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 11 

Abstract: Accurate water inflow assessment in the under-construction rock tunnel sites is critical for the next 12 

optimized construction and rehabilitation strategy. In this paper, a deep convolutional neural networks 13 

(DCNN)-based method, named H-ResNet-34, is implemented to classify water inflow category from rock 14 

tunnel faces in under-construction highway tunnels in Yunnan, China. An image database is compiled, which 15 

contains 8,000 images in five different water inflow categories of rock tunnel faces, namely complete dry (CD), 16 

wet state (WS), dripping state (DS), flowing state (FS) and gushing state (GS). Herein, a crucial issue is the 17 

imbalanced images between damage and non-damage owing to the vast sample of datasets and between various 18 

damages due to varying damage occurrence rates, which bring enormous challenges for conventional DCNN 19 

models. Thus, a hierarchical classification structure is applied to overcome the issue of imbalanced images at 20 

two different levels: coarse-level and fine-level. The coarse-level distinguishes the dataset with non-damage 21 

(i.e. complete dry) images. The fine-level computes the occurrence probability of the image dataset with water 22 

inflow damage. The constructed framework is then trained, validated, and tested using tunnel face images with 23 

various water inflow categories. The testing results suggest that the proposed hierarchical classifier is well 24 

competent for water inflow classification for rock tunnel face images and can effectively alleviate the 25 

imbalanced data issue. 26 

Keywords: Water inflow, Rock tunnel, Image classification, Imbalanced images, Deep convolutional neural 27 

network 28 

 29 

1. Introduction 30 

The assessment of water inflow is critical for the final classification of surrounding rock in rock tunnels 31 

under construction, owing to its significant impact on constructors and managers in case of tunnel collapse and 32 

water gushing accidents. It also provides a significant basis for continuing project strategies under limited 33 

construction schedules and engineering budgets. In general, the manual water inflow inspection approaches 34 

(e.g., tipping buckets, discharge vessels, weirs, etc) (Rálek and Hokr, 2013), which are widely employed under 35 

current practice (Hwang and Lu, 2007). Although correct flow rate values can be obtained by these contact 36 

manners, they are labour- and time-consuming, and even threatening the safety of engineers (Fernandez and 37 

Moon, 2010). Thus, there is an urgent to explore a vision-based inspection method that can identify the water 38 

inflow categories accurately in rock tunnel faces (Chen et al., 2021d).  39 

From the perspective of engineering, visual inspection consists of human vision and machine vision. 40 
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Herein, machine vision-based inspection is designed for seeking to understand and automate tasks that the 41 

human visual system can do. The rock mass rating (RMR) is one of the most internationally recognized 42 

discrimination methods (Bieniawski, 1988), which uses the measured water inflow rate to classify the 43 

following five water inflow categories, namely completely dry, damp, wet, dripping, and flowing (listed in 44 

Table 1) (Warren et al., 2016). It is hard to distinguish the damp state and wet state by naked eyes since the 45 

rate range of damp state is less than 10 liters/min, and that of wet is 10-25 liters/min, which can only be 46 

differentiated by the flowmeter measurement. Hence, for the vision-based task, damp and wet are unified into 47 

the wet category to perform the manual image tagging. Additionally, a water gushing state is added as one of 48 

the water inflow categories because of its sudden and disastrous nature in the rock tunnelling project. Typical 49 

tunnel face images of the five water inflow categories are shown in the corresponding columns in Table 1. To 50 

provide a comprehensive assessment of water inflow status, a full surface inspection of consecutive multiple 51 

tunnel faces is essential (Cai et al., 2022; Man et al., 2022; Zarei et al., 2013). Nevertheless, the remaining 52 

challenge for the field engineers is to establish an efficient identification method of water inflow under 53 

frequently changing construction processes (Zarei et al., 2012). 54 

 55 

Table 1. Water flow statistics and example images based on rock mass rating (RMR) 56 

