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Abstract

Transmissible loads are external loads defined by their line of action, with actual points of load application chosen as part

of the topology optimization process. Although for problems where the optimal structure is a funicular, transmissible loads

can be viewed as surface loads, in other cases such loads are free to be applied to internal parts of the structure. There are

two main transmissible load formulations described in the literature: a rigid bar (constrained displacement) formulation or,

less commonly, a migrating load (equilibrium) formulation. Here, we employ a simple Mohr’s circle analysis to show that

the rigid bar formulation will only produce correct structural forms in certain specific circumstances. Numerical examples

are used to demonstrate (and explain) the incorrect topologies produced when the rigid bar formulation is applied in other

situations. A new analytical solution is also presented for a uniformly loaded cantilever structure. Finally, we invoke duality

principles to elucidate the source of the discrepancy between the two formulations, considering both discrete truss and

continuum topology optimization formulations.

Keywords Transmissible loads · Topology optimization · Layout optimization · Michell structure · Cantilever

1 Introduction

In classical structural layout and topology optimization

formulations the locations of external loads to be carried

by the structure are specified in advance. While problems

of this type are common in practice, there are also many

situations where the applied loads depend on the topology

or layout. For example, loads produced by snow, wind

or surrounding fluid all depend on the configuration of

the surface of the structure. Therefore, changes to the

structural form will normally result in changes to the loads,

which are consequently called design-dependent loads (see

Hammer and Olhoff 2000). Optimization of such structures
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is intrinsically coupled to the appropriate recalculation of

the configuration of external loads.

The specific relationships between the structural form

and external loads may vary significantly depending on the

particular loading situation. Gao and Zhang (2010) pro-

posed the following classification of design-dependent loads:

– Transmissible loads, the main focus of the present

study, are loads that are applied along a prescribed line

of action, such that the specific point of application of

a given load is not known a priori. Since each potential

point of load application will normally correspond to

a different optimal structure, the optimization now

involves identifying which of a family of structures best

meets the optimization objective (e.g. see Fig. 1).

– Body loads, which are distributed loads whose magni-

tudes are dependent on the location of material forming

the optimized body or structure. These have for exam-

ple been studied by Huang and Xie (2011), Kanno

and Yamada (2017), and Fairclough et al. (2018). Most

papers focus on body loads due to self-weight, but

inertial, centrifugal and other types of loads may also

be considered. For example, Gao et al. (2008) studied

a heat conduction problem with a distributed, design-

dependent, heat generation rate.
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Fig. 1 Example of the influence

of vertical load position on the

form of an optimal structure

(after Wang and

Rozvany 1983a). When a

transmissible loads formulation

is used the optimal point of

application of the load is sought

as part of the optimization

process, with the h = l structure

(highlighted) therefore

identified as optimal in this case

(where here P represents the

magnitude of the load, l

represents the half span, h

represents the vertical elevation

of the load, σ represents the

limiting material stress)

– Surface pressure loads, which have attracted significant

attention from researchers. These include hydrostatic

pressure loads, considered by workers such as Hammer

and Olhoff (2000), Bourdin and Chambolle (2003),

Allaire et al. (2004), Sigmund and Clausen (2007),

Lee and Martins (2012), Xia et al. (2015), Picelli

et al. (2019), Zhou et al. (2019) and many others. The

pressures produced by the weight of snow or by wind

loading usually require similar approaches (see, for

example, Chen and Kikuchi 2001). Contact pressures

produced by the weight of a rigid object placed onto a

surface can also be considered.

– Other types of design-dependent loads, for example

thermoelastic stress loads, as studied by Gao et al.

(2008) and Gao and Zhang (2010), or non-stationary

thermal loads, as considered by Zhuang and Xiong

(2015) and Long et al. (2018).

