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Abstract—Data driven approaches have been widely employed
in recent years to detect electricity thefts. Although many
techniques have been proposed in the literature, they mainly
focus on electricity thefts by consumers of power from the grid.
Existing studies do not consider electricity thefts by prosumers,
who act as both supplier and consumer in the energy system.
This is of great importance as inaccurate reports of prosumers’
behaviours can disturb power system operation. Here, the paper
examines the role prosumers may play in subverting the energy
system and propose a novel means of detecting such malfeasance.
Specifically, this work introduces a new electricity theft attack
scenarios called balance attacks, where an attacker concurrently
modifies his readings along with neighbouring meters in an
attempt to balance the total aggregated reading. Such attacks
can be difficult to detect by existing solutions that reach detection
decisions based on aggregated readings.A novel electricity theft
detector is proposed that can detect thefts in the presence of
prosumers. Current approaches use either a single model for
all users across the system or else a model for each user.
Here, a half-way house approach is adopted where a cluster-
based detection model is used. In each cluster, the power time
series for a user is decomposed into trend, cyclical and residual
components. Residual data, along with different features from
multiple data sources, are fed in an ML classification algorithm
to detect anomalous readings. Simulations have been conducted
using a newly generated dataset and results have shown that the
proposed model can detect electricity theft with high detection
and low error rates. The results also shows that the proposed
model can detect thefts with great accuracy from new users.

Index Terms—Advanced metering infrastructure (AMI), en-
ergy theft, smart grid, electricity theft, prosumer.

I. INTRODUCTION

Energy plays an essential role in our daily lives. Integrating

the existing energy distribution networks with information

and communications technology (ICT) has introduced the

concept of advanced metering infrastructure (AMI), where

electricity providers, utility companies and users actively com-

municate with each other for offering a reliable and cost-

effective demand-response management [1]. In AMI, a set

of smart meters (SMs) are deployed at users’ premises to

send fine-grained measurements of consumed and generated

electricity to the control centers. These meter data are the

main inputs in critical decision-making processes related to

energy efficiency, optimization, and operational reliability.

Therefore, the integrity of these data must be guaranteed. False

data injection (FDI) attacks can be one of the most critical

and serious attacks launched against data integrity in energy

management systems. Faults in data can negatively impact the

operations of the AMI, resulting in blackouts [2]. FDI attacks

are maliciously engineered data corruption attacks where an

attacker manipulates reported sensor measurements to achieve

their goals, most typically subverting the control of the system

itself or its underpinning accounting system.

Recently, the incorporation of distributed energy resources

(DERs) in a user’s premises, allowing a user to generate,

store and supply electricity, has received significant attention.

Here, the stakeholder is generally referred to as a “prosumer”

(producer-consumer). Considering the role of prosumers is

important as their number is increasing rapidly; according to

the European Renewable Energies Federation [3], the UK in

2015 had almost 1 million prosumers and will likely reach 24

million by 2050. Prosumers’ thefts can be carried out through

the manipulation of consumption and generation data. The

manipulation of generation readings can be more dangerous

as they can affect electricity generation, the energy markets

and the demand-response models. Therefore, the detection of

prosumers attacks is of a great importance.

Traditionally, electricity theft was detected by on-site in-

spections of meters in order to identify faulty or tapped

ones. This is expensive in both time and cost [4]. With

the introduction of smart meters, more sophisticated digital

methods were introduced to detect electricity theft. Some of

these ways are addressed below.

A. Related Work and Limitations

Several approaches have been proposed in the literature to

defend against electricity theft, e.g. state-estimation, game-

theory based and machine learning approaches. Machine learn-

ing (ML) is increasingly being used because of its ability to

be scaled to large systems and its low computational costs [1].

Supervised, semi-supervised, and unsupervised learning have

all been proposed for detecting electricity theft. The features

of several works are summarized in Table I.

In [5], the authors used a convolutional neural network

(CNN) to automate feature extraction, and a CNN-based long

short-term memory (LSTM) model to detect energy thieves.