Water inflow None 
＜10 

liters/min 

10-25 

liters/min 

25-125 

liters/min 

>125 

liters/min 

Tunnel 

disaster 

General conditions 

in RMR 

Completely 

dry 
Damp Wet Dripping Flowing Gushing 

Classification in this 

study 
CD Wet Dripping Flowing Gushing 

Example images 

 57 

A representative traditional visual inspection method is the geological sketch method, which is a labour-58 

consuming task with strong subjectivity, and heavily relies on the experience and meticulousness of the 59 

inspectors (Santos et al., 2018; Sou-Sen Leu, 2011). Inspectors have to tolerate the safety risks caused by close 60 

contact with the tunnel working face to conduct the inspection and then detect potential regions of damage 61 

through stop-and-check (Cai et al., 2021). However, geological sketch methods are still widely used in many 62 

countries due to the limitations of project budgets and computational technology (Li et al., 2017; Marjoribanks, 63 

2010).  64 

Geological radar detection is another typical method used to identify damage by analysing medium 65 

reflection signals, which can quantify damage with a high level of automation by professional personnel, and 66 

is excellent at detecting abnormal geological environments (Annan et al., 1991; Guo et al., 2019; Koopialipoor 67 

et al., 2019b; Liu et al., 2010). However, this method urgently needs to be strengthened in terms of its 68 

sensitivity to geological hazards with little change and to simultaneously and efficiently acquire multiple 69 

comprehensive types of information, such as joints and fractures, and ground water (Chen et al., 2021a). 70 

The latest trend is to employ computer vision methods for automated task classification (Chen et al., 71 

2021b; Kumar et al., 2018; Nhat-Duc et al., 2018). The traditional image processing method is initially used 72 



to extract thousands of feature parameters to obtain the target characteristics with relatively backward 73 

computing equipment, to pre-design feature extractors and pre-process images before training (Chen et al., 74 

2021a; Chen et al., 2021e). In this regard, the operational efficiency and the friendliness of the developed 75 

frameworks are undoubtedly reduced, and thus an efficient and high-precision image detection method is 76 

urgently needed.  77 

Deep convolutional neural networks (DCNNs) have shown admirable end-to-end performance for visual 78 

detection tasks and can learn abstract features and reveal the rules of input and outputs by self-deep learning 79 

(Chen et al., 2020; Zhao et al., 2021). This method has been widely used with images for classification and 80 

detection tasks. DCNNs are made up of neurons for different functions that learn a large number of significant 81 

parameters such as weights and biases, while input data is transformed into output data (Huang et al., 2020). 82 

At present, civil engineering fields using DCNNs are primarily concentrated on the foundation pit (Fang et al., 83 

2018), buildings (Martinez-Murcia et al., 2018; Nhat-Duc et al., 2018), shield tunnels (Huang et al., 2020; 84 

Zhou et al., 2021), and municipal utility engineering (Kumar et al., 2018), providing significant practical 85 

experience for the intellectualization and informatization of engineering construction. However, the existing 86 

research mainly focused on the operation and maintenance stages to facilitate management and repair. Few 87 

studies applied DCNNs in the under-construction site, especially for the underground excavation rock face (Lü 88 

et al., 2017).  89 

For addressing the deficiencies as mentioned above, a digital photography method is proposed and 90 

adopted to obtain raw water inflow images (3968 × 2240 pixels) of the rock tunnel face in batches from 91 

highway tunnels under construction in Yunnan, China. Five water inflow categories (complete dry (CD), wet 92 

state (WS), dripping state (DS), flowing state (FS), and gushing state (GS)) were classified manually to 93 

establish the target image dataset. In general, the proportion of damage-free images is the largest, while the 94 

distribution of other damage images is exceptionally imbalanced, bringing the risk of over-fitting or under-95 

fitting to the test results. Hence, a DCNN method (i.e. H-ResNet-34) employing a residual module (He et al., 96 

2016) as the backbone framework and a hierarchical classification structure (Seo and Shin, 2019) as the 97 

multiple level classification structures is proposed to enhance the efficiency and accuracy over that of the 98 

imbalanced datasets. A resized image (229 × 229 pixels) dataset is then created, trained, validated, and tested 99 

to generate the optimal target model for water inflow classification. The water inflow classification 100 

performances of the proposed H-ResNet-34 method and the original ResNet-34 method are systematically 101 

assessed with regards to the evaluation metrics and visualization methods. 102 

 103 

2. Water Inflow ImageNet 104 

2.1. Image database collection 105 

Inspired by the establishment and employment of the target ImageNet in DCNN (Deng et al., 2009), a 106 

Water Inflow ImageNet (WIIN) was built consisting of rock tunnel face images relevant to five different water 107 

inflow status: complete dry (CD), wet state (WS), dripping state (DS), flowing state (FS) and gushing state 108 