Although the term transmissible loads was coined at

the turn of the millennium by Fuchs and Moses (2000),

the idea of loads with unspecified point of application

was introduced in the context of layout optimization much

earlier by Rozvany, Prager and co-workers (Rozvany and

Prager 1979; Rozvany et al. 1982; Rozvany and Wang

1983). These studies described a special class of optimal

structures satisfying two key requirements: (a) structural

elements must be fully in tension or compression, and (b)

the vertical positions of external loads must be determined

as part of the optimization procedure (e.g. see Fig. 1). The

resulting layouts, often referred to as Prager-structures,

turned out to be necessarily funicular; thus, 3D Prager-

structures in compression are archgrids and 3D Prager-

structures in tension are cable networks. In common with

most studies employing transmissible loads, these latter

studies involved gravity loading, where the direction of the

loading is fixed.

A convenient way of deriving Prager-structures involves

postulating that the virtual strains vanish along the line

of action of a transmissible load. This is equivalent to

introducing a ‘virtual’ rigid bar along this line, which can

transmit the load from an arbitrary point of application to

the ‘real’ structure. Since this rigid bar can carry the load

using zero cross-sectional area, it can be of arbitrary length

without adding to the overall structural volume. A number

of finite element-based topology optimization studies used

this idea to motivate the introduction of constraints of

zero virtual displacement along the lines of action of

transmissible loads (e.g. Fuchs and Moses 2000; Yang et al.

2005; Chiandussi et al. 2009; Zhu et al. 2017).

The use of rigid bars along the line of action of external

loads is entirely reasonable for funicular structures, where

the bars transfer these loads to the structure, but do not
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On transmissible load formulations...

interact with it. However, the validity of using rigid bars

in more general cases is dubious. This is because of

the potential for weightless rigid bars to exist within the

structural domain, potentially interacting with the structure

and inadvertently affecting the generated structural form.

In fact, Tyas and Gilbert (2011) and Jiang et al. (2018)

reported cases where solutions obtained using the rigid bar

(constrained displacement) approach appeared physically

unrealistic. However, neither of these publications explained

why unrealistic solutions are obtained, nor linked it

explicitly with limitations of the rigid bar approach.

An alternative ‘migrating loads’ approach to layout

optimization with transmissible loads has been developed

by Gilbert et al. (2005) and Darwich et al. (2010) as

an extension of the classical plastic, linear programming

(LP), based ground structure formulation (after Dorn et al.

(1964)). In their formulation, additional LP variables were

introduced to represent potential loads applied at each node

present along the line of action of every given transmissible

load. Additional LP constraints were also added to ensure

that the total load applied to nodes lying along a given line of

action coincides with the total applied load; the LP variables

involved were also constrained to be non-negative.

The current article provides a critical appraisal of the

two approaches, identifying and highlighting the practical

consequences of differences between them. Michell-Hemp

optimality criteria are used together with Mohr’s circle

of strain analysis to show that only very special types

of non-funicular optimal structures are compatible with

the assumptions of the rigid bar approach, whereas the

migrating load approach has a much greater range of

applicability. Specifically, two numerical examples are used

to show that introduction of weightless rigid members

severely affects the optimal layout and is likely to result in

physically unrealistic solutions. In the interests of rigour,

solutions from both numerical examples are verified against

exact analytical solutions (the analytical solution for the

second numerical example is a new Michell structure,

derived in Appendix 2). We also analyse the classical LP

formulation for optimization of discrete truss structures

using the migrating load approach and show explicitly

the difference between it and the rigid bar approach.

The resulting insight is then shown to also apply to the

continuous topology optimization formulation of Fuchs and

Moses (2000).

2 Comparison between rigid bar
andmigrating load approaches

2.1 Conceptual formulation

A simple layout optimization example problem containing

only six nodes (Fig. 2a) can be used to illustrate key

features of the rigid bar and migrating load approaches.

In this example, the left boundary is fixed in both x and

y directions. The transmissible load P can be applied to

any node(s) on the right boundary. The optimal point of

application of P is in this case the middle point. Key features

of the two approaches are as follows:

– For the rigid bar approach, as shown in Fig. 2b, the

load is transmitted to the optimal point through forces

generated in virtual, cost-free, rigid bars. It is important

to note that, due to the presence of these rigid bars, the

vertical virtual displacements in the dual formulation

(e.g. see Gilbert and Tyas 2003) must remain constant

along the right boundary.