Their work has achieved a plausible accuracy rate of 89% but a

lower detection rate (recall) of around 87%. Another technique

This work has been accepted for publication at the IEEE SmartGridComm2021 Conference



TABLE I
COMPARISON OF ML-BASED DETECTION RESEARCH WORK

Detection Approach ML Methoda Featuresb

F1 F2 F3 F4 F5

Hasan et al. [5] CNN-LSTM ✗ ✓ ✗ N/A ✗

Zanetti et al. [6] FCM ✗ ✓ ✓ ✗ ✗

Hu et al. [7] DSN + DAE ✗ ✓ ✓ ✓ ✗

Gunturi and Sarkar [8] Ensmble ML ✗ ✓ ✓ N/A ✗

Yan and Wen [9] XGBoost ✗ ✓ ✗ N/A ✗

Our approach Various MLs ✓ ✓ ✓ ✓ ✓

a FCM: Fuzzy C-Means; CNN-LSTM: Convolutional Neural Network - Long Short

Term Memory; DSN: Deep Siamese Network; DAE: Denoising Autoencoder; XGBoost:

Extreme Gradient Boosting;
b F1: Ability to detect prosumers’ thefts; F2: Ability to pinpoint a thief; F3: Ability to

pinpoint time of theft; F4: No requirement for historical data; F5: Usage of multi-source

data.

in [7] has shown a better detection rate where a semi-

supervised technique was used to train the detection model. In

the semi-supervised training, labelled samples and unlabelled

samples are used to train a deep Siamese network (DSN)

model and de-noising auto-encoder (DAE) respectively. On the

other hand. Zanetti et al. [6] have proposed an unsupervised

clustering algorithm to detect energy thefts using short-lived

consumption patterns. These patterns represent the profile of

the consumer over a short period of time. In their model, the

authors tested the detection accuracy with different pattern

durations (ranging from 1 day to 3 weeks). The results showed

that increasing the duration time does not necessarily improve

the detection of thefts. Gunturi and Sarkar [8] introduced an

energy theft detection model for AMI based on ensemble ML

techniques. The idea of ensemble ML models is to combine

multiple ML approaches into one predictive model to boost

the detection rate and lower the error rate. In their study, the

authors found that a bagging-type ensemble ML approach,

which combines the results of independent MLs parallel by

taking the average, performs better than a boosting one.

Another recent study [9] have used extreme gradient boosting

(XGBoost) which is a scalable implementation of decision tree

boosting system. The study showed that the XGBoost model

is robust when the dataset is imbalanced.

No existing research has studied the impact of prosumers’

thefts (represented as F1 in Table I). Prosumers are different

from traditional consumers as they do not only use energy

but also generate and store or transfer surplus energy to

the grid [10]. Prosumers can affect electricity generation, the

energy markets and the demand-response models. To manage

prosumers, it is critical to understand their generation and

consumption behaviours [10]. The analysis of all factors of

prosumer behaviours helps to build and plan for the proper

balance of energy demand and supply. A malicious prosumer

who reports falsified data regarding his/her generation and

consumption can disrupt the supply of energy to a region,

cause grid instability or deny energy access to other users in

that area [11]. Moreover, some existing energy theft detection

research does not identify which user is the thief (represented

as F2 in Table I) and many other detection methods classify

each user as either thief or honest but do not identify the time

Fig. 1. System architecture showing the possible attack points

of theft (represented as F3 in Table I). Additionally, most

recent studies have not availed themselves of data features

from different sources (represented as F5 in Table I). Machine

learning approaches usually consider a single electrical feature

(consumed power), while smart meters report more than ten

different electrical parameters. This abundance of unused data

is an opportunity.

B. Our Contributions

This paper addresses all the above limitations. The specific

contributions of our paper are:

• the first theft detection method to be based on the use of

user clustering (with reference models built for each clus-

ter) and the first to address theft by both consumers and

prosumers. The approach has further desirable properties,

e.g., the ability to detect thefts from new users without

the need for historical data.

• the introduction of a new electricity theft scenario, which

we term balance attacks, that can balance the amount of

electricity stolen at one meter with manipulated values

returned form other neighbouring meters. This scenario

can be hard to detect by existing detection models.

• the production of a benchmark data set that includes

examples of an extensive range of data injection attacks

(including balance attacks);

• an evaluation of the use of various ML techniques for

classification of behaviours.

The rest of this paper is organized as follows: Sections II and

III provide the system architectural model and the adversarial

model. Section IV describes how the proposed detection

system is designed. Section V details the experimental setup

and results. Finally, Section VI gives concluding remarks and

directions for future work.

