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Dynamic Openness for Network-enabled Product and Process Innovation: 

A Panel-data Analysis 

 

Abstract 

Purpose – Prior research on open innovation has not investigated changes in knowledge acquisition 

strategies of firms over time overlooking how learning from past knowledge acquisition can change 

subsequent search strategies. Also, prior research has focused principally on product innovation 

overlooking process innovation. The objectives of this paper are to introduce the concept of dynamic 

openness, which is defined as temporal changes in external knowledge search strategy, and explore four 

dynamic openness strategies- Closing Down, Opening Up, Persistent Open and Persistent Closed-      to 

examine the impact of these strategies on both product and process innovation.  

Design/methodology/approach – The authors used a panel dataset of 16,021 firms based on five waves 

(2009-2017) of the UK Community Innovation Survey (UKIS). All models are estimated using firm 

and year Fixed Effects method to control for endogeneity that arises from unobserved heterogeneity. 

Endogeneity and robustness tests were carried out to ensure the validity of results. 

Findings – The results show that firms do use dynamic openness strategies over time leveraging 

learning from past searches. Specifically, the study indicates that Closing Down is not an effective 

strategy for either type of innovation. For process innovation firms should pursue Opening Up strategy 

rather than Persistent Open strategy, whereas for product innovation firms could pursue either strategy, 

highlighting important contextual differences.  

Originality– This paper contributes to the literature on knowledge acquisition in open innovation: (a) 

by theorizing the underlying reasons — learning from past collaborations, absorptive capacity, and 

external knowledge heterogeneity — why firms pursue one dynamic openness strategy over another; 

and (b) by extending literature by delineating the dynamic openness strategies that firms should pursue 

in process innovation versus product innovation. 

Keywords Dynamic Openness, Product/Process innovation, Panel data, Open Innovation  

Paper type Research paper 
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1. Introduction 

Open innovation requires continual search for new knowledge, technologies, processes, and services 

from external knowledge sources (Laursen and Salter, 2006, 2014; Tsinopoulos et al., 2018). Suppliers, 

customers and competitors are the conventional sources of external knowledge for innovation 

(Billington and Davidson, 2013; Bahemia et al., 2017; Prajogo, 2021). Emerging technologies (e.g., 

IOTs, Blockchain, AI) afford opportunities for both types of innovation, prompting firms to increasingly 

search for external knowledge from a broader “knowledge network” to innovate (Lorenz et al., 2020). 

This broader network encompasses universities, research laboratories (Amara and Landry, 2005), 

conferences, trade fairs, scientific journals, trade/technical publications, and professional and industrial 

associations, besides suppliers (Bogers et al., 2018). 

Innovation performance depends on knowledge sharing among network partners (Katila and Ahuja, 

2002; Chesbrough, 2003) and a firm’s ability to combine knowledge from heterogeneous knowledge 

domains and sources, especially for product innovation (Love et al., 2014). These studies have utilized 

cross-sectional data to investigate openness and its impact on innovation, not longitudinal data to 

investigate whether firms change their knowledge acquisition strategies over time. This omission 

ignores changes in openness of firms over time due to learning. A recent study by Hewitt-Dundas et al. 

(2019) affirms the effect of learning by showing that past collaborators often form new, successful 

collaborations that promote innovation in subsequent time periods. Learning from knowledge acquired 

in the past can enhance a firm’s absorptive capacity, allowing it to increase, decrease or maintain the 

number (i.e., breadth) and variety (i.e., composition) of knowledge sources in the future (Leiponen and 

Helfat, 2010; Seepana et al., 2021). We refer to these temporal adjustments in external knowledge 

search strategy as dynamic openness.  

We posit firms change external knowledge search breadth by adopting one of four dynamic openness 

strategies – (a) increase or (b) decrease search breadth, and (c) remaining open or (d) closed without a 

change in search breadth. These four, mutually exclusive strategies are adequate to investigate changes 

in search breadth across two time periods in our panel data. A more comprehensive analysis of dynamic 
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openness and its effect on innovation would require a much larger dataset or analytical methods utilizing 

a continuous time, dynamic model.  We refer to these strategies as: Opening Up, Closing Down, 

Persistent Open and Persistent Closed, respectively. We note that we do not capture in our analysis 

“variety” or composition of knowledge acquired from external sources. The secondary dataset we have 

utilized does not allow examination of the dimension of variety due to inadequate sample size.  

Consequently, we focus only on search breadth in our analysis of dynamic openness. We elaborate on 

this issue later in the conclusion section. 

Persistent Open strategy refers to Open firms (Breadtht-1 > 0) that continue using the same number 

of sources over time without change in external search breadth (ΔBreadth=0 or Breadtht - Breadtht-1 = 

0). Persistent Closed strategy refers to Closed firms (Breadtht-1 = 0) that remain closed over time 

(ΔBreadth=0).  Although these strategies may seem static, they are dynamic openness strategies in that 

they require an evaluation of the benefits of a change in search breadth in each time period and a 

purposeful decision to maintain status quo. Opening Up (ΔBreadth>0) and Closing Down (ΔBreadth<0) 

correspond to an increase and a decrease of external knowledge sources. These strategies are frequently 

used by firms in diverse industries. For example, Cisco used Opening Up strategy in its Open Daylight 

initiative (Appleyard and Chesbrough, 2017). In late 1990s, Nissan adopted Closing Down strategy 

when it `de-embedded` its keiretsu suppliers as part of the “Nissan Revival Plan” to focus on intrafirm 

goals (Sting et al. 2019). BMW utilized Opening Up strategy in acquiring knowledge from external 

sources such as Microsoft (Majchrzak et al., 2019), when innovating their Internet-of-Things (IOT) 

platform to enable process innovation. BMW also collaborated with Nvidia, to innovate automated 

guided vehicles in their plants to increase the speed and flexibility of material handling (Lorenz et al., 

2020: 1133).  

Openness literature suggests diminishing returns from external knowledge search in product 

innovation (Laursen and Salter, 2006); however, emerging evidence for this in process innovation is 

inconclusive. The relationship between search breadth and innovation is shown to be positive by 

Tsinopoulos et al. (2018), while Terjesen and Patel (2017) show a negative relationship. The potential 

absence of diminishing returns from openness in process innovation is not surprising as product and 
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process innovation have dissimilar goals and use different internal capabilities and external sources of 

knowledge (Cabagnols and Le Bas, 2002). We address the lack of agreement about the effects of search 

breadth on process innovation and also account for the effects of learning over time in testing the effects 

of dynamic openness strategies with a panel dataset. 

Studies examining knowledge search for process innovation are limited. Process innovation, which 

pertains to how a product or service is delivered, has often been considered a second-order innovative 

activity (Reichstein and Salter, 2006). It may entail organizational process innovation including 

changes in purchasing practices, personnel and management practices and technological process 

innovation encompassing “new elements introduced into an organization’s production system or service 

operation” (Walker, 2014).  Relatively few articles focus on the strategic management of process 

innovations. Keupp et al (2012) observe that: “the neglect of process innovations seems problematic… 

since antecedents that may promote product innovation do not necessarily also spur process 

innovations”. This paper theorizes how contextual differences interact with dynamic openness strategies 

to affect product and process innovation.  

A strategic question for open firms is to choose between Opening Up and Persistent Open strategies. 

The benefits of increasing search breadth in product innovation might be mitigated by knowledge 

leakage risk (e.g., Google’s abandonment of Opening Up in the development of Android OS). 

Consequently, product innovators may prefer Persistent Open strategy, with selected, strategic 

technological partners contributing to innovation. Process innovation has broader scope involving 

operations, logistics, information systems and other knowledge domains to improve cost, productivity, 

flexibility, responsiveness, service, and other process outcomes. Therefore, process innovation requires 

accessing more diverse, heterogeneous knowledge from a larger number of external knowledge sources. 

