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Deep learning for radiotherapy outcome prediction using dose data – a 

review   
 

 

 

Abstract 
 
Artificial intelligence (AI), and in particular deep learning using convolutional neural networks (CNN), has 
been used extensively for image classification and segmentation, including on medical images for diagnosis 
and prognosis prediction. Use in radiotherapy prognostic modelling is still limited, especially as applied to 
toxicity and tumour response prediction from radiation dose distributions. We review and summarise studies 
which apply deep learning to radiotherapy dose data, in particular studies which utilise full 3D dose 
distributions. Ten papers have reported on deep learning models for outcome prediction utilising spatial dose 
information while four studies used reduced dimensionality (DVH, Dose Volume Histogram) information 
for prediction. Many of these studies suffer from some of the same issues which plagued early normal tissue 
complication probability (NTCP) modelling; including small, single-institutional patient cohorts, lack of 
external validation, poor data and model reporting, use of late toxicity data without taking time-to-event into 
account, and nearly exclusive focus on clinician-reported complications. They demonstrate, however, how 
radiation dose, imaging, and clinical data may be technically integrated in CNN-based models; and some 
studies explore how deep learning may help better understand spatial variation in radiosensitivity. In general, 
there are a number of issues specific to the intersection of radiotherapy outcome modelling and deep 
learning, for example translation of model developments into treatment plan optimisation, which will require 
further combined effort from the radiation oncology and AI communities. 
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Statement of search strategies used 
 
For this scoping review, we conducted a systematic search of MEDLINE via PubMed, from inception to 
August 2021. We searched for papers mentioning radiotherapy (or associated terms); artificial intelligence 
(or associated terms, such as deep learning, CNN, or similar); and outcome, prediction, prognosis or toxicity. 
Studies were considered if they reported on models for predicting cancer patient outcomes after 
radiotherapy, utilizing deep learning methodology and including complex dose data as part of the prediction 
model input, either as full 3D dose distribution or after some limited dimensionality reduction (for example 
as DVH information). We excluded studies which only considered imaging features or a small number of 
summary dose metrics for prediction. 
 

  



Introduction 
 
Radiation oncology has a long history of outcome prediction research, manifest by innumerable tumour 
control probability (TCP) and normal tissue complication probability (NTCP) modelling studies. The field 
has been a forerunner in personalized medicine [1]; not just through careful radiotherapy plan adjustment to 
individual patient anatomy, but also using predictive models to guide a wide range of decision making, 
including treatment modality allocation [2–4] and individual treatment optimization [5,6]. As such, radiation 
oncology is well positioned to gain from development and clinical implementation of predictive artificial 
intelligence (AI) for further personalisation. 
 
Classical dose-response and outcome modelling in radiation oncology has necessarily relied on crude data 
reduction techniques to represent complex treatment data, especially for anatomy and radiation dose 
representation. These models have provided real clinical benefit, be it by guiding conformal radiotherapy 
plan optimisation or guiding clinical trial development, but have generally been phenomenological in nature. 
The vast majority of studies have reduced radiation dose to simple one-dimensional representations 
(‘metrics’) for specific anatomical structures, such as mean absorbed dose, volume receiving a certain dose 
threshold, etc, based on clinician outlining on the treatment planning CT scan. These dose metrics have been 
related to outcome through statistical models, typically some form of generalized linear modelling, 
potentially taking patient characteristics or other clinical factors into account. This approach partly reflects 
the inability of most traditional statistical modelling methodology to handle highly complex, 
multidimensional radiotherapy treatment data. Standard approaches not only run afoul of the collinear nature 
of radiation dose data, but also largely discard the spatial information. This has proven a particular problem 
for NTCP prediction, especially given the conformal dose distributions seen with modern treatment 
techniques. 
 