II. SYSTEM ARCHITECTURE

Figure 1 shows the system architecture for an AMI. It con-

sists of three major entities: a set of users, a set of substation

gateways (GWs), and the central data management system

(CDMS). A user can be either a consumer (who consumes

This work has been accepted for publication at the IEEE SmartGridComm2021 Conference



electricity from the grid) or a prosumer (who both supplies

and consumes electricity to/from the grid). Prosumers generate

their own electricity from distributed energy resources (DER)

such as solar panels or wind turbines. A consumer, i, is

equipped with only one meter called an import SM (ISMi)
which calculates the amount of electricity consumed. A pro-

sumer j, who has a dedicated DER, is equipped with two types

of smart meter: an import SM (ISMj) and and export SM

(ESMj). Export SMs calculate the electricity supplied from

the prosumer’s DER to the grid. Both types of SMs collect and

report users’ consumption and generation data to the GW on

a regular basis (say, every 15 minutes). A substation gateway

is located in a neighbourhood area network (NAN) that serves

a group of users. The GW is in charge of collecting the SMs’

data and sending these reports to the CDMS. Detection of

abnormalities in either consumption or generation reports is

carried out at the CDMS.

III. ADVERSARY MODEL

Electricity theft can be carried out by manipulating the

electricity reading reports. In the considered adversary model,

a malicious user is allowed to change their meter readings

to pay a lower consumption bill or get paid for electricity

that they did not generate. An adversary can manipulate

consumption and generation readings at any attack point as

shown in Fig.1 (the system architecture). The adversary can

inject false measurements by physically manipulating the con-

figuration of a smart meter or by attacking the communication

channels. Therefore, our adversary model considers two types

of adversaries:

• An External Adversary: who may try to tamper with

the readings of SMs either physically or through cyber-

attacks. The external adversary is also able to intercept

readings and change them during communication.

• An Internal Adversary: who can be an insider and who

can change the readings at the CDMS where data resides.

Both external and internal adversaries can modify both the

meter readings of import SM (ISM) or export SM (ESM) using

different attack scenarios as listed in Table II. The adversary

model considers eight different attack scenarios that can be

launched by the two adversaries mentioned before. The first

four of these attacks have been developed with the help of

the widely used mathematical model defined in [12]. The

additional four scenarios have considered attacks where one

reported consumption is maliciously increased to balance a

malicious decrease in another. This model incorporates such

attacks and refer to them as balance attacks. These attacks

are assumed to be launched by either a single attacker or in a

collaborative manner using collusive attacks. All attacks con-

sidered in this model are described below and are summarized

in Table II.

• In attack scenarios #1 and #2 user i (either consumer

or prosumer) decreases his import smart meter readings

ISMi by a constant value l or a constant percentage k.

TABLE II
OVERVIEW OF ATTACK SCENARIOS

Attack Scenario Modification

Attack #1 ISM ′

i = ISMi − l

Attack #2 ISM ′

i = ISMi × (1− k
100

)
Attack #3 ESM ′

i = ESMi + l

Attack #4 ESM ′

i = ESMi × (1 + k
100

)

Attack #5 ISM
′

i = ISMi − l and

ISM
′

j = ISMj + l

Attack #6 ISM
′

i = ISMi × (1−
k

100
) and

ISM
′

j = ISMj + (ISMi ×
k

100
)

Attack #7 ESM
′

i = ESMi + l and

ESM
′

j = ESMj − l

Balance
Attacks































































Attack #8 ESM
′

i = ESMi × (1 +
k

100
) and

ESM
′

j = ESMj − (ESMi ×
k

100
)

• In attack scenarios #3 and #4 prosumer i increases his

export smart meter readings ESMi by a constant value

l or a constant percentage k.

• In attack scenarios #5 and #6 user i (either consumer

or prosumer) decreases his import smart meter readings

ISMi by a constant value l or a constant percentage k

and adds the same value to the meter report of some other

user j in the same NAN.

• In attack scenarios #7 and #8 prosumer i increases his

export smart meter readings ESMi by a constant value l

or a constant percentage k and decreases the same value

from the meter report of some other prosumer j in the

same NAN.

IV. PROPOSED DETECTION MODEL

Our detection approach seeks to distinguish sets of theft

points from sets of other points. Since thefts are expected

to be comparatively rare, this essentially means that they are

identified as a form of outlier. Our approach is thus one of

anomaly detection. The results suggest that this approach is

well-founded. There may be other sources of outliers; this is

always possible with an anomaly detection approach. Fig.2

shows the three phases of our proposed detection approach.

The phases are described below.