Process knowledge is readily available to all firms, making knowledge leakage less of a concern. 

Consequently, process innovators might pursue an Opening Up strategy. These differences might 

explain why open firms could benefit from increasing search breadth for process innovation whereas 

the “optimal search breadth” for product innovation might be smaller. We test these conjectures relating 
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to product and process innovation, by comparing the probabilities of successful innovation across firms 

that have implemented Persistent Open, Opening Up and Closing Down strategies.  

This paper contributes to current literature on open innovation in multiple ways: (a) it enables theory 

development by introducing the concept of dynamic openness and explicating a typology of dynamic 

openness strategies; (b) by theorizing the underlying reasons —learning from past and external 

knowledge heterogeneity— it explains why a firm pursues a specific dynamic openness strategy; (c) it 

prescribes dynamic openness strategies that firms should pursue in process innovation versus product 

innovation; and (d) it overcomes endogeneity related drawbacks of cross-sectional data analysis. Next, 

we discuss theoretical underpinnings and hypothesis development. 

2. Theoretical Development and Hypotheses 

The benefit of open innovation is rooted in the value of knowledge heterogeneity. Laursen and Salter 

(2006, 2014) coined the term “external search breadth” to represent knowledge heterogeneity, which 

studies have shown is associated with innovation in general (Amara and Landry, 2005), and specifically, 

product innovation and technological innovation (Leiponen and Helfat, 2010). The search for 

heterogeneous external knowledge, however, might be constrained by organizational limitations.  

There is a limit to how many ideas and sources of information a firm can effectively manage and 

use (Ocasio, 1997). It is difficult to exploit all ideas when there are too many of them due to the so-

called “attention allocation problem” (Koput, 1997). Learning from external sources is also fraught with 

limitations imposed by absorptive capacity and bounded rationality (Simon, 1991). It is argued in these 

studies that diminishing returns arise from the rising costs of maintaining and integrating knowledge 

from wide network ties (Leiponen and Helfat, 2010; Piening and Salge, 2015). Consequently, prior 

literature suggests that beyond a threshold, increases in external search breadth reduce the probability 

of product innovation implying an “optimal” search breadth and that “over-search” leads to diminishing 

returns (Laursen and Salter, 2006). These arguments suggest that while heterogeneity of external 

information is essential for innovation in openness, its beneficial effects are constrained by absorptive 

capacity, bounded rationality, integration costs and attention allocation problem. We refer to these 

constraints collectively as organizational limitations.  
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It is unclear whether and how these organizational limitations affect the open innovation strategy of 

process innovators. With few exceptions (e.g., Tsinopoulos et al., 2018), prior literature has largely 

overlooked process innovators, presuming that their open innovation strategy is similar to that of 

product innovators. Yet, product innovation differs from process innovation as they “…have different 

aims and require different resources and capabilities, in terms of technology trajectories, relationships 

among the supply chain members and absorptive capacity” (Hullova et al., 2016, p. 930). It is still 

inconclusive if external search breadth exerts a positive (Tsinopoulos et al., 2018) or a negative effect 

(Terjesen and Patel, 2017) on process innovation. Terjesen and Patel (2017) argue that diminishing 

returns of search breadth apply only to product innovation, especially when a firm selectively uses deep 

knowledge sources. However, the literature offers limited theoretical reasons for the different effects of 

openness on product and process innovation. We conjecture that learning over time plays an important 

role in explaining the different effects of openness on product and process innovation. We develop this 

idea further in the next section. 

2.1 A dynamic view of openness  

Dynamic openness suggests limitations posed by bounded rationality, absorptive capacity and 

attention problems can change over time due to learning from past acquisition of external knowledge. 

The notion of learning from openness was introduced by Love et al. (2014) based on the conjecture that 

learning can inform necessary changes in the knowledge sources used by a firm over time. Using the 

Irish Innovation Panel dataset for the period 1991-2008, they concluded that having external linkages 

in previous time periods has a positive effect on the relationship between current search breadth and 

innovation due to learning effects. They conclude “…future research on open innovation should pay 

more attention to the time/learning dimension in examining how openness affects innovation” (Love et 

al., 2014, p.1714), which motivates our study.  

The concept of dynamic openness incorporates the time dimension with explicit consideration given 

to changes in search breadth over time. Appleyard and Chesbrough (2017) and Zaggl et al. (2020) show 

that firms do switch from closed to open and vice versa to enable specific innovations. However, such 
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simplistic “open to closed” and “closed to open” strategic changes of search breadth do not consider 

that open firms can reduce, maintain, or increase search breadth. 

We measure search breadth by the number of external sources that a firm uses.  We propose a 

typology comprised of four dynamic openness strategies. The first two strategies - Persistent Open and 

Persistent Closed - refer to no change in the number of external knowledge sources used. Besides few 

case studies (Zaggl et al., 2020), these dynamic openness strategies have not been examined in current 

literature. Learning from past experience, open firms may decrease openness (ΔBreadth<0) by 

eliminating some existing knowledge sources. We call this strategy Closing Down. This strategy might 

be appropriate when firms decide they have learned enough from external sources and eliminate some 

sources that have become less useful, preferring to exploit knowledge from current source(s) 

(Appleyard and Chesbrough, 2017). To avoid knowledge leakage, firms often pursue Closing Down 

when commercializing innovations. Closing Down strategy can change open firms to closed (Breadtht      

= 0) or reduce their search breadth in the next period (ΔBreadth<0).    

Learning effects from openness could also lead to an increase in absorptive capacity, causing firms 

to increase search breadth (ΔBreadth>0) to explore new knowledge (Katila and Ahuja, 2002); we refer 

to this dynamic strategy as Opening Up. Opening Up strategy can be used by originally closed firms 

(Breadtht-1 = 0) as well as by open firms (Breadth t-1 > 0). Learning from external knowledge sources 

will improve a firm’s absorptive capacity so that it can continue to benefit from Opening Up (Leiponen 

and Helfat, 2010), unmitigated by this organizational limitation. Using this foundational discussion of 

learning vis-a-vis absorptive capacity, dynamic openness and associated strategies, we develop the 

hypotheses to be tested in the next section.   

2.1.1 Closing Down versus Persistent Open and innovation performance 

We focus on questions previously not addressed for open firms that use several external knowledge 

sources for innovation. Should they sustain the same external search breadth by being persistently open? 

Should they pursue a Closing Down strategy by decreasing search breadth or pursue Opening Up by 

increasing their breadth? What are the effects of these search strategies on product and process 

innovation? We first undertake a comparison of Persistent Open and Closing Down strategies. 
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Persistent Open is a valid dynamic openness strategy because the costs associated with building 

diverse channels of external communication and integration of knowledge from diverse sources might 

preclude opening up further. Persistency in openness would reduce costs of managing these 

relationships due to accumulated experience from the past and learning effects. This strategy can be 

pursued to achieve stability and to gain time to absorb diverse knowledge from established knowledge 

sources as time is required to explore and exploit knowledge from external sources (Katila and Ahuja, 

2002). Firms may use this strategy to gradually switch from an “exploration” to an “exploitation” mode, 

accelerating innovation. Persistent Open strategy could indicate that the innovation process has matured 

to the stage where innovation problems are solved using existing knowledge sources. From the 

perspective of absorptive capacity, bounded rationality, and knowledge integration cost, both product 

and process innovators can benefit from such a persistent open strategy. Openness literature also 

suggests that being persistently open can be disadvantageous to a firm’s efforts in both product and 

process innovations. Persistently open firms use the same knowledge sources and elements repeatedly 

because they might be addressing familiar, solvable problems. Even though maintaining the same 

knowledge sources allows firms to focus on mastering a set of technologies, it could impose limitations 

of path dependency associated with technological trajectories (Katila and Ahuja, 2002). Moreover, 

when a firm maintains the same number of knowledge sources, it misses the opportunity to access new 

innovations or ideas from other knowledge sources (O’Connor and Rice, 2001).  