Driven by these issues, machine learning methodologies have been utilised in the attempt to better 
understand patient and treatment factors and their complex relationships with radiotherapy outcomes [7,8]. 
Separate to these efforts, methods have been developed to explore spatial dose dependencies, particularly in 
normal tissue. These latter approaches fundamentally work by transferring dose distributions onto a common 
reference geometry, and then comparing dose in responders and non-responders on a voxel-by-voxel level 
with standard statistical models [9]. They thereby utilise the full 3D dose distribution and are often not 
reliant on manual segmentation. Some published results are promising, potentially identifying previously 
unknown radiosensitive organ substructures [10]. There are unresolved questions around spatial data 
normalisation and statistical significance testing, however [11]. 
 
Deep learning methodologies may offer a way to explore spatial dose correlations beyond the individual 
voxel level, while also integrating patient-specific factors and imaging markers. Deep learning is subset of a 
broader family of machine learning methods which are based on artificial neural networks. These networks 
are built from multiple connected layers, where only the input layer – for example an image - and the output 
layer - often a general classification, such as “toxicity yes/no”, or a voxel-wise classification, for example for 
image segmentation - are visible to the user. Deep learning methods learn a task from training examples by 
optimising weights on the connections between layers. A convolutional neural network (CNN) is a specific 
type of neural network where a limited number of neurons in each layer are connected to each other through 
kernels (sliding filters). The most distinctive features of the convolution operation are: (i) that the weights 
are noticeably fewer than typical fully-connected neural networks, which alleviates the time and memory-
related difficulties whilst training, and reduces the risk of overfitting; (ii) that the convolution is a shift-
invariant operation which means the features extracted from the input are somewhat more robust to shift and 
translation. CNNs have proven highly successful for a broad range of image analysis tasks, and are now 
widely applied to medical imaging, including for organ segmentation, object detection, registration and 
classification. Classification using CNNs, one of the most researched tasks, has achieved performance 
rivalling human experts [12]. Examples include Alzheimer’s disease classification based on MR images [13] 

and pneumonia classification using a deep CNN [14].   



  
Treatment response and outcome prediction can be considered a type of classification task, and the use of 
individual patient imaging to predict outcomes after radiotherapy has been explored in multiple studies (see 
for example [15–17]). Outcome prediction after radiotherapy using solely imaging or clinical information is 
conceptually no different than outcome prediction in other medical fields, and does not utilise the patient-
specific dose distribution information available in radiation oncology. Radiation dose distributions are large 
3D objects, comparable to anatomical imaging in size and complexity. In other words, radiation dose 
distributions can be considered just another type of imaging data, either as 2D or 3D information. They 
should hence lend themselves well to deep learning methodologies, and in particular CNNs. Specifically, 
such an approach might help shed light on poorly understood questions like spatial radiosensitivity in 
individual organs, or differences in local control probability across treatment targets.  
 
This overview will focus on the specific challenge of radiation dose data in this setting, and will provide a 
scoping review of the use of deep learning methodology incorporating radiation dose information for 
outcome prediction. We will highlight current challenges and emerging opportunities, but also discuss 
established best practices for prognosis and prediction research which should be followed irrespectively of 
the modelling methodology. 
 
 

Overview of published studies  
 
Altogether, our initial search identified 627 papers mentioning radiotherapy; artificial intelligence (or 
associated terms, such as deep learning, CNN, or similar); and outcome, prediction, prognosis or toxicity. Of 
those, 96 abstracts were screened, and 18 papers selected for full-text review. Ten papers reported on deep 
learning models for outcome prediction utilising spatial dose information [18–27], see Table 1, while four 
studies used dimensionally reduced (DVH level) information for prediction [28–31]. 
 