Fig. 2 Rigid bar and migrating load approaches for a layout opti-

mization problem involving six nodes: a the design domain and the

trajectory of the transmissible load P; b solution obtained using the

rigid bar approach, where solid and dotted grey lines indicate rigid bars

that carry non-zero and zero internal force, respectively; c a possible

solution obtained via the migrating load approach, where P1, P2 and

P3 are the load variables that must satisfy the indicated sum and sign

constraints
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– For the migrating load approach the single external load

P is replaced by three load variables, applied to the three

nodes that lie along the line of action of P. These three

load variables must satisfy the sign and sum constraints

(i.e. P1,2,3 ≥ 0 and
3
∑

i=1

Pi = P). In the layout presented

in Fig. 2c the full load is transmitted to the middle node,

so P1 = P3 = 0 and P2 = P. In this case in the

dual formulation there are no constraints on the virtual

displacements along the line of action of P.

2.2 Mohr’s circle analysis

The optimal layout theory pioneered by Michell (1904)

and generalized to its modern form by Hemp (1973) states

that optimal structures can contain, or be fully contained

within, regions of three types: (i) structurally ‘rich’ layouts

in which mutually orthogonal members are strained to their

respective limits in tension and compression, (ii) layouts

where members are all fully in compression or tension, and

can cross and have arbitrary orientations, and (iii) simpler

layouts where members cannot cross, and once again are all

fully in compression or tension. Rozvany (1997) described

these as (i) T-type, (ii) S-type, and (iii) R-type regions

respectively. It can be shown that Prager-structures are

actually a particular case of Michell-Hemp trusses, and

in fact, Rozvany and Wang (1983) effectively use a rigid

bar approach to identify the layouts that are all of R-type.

However, no rigorous assessment of the applicability of

the rigid bar approach to richer T-type and S-type layouts

appears to have been published in the literature.

As already noted, the rigid bar approach requires

constant virtual displacements along the line of action of

a transmissible load, which means that the virtual strain

will be zero along the same line. For sake of simplicity

we will assume henceforth, without loss of generality, that

our problem is confined to 2 dimensions, and that the

transmissible load acts in a direction normal to the x-axis,

so that the y-virtual strain, εyy is zero.

From analysis of the corresponding Mohr’s circle of

strain, with the added requirement that εyy = 0, we obtain:

εxx = ε1 + ε2 , (1)

γxy = 2
√

−ε1ε2 , (2)

θp = 1

2
tan−1

(√−ε1ε2

ε1 + ε2

)

, (3)

where ε1,2 are principal strains, εxx is the x-virtual strain,

γxy is the engineering shear strain and θp is the angle

between the trajectory of the maximum principal strain and

the x-axis.

For T-type layouts, ε1 = 1/σ+, ε2 = −1/σ−, where σ+

and σ− are the maximum allowable stresses in tension and

compression respectively, we obtain:

εT
xx = σ− − σ+

σ+σ− , (4)

γ T
xy = 2/

√
σ+σ− , (5)

θT
p = 1

2
tan−1

( √
σ+σ−

σ− − σ+

)

. (6)

For the particular case of equal magnitudes of allowable

tension and compression stress σ+ = σ− = σ , these

relationships simplify to:

εT
xx = 0 , (7)

γ T
xy = 2/σ , (8)

θT
p = ±π

4
. (9)

The constraint on the geometry imposed by (9) (and, of

course, more generally, by (6)) is particularly noteworthy

since it shows that the rigid bar formulation is incompatible

with T-type layouts apart from the special case where the

trajectories of principal strain are aligned at the specific

angle of θp = ±π/4 relative to the line of action of the

transmissible load (see Fig. 3a).

It is worth remarking that the migrating load approach

imposes no such restrictions. In fact, the present authors and

their co-workers used this formulation to model transmissi-

ble loads (Gilbert et al. 2005; Darwich et al. 2007; 2010),

and the high resolution results from the second and third

articles clearly show that this approach is perfectly capa-

ble of identifying curvilinear T-type layouts. Indeed, the

structure considered in those articles (see Fig. 4b) was later

demonstrated by Tyas et al. (2011) to be globally optimal,

thus confirming the validity of the numerical results.