Alternatively, Closing Down strategy might be pursued by firms that have acquired enough 

knowledge and ideas from external sources to commercialize innovations by exploiting current 

knowledge. There might be no immediate need for more external knowledge and the cost of continued 

search may not be justified (Laursen and Salter, 2006). Closing Down can also occur due to limited 

absorptive capacity or a focus on other innovation tasks instead of searching for more external 

knowledge. For product innovation, Closing Down might be used to prevent knowledge leaks when 

commercializing new products.  

We posit that firms that access a variety of knowledge sources through Persistent Open strategy, 

rather than pursuing a Closing Down strategy are likely to realize beneficial effects on absorptive 
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capacity and combinative capabilities that offset other organizational limitations. The heterogeneity of 

sources and knowledge can be expected to promote creativity in innovation and problem solving. Firms 

that pursue a Persistent Open strategy increase absorptive capacity by continuously learning from a 

stable set of knowledge sources over time using cycles of exploration and exploitation (Katila and 

Ahuja, 2002). Such learning effects would not manifest when firms reduce external search breadth, 

potentially arguing against Closing Down strategy. 

Thus, we conjecture being persistently open is generally more beneficial than closing down for both 

innovation types. Based on this discussion, we formally state the following hypotheses. 

H1a. Firms that adopt a Closing Down strategy are less likely to generate product innovations 

compared to firms that pursue a Persistent Open strategy.  

H1b. Firms that adopt a Closing Down strategy are less likely to generate process innovations 

compared to firms that pursue a Persistent Open strategy.  

It should be noted that Persistent Open strategy corresponds to the idea of openness in open innovation 

literature, where it is asserted to have beneficial effects on (product) innovation. These hypotheses, 

however, test persistent openness against the dynamic openness strategy-Closing Down, which the open 

innovation literature does not address. 

2.1.2 Opening Up versus Persistent Open and innovation performance 

Laursen and Salter (2006) argue Opening Up might not have a significant effect on product 

innovation, especially for firms that already have many external knowledge sources. However, current 

trends in technological innovations afford firms the opportunity to access more ideas and heterogeneous 

knowledge for innovation by increasing search breadth. Consequently, Opening Up might be better than 

pursuing Persistent Open strategy, a view that conflicts with current literature. This possibility is 

suggested by actions of firms in the pharmaceutical industry. Large pharmaceutical firms pursue 

Opening Up strategy to generate new drugs by partnering with highly innovative small biotechnology 

firms or through community sourcing (Linder et al., 2003).  
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Openness to achieve product innovation, however, might be constrained by the need to prevent 

knowledge leaks. In product innovation, typically firms strategically rely on a few promising new 

technologies, and fewer partners as knowledge sources than for process innovation wherein knowledge 

leak is of lesser concern. Although open firms generally benefit from increasing search breadth in 

product innovation, literature suggests that once an “optimal search breadth” is reached there is no 

incentive to further increase search breadth, since the benefits of opening up are thought to be 

outweighed by search and knowledge acquisition costs, knowledge integration and exploitation costs, 

and indirect costs imposed by organizational constraints. Moreover, openness may only be required 

early in an innovation project and firms typically reduce knowledge sources when they begin to 

commercialize the innovation (Appleyard and Chesbrough, 2017). These arguments for and against 

opening-up in pursuit of product innovation suggest the hypothesis (stated in probabilistic terms) that 

Opening Up, while generally beneficial, might not dominate Persistent Open strategy in product 

innovation. 

H2a. Opening Up and Persistent Open strategies are equally likely to generate product 

innovations.  

Process innovation involves introducing “new elements…into operations” through changes in 

materials, specifications, work and information flow, and equipment to produce a product or render a 

service (Reichstein and Salter, 2006, p1). Organizational limitations and their effects on process 

innovation when openness strategy is pursued are less researched and understood (Peining and Salge, 

2014). Despite this, process innovation involving “new or significantly improved production, supply 

chain, and administrative process” is increasingly “seen as an important source of competitiveness and 

organizational power” (Piening and Salge, 2015, p80). Although the benefits of openness for process 

innovation are limited by organizational constraints due to attention problem and absorptive capacity, 

there are subtle differences between product and process innovations vis-a-vis these limitations.  

 Process innovation requires knowledge about new production technologies, materials, operating 

and information systems, customers’ purchasing and consumption processes, and other factors. 

Consequently, expertise from logistics, production, purchasing and information systems is needed to 
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absorb external knowledge from these domains and increase absorptive capacity for innovation 

(Terjesen and Patel, 2017). Information might be acquired about best practices from a variety of sources 

in and outside the industry, from consultants, universities and even competitors (Markham, 2000; 

Reichstein and Salter, 2006; Potter and Paulraj, 2020). Firms seek external sources of process 

technology knowledge with less concern for knowledge leakage because these sources are often familiar 

with product technology and process technology (Robertson et al., 2012) and protection from 

intellectual property rights (IP). A few years ago, Merck decided to pursue Opening Up and outsourced 

drug manufacturing and testing to suppliers with superior process capabilities. Merck’s patents and 

intellectual property rights (IP) precluded knowledge leaks. Johnson and Johnson has pursued Opening 

Up via early supplier involvement in drug discovery and manufacturing, significantly reducing costs 

through process innovation. The contractual arrangements with these strategic suppliers guarantee 

protection of IP. For process innovation, knowledge from different sources can be treated as a 

complementary asset (Tsinopoulos et al., 2018) without concern for knowledge leaks. Therefore, 

sourcing process knowledge is less restrictive than sourcing product knowledge. These arguments imply 

that search breadth is likely to be higher for process innovation compared to product innovation 

suggesting Opening Up might be superior to Persistent Open strategy.  

From a product/technology life cycle (PLC/TLC) perspective, in the latter phases need for new 

knowledge sources for process innovation is high as the rate of technological change in process design 

is higher (Klepper, 1996), while product innovation requires fewer new knowledge sources (Katila and 

Ahuja, 2002). Process innovation is required to support product innovation in the latter stages of PLC 

(Robertson et al., 2012) to improve manufacturing priorities such as cost, quality, and agility 

(Hamermesh and Silk, 1979). Since firms spend more time in growth and mature phases than in product 

introduction, the need for external knowledge sources for process innovation will be more common. 

These PLC/TLC based arguments also suggest that process innovation is more likely with Opening Up 

than Persistent Open strategy.  Based on this discussion, we state the following hypothesis. 

H2b. Opening Up strategy is more likely to generate process innovations compared to 

Persistent Open strategy.  
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H2a and H2b differ in their comparisons of Opening Up and Persistent Open strategies regarding the 

likelihood of success in two different innovation contexts. This set of hypotheses stemming from our 

arguments are intended to test and underscore contextual differences between product and process 

innovations. While H2a does not assert the superiority of Opening Up over Persistent Open strategy, 

H2b, in contrast, does assert such superiority. 

3. Data and Methodology  

3.1 Sample 

The data for this paper were drawn from the U.K. Community Innovation Survey (UKIS), which 

collects information on innovation initiatives1 of U.K. firms. UKIS is an official survey administered 

by the Office of National Statistics (ONS) on behalf of the Department for Business, Energy and 

Industrial Strategy in the UK. The data are collected biennially using a stratified random sample2 drawn 

from the ONS’s Inter-Departmental Business Register (IDBR), which ensures that the data are 

representative of the UK population of firms across all regions, sectors, and firm size. The survey has 

been validated and been checked for non-response bias 3(DBEIS, 2019). The interpretability, reliability, 

and validity of the survey were assessed by extensive pilot testing.  