Focusing on the former, as summarised in Table 1, the majority used 3D dose matrices directly as input into 
their CNN architecture to classify patients as experiencing / not experiencing toxicity (i.e. as a binary 
outcome measure). Zhen et al [18] considered 2D rectum dose surface maps to predict rectal toxicity after 
cervical cancer treatment, using a methodology which is unlikely to be generalisable to most other organs - 
the majority of organs do not have shapes which are homeomorphic to a cylinder and thus unfolding to 2D 
leads to distortions. Ibragimov et al modelled post-SBRT survival and local cancer progression rather than a 
toxicity endpoint in their 2019 paper [21], and Welch et al considered 3-year locoregional failure for 
oropharyngeal cancer patients [23]. And finally, Wang et al [25] proposed to predict early voxel-wise FDG-
PET response in gross tumour volume (GTV) and clinical target volume (CTV) after radiotherapy for 
oropharyngeal cancer; the only study not using a single binary per-patient outcome measure. This paper also 
used 2D axial slices as independent input rather than full 3D images or dose matrices. 
 
Features from CT images, with or without treatment planning contours, were the most common additional 
data type used for prediction. Men et al [20] demonstrated improved performance for a network utilising 
dose, CT and structures, compared to individual data types alone, studying xerostomia prediction in 784 head 
and neck cancer patients; although the addition of clinicians’ contours made relatively little difference. Wang 
et al [25], discussed above, used PET images as input, alongside dose and CT. Liang et al [27] used 
functional lung ventilation images, derived from 4D-CT, and functional dose distributions (weighting the 
dose with the ventilation image) as input to their model to predict radiation pneumonitis; with combined dose 
and ventilation images performing better than models using only individual data types. Finally, several 
studies looked at the addition of patient-level clinical factors, although with somewhat inconsistent 
conclusions as to whether the combined deep CNN models outperformed simple models with clinical factors 
alone [19,21,23]. 
 



For categorical output prediction (i.e. all studies but Wang et al), most works used a relatively standard CNN 
architecture; i.e.  started with convolutional layers to extract features, down-sampling layers after 
convolution layers to reduce the data dimension and one or two fully-connected layers at the end to generate 
the output. The majority of studies used pre-trained convolutional layers for feature extraction, some with 
additional fine-tuning on the radiotherapy specific data. A number of different approaches were used to 
handle multiple input data modalities. For the addition of patient-level clinical factors, studies typically 
considered these as input to one of the final fully connected layers. Ibragimov et al. [19] proposed a multi-
path neural network: one path with the input of dose image and other path with the input of other treatment 
features, with the ultimate features extracted by each path concatenated and the result passed through two FC 
layers. More variation was seen in the methods used to handle multimodality 3D input: Ibragimov et al [22] 
simply concatenated CT and dose to a single input matrix per patient. Men et al [20] proposed to use a 3D 
residual CNN (rCNN) with three inputs (CT images, 3D dose, structure set). Their network had three 
convolution blocks which extracted the features of the three inputs separately and the summation of 
extracted features were subsequently passed through the rest of the network. In contrast, Welch et al [23] and 
Yan et al [26] used multimodality input as different channels for the same set of convolutional layers. Liang 
et al [27] explicitly explored whether extracting features separately before combining was better than adding 
all data as separate channels in a single input matrix. They found a slightly better performance with separate 
feature extraction. 
 
The second group of studies focused on DVH information rather than full 3D dose distributions for outcome 
prediction. In these papers, neural networks were generally designed with fully connected layers (not 
convolutional layers) due to the lack of spatial information and low-dimensional data. The architecture could 
thus be simple, with only two or three layers [28,29,31] or hybrid (i.e. a combination of networks) [30]. The 
input was mainly a vector of dose features, with other clinical factors added: Compared to the full 2D & 3D 
networks discussed above, the simple 1D structure of DVH data allows for straightforward concatenation 
with other, non-dosimetric, features; for example patient characteristics, treatment details, etc. There are 
potential advantages of this approach in terms of lower data requirements as well as memory usage for 
model training. Additionally, it retains some of the main benefits of artificial neural networks compared to 
other machine learning techniques: Firstly, a neural network with an appropriate architecture can model any 
well-behaved function, with arbitrary nonlinear dependencies. Secondly, the collinearity problem for input 
data does not affect neural networks to the same extent as for traditional machine learning, where highly 
collinear data can result in increased variance of model parameter estimates [32]. Thus, whilst the lack of 
spatial information for DVH based approaches is an obvious disadvantage, CNN based approaches using 3D 
data will typically not be able to predict critical dose levels due to internal normalisation; there is thus 
considerably scope for complimentary studies of this type, which may still offer insights related to absolute 
dose effects. 
  