For R-type layouts, for sake of brevity, we consider

R+-type (i.e. tensile) layouts with equal magnitudes of

allowable tension and compression stress, where ε1 =
1/σ+, −1/σ− ≤ ε2 ≤ 0 and σ+ = σ−. In this case,

the Mohr’s circle analysis in Fig. 3b shows that the rigid

bar formulation is compatible with R+-type layouts when

θR+
P ∈ [−π/4, π/4]. This analysis can easily be extended to

other cases, e.g. R−-type (i.e. compressive) layouts and/or

unequal maximum tension and compression stress.

Last but not least, it is readily established that the rigid

bar approach is incompatible with S-type structures (see

Fig. 3c). This is because the principal strains in such struc-

tures are of the same sign, and so no real values can be found

for the shear strain or principal angle. (This is of course to

be expected, since S-type structures intrinsically comprise

bi-axial tension or compression fields and any opposing

external loads at the boundaries of such a region would

simply migrate to a position where they could equilibrate

each other, thus rendering a structure unnecessary.) With

26



On transmissible load formulations...

Fig. 3 Mohr’s circle analysis showing interaction between a rigid bar

and three types of optimal regions: a interaction between a rigid bar

and T-type region, b interaction between a rigid bar and R+-type

region, c for an S+-region no intersection point exists between the

rigid bar and the Mohr’s circle. It is assumed in these examples that the

maximum allowable tension and compression stress are equal in mag-

nitude, i.e. that σ+ = σ−; ε1,2 are the principal strains, εxx and εyy

the x- and y-virtual strains, γxy is the engineering shear strain, θp the

angle between the trajectory of the maximum principal strain and the

x-axis) and line εyy = 0 represents the rigid bar

this background, we now proceed to illustrate the situation

by considering a number of numerical examples.

3 Numerical examples

The suitability of migrating load and rigid bar approaches

can be succinctly demonstrated by considering two numer-

ical examples. In these examples, we apply the migrating

load approach to discrete layout optimization problems only

and the rigid bar approach to both discrete layout opti-

mization and continuum topology optimization problems.

In applying the rigid bar approach to continuum topology

optimization problems we sought to reproduce the results

obtained by Fuchs and Moses (2000), to enable their results

to be viewed in the light of the Mohr’s circle analysis

set out in the previous section. The SIMP-based contin-

uum topology optimization is performed here using the

formulation presented by Sigmund (2001), while the dis-

placement constraints set out by Fuchs and Moses (2000)

are imposed using the method presented by Houlsby et al.

(2000). A brief description of the formulation is provided

in Appendix 1. The η1 and η2 parameters described by

Fuchs and Moses (2000) are employed for the continuum

topology optimization problems, which are respectively the

SIMP penalization factor p and a tuning parameter designed

to improve convergence. The SIMP iteration process stops

when the largest change in element density is smaller than

Fig. 4 Example 1 (migrating load approach): uniform load between

pinned supports, where a specifies the design problem, b shows trans-

missible load trajectories and the discrete layout optimization result,

and c shows the resulting optimal structure with the final positions of

the loads, which matches the analytical solution obtained by Tyas et al.

(2011). Red lines indicate members in tension and blue lines indicate

members in compression
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Fig. 5 Example 1 (rigid bar approach): uniform load between pinned

supports, where a is the discrete layout optimization result, obtained

when rigid vertical bars are made available to the optimizer; b is the

preliminary (unfiltered) continuum topology optimization result —

note its similarity to the structure in a — and c is the final (filtered)

continuum topology optimization result. Red lines indicate members

in tension and blue lines indicate members in compression. Solid and

dotted grey lines indicate rigid weightless bars that carry non-zero or

zero axial force, respectively

a pre-defined threshold (Sigmund 2001) and this remained

the same in our implementation. For the discrete layout

optimization problems, the post-possessing rationalization

technique described by He and Gilbert (2015) is used to

improve the visual clarity of the solutions shown in Figs. 4

and 6.