The analysis is based on five waves of the biennial UKIS data collected during 2009-2017. The 

survey sampled approximately 30,000 UK firms per wave with approximately 50% average response 

rate. We considered only innovative firms in at least two waves of the survey. The dataset comprises 

16,021 firms for a sample size of 42,229 observations4 of external breadth. Since not all firms in our 

                                                
1 The survey offers a variety of measures related to innovation, e.g., research and development (R&D), innovation 

performance (product and process innovation), scientific and supply chain collaboration for innovation, and 

knowledge sources for innovation in addition to demographic data.  
2 The stratification uses three variables: (1) Region: all nine regions in the UK, (2) Sectors: all sectors including 

manufacturing and services. (3) Firm size: small, medium and large firms. Accordingly, the stratified random 
sample is representative of the total population of UK firms with ten or more employees. 
3 The statisticians at the Office of National Statistics used ‘weighting’ in order to compensate for the businesses 
that did not respond to the survey and those not selected for the sample. The responses were weighted back to the 

total business population of those in the IDBR. On average each respondent represents 13 enterprises in the 

population ensuring that the sample is representative of the population and does not suffer from non-response 

bias. See: https://www.gov.uk/government/collections/community-innovation-survey      
4 The key explanatory variables - External Search Strategies- are calculated by assessing the changes in the number 

of external sources of knowledge a firm uses over time, thus, minimum of a      two-year      period is necessary. 

Thus, the observations for the External Search Strategy variables are 26,208.  

https://www.gov.uk/government/collections/community-innovation-survey
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dataset responded to the survey in all waves, we obtained an unbalanced panel of 26,208 changes in 

external search breadth over the five waves (c.f. Love et al., 2014).  

Common method bias (CMB): CMB is one of the important issues inherent in survey data. The 

UKIS addresses: a) common rater effect, (b) item characteristics effect, (c) item context effect, and (d) 

measurement context effect (Podsakoff et al., 2003; Malhotra et al., 2006) by anonymizing the 

responses to minimize social desirability, by using simple and concise definitions based on the Oslo 

Manual (OECD), and by placing the dependent and explanatory variables in different sections of UKIS 

survey. To obviate measurement context effect stemming from a single respondent, the questionnaire 

is administered at the firm level and completed by the Director, Chief Executive Officer or the R&D 

manager in the same way as the Yale survey (Cohen and Levinthal, 1990). To check for CMB, we 

conducted the marker variable test. We use “lnSize” as the marker variable since it is the least correlated 

(see Table I) with the other variables. The objective variable lnSize indicates the total number of 

employees and is unlikely to suffer from respondent bias. Both the signs and coefficients obtained from 

the CMB model and our main models are almost identical indicating that CMB is not a concern. 

Table I here 

3.2 Dependent variables: Product innovation and process innovation 

Table I presents the definition and measurement of all the variables. Both new product and process 

introductions are commonly used as broad measures of innovation (Zhang et al., 2014) because they 

are essential and mutually complementary parts of an operations strategy that relies on external 

knowledge from the supply network (Narasimhan and Narayanan, 2013).  

Product Innovation refers to the introduction of new or significantly improved goods or services to 

the market. This definition of product innovation addresses two aspects of innovation: introduction of 

new or significant improvements in quality or the development of distinct benefits for the user; and, 

whether product innovations are new to the market (DBEIS, 2019). The questionnaire asks firms to 

report only significant innovations introduced to the market before their competitors. Prior studies 
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associate this variable with radical technological change that typically requires more research-based 

information and knowledge (Amara and Landry, 2005; Rodriguez et al., 2017). 

Process Innovation is defined as the introduction of new or significantly improved processes that 

are new to the industry (DBEIS, 2019). Both measures for product and process innovation have been 

used extensively in the innovation literature (Nieto and Santamaría, 2007); in particular, research based 

on Community Innovation Survey (CIS) dataset (Amara and Landry, 2005). The use of the words new 

to the market and industry in the questionnaire helps respondents to consider only radical innovation.  

3.3 Independent variables: Breadth and External Search strategies 

In line with open innovation literature, we introduce a continuous variable, Breadth, which measures 

the number of external knowledge sources used by firms in their innovation activities. Survey 

respondents indicated both the use and importance of knowledge for innovation from the 11 sources5, 

using the four-point Likert-scale: ‘not used’, ‘low importance’, ‘medium importance’, ‘high 

importance’. Following Terjesen and Patel (2017) and Laursen and Salter (2006), we considered only 

‘high importance’ knowledge sources used for innovation6. Accordingly, we created Breadth as 

follows: first, a dummy variable is created for each source and coded as “1” if a source of knowledge 

was of ‘high importance’ for innovation and coded as “0” otherwise. Second, we computed the 

composite score across all 11 knowledge sources. If none of the 11 knowledge sources was of ‘high 

importance’ for innovation for a business, then its Breadth score was “0”. Hence, the composite score 

for Breadth had a range from 0 to 11, and it reflects the heterogeneity of knowledge sources and the 

importance of these knowledge sources for innovation. These 11 items have high internal consistency 

and scale reliability (Cronbach’s alpha of 0.73).  

                                                
5 The 11 external sources are: (1) Within your business or enterprise group; (2) Suppliers of equipment, materials, 

services or software; (3) Clients or customers from the public and/or private sector; (4) Competitors or other 

business in your industry; (5) Consultants, commercial labs or private R&D institutes; (6) University or other 

higher education institutes; (7) Government or public research institutes; (8) Conferences, trade fairs or exhibition; 

(9) Professional and industry association; (10) Technical, industry or service standards; (11) Scientific journals 

and trade / technical publications. 
6 We have also conducted robustness analysis testing the sensitivity of our construct to different levels of 

importance such as ‘medium-importance’ and ‘high-importance’ knowledge sources as well as to the ‘use’ of 
knowledge irrespective of its importance. The results remain robust with the initial analysis and are discussed in 

section 4.3.  
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This paper captures changes in External Search Strategies (i.e., Breadth) across time. The panel 

dataset allows us to capture dynamic openness based on current and previous breadth of firms (Breadtht 

– Breadtht-1). We operationalize the four External Search Strategies as follows: Persistent Open is a 

dummy variable that takes the value of 1 if “Breadtht-1      > 0” and “Breadtht – Breadtht-1 = 0”, and 0 

otherwise. Persistent Closed is a dummy variable that takes the value of 1 if “Breadtht-1      =      0” and 

“Breadtht – Breadtht-1 = 0”, and 0 otherwise. Closing Down is a dummy variable that takes the value of 

1 if “Breadtht-1 > 0” and “Breadtht – Breadtht-1 < 0”, and 0 otherwise. Opening up is a dummy variable 

that takes the value of 1 if “Breadtht – Breadtht-1 > 0”, and 0 otherwise.  

3.4 Control variables  

We include additional variables in the analysis to control for other determinants of innovation. R&D 

increases absorptive capacity and generates knowledge useful for innovation (Cassiman and Veugelers, 

2002). Firm size (lnSize) is a proxy for resource endowment and a determinant of innovation (Mairesse 

and Mohnen, 2002). We control for a firm’s type of formal collaboration (Scientific Collaboration7 and 

Supply Chain Collaboration8) as collaboration is a key determinant of innovation (Vilena et al., 2011; 

Prajogo et al., 2021). We consider differences in market structure (Market), as variations in 

technological opportunities, consumer preferences and competitiveness can encourage (discourage) 

firm’s engagement in innovation. Industry variance is controlled for with five industry dummy variables 

based on the two-digit SIC code (Industry).  Finally, we included time dummies to control for economy 

wide effects across time (Year).  

3.5 Econometric specification and identification strategy 

We examine the effects of Breadth and External Search Strategies on the probability of Product 

Innovation and Process Innovation. Since both dependent variables are binary, we fit a logistic (or logit) 

regression model. The model in equation (1) includes control variables, year, and industry fixed effects. 