A. User Clustering

Extant research uses either a generalised model (where one

honest reference model is built with data from all users)

or else employs a user-specific approach (where a model is

created specifically for each user using that user’s data) [13].

Generalised models can exhibit low accuracy whilst user-

specific models encounter significant scaling issues. Our ap-

proach offers a half-way house: it clusters users and develops a

reference model for each cluster. Users are clustered based on

their geographical location and user residence characteristics.

Users who share the same geographical location and residence

physical characteristics are likely to have a similar pattern

of consumption and generation. According to Eurostat [14],

This work has been accepted for publication at the IEEE SmartGridComm2021 Conference



Fig. 2. Overview of The Detection System

people in the same neighbourhood are more likely to have sim-

ilar incomes, which in turn, affects the physical characteristics

of their building and the types of equipment and appliances.

Therefore, their consumption and generation patterns will

typically be similar, whilst users in different clusters can have

different usage and generation profiles. In this phase, the 14

static features (reported in Table III) are normalized using the

Standardscalar technique and then agglomerative clustering is

used on the normalized data to partition users with the number

of clusters in each NAN based on minimizing the total within-

cluster sum of square (WSS) (Elbow method). The data from

each cluster is then processed individually in the next phase.

This phase is executed only once, either at the beginning of

the system deployment or after the registration of new users.

B. Timeseries Decomposition

As discussed in Section IV, the proposed detection method

is one of anomaly detection where theft points are regarded

as anomalies. However, data taken at different times may

have structural differences, e.g. due to the season. To place

all data points on a comparable footing, we remove certain

systematic elements, specifically the trend and seasonal effects,

leaving so called residuals. This is usually referred to as

timeseries decomposition. A timeseries data Y at time t is

composed of three components: a trend component Tt, a

seasonal component St and a residual (remainder) component

Rt. These components are either added or multiplied together

to form the original signal.

Yt = Tt ∗ St ∗Rt or Yt = Tt + St +Rt (i)

To automatically decompose a timeseries into its components,

different methods have been proposed, such as, seasonal-trend

decomposition using regression (STR) [15], singular spectrum

analysis (SSA) [16], and decomposition of time series by

Loess (STL) [17]. In this paper, the additive STL is used

to decompose the users consumption and generation series.

As compared to STR and SSA, the period of the seasonality

Fig. 3. Decomposition of Consumed Power for a Cluster

component ‘cyclical variation’ in STL can be interpreted

flexibly according to need. Indeed, in our experiments over one

month’s data, a daily cycle is chosen in place of a seasonal one.

For each cluster, the average consumption/generation of all

users is computed and then decomposed to obtain the cyclical

(here daily) and trend components (see Fig.3). For each user,

those components are removed from his/her data to obtain the

residuals. Obtaining the residuals from removing the cluster’s

trend and daily components is found to create more distance

between normal and anomalous data points than removing all

users’ trend and daily components. This increase in distance,

as shown in Fig.4, creates a separation between normal and

anomalous data.

C. Classification

In the final phase, each data point which is a vector of

15 features (both dynamic and weather features reported in

Table III) is classified as either anomaly or normal data. In

the training phase, a balanced dataset of equal normal and

anomalous data points is used. The dataset involves multiple

features along with the residuals obtained from the previous

phase. As each data point consists of a vector of features with

different value ranges, these features are first normalized using

This work has been accepted for publication at the IEEE SmartGridComm2021 Conference



Fig. 4. Residuals of (a) Honest User, (b) Electricity Thief after removing
the trend and daily components of all users, and (c) Electricity Thief after
removing the trend and daily components of cluster’s users. Purple points
indicate normal data points while yellow ones are thefts.

a StandardScalar [18]. Different machine learning algorithms

are then applied on this normalized data to make the decision.

After training the model, it is used to detect data thefts in

unseen data points. At the end of this phase, the system will

have a single detection model for each cluster of users.

V. PERFORMANCE EVALUATION

In this section, the feasibility of the detection system is ex-

amined in terms of accuracy, recall (detection rate), precision

and error rate.

A. Experimental Setup

1) Dataset Generation: In order to study the electricity

theft scenarios done by both consumers and prosumers, a

dataset that include electricity consumption of users from both

types is needed. Most current literature that studies electricity

thefts use one of these two public electricity consumption

datasets. The first and most widely used dataset is the one

released by the State Grid Corporation of China (SGCC)

(the largest electricity utility in China) [19]. This dataset is

the first to include realistic labeled data, where each user

is labeled as honest or a thief. A downside to this dataset

is that the consumption is reported only once a day which

makes it difficult to identify the exact time of theft [20].

