNb with free g-
factors and 0.28-0.35μNb with a spin-quenching factor of 0.6 for 
the different shell model calculations. The inclusion of cross-shell 
excitations from the sd-shell to the pf -shell enhances the correla-
tion beyond the single f7/2 proton configuration, which results in 
small increases in �.

4.2. Nuclear density functional theory

We determined values of μ, Q , and � for oblate states in 
45Sc. We used constrained intrinsic mass quadrupole moments 
Q 20 = 〈2z2 − x2 − y2〉 varying between −1b and 0, with points at 
−1b marked by stars, see Fig. 3. The obtained unpaired mean-field 

Fig. 3. Values of μ and � of the I = 7/2− angular-momentum-projected ground 
states of 45Sc. Panels (a) and (b) show results obtained with Skyrme functionals 
supplemented by the Landau spin-spin terms and with no spin-spin terms, respec-
tively. Arrows mark the experimental value of μ and visualize the experimental 
error bars of � = −0.07(53), which are outside the scale of the figure.

solutions were projected on the I = 7/2− ground-state angular 
momentum. Proton and neutron configurations were fixed at π31

and ν34 , where 3n represents the occupied n lowest oblate orbitals 
in the ℓ = 3 f7/2 shell. No effective charges or effective g-factors 
were used.

Results of the DFT calculations were obtained using the code
hfodd (version 2.95j) [60]. To represent single-particle wave func-
tions, we used the basis of N0 = 14 spherical harmonic oscillator 
shells. We run the code in the mode of conserved parity along 
with broken simplex and broken time reversal. We used an in-
finitesimal angular frequency of h̄ω = 1 keV aligned along the z
direction. Simultaneously, the nucleus was oriented in space so 
that the axial-symmetry axis was also aligned along the z direc-
tion. This allowed for splitting single-particle energies according 
to their projections of the angular momentum K on the symme-
try axis, without affecting their wave functions. At the same time, 
all single-particle wave functions acquired good K quantum num-
bers.

To stabilize the convergence, during the self-consistent itera-
tions the total wave functions were additionally projected on the 
axial symmetry [60]. Occupied single-particle wave functions were 
fixed by distributing the neutrons and protons according to the 
partitions of numbers of occupied states in individual blocks of 
given K [60]. This defined specific intrinsic configurations π31 and 
ν34 in 45Sc. We note here that the configurations fixed for 45Sc 
pertain to deformed orbitals; therefore, they represent much richer 
correlations than the spherical f7/2 configurations usually defined 
in the context of the shell model.

Calculations were performed for eight zero-range Skyrme-
type functionals, UNEDF0 [61], UNEDF1 [62], SkXc [63], SIII [64], 
SkM* [65], SLy4 [66], SAMi [67], and SkO′ [68], and for two finite-
range functionals, D1S [69] and N3LO REG6d.190617 [70]. The goal 
of trying several different variants of functionals was to estimate 
the order of magnitude and spread of the results. For all function-
als, the experimental value of the electric quadrupole moment of 
Q = −0.216(9) b was reached near Q 20 = −1 b.

The calculated values of μ and � strongly depend on several 
input ingredients of the calculation. First, even at Q 20 = 0 these 
values lie far from the Schmidt [71] and Schwartz [31] single-
particle estimates. This can be attributed to a strong quadrupole 
coupling to the occupied neutron f7/2 orbitals, which decreases 
both μ and �. Second, the spin polarization, which acts for the 
Landau spin-spin terms included, also significantly decreases μ
and �. Following Ref. [72], we parametrized the spin-spin terms by 
the standard isoscalar and isovector Landau parameters g0 = 0.4
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Table 3

Experimental and theoretical values of �. The experimental value obtained in this 
work is the dispersion-corrected weighted mean of the values for the two D J states, 
where the total (statistical + systematic) was used in the weighting and to compute 
the total uncertainty.

� [μNb]

Expt. Literature [17] -9.4(75)
This work -0.07(53)

Theory Schwartz gs = 1/0.6 0.65 / 0.46
SM gs = 1/0.6 0.45(4) / 0.32(4)
DFT 0.245(17)

Fig. 4. Graphical comparison of experimental values of �, with and without second-
order corrections, and the theoretical predictions. The coloured bands indicate the 
theoretical uncertainties.

and g′
0 = 1.2, respectively. The value of g′

0 was confirmed in global 
adjustments performed in Ref. [73], which gave g′

0 = 1.0(4), 1.3(4), 
and 1.7(4) for functionals SkO′ , SLy4, and UNEDF1, respectively. 
Third, with increasing intrinsic oblate deformation, both μ and �
increase. The latter effect can be removed by pinning down the 
intrinsic deformation to the experimental value of Q , see stars 
in Fig. 3. The shaded area in Fig. 3 covers the range of results 
given by all starred points, and thus represents a very rough es-
timate of the averages and rms deviations of the DFT results: 
μDFT = +4.74(6) μN and �DFT = +0.245(17) μN b.

4.3. Interpretation

We summarize our experimental and theoretical results in Ta-
ble 3 and graphically in Fig. 4. The inclusion of the second-order 
shifts brings the extracted value of � obtained for the two dif-
ferent D J states into reasonable agreement, providing a measure 
of confidence that these second-order shifts and the values of 
C/� are calculated accurately. The final value, obtained as the 
dispersion-corrected weighted mean of the two values, is also 
shown on the figure, alongside the theoretical values, which are 
shown as shaded bands.

The final experimental value agrees well with all theory values. 
It is interesting to note however that the large-scale shell model 
and DFT calculations yield smaller values of � than the single-
particle Schwartz estimate, bringing these more refined models 
into closer agreement with experiment. A reduction of the exper-
imental error bar by at least one order of magnitude would be 
required to provide a more stringent test of the different theoreti-
cal approaches.

5. Conclusion

We have measured the magnetic octupole moment � in 45Sc, 
using a high-precision experimental technique and state-of-the-art 
atomic calculations. Our shell-model and DFT calculations (with no 
parameter adjustments) reproduce the values of �, of Q up to 
about 10%, and of μ up to 3%. Further work is required to im-
prove the experimental precision further in order to stringently 
test nuclear theory. An increase in precision of about a factor of 
10 would likely be required to do so, which is out of reach of our 
current experimental apparatus. A longer rf-interaction region and 
finer control of the external magnetic field strength would be re-
quired. Future experimental work on extending the measurements 
to other elements, and also to radioactive isotopes, would be very 
beneficial. This experimental effort should be matched by accurate 
atomic structure and nuclear structure calculations. As illustrated 
in this work, atomic and nuclear theory are capable of produc-
ing results with sufficient accuracy for such future programs. As 
a next experimental step, we are currently designing and con-
structing a collinear RIS laser-RF apparatus which we will use to 
perform measurements on radioactive isotopes. Candidates for fu-
ture studies on radioactive isotopes include In and Bi, both having 
a single proton (hole) outside (inside) of a closed shell, which 
furthermore feature comparatively larger values of the hyperfine 
C-constant [21,29].
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