                                                
7 Collaboration with: (i) higher education institutions, (ii) government/public research institutes.  
8 Collaboration with: (i) other enterprises within the group, (ii) suppliers of equipment, materials, components, or 

software, (iii) clients or customers, (iv) competitors or enterprises in the firm’s industry and (v) consultants, 

commercial labs, or private R&D institutes. 
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logit (𝑦𝑖𝑡∗ ) = α + 𝛽1−7∗ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 𝑖𝑡 + 𝛿2𝑇𝑖𝑚𝑒𝑖 +  𝛿3𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦𝑖 + 𝜀𝑖𝑡     (1) 

In equation (1), 𝑦𝑖𝑡∗  represents one of two innovation output variables (product or process 

innovation in Table I), α represents the constant, 𝛽1−7∗
 captures the individual effects of a vector of 

control variables9,  𝛿2 and 𝛿3 represent the time and industry fixed effects. 𝜀𝑖𝑡 represents the 

idiosyncratic random error term. 

The second model in equation (2) includes Breadtht and its square (Breadtht_sq) to assess the 

potential diminishing effects of search breadth asserted by cross sectional studies (Laursen and Salter, 

2006). Although this is not a primary objective of this study, we felt that examining this issue with our 

panel data might affirm (or disaffirm) claims in the literature based on cross-sectional data analysis. 

logit (𝑦𝑖𝑡∗ ) = α+𝛽1−7∗ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑖𝑡 + 𝛾2𝐵𝑟𝑒𝑎𝑑𝑡ℎ𝑖𝑡 + 𝛾3𝐵𝑟𝑒𝑎𝑑𝑡ℎ_𝑠𝑞𝑖𝑡+ 𝛿4𝑇𝑖𝑚𝑒𝑖 + 𝛿5𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦𝑖 + 𝜀𝑖𝑡  (2) 

We test H1a-b and H2a-b using equation (3), which includes three distinct dummy variables 

corresponding to the strategies: Closing Down, Opening Up, and Persistent Closed. The Persistent 

Open dummy is used as the base category for comparing the effects of the other three external search 

strategies. In equation (3), γ2 represents the coefficient for Closing Down (H1a-b) and γ3 represents the 

coefficient for Opening Up (H2a-b). 

logit (𝑦𝑖𝑡∗ ) = α+ 𝛽1−7∗ 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑖𝑡 + 𝛾2𝐶𝑙𝑜𝑠𝑖𝑛𝑔 𝐷𝑜𝑤𝑛𝑖𝑡 +𝛾3𝑂𝑝𝑒𝑛𝑖𝑛𝑔 𝑈𝑝𝑖𝑡 + 𝛾4𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑡 𝐶𝑙𝑜𝑠𝑒𝑑𝑖𝑡 + 𝛿3𝑇𝑖𝑚𝑒𝑖 + 𝛿4𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦𝑖 +  𝜀𝑖𝑡      (3) 

Accordingly, the model in equation (3) including our key independent variables could be extended 

to FE estimation method as follows: 

logit (𝑦𝑖𝑡∗ ) =  (𝑎𝑖+𝑢𝑖) + 𝛽1−7∗ 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑖𝑡 + 𝛾2𝐶𝑙𝑜𝑠𝑖𝑛𝑔 𝐷𝑜𝑤𝑛𝑖𝑡 +𝛾3𝑂𝑝𝑒𝑛𝑖𝑛𝑔 𝑈𝑝𝑖𝑡 + 𝛾4𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑡 𝐶𝑙𝑜𝑠𝑒𝑑𝑖𝑡 + 𝛿3𝑇𝑖𝑚𝑒𝑖 + 𝛿4𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦𝑖 +  𝜀𝑖𝑡                             (4) 

                                                
9 The model 1,2,3 and 4 estimate a coefficient for each control variable, however to save space we added only 

one coefficient (1-7*) in the functional form of the model.  
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Endogeneity from unobserved heterogeneity: Unlike prior research, we did not employee a cross-

sectional or a Pooled OLS estimation as it could generate biased and inconsistent estimates due to 

endogeneity arising from differences in the characteristics of firms that explain variations in the 

probability to innovate (Laursen and Salter, 2006). Specifically, a Pooled OLS estimation could attach 

predictive power to explanatory variables, which occur due to firm's heterogenous time-invariant 

characteristics. Thus, we overcome endogeneity arising from time-invariant heterogeneity by 

employing a Fixed Effects (FE) estimation in all models in equations (1-4), whereby the firm specific 

differences (𝑎𝑖) are captured by the intercepts (Greene, 2002; Wooldridge, 2002). Specifically, in FE 

the parameter estimates of time-invariant variables are absorbed by the intercept (𝑎𝑖+𝑢𝑖) because the 

time-invariant variables are specific to an entity and should not be correlated with other entity specific 

characteristics. The FE estimation assesses the net effect of time-variant variables on the outcome 

variable, which controls for endogeneity that arises from unobserved heterogeneity.  

Endogeneity from contemporaneous simultaneity: We overcome endogeneity arising in cases 

whereby the probability of Product or Process Innovation and External Search Strategies could be 

simultaneously determined, by embedding in the construction of the External Search Strategies one-

year lags as explained in section 3.3 (i.e., Breadtht – Breadtht-1). Using one-year lags in the construction 

of the key explanatory variables obviates contemporaneous reverse causality (Clemens et al, 2012). 

This identification strategy utilizes the lagged value of the explanatory variable to “exogenize” it when 

estimating the effect of External Search Strategies on either Product or Process Innovation. The 

assumption made is that since 𝑦𝑖𝑡∗  (Product or Process Innovation) cannot possibly cause Breadtht-1, 

this rules out concerns that External Search Strategies is endogenous to Product or Process Innovation. 

4. Analysis and Results 

4.1 Preliminary analysis 

We conducted the analysis in STATA Version 16. Table II depicts the correlation coefficients, 

descriptive statistics of the dependent and independent variables, and the Variance Inflation Factors 

(VIFs) of the independent variables. Table II shows 10% of the observations in the sample introduced 

a Product innovation and 16% a Process innovation. In line with previous studies, the mean value of 
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Breadth of the sampled firms is 0.88 with standard deviation of 1.51. Both the pairwise correlation 

coefficients of the variables (P< 0.001) and the VIFs of the independent variables were used to check 

for multicollinearity among the independent variables. The VIFs of our independent variables vary from 

1.03 to 4.26 (<10) suggesting that multicollinearity is not a concern (Neter et al., 2004). Also, 24% of 

the sample firms engage in R&D activities, on average, the sampled firms have 362 employees, 10% of 

firms engaged in Scientific Collaboration. and 25% of firms engaged in Supply Chain Collaboration.  

Table II here 

Next, the transition probability matrix (TPM) in Table III shows the probability of changing from being 

Closed to Open and vice versa across 2009-2017. The diagonal values in the TPM denote the fraction 

of firms that persist in the same state. Clausen et al. (2012) and Tavassoli and Karlsson (2015) 

differentiate between strong and weak persistence. If the sum of the diagonal values is equal to or greater 

than 100% and the single diagonal values of the TPM matrix are greater than 50%, then this indicates 

strong persistence. The TPM shows that 70% of closed firms remained closed between two observation 

periods (Persistent Closed) and 30% of closed firms adopted the Opening Up strategy. Table III shows 

that 43% of open firms adopted a Closing Down strategy and 57% of open firms remained open between 

two observation periods [by adopting either a Persistent Open or an Opening Up strategy]. Overall, this 

analysis indicates that although there is strong persistence in the external search strategy, some firms 

do alter their external search strategy over time supporting our idea of dynamic openness.  

Table III here 

Table IV shows the summary statistics for each of the four dynamic openness strategies and for the 

two innovation types. Our data show that the external search strategies differ between product and 

process innovators. While close to one third of the observations for Persistent Open observations 

involved either product or process innovation, the Opening Up strategy seems to differ in the number 

of observations for product (17%) and process innovators (32%). There are approximately twice as 

many process innovators who chose Opening Up strategy compared to product innovators in our 

sample. Similarly, 3% of the Persistent Closed observations are process innovators while only 1.5% are 
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for product innovators, and 16% of the Closing Down observations correspond to process innovators 

and only 10% correspond to product innovators. These preliminary analyses support the concept of 

dynamic openness strategies. 