3.1 Example 1—Uniform load between pinned
supports

The first numerical example considered comprises a recta-

ngular domain with fixed pin supports at the bottom left

and right corners of the domain. A uniformly distributed

transmissible load is applied across the full width of

the domain, such that loads are free to migrate along

vertical lines of action (Fig. 4a). In the context of

optimization under the action of transmissible loads, this

problem was first considered by Fuchs and Moses (2000),

who identified a parabolic funicular form as the optimal

solution.

In the case of the discrete layout optimization runs

considered herein, a 100×100 grid was used unless stated

otherwise. In the case of continuum topology optimization

runs, a design domain comprising 50×50 elements was

used, with a Poisson’s ratio of 0.3 (as used by Fuchs and

Moses (2000)).

Fig. 6 Example 2 (migrating load approach): cantilever subject to

uniform load, where a specifies the design problem, b shows transmis-

sible load trajectories and the discrete layout optimization result, and

c shows the resulting optimal structure and the final positions of the

loads, which matches the analytical solution derived in Appendix 2.

Red lines indicate members in tension and blue lines indicate members

in compression
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Figure 4b and c show the results obtained when using

discrete layout optimization with the migrating loads

approach. The optimal form obtained is very similar to the

layout identified by Darwich et al. (2007) and Darwich

et al. (2010), later demonstrated by Tyas et al. (2011) to

be globally optimal for this problem. This layout includes

both rich T-type regions around the haunches and a central

funicular R-type region. (Note that the presence of T-type

regions means that the solution is not the simple parabolic

funicular form that had until recently been assumed to be

optimal for this problem.)

Figure 5a shows the ‘optimal’ form obtained when using

discrete layout optimization with the rigid bar approach; a

20×20 grid was in this case used for sake of visual clarity.

A similar result was recently obtained for this problem

by Jiang et al. (2018), who suggested that this indicated

that the rigid bar approach is ‘flawed’. However, based on

the analysis outlined in Section 2.2, it is clear that issues

will only arise if rigid bars intrude on T-type or S-type

regions, or have an incompatible interaction angle in R-type

regions. Here, since the optimal structure includes T-type

regions, the end result shown in Fig. 5a is indeed erroneous;

this appears to comprise a central funicular R-type region

with geometry defined by θR−
P ∈ [−π/4, π/4], spanning

between two T-type regions in which the structural members

are aligned at ±π/4 to the line of action of the transmissible

load, and artificially braced by the presence of the zero-cost

vertical rigid bars. In other words, this is precisely the form

that would be expected from the preceding Mohr’s circle

analysis.

Solutions from the modified SIMP continuum topology

optimization approach shown in Fig. 5b and c are visually

very similar to the results obtained by Fuchs and Moses

(2000) (see relevant outputs in Figs. 5 and 6 of their paper).

The discussion of Fuchs and Moses (2000) suggested that

in their initial solution the optimal form (assumed to be a

parabola) was obscured by ‘noise’ which could be removed

by the application of a filter parameter η1. Figure 5c shows,

as Fuchs and Moses (2000) found, that the filtering does

indeed reveal a parabolic solution. Given the comparatively

coarse resolution of the mesh used in this study, this solution

is almost indistinguishable from the true optimal form,

which was actually shown by Tyas et al. (2011) to differ

from a simple parabola and, furthermore, be non-funicular.

However, note that the span-to-height ratio of the parabola

in Fig. 5c is somewhat larger than the span-to-height ratio

of the true optimal pin-jointed structure, so this is not the

same solution. A numerical representation of this form is

shown in Fig. 4c. Note also that the use of a filter causes

the compliance to rise markedly, from 3.3285 to 5.0433.

Also, if the variable thickness problem is instead considered

(where penalization factor p = 1 for all iterations), a

compliance of 3.2918 is obtained, which is within 1.1% of

the solution shown in Fig. 5b. This will be discussed further

in Section 3.3.

3.2 Example 2 - Cantilever subject to uniform load

Figure 6a summarizes the set up for the next numerical

problem considered. Instead of the pinned point supports

of Example 1, here a fixed line support occupies one third

of the vertical extent of the design domain, positioned

symmetrically about the horizontal centre-line. Also,

instead of a point load applied at the right edge of the design

domain, here a uniformly distributed load is applied.