Table 1: Studies utilising full (spatial) dose information for outcome prediction with deep learning models 
 

Reference Patient 

cohort 

Dose 

information 

Other input 

factors 

Summary of model 

architecture 

Predicted 

outcome 

Spatial dose 

dependence 
qualification  

Train / 

validation / 
test 

Comments 

Zhen 2017 
[18] 

42 cervical 
cancer 
patients 

2D surface 
dose flattened 
from 3D dose 

N/A Pre-trained 2D CNN: 16 
convolutional layers followed 
by max pooling. 3 FC layers 
with softmax activation 
function 

Rectal toxicity 
grade ≥2 

2D toxicity risk 
maps (gradient-
weighted class 
activation 
maps) 

10-fold CV 
LOOCV 

10-fold-CV AUC = 0.70. 
LOOCV AUC = 0.89. 
Dose to superior rectum 
might be particularly 
associated with rectal 
toxicity. 

Ibragimov 
2018 [19] 

125 patients 
treated with 
liver SBRT 

3D dose 
distributions 

Non-
dosimetric 
features used 
to train a 
separate FC 
network  

Pre-trained 3D CNN: Three 
sets of convolution layers 
with dropouts, two max-
pooling layers, and 2 FC 
layers 

Late hepatobiliary 
toxicities grade ≥3 

Individual 3D 
toxicity risk 
map (saliency 
maps, 
created by 
systematically 
varying dose 
input) 

20-fold CV AUC for CNN alone = 
0.79.  
AUC for combination of 
ANN and CNN = 0.85. 
Almost two times fewer 
false-positive compared to 
DVH-based methods. 
Toxicity risk for proximal 
PV was two times higher 
than left PV. No 
correlation between dose 
delivered to central HBT 
and hepatobiliary toxicity. 

Men 2019 
[20] 

784 SCC 
head & neck 
cancer 
patients  

3D dose 
distributions 

3D CT, 
parotid 
structures 

Separate initial 3D 
convolution layer for each 
input (dose, CT, structure set), 
followed by four deeper 
bottleneck architecture 3D 
layers, pooling, fully 
connected, and softmax loss 
layers 

Late xerostomia 
grade ≥2 

N/A 80% training, 
10% 
validation, 
10% test 

AUC = 0.84 for full model 
(dose, CT, contours); 
better than logistic 
regression model with 
dose & clinical factors. 
Predictive performance 
generally better with all 
three inputs, although 
contours made relatively 
small difference. 

Ibragimov 
2019 [21] 

120 patients 
treated with 
liver SBRT 
(same cohort 
as Ibragimov 
2018) 

3D dose 
distributions 

Non-
dosimetric 
(clinical) 
features 
 

Multi-path network: Network 
from Ibragimov 2018 with 
input of 3D dose plan, 
combined with a 3-layers FC 
network with the input of 
non-dosimetric features 

Post-SBRT 
survival and local 
cancer 
progression 

Individual 3D 
risk map 
(created by 
systematically 
varying dose 
input and 

10-fold CV 
 

3D dose and numerical 
clinical features combined 
outperformed separate 
models. The highest risk 
for negative outcome was 
related to the dose received 
by caudate lobe. 



tumour 
location) 

Ibragimov 
2020 [22] 

122 patients 
treated with 
liver SBRT 
(same cohort 
as Ibragimov 
2018) 

3D dose 
distributions 

3D CT Pre-trained 3D CNN: 10 
convolutional layers, in which 
the 8-mid layers are residual, 
followed by FC layer at the 
end; input is a concatenation 
of 3D dose and 3D CT images 

Late hepatobiliary 
toxicities grade ≥3 

Individual 3D 
toxicity risk 
map (saliency 
maps, 
created by 
systematically 
varying dose 
input) 

20-fold-CV AUC = 0.73 for prediction.  
3D maps allowed for 
localisation of high 
toxicity risk for eight 
regions of liver, PV and 
HBT. Highest risk region 
was HBT. 