(GS). The WIIN database is used for identification and detection of water inflow problems in rock tunnel 109 

projects. To construct such a database, a digital photograph method (as shown in Fig.1, consisting of a digital 110 

camera, tapeline, tripod, light source, and measuring equipment namely laser rangefinder, thermo hygrometer, 111 

and illuminometer) is proposed for image acquisition, which can cover a variety of different rock tunnel faces. 112 

The limited lighting conditions and the cramped surrounding environment in the rock tunnel raise significant 113 

challenges for the acquisition of quality images. For improving the quality of images, two adjustable power 114 

drop LED lamps were used to increase the illumination for photographing. Additional tunnel face images were 115 

also collected from search engines like Baidu and Google to increase the image samples in the dataset, which 116 



account for approximately 20% of the total samples. 117 

 118 

Fig. 1. Schematic diagram of the digital photograph method, including: (a) tunnel site for image acquisition, 119 

(b) layout diagram of photography equipment, and (c) information details. 120 

 121 

2.2. Imbalanced image problem 122 

In this study, 4012 water inflow images from various rock tunnel faces were classified manually into five 123 

categories. Sample images of the five categories of water inflow, namely CD, WS, DS, FS, and GS, are shown 124 

in Fig. 2. Because of the complex and changeable geological conditions in the highway rock tunnel, the damage 125 

texture and grey-scale distribution differences of water inflow status of various categories do not differ 126 

significantly, leading to inefficiency in the manual classification. The number of original water inflow images 127 

in each category is listed in Table 2, where the number distribution of the images is extremely imbalanced. 128 

The raw images include 2,102 non-damage (i.e. complete dry) images and 1,910 images with water inflow 129 

damage. Approximately 52% of the original images are complete dry state images without water inflow, which 130 

is three times larger than the second-largest sample size, WS, and twenty-one times larger than the smallest 131 

sample size, GS. Furthermore, the imbalance issue also exists among the images with water inflow damage. 132 

The number of WS images is seven times that of GS. Nevertheless, the issues become more challenging for 133 

multi-class classification tasks due to the existence of several minority classes. The proposed method has to 134 

balance between guaranteeing the classification rate for water inflow with typical distinctive sample scales and 135 

avoiding overfitting the minority categories. In most cases, the imbalance between different categories 136 

influences both the convergence of the training and validation processes and the generalization of the pre-137 

trained framework on the test dataset. Hence, the imbalance problem invariably leads high classification 138 

accuracy for the majority categories, and results in low classification accuracy for the minority categories 139 

(Huang et al., 2016; Khan et al., 2017; Koopialipoor et al., 2019a; López et al., 2013). 140 

 141 

Table 2. Water inflow categories and image dataset statistics. 142 

Water inflow category CD WS DS FS FS 

Number of images 2,102 775 733 304 98 



 143 

 144 
Fig. 2. Sample images for different water inflow categories: (a) complete dry (CD), (b)wet state (WS), (c) 145 

dripping state (DS), (d) flowing state (FS), and (e) gushing state (GS) 146 

 147 

2.3. Database establishment 148 

For relieving the imbalance issue between the images of different water inflow categories, the images 149 

with minority damage were oversampled rather than under-sampled since the over-sampling processes are 150 

proved to have better performance (López et al., 2013). In this section, some data augmentation techniques 151 

such as random blur, local amplification, random horizontal flip, Gaussian sampling, and channel scaling were 152 

selected on the raw images. Moreover, samples of minority damages were oversampled multiple times to match 153 

the balance of the proposed model. In total, 8,000 images were generated, as shown in Table 3, where the 154 

statistics of each water inflow status in the mentioned datasets are listed. To simplify analysis, the number of 155 

damaged category samples is consistent with each other, and the total number of damaged samples is equal to 156 

the non-damaged samples. Meanwhile, the proportion of training, validation, and testing dataset in each label 157 

is approximately adjusted to 60%, 25%, and 15%. 158 

 159 

Table 3. The image numbers of training, validation, and testing datasets for different water inflow categories 160 

Water inflow category Training Validation Testing Total number 

CD 2,400 1,000 600 4,000 

WS 600 250 150 1,000 

DS 600 250 150 1,000 

FS 600 250 150 1,000 

GS 600 250 150 1,000 

Total number 4,800 2,000 1,200 8,000 

 161 

3 The Proposed DCNN Method 162 

The DCNN methods have achieved excellent performance in image classification tasks, such as VGG 163 