Table IV here 

4.2 Panel-data analysis   

Table V presents the results of the logit estimations. The results for the control variables are in line 

with prior studies. Models 1 and 2 show the effects of search breadth on innovation for comparison with 

cross-sectional studies. Model 1 includes only the control variables, year, and industry fixed effect 

dummies, for the two dependent variables - Product Innovation (in column 1) and Process Innovation 

(in column 2). Model 2 includes the linear term Breadth and the quadratic term (Breadth_sq) to test for 

possible non-linearity suggested by Laursen and Salter (2006). Model 3 tests H1a-b and H2a-b by 

comparing the dummy variables for External Search Strategy - Closing Down, Opening Up, and 

Persistent Closed, with Persistent Open strategy as the base category. All three models are estimated 

using Fixed Effects to account for unobserved heterogeneity. 

Model 2 presents the results pertaining to Breadth. The coefficient of Breadtht is positive and 

statistically significant indicating a positive relationship between external search breadth and both 

product and process innovations. The estimated coefficients are 0.54 (p<0.001) and 0.75 (p<0.001) for 

product and process innovation, respectively. Our results show that Breadtht_sq has a negative and 

statistically significant (p<0.001) coefficient for both product innovation (-0.05) and process innovation 

(-0.07). Combined, these results assert that the relationship between Breadth and product/process 

innovation is curvilinear (inverted U-shaped), affirming assertions of over-search in current literature. 

Specifically, these findings highlight the significance of firms` external knowledge search for product 

and process innovation and point out that when firms over-search (i.e., use too many knowledge 

sources), they experience decreasing returns to innovation performance.  

Table V here 

     Model 3 in Table V presents the results of the panel-data analysis, which tests H1a-b and H2a-
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b. Model 3 examines whether the changes in external search strategies (Closing Down, Opening Up, 

Persistent Closed) are significantly more or less likely to achieve product and process innovation, 

compared to the Persistent Open strategy as the base category. H1a-b state that the probability of 

product and process innovation is lower for firms that choose Closing Down (from being open) 

compared to firms that remain persistently open. The estimated coefficients for Closing Down are 

negative -0.42 (p<0.001) and -0.4 (p<0.001) and statistically significant for product and process 

innovation, respectively. These results provide strong evidence supporting H1a and H1b. As expected, 

similar findings apply to Persistent Closed in comparison with Persistent Open. 

H2a and H2b posit that the probability of product innovation is not different for firms that choose 

Opening Up compared to remaining Persistently Open, but a higher probability is expected for process 

innovation. The estimated coefficient for Opening Up is positive and insignificant for product 

innovation, and positive (0.31) and statistically significant at p<0.001 level for process innovation. The 

results show that there is no statistical difference between Persistent Open and Opening Up with respect 

to product innovation, supporting H2a. In contrast, our results show that Opening Up increased the 

probability of process innovation compared to Persistent Open strategy, supporting H2b.  

4.3 Robustness and sensitivity analysis   

We carried out several robustness tests to verify the consistency of our analyses. First, we used an 

alternative measure for the dependent variable that captures a firm’s intensity of product innovation, 

i.e., Innovation Intensity. UKIS asks firms to report the proportion of their sales attributable to product 

innovations new to the market. Innovation Intensity is measured in percentages and ranges between 0-

100. Thus, we estimated a Tobit model to account for both right and left censored dependent variable. 

The results were consistent with those in Table V for Product Innovation in Model 3; all relevant 

coefficients are statistically significant, and the direction of the relationships was the same10. 

Specifically, firms with a Closing Down strategy compared to firms that remain Persistent Open (base 

category) experienced a decrease in their Innovation Intensity. The estimated coefficient for Closing 

                                                
10 For brevity we did not include the Tables of the robustness analysis. We can provide them upon request.  
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Down was negative (-3.067) and statistically significant at p<0.01 level. Consistent results were also 

obtained for the estimated coefficient of the Opening Up strategy, which is positive and insignificant, 

suggesting that there was no statistical difference between Persistent Open and Opening Up strategies 

with respect to Innovation Intensity (product).   

Second, we tested the sensitivity of our results by replacing the key independent variables -External 

Search strategies- with alternative measures that account for: (a) different levels of the importance of 

knowledge sources for innovation and (b) the use of knowledge irrespective of its importance. As 

explained in section 3.3 we operationalize the four External Search Strategies based on the current and 

previous Breadth of external knowledge search of firms (Breadtht – Breadtht-1). Here, we re-estimated 

our models by constructing Breadth (and subsequently the four External Search Strategies) in two 

different ways: (a) If a source of knowledge was of ‘medium importance’ or ‘high importance’ for 

innovation then this source was coded as 1 and coded 0 if it was of ‘low importance’ or ‘not used’; (b) 

If a source of knowledge was of ‘low importance’ or ‘medium importance’ or ‘high importance’ for 

innovation then this source was coded as 1 and coded 0 if it was ‘not used’. The results were consistent 

with those in Table V for Product Innovation and Process Innovation in Model 3. 

Third, although we controlled for unobserved time-invariant heterogeneity and simultaneity from 

contemporaneous reverse causality, the explanatory variables may not be strictly exogenous (Reed, 

2015). To investigate whether endogeneity affects our results, we employed an Instrumental Variable 

(IV) Fixed Effects estimation. By adapting a Canonical Data Model (CDM) developed by Crépon, 

Duguet and Mairesse (1998), we examined a firm’s innovation patterns in two steps: The first step 

examined the driver of innovation inputs (R&D). We used one-year lag of a variable that measures 

‘Investments on Training Activities’ to identify R&D. The second step examined the impact of 

innovation inputs and external knowledge sources upon innovation outputs (the so-called knowledge 

production function depicted in equations 3 and 4). The results of the Instrumental Variable estimation 

indicated that the coefficients of External Search Strategies remain consistent with those in Table V.  

5. Discussion and implications 

5.1 Discussion of the results  
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Our study introduced the idea of dynamic openness and explicated four search strategies - 

Persistent Open, Persistent Closed, Closing Down, and Opening Up and examined their impact on 

innovation performance. Unlike previous studies, we used a unique panel dataset to show that Opening 

Up increases the probability of process innovation compared to Persistent Open strategy but Opening 

Up is not superior to Persistent Open strategy in product innovation. This affirms product innovators 

might not gain from exploring new knowledge sources beyond a threshold search breadth as suggested 

in literature. Persistent Open strategy increases the probability of both product and process innovation 

compared to Closing Down strategy. These results suggest that process innovators might benefit more 

from openness than product innovators.  

Our study contributes to open innovation literature in four ways. First, we inform openness 

literature that has not considered changes in search breadth over time and has considered external search 

strategy narrowly as being either open or closed. In this “static view” of openness, no distinction is 

made between a firm that is opening up and one that is persistently open. It does not distinguish between 

a firm that is closing down and a closed firm. We proposed the concept of dynamic openness to show 

that firms do actively change their external search strategies over time beyond being just open or closed. 

We presented empirical evidence in Table IV that supports our typology of dynamic openness 

strategies. This paper creates a new foundation for openness literature to understand why firms choose 

to stay open with the same knowledge sources over time instead of opening up or closing down. Staying 

open without changing the number of external sources might imply that firms continue to learn by 

adopting this strategy. In contrast, learning from past searches might cause firms to close down if they 

felt external knowledge sources are no longer useful. Our empirical analysis shows “stability” 

(Persistent Open) as opposed to closing down knowledge sources, is an important dynamic openness 

strategy, which gives firms time to explore and exploit new knowledge from a stable number of 

knowledge sources. 