Figure 6b and c show the result for the migrating load

formulation. Here, the optimal structural form is closely

related to the optimal Michell cantilever problem first

studied by Chan (1962); a more detailed overview of the

literature relating to this problem is provided in Appendix 2.

The standard analytical solution for the Michell cantilever

assumes that a single point load is to be transmitted to the

fixed line support located at the bisector to the support.

It turns out that a very similar solution is also applicable

to the problem of the uniformly distributed transmissible

load, where individual Michell cantilevers are superimposed

to carry increments of the distributed load. An analytical

solution of this problem is presented in Appendix 2; the

material volume for the numerical solution shown in Fig. 6c

is within 0.12% of our analytical result.

The result of the layout optimization obtained using the

rigid bar formulation is shown in Fig. 7a. It is clear that,

without the presence of the rigid bars, which artificially

strengthen the structure along each vertical line, this

solution would be unstable. This highlights the fundamental

problem of the rigid bar approach. The rigid bars that

were introduced into the problem definition to facilitate

transmission of the external load(s) onto the structure are

now inadvertently and inadmissibly serving as load bearing

members (see Fig. 7a).

Figure 7b shows an equivalent result obtained using

the modified SIMP topology optimization approach. As

with the previous example, the initial, unfiltered, continuum

solution is qualitatively similar in form to the discrete

solution in Fig. 7a. Application of the filter employed

by Fuchs and Moses (2000) results in the form shown

in Fig. 7c, which bears little resemblance to the optimal

form shown in Fig. 6c. The use of the filter causes the

compliance to rise even more markedly this time, from

23.5161 to 116.3119. Finally, note that if the variable

thickness problem is instead considered (where penalization

factor p = 1 for all iterations), a compliance of 23.4901 is

obtained, which is within 0.11% of the solution shown in

Fig. 7b.
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Fig. 7 Example 2 (rigid bar approach): cantilever subject to uniform

load, where a is the result of discrete layout optimization with rigid

vertical bars made available to the optimizer, b is a preliminary (unfil-

tered) continuum topology optimization result — note that this is

qualitative similar to the structure in a — and c is the final (filtered)

continuum topology optimization result. Red lines indicate members

in tension and blue lines indicate members in compression. Solid and

dotted grey lines indicate rigid weightless bars that carry non-zero or

zero axial force, respectively

3.3 Commentary

The examples presented in Sections 3.1 and 3.2 clearly

follow from the Mohr’s circle analysis, and indicate

that, when the optimal form comprises curvilinear T-type

structural regions, the rigid bar approach will produce

structurally illogical forms that are artificially strengthened

by cost-free rigid bars. Comparison of the discrete and

continuum rigid bar ‘optimal structures’ suggests that the

unfiltered continuum solution does not, in fact, comprise

the correct solution over-written by noise as suggested by

Fuchs and Moses (2000). Instead, the unfiltered structure

is the correct solution to a different problem, one that in

most circumstances does not correctly reflect the intent of

the user wishing to apply transmissible loads. Filtering the

results of Example 1 does lead to a structure (Fig. 5c) that

broadly resembles the true optimal form (Fig. 4c). This

is likely to be due to the fact that the T-type regions in

the optimal structure are limited in extent. However, in the

case of Example 2, the filtered result (Fig. 7c) bears little

resemblance to the true optimal form (Fig. 6c).

The iterative numerical technique used by Fuchs and

Moses (2000) implements what Sigmund and Petersson

(1998) refer to as a continuation method. A typical

continuation method starts by solving an unpenalized

and, typically, convex problem (i.e. the problem with

penalization factor p = 1) and then performs successive

gradient-based optimizations of (non-convex) problems

while gradually increasing the value of the penalization

factor. This is done in an attempt to ensure that the local

solution of the penalized problem is situated not very

far from the global solution of the unpenalized problem

(Rozvany 2009). However, this approach is not guaranteed

to provide satisfactory solutions (Stolpe and Svanberg 2001)

and different continuation schemes may lead to completely

different results (Li and Khandelwal 2015). Fuchs and

Moses (2000) used a continuation method which starts with

p = 0.5 instead of p = 1. Our numerical results suggest

that their procedure ends up increasing the compliance of

the structure in Example 1 by 52% (cf. Fig. 5b vs c) and

the structure in Example 2 by 395% (cf. Fig. 7b vs c).