(Chen et al., 2021c; Simonyan and Zisserman, 2014), Inception (Szegedy et al., 2015), etc. However, as the 164 



network depth increases, the performance of DCNNs gradually becomes saturated or even declines rapidly, 165 

which is known as the degradation problem of a network. To address these issues, a residual learning network 166 

(ResNet) (He et al., 2016) has shown considerably superior performance on detection rate and accuracy from 167 

the increased network depth. Meanwhile, it is much easier to optimize and modify the framework using a 168 

residual learning network instead of an unreferenced network. This study proposes a residual learning network 169 

with 34 layers (ResNet-34) as the typical backbone network to classify the water inflow images.  170 

Furthermore, a DCNN with a hierarchical classification structure, named as H-ResNet-34, is proposed in 171 

this study to handle the afore-mentioned imbalanced water inflow image issues. Remarkably, the original 172 

ResNet-34 was modified in this study to handle hierarchical identification at both coarse-level and fine-level, 173 

that is, the H-ResNet-34 model. The coarse-level task of the framework belongs to a simple binary 174 

classification issue that classifies the damage samples from the non-damage datasets. The fine-level task then 175 

predicts the probability of each damage category by assuming at the images have damages. The hypothesises 176 

of the proposed H-ResNet-34 are that it is more efficient to classify a few categories within one category than 177 

all of the categories, and it is more efficient to train a model with balanced samples than imbalanced samples. 178 

The coarse prediction can enhance the prediction by providing the obtained fine-level features. Finally, the 179 

proposed hierarchical classifier is used to integrate the multi-level predictions to produce the final prediction 180 

results. 181 

 182 

3.1. Base ResNet-34 model 183 

As displayed in Fig. 3, the original ResNet-34 framework consists of five main convolution modules, 184 

which include a total of 33 convolution layers, an average pooling layer, and a fully connected (FC) layer. In 185 

order to promote the image processing efficiency, the raw images were cropped from their original sizes of 186 

3968 × 2240 pixels into smaller resized images of 229 × 229 pixels. The first convolution module consists of 187 

a single convolution layer with 64 filters of 7×7, a stride of 2, and a padding of 3. The remaining convolution 188 

module consists of two basic residual modules.  189 

 190 

 191 

Fig. 3. The main structure of the proposed DCNN for water inflow classification, including the original 192 

ResNet-34 (on the top), and the H-ResNet-34 (at the bottom). 193 

 194 

The residual module shown in Fig. 4 consists of two convolution layers with the same number of 3×3 195 

filters. Each convolution module can decrease the size of the images by half and increase the feature scale in 196 



a specific range. Unlike traditional CNNs, each pair of 3×3 filters adds shortcut connection, which is applied 197 

to skip particular layers and pass raw data directly to the next layer. These new shortcut connections will not 198 

increase the parameters and the complexity of the original model, moreover the whole model can still be trained 199 

using an end-to-end approach. The configuration of each convolution module is listed in Table 4, where the 200 

final output size is 512 dimensional 1×1 filter. 201 

 202 

Fig. 4. Residual learning: a building module. 203 

 204 

Table 4. H-ResNet-34 layers and configurations 205 

Layer Cov1 Cov2_x Cov3_x Cov4_x Cov5_x Pooling 

Output size 112×112×64 56×56×56 28×28×128 14×14×256 7×7×512 1×1×512 

Filters 7×7,64 stride 2 
3 3 64

3
3 3 64

 
  

，

，
 3 3128

4
3 3128

 
  

，

，
 3 3 256

6
3 3 256

 
  

，

，
 3 3 512

3
3 3 512

 
  

，

，
 Average 

 206 

Although DCNNs have achieved significant success on established benchmark datasets, they are still 207 

unable to get rid of the negative impacts caused by the imbalanced image dataset. The solution to the 208 

imbalanced issue can be divided into data-level and classifier-level methods (Buda et al., 2018; Gordan et al., 209 

2016; Huang et al., 2016; Momeni et al., 2015). Among these, the primary process used in data-level methods 210 

is resampling, which attempts to balance the images in each category by under-sampling the main category or 211 

over-sampling the minority category. On the other hand, the classifier-level method aims to handle tasks by 212 

specific algorithms, including thresholding and ensemble learning (Buda et al., 2018; Hajihassani et al., 2015; 213 