The second widely used dataset is the Irish Commission for

Energy Regulation (CER) Smart Metering load profiles [21]

which contains the consumption data of over 5000 residential

and enterprise users for a duration of 500 days. However,

this dataset contains only honest profiles and reports only the

consumed real power at a half hourly rate. The two datasets

also lack contextual data that might affect the consumption of

a user such as the floor area of the residency, location and

weather conditions.

Due to the absence of a public database containing both

consumers and prosumers, a new dataset has been generated

using the “GridLab-D” simulation tool [22]. The taxonomy

distribution feeder, R1-12.47-2, which was developed by Pa-

cific Northwest National Laboratory (PNNL) [23], was used

to produce a detailed distribution feeder model in GridLab-D

format that could be used to generate the dataset for our work.

This distribution feeder represents a moderately populated sub-

urban and rural area composed of 1594 residential users with

varying loads and physical properties, where 49 of those users

are prosumers with solar panels. Our dataset not only contains

TABLE III
FEATURES OF THE DATASET

Static Parameters Dynamic Parameters Weather Parameters

Floor area

Number of stories

Ceiling height

Roof’s R-value

Wall’s R-value

Floor’s R-value

Door’s R-value

Number of glazing layers

Glass type

Glazing treatment

Window frame type

Heating system

Cooling system

Solar panel size

Consumed real power

Voltage

Real energy

Reactive energy

Reactive power

Current

Apparent power

Generated real power

Temperature (Dry-Bulb)

Pressure

Humidity

Total sky cover

Extraterrestrial radiation

Wind speed

Wind direction

consumption and generation profiles of both consumers and

prosumers, but it also reports multiple electrical parameters

every 15 minutes. It also contains weather conditions and

users’ static residence characteristics. The script provided by

PNNL has been modified to allow the reporting of the weather

and dynamic features listed in Table III every 15 minutes

for every user. Note that the proposed model is adjustable

to any reporting frequency, and can be applied to any dataset

providing that it has some static parameters to cluster the users.

2) Attack Modes Simulation: The readings in our dataset

were modified as they only contain honest (real) readings in

order to define the set of theft scenarios that were considered in

the adversary model. Several existing literature have followed

the same design where data theft scenarios are synthetically

added to a dataset, in order to use them for training and

evaluating their detection model. Nine different datasets were

created: one for every attack scenario and one dataset with all

8 attacks combined. In the experiments, the values of l and k,

defined in the attack scenarios in Table II were set to 500 and

40 respectively. For the sake of research reproducibility, the

original dataset has been published in our Github repository1.

3) Simulation Environment: The proposed detection model

is tested using several benchmark ML algorithms. These ML

algorithms were trained and tested using scikit-learn[18] in

the Anaconda3 environment using Python. For each ML al-

gorithm, the default hyper-parameters provided by scikit-learn

were used. All results reported are the average of validating

the model using 10-fold cross-validation. In the first phase,

clustering phase, the set of static parameters shown in Table

III are used, where as the remaining set of parameters, along

with the residuals from the second phase, are used in the

classification phase.

4) Evaluation Metrics: Several metrics are used to eval-

uate the proposed system: accuracy, recall (detection rate),

precision and error rate. Other metrics such as F-score can

be easily calculated from the reported metrics. Our motivation

is to obtain high accuracy and recall (detection rate) with a

low error rate. In this paper, theft data points are denoted

as positive class and benign data points as negative class. A

confusion matrix is used in order to evaluate the performance

of the electricity theft detection model where True Positive

1https://github.com/asr-vip/Electricity-Theft
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TABLE IV
EXPERIMENTAL RESULTS OF THE PROPOSED MODEL UNDER DIFFERENT ATTACKS

Attack

Scenario

Accuracya Recall (DR) Precision Error Rate

DT KNN LR NB NN SVM DT KNN LR NB NN SVM DT KNN LR NB NN SVM DT KNN LR NB NN SVM

Attack #1 0.996 0.941 0.997 0.783 0.999 0.992 0.995 0.973 0.994 0.912 1.000 0.994 0.995 0.920 1.000 0.758 0.998 0.990 0.004 0.059 0.003 0.217 0.001 0.008