Therefore, the solutions obtained are not in any sense ‘close’

to the solutions of the original problems with p = 0.5,

nor to the solutions obtained with p = 1 (i.e. the variable

thickness problem); instead, such ‘filtering’ actually drives

the solutions to fundamentally different structural forms.

This also suggests that ‘filtering’ should be used with

caution since although qualitatively reasonable solutions

can sometimes be obtained (e.g. Fig. 5c), this will not

always be the case (e.g. Fig. 7c).

We emphasize that these issues only arise in the case of

rigid bars interacting with a curvilinear T-type structure. In

the case of funicular structures, typically residing within R-

type regions, these issues do not arise since the structures

comprise entirely of line or surface elements. This is

because, in R-type regions, external loads are resisted

through internal axial forces only, and equilibrium dictates

that the structural members cannot be co-axial with the line

of action of the transmissible loads.1 The virtual rigid bars

thus never form part of the real load carrying structure.

1An exception is when a support lies along the line of action of a

transmissible load. This was discussed by Rozvany and Wang (1983)

who noted that it had no practical significance since in this case the

load can migrate directly to the support, with no structure required.
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This can be demonstrated by re-visiting the problem set

out in Section 3.1. Wang and Rozvany (1983b) showed

that when σ−/σ+ ≥ 3, the optimal form is a funicular

R-type structure. This was supported by numerical results

presented by Darwich et al. (2010), which showed that

as σ−/σ+ dropped below 3, T-type region Hencky nets

emerged adjacent to the supports (see Fig. 4b and c for

example). Thus, it should be expected that the rigid bar

formulation will find the correct funicular structure for

σ−/σ+ ≥ 3, with inadmissible, artificially strengthened

‘structures’ obtained for lower values. The results presented

in Fig. 8 show this to be the case.

It is worth noting that, while (as explained in Section 2.2)

the rigid bar approach is not generally compatible with

regions where ‘curvilinear’ T-type regions exist, there is one

special T-type geometry that is compatible with the rigid bar

formulation. For equal compressive and tensile stresses, (9)

shows that the rigid bar formulation will be admissible when

the true optimal form comprises a rectilinear net oriented

at ±45◦ to the line of action of the applied load. In the

cantilever example, such a region exists in the triangular

area immediately adjacent to the vertical support line; the

rigid bar approach does indeed find the correct layout in this

region (see Fig. 7a).

4 Comparison of themathematical
formulations for the rigid bar andmigrating
load approaches

Having demonstrated the differences between the rigid bar

and migrating load approaches via Mohr’s circle analyses,

illustrated via the use of numerical examples, we now

investigate differences in the mathematical formulations of

the two approaches.

4.1 Use of duality theory to determine the difference
betweenmigrating load and rigid bar approaches

Consider a planar design domain comprising n nodes and

m potential members, and let li denote member lengths,

q+
i and q−

i tensile and compressive member forces, and

σ+
i and σ−

i tensile and compressive allowable member

stresses. For sake of simplicity, noting that both Example 1

and Example 2 are planar problems featuring strictly ver-

tical downward, uniformly distributed, transmissible loads,

we follow Darwich et al. (2010) and state a simpli-

fied equilibrium-based LP transmissible loads formulation

(migrating load approach) in the form

min
q,f̃

V = cT q , (10a)

subject to:

Bxq = 0 , Byq − f̃y = 0 ; (10b)

Hf̃y = f̂ 1 ; (10c)

q ≥ 0 ; (10d)

f̃y ≥ 0 ; (10e)

where cT =
(

l1/σ
+
1 , −l1/σ

−
1 , . . . , lm/σ+

m , −lm/σ−
m

)

, qT =
(

q+
1 , −q−

1 , . . . , q+
m , −q−

m

)