Khan et al., 2017; Zhang et al., 2021). Therefore, a hierarchical DCNN framework, in combination with a 214 

resampling process, is adopted in this study.  215 

Previously, several tentative hierarchical recognition algorithms (Yan et al., 2015) have shown excellent 216 

performance in visual detection on non-damage datasets. According to the hypothesis mentioned above, 217 

solving a relatively balanced binary identification issue that detects damage from a non-damage dataset is more 218 

efficient than directly detecting each individual type of damage. Undoubtedly, identifying images containing 219 

water inflow from a dataset consists of tunnel face images with water inflow damage is more efficient 220 

compared to detecting them from a dataset where both non-damage and damage images coexist. Thus, as 221 

illustrated in Fig. 3, a branch module similar to ‘convolution 5’ was built following ‘convolution 4’ to construct 222 

a hierarchical module in the original ResNet-34 framework.  223 

The proposed identical modules in the model, named ‘convolution 5-0’ and ‘convolution 5-1’, were used 224 

for the coarse-level identification (binary classification) and the fine-level in recognition (classification of 225 

specific water inflow categories), respectively. Furthermore, the low-level features obtained by the first four 226 

convolution modules were shared and then employed as a significant basis for damage detection with the 227 

‘convolution 5’ module. Thus, the features acquired from the comparatively balanced coarse-level 228 

identification were employed for the further fine-level task. Finally, the obtained coarse-level information after 229 

the average pooling layer was combined with the fine-level information to determine the final damage 230 

recognition. 231 

 232 

Weight layer Weight layer
relu
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3.2. Hierarchical ResNet-34 model (H-ResNet-34) 233 

In conventional machine learning methods, predicting the probability value Pj, that one target image 234 

belongs to a specific class j, requires the calculation of the normalized value for each category. The value of 235 

Pj is computed by using a certain softmax function to obtain the unnormalized value Zj for the corresponding 236 

category j. Then, the traditional models employ the softmax function to the last layer with T categories, as 237 

shown in Eq. (1): 238 

1

c

j

Z

c ZT

j

e
P

e=

=


   ( 1,2,...., )c T               (1) 239 

In the early developments, the hierarchical structure was proposed as a natural language categorization 240 

task for the original objective to lessen the calculation cost for forecasting using large vocabularies (Morin and 241 

Bengio, 2005). It has also shown excellent performance in the classification of uncommon words. This study 242 

employed the hierarchical classification structure to solve the issue of imbalanced images. Thus, the water 243 

inflow, as shown in Fig. 5, is classified at two levels: the coarse-level and the fine-level.  In the coarse level, 244 

the pre-trained images are categorized as normal images versus damage images to detect the potential damage. 245 

In the fine level, the selected images with potential damage are further classified by learning the details of 246 

different types of water inflow damage. 247 

 248 

Fig. 5. Hierarchical classification of water inflow with a balanced coarse level and fine level dataset. 249 

 250 

The probability values of each image with water inflow damage P1 or not P0 are obtained from the softmax-251 

0 algorithm in the coarse-level recognition. As for the fine-level, the conditional probability P(dj|1) of 252 

individual damage dj with softmax-1 is predicted by assuming that the images in the dataset all contain the 253 

water inflow damage. Finally, the probability values of each type of water inflow damage are computed using 254 

Eq. (2): 255 

1( |1)
jd j

P P d P=                               (2) 256 

whereas P1 equal to 1 when it is recognized as water inflow damage in coarse recognition. By this approach, 257 

the hierarchical module can classify the water inflow category, where the final-level prediction is determined 258 

by both the coarse-level and fine-level prediction (as shown in Table 5). 259 

 260 

Table 5. Definition of prediction probability of hierarchical structure for water inflow classification. 261 

Prediction & Classifiers 
Coarse-level  Fine-level  Final-level  

softmax-0 softmax-1 H-softmax 

Categories CD P0 
 P0 



WS 

P1 

PWS P1PWS 

DS PDS P1PDS 

FS PFS P1PFS 

GS PGS P1PGS 

 262 

 263 

4. Experiment and results 264 

The proposed H-ResNet-34 framework was trained with Tensorflow (a deep learning engine specialized 265 

in CNN methods) in this study. A workstation implemented with Intel Core i7-8700 processor @3.70GHz, 266 