Second, our results demonstrate that Persistent Open strategy can support both product and process 

innovations. Persistent Open firms are more likely to be both product and process innovators compared 

to Persistent Closed and Closing Down firms. This result affirms prevailing views in the literature that 
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firms must continue to engage with external knowledge “ecosystem.” We offer a new theoretical 

perspective, that being persistently open might give time for firms to overcome organizational 

limitations.  

Third, we identify constraints specific to product innovators and show a differential impact on 

product innovation and process innovation stemming from Opening Up and Persistent Open strategies. 

While past literature assumes organizational limitations lead to diminishing effects of breadth on both 

product and process innovations, we theorized three additional and unique consideration facing product 

innovators – knowledge leakage, selective knowledge sources, and technology life cycle. Our 

hypotheses were formulated in recognition of these factors in product innovation. Avoidance of 

knowledge leakage is unique to product innovators. Our analysis shows process innovators benefit more 

from Opening Up than from pursuing Persistent Open strategy, whereas we found no benefits for 

product innovators to choose Opening Up over Persistent Open. Although Opening Up might trigger 

diminishing returns due to over search and risk of knowledge leak in product innovation, our results 

(the estimated coefficients) show that process innovators might have a larger “band width” to innovate 

from a larger pool of knowledge sources because they might not suffer from organizational limitations 

to the same degree as product innovators. 

Fourth, our results convey a more nuanced understanding of openness strategy for product 

innovators vis-à-vis organizational constraints. Our results suggest that Persistent Open strategy might 

give firms time to overcome the organizational constraints and pursue further opening up. Our results 

suggest that product innovators might need to balance “over-search” effects using a stability strategy. 

Moreover, our results confirm that both product and process innovations cannot be realized with just 

increasing search breadth. Both innovation types are associated with scientific and supply chain 

collaboration that capture a different aspect of external search for knowledge. The results from our 

panel data suggest the importance of a new perspective of innovation network that emphasizes dynamic 

management of knowledge flows from a diverse knowledge network.   

5.2 Theoretical implications  
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 The proposed typology can facilitate new research that may lead to a better understanding of 

dynamic openness strategies. While our database permits comparing changes in openness over two 

periods only, the typology proposed in this paper can be a springboard for more extensive investigation 

of these strategies over several periods to capture changes in dynamic openness over three or more 

periods, including a mix of Persistent, Opening Up, and Closing Down strategies over time. Ideally, 

this investigation should be done via dynamic modeling techniques enabling researchers to construct a 

more complete theory of openness strategies and innovation outcomes. For example, investigation over 

several time periods will enable us to better understand the effect of “clock speed” on external search 

strategies. It can be conjectured that the “churn” of knowledge sources would be higher in high clock 

speed compared to a low clock speed environment. Although our results suggest that opening up is not 

better than being persistently open for product innovators, clock speed might influence this result. 

Opening Up might be more efficacious in high clock speed environments. An investigation into this 

conjecture might further refine our theoretical understanding of dynamic openness.  Our results show 

that Persistent Open, a stable strategy, is useful in product innovation. We have theorized the role of 

learning and organizational limitations that support this strategy. It is plausible that the result could also 

be explained by asset specific investments on the part of the firm and its network partners. It might be 

more difficult for capital intensive firms (e.g., automotive firms) to pursue Opening Up strategy 

compared to firms that are system integrators (e.g., Cisco Systems, Apple). The theory of dynamic 

openness can be extended further if it is studied in conjunction with different governance types – arms-

length or contractual versus relational governance. Our theorizing would imply that persistence or 

closing down will be compatible with contractual governance. Opening Up might prove to be 

compatible with relational governance. Our theorizing in the paper suggests that the concept of dynamic 

openness encompasses product and process issues, absorptive capacity (learning), governance 

(contractual/relational), Market considerations (Clock speed) and structural issues (asset specificity).  

Our paper exposes these theoretical connections, paving the way for fuller understanding of openness 

strategies and theory building. The theoretical contribution that we have made in this paper by proposing 

and validating the concept of dynamic openness and associated strategies can be a springboard for 

investigating clock speed, asset specificity and others to better understand dynamic openness strategies.  
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The theorizing and the results also suggest that product and process innovations might have different 

optimal search breadths due to unique considerations. We have theorized the reasons why and how this 

difference between product and process innovation arises due to organizational limitations. These 

constraints might be mitigated by information and communication technologies (ICT). ICT reduces cost 

of direct ties, and integration through knowledge management systems (KMS) can reduce the others. 

This insight can extend Opening Up as a strategy and avoid the diminishing returns of over-search 

mentioned in the literature.  Investigating this further would help develop a contingent theory of 

dynamic openness strategies.  

While the focus was on search based on the number of knowledge sources, i.e., heterogeneity of 

knowledge sources, this perspective can be complemented by studying the types of knowledge sources 

used. Our results show open firms that added knowledge sources are more likely to achieve process but 

not product innovation. There might be particular knowledge sources that matter more for process or 

product innovation. Future research could identify important knowledge sources and explain innovation 

performance based on the types of knowledge (knowledge for value appropriation, problem solving, 

disruptive technologies etc.) provided by each. The right combination, knowledge portfolio, of internal 

and external knowledge may also matter. 

6. Conclusion, limitations, and future research  

Although the ideas of external knowledge search and openness have been studied in the 

organizational learning (Katila and Ahuja, 2002) and innovation literatures (Laursen and Salter, 2006), 

dynamic openness is a concept new to the open innovation literature. Past studies on innovation have 

focused on network structures, (Ahuja, 1998), but seldom consider the idea of search breadth and 

dynamic openness. These studies do not specifically address heterogeneous knowledge flows and their 

relationship to learning, absorptive capacity and organizational constraints that might limit the 

exploitation of such knowledge flows. In contrast, we focus on the acquisition of heterogeneous 

knowledge through external search. We introduced the concept of dynamic openness based on temporal 

adjustment of search breadth. Both product and process innovation literatures assert conflicting 

conclusions. For example, diminishing returns of external search breadth are asserted for product 
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innovation (Terjesen and Patel, 2017). These studies however utilized cross-sectional data and a “static” 

conception of openness to reach this conclusion without offering detailed explanation for such 

diminishing effects. We have added some clarity to this debate by carrying out a longitudinal study and 

examining the impact of dynamic openness strategies. We have offered a theoretical perspective that 

invokes learning from past searches and potential role of organizational constraints in our theorizing.  

This line of inquiry can be extended in future studies. Although our ideas and analysis in this paper 

focused only on breadth, a more complete examination of dynamic openness would require examination 

of “variety” aspects of external knowledge search also. In this we were handicapped by data (sample 

size) limitations. We acknowledge this limitation of our study and call for a future study to focus on 

“variety” as well as “breadth”. 

We recognize the following limitations of our study. We conceptualize dynamic openness as the 

number of external knowledge sources as other researchers have done. Our analysis does not account 

for the types of knowledge, the types of knowledge sources, nor the depth of relationships with the 

knowledge sources, which limits fuller understanding of dynamic openness. Exploiting knowledge of 

low complexity differs from exploiting complex knowledge. The issue of complexity of knowledge 

could not be accommodated within the current study since we lacked data. We acknowledge this 

limitation of our study. Future research and new data are required to address these limitations. 

While our econometric analysis focuses on the propensity to innovate as the dependent variable, 

other measures of innovation performance e.g., sales from innovation products, can be used to carry out 

a similar analysis. This would help to understand how and why dynamic openness strategies impact 

various innovation performance measures. Additionally, in-depth case studies would complement this 

paper by shedding light on the context and process of dynamics openness. Future research could 

examine how firms learn when the right time is to change their openness strategy and how firms identify 

and exploit their knowledge portfolio that arises from different knowledge sources.  
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Table I. Definition of the variables 

Variables Definition 

Product Innovation Binary variable that takes the value of 1 if a business 

introduced new or significantly improved goods 

and/or services that are new to its market, and 0 

otherwise. 