Attack #2 0.989 0.887 0.994 0.647 0.998 0.993 0.991 0.961 0.999 0.950 1.000 0.999 0.988 0.848 0.989 0.617 0.996 0.988 0.011 0.113 0.006 0.353 0.002 0.007

Attack #3 0.983 0.896 0.527 0.637 0.997 0.888 0.980 0.913 0.481 0.429 0.995 0.839 0.985 0.886 0.549 0.700 0.999 0.921 0.017 0.104 0.473 0.363 0.003 0.112

Attack #4 0.964 0.747 0.501 0.555 0.995 0.726 0.958 0.803 0.474 0.436 0.991 0.613 0.969 0.727 0.499 0.605 0.998 0.781 0.036 0.253 0.499 0.445 0.005 0.274

Attack #5 0.983 0.963 0.936 0.879 0.978 0.970 0.984 0.987 0.926 0.840 0.986 0.968 0.984 0.943 0.948 0.915 0.971 0.973 0.017 0.037 0.064 0.121 0.022 0.030

Attack #6 0.939 0.867 0.841 0.804 0.911 0.892 0.946 0.937 0.790 0.725 0.904 0.827 0.933 0.822 0.883 0.866 0.920 0.954 0.061 0.133 0.159 0.196 0.089 0.108

Attack #7 0.966 0.932 0.499 0.821 0.976 0.923 0.976 0.949 0.397 0.755 0.980 0.899 0.954 0.916 0.508 0.865 0.974 0.943 0.034 0.068 0.501 0.179 0.024 0.077

Attack #8 0.920 0.840 0.501 0.775 0.886 0.844 0.925 0.892 0.382 0.659 0.876 0.786 0.915 0.803 0.485 0.848 0.894 0.887 0.080 0.160 0.499 0.225 0.114 0.156

All Attacks 0.884 0.802 0.742 0.571 0.935 0.797 0.871 0.831 0.695 0.257 0.938 0.658 0.908 0.789 0.788 0.701 0.936 0.912 0.116 0.198 0.258 0.429 0.065 0.203

a DT: Decision Tree; KNN: k-Nearest Neighbors; LR: Logistic Regression; NB: Naive Bayes; NN: Neural Network; and SVM: Support Vector Machine;

(TP) denotes the number of correctly identified attacks and

False Positive (FP) is the number of normal records incorrectly

identified as attacks. The True Negative (TN) is the number of

normal records that are correctly identified as normal and the

False Negative (FN) denotes the number of attack records that

are incorrectly identified as normal. The evaluation metrics

have the following notation:

• Accuracy: how many samples were classified correctly

out of the total sample population.

Acc =
TP + TN

TP + TN + FP + FN
(ii)

• Detection Rate: the fraction of actual attacks that are

detected. This measure is also called detection rate (DR).

DetectionRate =
TP

TP + FN
(iii)

• Precision: the number of correctly detected attacks di-

vided by the number of total detections.

Precision =
TP

TP + FP
(iv)

• Error Rate: The ratio of incorrect predictions (number of

false alarms generated for normal samples + number of

attacks missed) over the total sample population

ErrorRate =
FP + FN

TP + TN + FP + TN
(v)

B. Results and Discussion

The detection system was evaluated in terms of:

• Impact of different types of attacks.

• Detecting theft from new users.

• Impact of changing the percentage of thieves among the

users.

1) Impact of Different Attacks: The overall detection per-

formance was tested for each attack scenario discussed in

Section III and also for attacks in the combined dataset. Table

IV shows the accuracy, recall (detection rate), precision and

error rate of these different attack scenarios. As indicated

above, the results reported are the average of a 10-fold cross

validation over a balanced dataset. Several ML techniques have

been used for the classification phase.

The results in Table IV show that our detection model has

a good performance in detecting all attack types. From Table

IV, attacks #1 #2, #3 and #4 are detected with a detection

rate of 100%, 100%, 99.5% and 99.1% respectively using a

neural network ML model. Attacks #5, #6, #7 and #8 are

detected with a detection rate of above 92%. In the combined

dataset AllAttacks, the detection model can detect any attack

type with a detection rate of 93.8%. These results show that

the proposed model can detect different attacks with high

detection probability. It can also be seen that the detection

in attacks #5, #6, #7 and #8 is slightly lower than the other

types. Balance attacks seem a little more difficult, perhaps an

intrinsic property of zero overall theft.