Welch 
2020 [23] 

160 
oropharynge
al cancer 
patients 

3D dose 
distributions 

3D CT, 
contours, 
clinical 
features 

Three-channel 3D CNN with 
dose, CT and structures: 
Three convolution layers 
followed by BN and 
maxpooling; one FC layer 
(combining output of CNN 
with clinical factors) with 
softmax at the end 

Locoregional 
failure at 3 years 

N/A 10-fold CV 
 

CNN trained with dose, 
CT and clinical features 
performed worse 
(precision recall AUC = 
0.32) than with clinical 
features alone (PR-AUC = 
0.36), and generally worse 
than user-driven machine 
learning models. 

Liang 
2020 [24] 

70 NSCLC 
patients 

3D dose 
distributions 

N/A 
 

3D CNN with 5 convolutional 
layers (pre-trained trained for 
multi-frame video 
classification) followed by 
maxpooling layers and 2 FC 
layers at the end 

Radiation 
pneumonitis grade 
≥2 

Guided 
gradient-
weighted class 
activation maps 
to find spatial 
features 
characteristic 
for patients 
with/without 
toxicity 

50-times 
random 10-
fold CV 

CNN trained on dose AUC 
= 0.842; higher than 
logistic regression models 
using dose and/or clinical 
factors. 
Low-dose region of 
contralateral lung and 
high-dose region of 
ipsilateral lung were 
strongly correlated with 
grade ≥ 2 and grade < 2 
radiation pneumonitis 
cases, respectively. 
 

Wang 
2020 [25] 

66 
oropharynge
al cancer 
patients 

2D dose 
distributions 
on axial slices 

2D CT, 2D 
FDG-PET 
images (both 
on axial 
slices) 

3D network, taking 
concatenated 2D PET/CT and 
dose as input; 8 convolutional 
layers (with constant image 
dimensions); loss function 
prioritising GTV/CTV 

2D axial PET 
images at mid-
treatment (20Gy 
out of 70Gy) 

N/A 61 patients 
for training. 
5 patients for 
testing 

Predicted mean SUV 
CTV/GTV values 
3.50/1.41 compared to  
ground truth values of 
3.57/1.51. Average 5%/10 
mm 2D gamma test pass 
rate 92%. 



Yang 2021 
[26] 

52 post-
prostatectom
y patients 

3D dose 
distributions 

3D CT scans 2 channels (dose, CT, both 
cropped to either bladder or 
rectum); 3 convolutional 
layers (pretrained as part of an 
autoencoder network) 
followed by maxpooling and 
FC layer 

Acute patient-
reported urinary 
and bowel 
symptoms; worst 
score during 
treatment 
above/below cut-
off value 

 39 patients 
for training 
(31 training, 
8 evaluation), 
with 5-fold 
CV; 13 
patients for 
testing 

No useful model could be 
found for bladder 
symptoms (median 
accuracy 38%). Model for 
change in rectal symptoms 
had accuracy 74%. 

Liang 
2021 [27] 

217 thoracic 
cancer 
patients 

3D dose 
distributions 

Ventilation 
image from 
4D-CT; 
functional 
dose 
distribution 
(weighting 
dose with 
ventilation 
image)  

Pre-trained 3D CNN with 5 
layers (see Liang 2020) to 
extract features from each 
input dataset, followed by 
feature filtering and selection 

Radiation 
pneumonitis grade 
≥2 

N/A 5-fold CV for 
training/testin
g; nested 
sampling 
used to split 
training 
dataset into 
hyper-
tuning/validat
ion. 