Process Innovation Binary variable that takes the value of 1 if a business 

introduced new or significantly improved processes 

for producing or supplying goods and/or services that 
are new to its industry, and 0 otherwise. 

Breadth Continuous variable that measures the number of 

different types of external sources of knowledge used 

by a business in its innovation activities. This variable 

has a range of 0-11. 

Open Binary variable that takes the value of 1 if a business 

used at least one external sources of knowledge in its 

innovation activities, and 0 otherwise. 

External Search Strategies:  

Persistent Open Binary variable that takes the value of 1 if a business 

has been open and has sustained the same number of 

external sources of knowledge compared to previous 

year (Breadtht-1  > 0 and Breadtht – Breadtht-1 = 0), and 

0 otherwise. 

Persistent Closed Binary variable that takes the value of 1 if a business 

has been closed over the years (Breadtht-1 = 0 and 
Breadtht – Breadtht-1 = 0), and 0 otherwise. 

Closing Down Binary variable that takes the value of 1 if a business 

has reduced the number of external sources of 

knowledge compared to previous year (Breadtht – 

Breadtht-1 < 0), and 0 otherwise. 

Opening Up Binary variable that takes the value of 1 if a business 

has increased the number of external sources of 

knowledge compared to previous year (Breadtht – 

Breadtht-1 > 0), and 0 otherwise. 

R&D Binary variable that takes the value of 1 if a business 

undertakes internal and/or external research and 

development, and 0 otherwise. 

lnSize Natural logarithm of number of employees. 

Scientific Collaboration Binary variable that takes the value of 1 if a business 

cooperates with universities and/or government 
research institutes, and 0 otherwise. 

Supply Chain Collaboration Binary variable that takes the value of 1 if a business 

cooperates with their enterprise group, and/or with 

suppliers, and/or clients, and/or competitors, and/or 

consultants, and 0 otherwise. 

Market Categorical variable indicating the main business 

market. This variable takes the value of: 

1, if a business conducts business regionally. 

2, if a business conducts business in the UK. 

3, if a business conducts business in Europe. 

4, if a business conducts business Internationally. 
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Table II. Correlation matrix and descriptive statistics of the variables 

  1 2 3 4 5 6 7 8 9 10 11 Obs. Mean Std. 
Dev. 

VIF 

1  Product Innovation 1           42,229 0.1 0.3 a 

2  Process Innovation 0.3045 1          42,229 0.16 0.37 a 

3  Breadth 0.3436 0.3966 1         42,229 0.88 1.51 2.32 

4  Persistent Open 0.1636 0.1644 0.1873 1        26,208 0.07 0.26 b 

5  Persistent Closed -0.2405 -0.3102 -0.5304 -0.2490 1       26,208 0.44 0.49 4.26 

6  Closing Down 0.0071 -0.0017 -0.1411 -0.1524 -0.4793 1      26,208 0.23 0.42 3.14 

7  Opening Up 0.1680 0.2547 0.6230 -0.1670 -0.5255 -0.3216 1     26,208 0.26 0.43 3.32 

8  R&D 0.4279 0.378 0.4586 0.2225 -0.369 0.0254 0.2609 1    42,229 0.24 0.43 1.55 

9  Size 0.0339 0.0708 0.0655 0.0323 -0.0577 0.0262 0.0211 0.0952 1   42,229 362.5 2006.5 1.03 

10  Scientific Collab. 0.2896 0.2479 0.3743 0.1082 -0.2155 0.0077 0.172 0.3501 0.0137 1  42,229 0.1 0.28 1.34 

11  Supply Chain Collab. 0.3638 0.425 0.5256 0.2015 -0.3766 -0.0043 0.3102 0.5011 0.0166 0.4837 1 42,229 0.25 0.43 1.69 

12  Market 0.2408 0.1671 0.2141 0.1286 -0.2127 0.0654 0.0963 0.3339 0.0183 0.1687 0.2189 37,489 2.33 1.13 1.17 

- a: Variance Inflation Factor is calculated only for independent variables. 
- b: Variance Inflation Factor is not calculated for the base category `persistent open`. 
Note: All reported correlation coefficients are statistically significant at 1% level.  
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Table IV. Summary statistics of External Search Strategies by Product and Process innovators 

Table III. Transition probability matrix 

Closed  Open  Total 

Closed 11,511 

(70%) 

4,984 

(30%) 

16,495 

(100%) 

Open 4,141 

(43%) 

5,572 

(57%) 

9,713 

(100%) 

Total 15,652 

(60%) 

10,556 

(40%) 

26,208 

(100%) 

Note: Closed: Business does not use any external sources of knowledge (i.e. Open=0). 

Open: Business uses at least one external sources of knowledge (i.e. Open=1). 

   Product Innovator  Process Innovator 

 N  Mean Std. Dev.  Mean Std. Dev. 

Persistent Open (0/1) 1,922  0.27 0.44  0.38 0.48 

Persistent Closed (0/1) 11,511  0.015 0.12  0.03 0.18 

Closing Down (0/1) 5,944  0.1 0.29  0.16 0.36 

Opening Up (0/1) 6,831  0.17 0.38  0.32 0.46 

Total 26,208   



2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Standard error in parenthesis. *p<0.05, **p<0.01, ***p<0.001.  

 

 

 

 

 

 

 

 

Table V. Logit Estimations External Search Strategies for Product and Process innovation 

 

 Model 1  Model 2  Model 3 

 (1) (2)  (3) (4)  (5) (6) 

VARIABLES Product 

Innovation 

Process 

Innovation 

 Product 

Innovation 

Process 

Innovation 

 Product 

Innovation 

Process 

Innovation 

         

Breadth - -  0.54*** 0.75***  - - 

    (0.045) (0.06)    
Breadth_sq - -  -0.05*** -0.07***  - - 

    (0.006) (0.005)    

External Search 

Strategies: 

        

Closing Down vs 

Persistent Open 

- -  - -  -0.42*** 

(0.16) 

-0.4*** 

(0.12) 

         

Opening Up vs 

Persistent Open 

- -  - -  0.07 

(0.15) 

0.31*** 

(0.12) 

         

Persistent Closed 

vs Persistent Open 

- -  - -  -0.71*** 

(0.25) 

-1.2*** 

(0.18) 
         

Controls:          

R&D 1.25*** 0.84***  1.04*** 0.6***  1.24*** 0.6*** 

 (0.08) (0.06)  (0.08) (0.07)  (0.15) (0.1) 

lnSize -0.18* 0.03  -0.2** -0.003  -0.16 0.34 

 (0.01) (0.074)  (0.1) (0.28)  (0.23) (0.17) 

Supply chain 

Collaboration 

1.14*** 1.43***  0.9*** 1.1***  1.02*** 1.2*** 

 (0.77) (0.06)  (0.08) (0.06)  (0.14) (0.1) 

Scientific 

Collaboration 

0.43*** 0.21***  0.4*** 0.22***  0.55*** 0.26*** 

 (0.09) (0.08)  (0.09) (0.08)  (0.16) (0.12) 

Markets:         

UK vs Regional -0.03 0.1  -0.1 0.11  -0.13 0.02 

 (0.16) (0.1)  (0.16) (0.11)  (0.28) (0.16) 

Europe vs 

Regional 

-0.06 0.23**  -0.17 0.2  -0.025 0.26 

 (0.18) (0.12)  (0.19) (0.13)  (0.33) (0.21) 

International vs 

Regional 

0.21 0.37***  0.007 0.31**  0.1 0.5* 

 (0.18) (0.13)  (0.19) (0.14)  (0.33) (0.22) 

         

Year FE YES YES  YES YES  YES YES 
Industry FE YES YES  YES YES  YES YES 

N 6,719 11,036  6,719 11,036  2,459 4,487 

LR Chi2 1174.7*** 1626.8***  1347.9*** 2204.7***  459*** 797.4*** 
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