Nvidia GTX 1080 Ti 11GB GPU, Windows 10 operating system was employed in this research. The original 267 

ResNet-34 framework was also computed as a baseline to inspect the superiority and practicability of the 268 

proposed network. For the two DCNN methods, the epoch was terminated at 50 times, the initial learning rate 269 

was used as 0.0001, and the momentum of stochastic gradient descent (SGD) is set to 0.9. 270 

Fig. 6 shows the main process experiment of the water inflow classification, that is, the full-cycle from 271 

data acquisition to visualization results. In the aspect of dataset preparation, it mainly contains four processes: 272 

field acquisition, image filtering and clipping, data augment, and manual classification of samples. Then the 273 

dataset goes through the training, validation, and testing processes of the two DCNN methods. Meanwhile, 274 

evaluation metrics are computed to evaluate the two DCNN methods. Finally, the two methods are visualized 275 

through feature maps, random selected image classification, and confusion matrix to demonstrate the 276 

corresponding performances. 277 

 278 

Fig. 6. The main process experiment of the water inflow classification 279 

 280 

4.1 Evaluation metrics of experiment 281 

The evaluation metrics, namely total loss, accuracy, precision, recall, and F-score are frequently applied 282 

in the training, validation, and testing processes to evaluate the performance of the proposed classification 283 

methods. The correlation between the evaluation metrics and the essential metrics (i.e., true positive (TP), true 284 

negative (TN), false positive (FP), and false negative (FN)) are presented in Eqs. (3-6). 285 

The accuracy metric is the proportion of accurately classified samples in all tasks, which can be computed 286 

as follows: 287 

TP TN
Accuracy

TP TN FP FN

+
=

+ + +
                         (3)  288 

The precision metric is the proportion of true positives in all the samples marked as positive. It is 289 

calculated as follows: 290 

TP
Precision

TP FP
=

+
                                    (4) 291 



The recall metric presents the proportion of true positive in all positive samples, that is, the reflection of 292 

samples correctly labelled as positive in the target: 293 

TP
Recall

TP FN
=

+
                                      (5) 294 

The F-score metric is a comprehensive indicator calculated by a specific way between recall and precision: 295 

2

2

( 1)

( )

Precision Recall
F

Precision Recall




+ 

=


                            (6) 296 

where α value is set as 1 in this study, which reflects the significance of recall and precision is the same. 297 

 298 

4.2. Training and validation results 299 

In both DCNN methods, 4,800 and 2,000 water inflow images are selected for the processes of training 300 

and validation, respectively. To further reveal the feature extraction process during the training process, the 301 

feature maps of water inflow images are shown in Fig. 7. Among them, basic features, such as corner, texture, 302 

and edge, are extracted through the low-level features. The middle-layer then checks the motifs by observing 303 

the arrangements of the low-level image features. As a result, more feature combinations can be assembled 304 

from the motifs by the high-level layer, and the water inflow categories can then be classified.  305 

 306 

 307 
Fig. 7. Feature maps of water inflow images during the training process generated by the DCNNs. 308 

 309 

The total loss curves are plotted in Fig. 8 to quantitatively measure the fitting degree and convergence of 310 

the target DCNNs (ResNet-34 and H-ResNet-34). It is reported in Fig. 8 that both DCNN methods converge 311 

in the training and validation processes, and the total loss curve of H-ResNet-34 converges faster than ResNet-312 

34 in both the training and validation processes. 313 

 314 
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Fig. 8. Performance of both DCNN methods for total loss in training and validation processes. 315 

 316 

4.3 Testing results 317 

By the allocated dataset distribution, the testing dataset consists of 1,200 randomly selected images. The 318 

testing images are classified through the trained and validated DCNN methods (ResNet-34 and H-ResNet-34). 319 

Six images out of the 1,200 testing images for each DCNN method are chosen, and the corresponding 320 

classification confidences are presented in Fig. 9. Overall, H-ResNet-34 presents a better performance than 321 

ResNet-34. The classification confidence of both DCNN methods for the five water inflow categories is highest 322 

for the GS category and followed by the CD category. 323 

 324 

Fig. 9. Classification results of randomly selected water inflow images: (a) to (f) with H-ResNet-34, (g) to (l) 325 

with ResNet-34. 326 

 327 

To present an informative comparison, a confusion matrix is computed in this study (shown in Fig. 10). 328 