Combining dose and 
ventilation information 
(AUC = 0.87) 
outperformed models 
using dose, ventilation, or 
functional dose alone.  

 
SBRT: Stereotactic body radiotherapy. SCC: Squamous cell carcinoma. NSCLC: Non-small cell lung cancer. FDG-PET: Fluorodeoxyglucose positron emission 
tomography. GTV: Gross tumour volume. CTV: Clinical target volume. CNN: Convolutional neural network. FC layer: Fully-connected layer, where all the neurons in 
the layer are connected to all the neurons in the next layer. FC Network: Neural network where all the layers are fully-connected. K-fold CV: K fold cross validation is 
when data is divided to K fold, (K-1) folds are used for training and one fold is used for testing. This is repeated K time so all data are used in training and testing. The 
reported evaluation metric is the average for each testing fold. LOOCV: Leave One Out Cross Validation. One set of patient data is kept in reserve for testing, and the 
model optimised on the remainder. The average of the performance is computed for all possible permutations. PV: Portal vein. HBT: Hepatobiliary tract.  



Current challenges and opportunities 

 
Use of deep learning for toxicity and tumour response prediction after radiotherapy is clearly in its infancy, 
with only just over a dozen published papers in the last 2-3 years. A number of methodological issues are 
specific to the application of deep learning to radiotherapy and/or toxicity prediction, and it is worth 
considering these in more detail. Oncology outcome data, and in particular early and late toxicity data, tend 
to be more complex than the typically binary data used for classification in most ‘traditional’ CNN 
architectures. The majority of papers summarised in this review considered only clinician scored toxicity, 
with a single paper predicting acute patient reported symptoms [26]. All of them dichotomised their toxicity 
data prior to model development, and this step causes significant loss of information: Toxicity data are 
nearly always more complex; whether it is ordinal grading to represent increasing severity of side effects, as 
typically used for clinician toxicity scoring, or the more complex and often continuous scales which have 
been used to capture patient reported outcomes. Traditional NTCP modelling has also struggled with fully 
utilising this information, but progress has been made for example in use of ordinal regression models [33]. 
Several machine learning methods have been modified to handle the ordinal regression problem and for 
neural networks ranking learning models have been proposed; these are typically traditional neural networks 
with different formulation [34–36]. Generally, these models are based on one of two ideas: Either converting 
the ordinal problem into pairwise binary classification or changing the network architecture in order to learn 
multi-thresholds for ordinal classification. This has for example been applied to early diagnosis and 
classification of Alzheimer’s disease [37] and to grading of ulcer severity in patients with Crohn’s disease 
[38]. However, the proposed implementations of the ordinal classification problem can result in lower 
accuracy of learning when some grades are rare, as will typically be the case for the severe end of a toxicity 
scale. Further work is needed to explored whether these approaches are appropriate for toxicity data. 
Additionally, time to events and censoring should optimally be taken into account for late toxicity as well as 
long-term tumour-related outcomes. A number of relatively recent methodological developments have 
allowed for modelling of survival outcomes from imaging data based on CNNs combined with Cox 
regression [39–41] or Fine-Gray regression for competing risks [42]. The paper by Cui et al [31] very 
elegantly demonstrates how this might be applied to radiation oncology outcomes, with competing toxicity 
and tumour control endpoints, but we have yet to see a study combining full spatial dose information with 
actuarial data through deep learning. Similarly, no work so far has looked at prediction of time series data, 
such as toxicity profiles or tumour regression over time, from radiotherapy dose. 
 