2) Impact of Thefts From New Users: Here, the proposed

detection model is evaluated in terms of detecting thefts from

new users. First, the classifier is trained using the combined

dataset AllAttacks that includes samples of all attacks types.

After that, a test dataset of users that have not been included

during the training phase is used to evaluate the proposed

detection model. Table V shows how well the detection model

works. It can be observed that the best performance in terms

of accuracy, recall, precision and error rate was given by the

neural network classifier. Our model can detect thefts from

new users without the need for historical data with a detection

rate of 93.2% and only 7.1% error rate.

3) Impact of Different Percentage of Thieves: This setting

analyses the effect of the percentage of thieves that exists in

a singe cluster. As this is an important factor to take into

consideration which can show how well the detection algo-

rithm works in cases of low numbers of thieves. The experi-

ments were conducted using the combined dataset AllAttacks

which contains all attack types. In this setting, the model

was trained using 10-fold cross validation and then tested

using a completely unseen and unbalanced dataset. Table

TABLE V
PERFORMANCE OF THE DETECTION ON THEFTS FROM NEW USERS

ML Modela Accuracy Recall (DR) Precision Error Rate

DT 0.883 0.885 0.780 0.117
KNN 0.715 0.660 0.763 0.285
LR 0.771 0.929 0.708 0.229
NB 0.628 0.396 0.667 0.372
NN 0.929 0.932 0.999 0.071

SVM 0.809 0.889 0.964 0.191

a DT: Decision Tree; KNN: k-Nearest Neighbors; LR: Logistic Regression; NB:

Naive Bayes; NN: Neural Network; and SVM: Support Vector Machine;
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TABLE VI
PERFORMANCE OF THE DETECTION MODEL UNDER DIFFERENT PERCENTAGE OF THIEVES

Percentage

of Theft

Accuracya Recall (DR) Precision Error Rate

DT KNN LR NB NN SVM DT KNN LR NB NN SVM DT KNN LR NB NN SVM DT KNN LR NB NN SVM

2% 0.973 0.852 0.778 0.903 0.987 0.973 0.995 1.000 1.000 0.125 1.000 1.000 0.427 0.122 0.085 0.032 0.617 0.430 0.027 0.148 0.222 0.097 0.013 0.027

5% 0.977 0.859 0.788 0.821 0.988 0.978 0.994 0.990 0.992 0.310 0.996 0.985 0.695 0.266 0.194 0.100 0.812 0.706 0.023 0.141 0.212 0.179 0.012 0.022

10% 0.971 0.863 0.777 0.720 0.988 0.975 0.995 0.979 0.956 0.321 0.999 0.955 0.780 0.427 0.310 0.135 0.895 0.828 0.029 0.137 0.223 0.280 0.012 0.025

20% 0.972 0.879 0.761 0.765 0.989 0.934 0.994 0.971 0.795 0.217 1.000 0.788 0.883 0.635 0.453 0.376 0.950 0.877 0.028 0.121 0.239 0.235 0.011 0.066

a DT: Decision Tree; KNN: k-Nearest Neighbors; LR: Logistic Regression; NB: Naive Bayes; NN: Neural Network; and SVM: Support Vector Machine;

VI shows the results where the percentage of thieves in a

cluster was randomly changed to range from 1% to 20%. The

results indicates that our method actually achieves an excellent

detection rate and minimal error rates with varying percentages

of theft. Our model shows an average detection rate of above

97% using decision tree, KNN and neural network classifiers.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposed a data-driven electricity theft detection

mechanism in the presence of prosumers attacks. The detection

approach is designed to detect different electricity theft attacks

from both consumers and prosumers by analysing SMs reading

reports in a cluster-based manner. Moreover, a new attack

scenario was introduced balance attacks where attackers try

to conceal their theft by balancing the total net of consumed

or generated power. Simulations are done using a generated

dataset that comprise of generation and consumption profiles

of both prosumers and consumers along with data from

multiple data sources. Results show that the proposed model

has a high detection performance for each type of attack and

an overall 93% detection rate. The detection model is also

tested when different percentage of thieves in a cluster. Results

show that the proposed method achieves good detection rate

when data tested is imbalanced. While smart meters offer

some clear benefits, fine-grained measurements of household

energy consumption trigger serious privacy concerns. In this

regard, fine-grained smart meter data may reveal a user’s

presence/absence in his/her house, which electrical appliances

they are using at any moment, or even their daily habits

at home. Therefore, privacy-enhanced ML approaches are

currently being investigated for energy systems.
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