A confusion matrix is a standard form of matrix form with n rows and n columns to express classification 329 

performance, where the n is assumed as the total number of categories. By quantitatively comparing the 330 

confusion matrixes between two DCNN methods, the proposed H-Resnet-34 shows excellent improvement in 331 

the classification of the water inflow categories. The GS category has the highest true positive probability of 332 

95.33%, followed by CD, WS, DS, and FS categories with probabilities of 94.17%, 91.33%, 90.00%, and 333 

88.00%, respectively. By investigating the misclassification between different water inflow categories, DS has 334 

a 9.34% probability of being misclassified as FS, 0and FS has a 7.33% probability of being misjudged as DS. 335 

The relatively high misjudgment probabilities between DS and FS are due to similar subtle textures and grey 336 

values in the sample images of the DS and FS categories. Thus, it is urgent to increase the DS and FS image 337 

dataset and enhance the texture morphology identification in the training process. 338 



  339 

Fig. 10. Confusion matrixes of the testing dataset classification results: (a) with H-ResNet-34, (b) with 340 

ResNet-34. 341 

 342 

For further quantitative analysis, Fig 11 plots the comparison between the original ResNet-34 and the H-343 

Resnet-34 in terms of accuracy, precision, recall value, and F-score for both validation and testing dataset. All 344 

the evaluation metrics of both DCNN methods present a similar trend. The values of the metrics from the 345 

highest to the lowest always follow the same order: GS, CD, WS, DS, and FS. Since the texture features and 346 

distinct appearance of the GS images, it makes the DCNN methods corresponding more prominent in GS 347 

identification. The classification of DS and FS images suggest relatively poor performance, as the evaluation 348 

metrics of these two categories present rather low values. The potential reason is that the DS and FS images in 349 

the dataset do not have distinct features compared with the other three water in flow categories. By computing 350 

the mean values of precision, recall, and F-score, the corresponding values of H-Resnet-34 suggest 7.5%, 4.6%, 351 

and 6.7% higher than those of the original ResNet-34 method, respectively. Overall, adding a hierarchical 352 

structure to the original ResNet-34 can improve the classification accuracy on an imbalanced image dataset. 353 

Moreover, in the deep learning classification process, relatively low accuracy occurs in two categories with 354 

similar textures (e.g., DS and FS). 355 

 356 

    357 

(a) Accuracy        (b) Precision        (c) Recall            (d) F-score 358 

Fig. 10. Performance of both DCNN methods in validation and testing processes (solid line for ResNet-34, 359 

dotted line for H-ResNet-34): (a) accuracy, (b) precision, (c) recall, and (d) F-score. 360 

 361 

5. Conclusion 362 

A vision-based automated method for classification of water inflow damage from imbalanced images of 363 
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under-construction tunnel faces was proposed, employing a deep convolutional neural network. For solving 364 

the issue of extremely imbalanced image datasets, the ResNet-34 framework was employed as the backbone 365 

network and was then modified with a hierarchical classification structure to classify damage at two different 366 

levels: coarse-level and fine-level. The coarse-level identification, which could be simplified to a binary 367 

problem, was used to distinguish the dataset of images with water inflow damage from non-damage images. 368 

Then the fine-level identification was applied to compute the occurrence probability of each type of damage. 369 

The two branches were finally gathered to acquire the ultimate results of each type of damage based on the 370 

defined conditional probability. 371 

The proposed H-ResNet-34 model consists of five convolution modules, an average pooling layer, and 372 

two hierarchical classification modules. It was trained, validated, and tested on the resized images captured by 373 

a digital photography method in highway tunnels under construction in Yunnan, China. The images within 374 

minority categories were first oversampled, and then the dataset was increased using augmentation techniques. 375 

The experimental results revealed that the proposed classifier could significantly improve the final accuracy 376 

of water inflow classification. 377 

The misjudgment rate between DS and FS is relatively high due to similar subtle textures and grey values 378 

in the sample images of these two categories. Thus, it is urgent to strengthen the robustness of the imbalanced 379 

dataset to handle the typical error identification that mainly occurs in two categories with similar textures. In 380 

order to achieve higher accuracy and efficiency in the minority categories, increasing the number of samples 381 

within each category and identifying more texture morphology are both required for future research  382 
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