Modern radiotherapy treatment data is inherently multimodal, with combined CT images and dose 
distributions as the minimum dataset – and with the potential to include additional structural and functional 
imaging, for example MRI and PET. Although dose can be considered on its own for outcome prediction, the 
majority of studies reviewed here included both dose distributions and imaging in their models. Several 
approaches were used, including multi-channel networks and initial separate convolutional layers for each 
modality [20,22,23,25,26]. With the increasing use of online adaptive radiotherapy, there might also be a 
need to implement methods for time series analysis, considering multiple dose distributions from adaptive 
planning simultaneously.  These methods may extend deep learning models that classify videos [43] to 
account for reduced temporal and increased spatial dimensions of CT images and dose. Incorporation of 
multimodality inputs increase the input size and generally requires access to larger GPU memories and more 
computational resources. To handle large input sizes, recent deep learning developments apply convolutional 
layers over smaller patches extracted from the original images (for example histopathological images [44]). 
These methodological developments could potentially be of interest to radiotherapy outcome prediction, as 
could other aspects of multimodal machine learning [45,46]. However, with the use of smaller patches, there 
may be a risk of losing more distant spatial context. 
 
Radiotherapy is somewhat unique in medicine in that it allows for spatial modulation of the active agent (the 
radiation dose). As such, traditional NTCP and TCP modelling has focused on interpretability of dose-
volume effects, to allow for translation into treatment plan optimisation. This may also explain why more 
complex machine learning approaches have seen limited uptake, and why simple models – such as dose 



constraints based on mean organ dose – still prevail. Deep learning neural networks do not inherently 
provide interpretability – weights between connecting layers do not have easily interpretable meaning – but 
there are numerous methods available to help explain CNN models. Gradient-weighted class activation 
mapping (Grad-CAM) is a technique for CNN interpretation which highlights input regions that are 
‘important’ for the prediction [47]. Grad-CAM back propagates the masked gradient of the predicted class 
with respect to the feature maps that carry the same spatial information of the original image. These gradient 
maps are then rectified and aggregated to generate the overall class activation map, highlighting image areas 
that are salient for the predicted class. Zhen et al [18] and Liang et al [24] used Grad-CAM to explain the 
neural network behaviour for the outcome prediction [20]. However, although they show that the CNN can 
extract important regions of the input image, it is not clear how regions are related to the output. 
Furthermore, when analysing spatial dose data, Grad-CAM and feature map analyses do not tell us whether 
certain regions are more sensitive to change in dose than others; i.e. they cannot be used to explore spatial 
variations in radiosensitivity. To first order, toxicity will always depend on delivered dose, so the most 
important regions will be those most often irradiated. The interesting information however, is sensitivity to 
change in dose, which will be tissue and dose-level dependent. Ibragimov et al [19,21,22] used the concept 
of gradients of input features to provide interpretability and explore regional dose sensitivity: After training 
the CNN, they created two new, artificial dose distributions for each pixel x in the dose distribution; one with 
the value of x increased and one with the value of x decreased. The two new dose plans were separately fed 
to the CNN and the subtraction of the predicted outputs provided an indication of dose sensitivity for the 
pixel in question. In other words, the map of pixel-wise output changes provides a map of sensitivity to 
change in dose for the outcome under investigation. Beyond radiotherapy, the question of interpretable 
neural networks is an extremely active field of research [48]. It is not yet clear, however, how to go from 
toxicity maps (or similar measures) to actionable information that can be used directly for treatment plan 
optimisation, the way that DVH metrics are currently used in clinical practice. 
 
The studies reviewed here used small, retrospective and single institutional datasets; with notable exceptions 
by Men et al, who used data from 784 patients with head and neck cancer from the RTOG 0522 trial [20], 
and Cui et al [31], who developed models for radiation pneumonitis on institutional data and externally 
validated those models on data from 327 patients treated on RTOG 0617. Sufficient and good quality 
training data is a key requirement for deep learning, and radiotherapy is in no way unique in this aspect - 
data scarcity is one of the biggest challenges for deep learning development with medical data in general. 
Three main approaches have been used to alleviate this issue: The first is to use transfer learning, which 
utilises information from a previously learned task to pre-train a network and improve the performance on 
the goal task, typically reducing the amount of required training data. Most of the radiotherapy papers 
discussed in this review used transfer learning. The second is use of data augmentation; a technique which 
adds slight modifications, for example rotation and scaling, to the existing data to generate new data, as used 
by Yang et al [26]. Whilst an attractive solution to domain specific data-scarcity, transfer learning relies on 
the assumption that the ‘source-task’ is sufficiently similar to the ‘target-task’, both in terms of input data 
and predictive output. CNNs operating on image data are often assumed to be transferrable due to the 
similarity of low-level (detail) features across many types of image. Retraining of later CNN layers or fully 
connected prediction heads is common for task-adaption. However, radiotherapy dose data are quite unlike 
other images, lacking sharp features and exhibiting smoother variation over larger receptive fields. Therefore 
an optimal CNN architecture for radiotherapy dose might require larger filter sizes than a typical image-
CNN, reducing the efficacy of transfer learning. Furthermore, the pre-learned low-level image features may 
be absent from radiotherapy dose data and relevant features will not be well represented in the generic 
network weights. The combination of these effects leads to a risk of large task dissimilarity, which can lead 
to ‘negative transfer’ where transfer learning is detrimental relative to direct learning on the small domain-
specific dataset [49]. These issues are likely to be particularly prominent in radiotherapy dose analyses and 
careful investigation is required as to the suitability of transfer learning in this domain. The third is 
generating synthesized data, using generative models – including generative neural networks [50] and over 
sampling techniques such as SMOTE [51] – which are able to generate fake data with the same schema and 
statistical properties as their “real” counterpart. Due to the higher complexity for 3D medical image-like 
data, this technique is not very common for medical imaging data augmentation. These three methods can 



partly counter data availability issues, but are not a complete solution, as the statistical data distribution is 
fundamentally determined by the underlying real samples. Just as for more traditional NTCP modelling 
approaches, there is a need to facilitate access to high-quality multi-institutional datasets, for example 
through national and international repositories and secondary use of trial datasets [52] Notably, none of the 
studies in Table 1 used external datasets for model validation, and it is thus unclear how well the results will 
generalise. Curated and diverse multi-institutional datasets could provide an independent and general source 
of validation data for future deep learning-based models.  
 
Use of machine learning for clinical outcome prediction in oncology generally suffers from poor reporting 
[53], and this is also reflected in the radiotherapy-specific literature. The vast majority of papers fail to 
explicitly report according to the Transparent Reporting of a multivariable prediction model for Individual 
Prognosis Or Diagnosis (TRIPOD) guidelines [54], despite these being the accepted standard for prognostic 
model reporting. The much-awaited AI-specific TRIPOD statement will hopefully be published in the near 
future [55], and will help provide a link between the machine learning and the epidemiology-biostatistics 
modelling communities. Until then, all items in the original TRIPOD statement are applicable to deep 
learning models, even when the terminology may at times differ. Other ‘best practices’ from classic outcome 
prediction modelling should also be strived for, including use of prospectively registered study protocols and 
data analysis plans [56] and publication of full models and code for independent validation – both of which 
were also lacking in the reviewed papers. It is worth noting that many of these issues were already 
highlighted in the QUANTEC papers over a decade ago [52,57]. 
 
 

Conclusion 
 
Deep learning methodologies may offer a better way to model complex dose-response relationships in 
radiation oncology, while also integrating imaging and clinical features. They may also help shed light on 
poorly understood questions like spatial variation in radiosensitivity in individual normal tissues or tumours. 
The published literature on use of deep learning for radiotherapy outcome prediction is relatively scarce, 
however, and suffers from a number of general methodological issues, including small patient cohorts and 
lack of external validation. In addition, there are a number of issues specific to the intersection of 
radiotherapy outcome modelling and deep learning, for example translation of model developments into 
treatment plan optimisation. These latter issues will likely require efforts from AI experts with radiotherapy 
domain specific knowledge to solve. 
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