, and B =
(

BT
x BT

y

)T
is a

suitable (2n × 2m) equilibrium matrix containing direction

cosines. The components of the vertical nodal loads vector

f̃T
y =

(

f̃
y

1 , . . . , f̃
y
n

)

, together with components of q, are LP

variables (2m + n variables in total). The transmissibility

of the uniformly distributed vertical load with magnitude

Fig. 8 Example 1 (rigid bar approach): uniform load between pinned

supports, where a is the (correct) funicular solution when σ−/σ+ =
3.33, b the result when small parts of the true optimal structure become

non-funicular σ−/σ+ = 2.00 and c the result when the true optimal

structure is only funicular around midspan, σ−/σ+ = 1.00. Here σ−

and σ+ represent compressive and tensile limiting stresses, red lines

indicate members in tension and blue lines indicate members in com-

pression. Solid and dotted grey lines indicate rigid weightless bars that

carry non-zero or zero axial force, respectively
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f̂ , where f̂ > 0, is achieved by applying it to p groups

of nodal load components corresponding to p vertical

columns of nodes in the nodal grid. This is achieved by

including p additional constraints (10c) in the formulation,

with elements of binary matrix H (of dimensions p ×
n) specifying which nodal loads are affected by which

transmissible loads. The non-zero components of f̃y must

also satisfy inequality constraints (10e) to ensure that nodal

loads always act in the same direction as the external load,

thereby ensuring that loads are transmitted as intended.

Now, LP duality principles can be used to state the dual

formulation of (10) as follows:

max
u,u∗

W = f̂ 1Tu∗ , (11a)

subject to:

BTu ≤ c ; (11b)

uy ≥ HTu∗ ; (11c)

where uT =
(

uT
x uT

y

)

=
(

ux
1, . . . , ux

n, u
y

1, . . . , u
y
n

)

are

the virtual displacements, u∗ is the vector of p additional

dual variables associated with constraints (10c) and W

is the virtual work done by the transmissible loads.

Constraint (11c) stipulates that vertical displacements in a

column of nodes must be greater or equal to the component

of u∗ corresponding to this column. Thus, components of

u∗ are the minimum vertical displacements in each vertical

column of nodes.

The inequality sign within the dual constraint (11c) is

obtained when performing the dual transformation due to

the presence of primal constraint (10e), that ensures the

associated primal variables f̃y are non-negative. Alterna-

tively, if these constraints were omitted from the formula-

tion, then primal variables f̃y would become unrestricted

and inequality constraint (11c) would become the following

equality constraint

uy = HTu∗ , (12)

which has the effect of eliminating the vertical strain in

every vertical column of nodes (by ensuring the vertical vir-

tual displacements of each node in a column are identical).

Equation (12) is therefore key to the mathematical basis of

the rigid bar approach. If constraint (10e) is removed, the

migrating load and rigid bar formulations become identical.

Hence, the only difference between the two approaches lies

in inequality (10e), which ensures that nodal loads are acting

in the same direction as the external transmissible load.

Note that in the interests of clarity, only 2D vertical

downward transmissible loads are treated by (10). However,

the migrating load approach presented, and the observations

made in relation to inequality (10e), are more generally

applicable (e.g. to 3D cases and/or cases involving

transmissible loads in arbitrary directions).

4.2 Use of Lagrangian function to determine
the difference between themigrating load and rigid
bar approaches

The findings of Section 4.1 were obtained for a discrete

layout optimization problem; however, they also apply

to the continuous topology optimization problem. To

demonstrate this, we consider the formulation used in Fuchs

and Moses (2000)2 and Yang et al. (2005). The compliance

minimization problem with transmissible loads is stated

therein as:

max
ρ

max
pim

min
u

⎧

⎨

⎩

(

u′Ku − p′u
)

|
∑

j

ρjVj = ρ0V ;

∑

m∈Mi

pim = pi , i ∈ I

⎫

⎬

⎭

, (13)

where K is the stiffness matrix, u the displacement vector,

p the applied loads vector, ρj and Vj the density and the

volume of element j , ρ0 the parameter which controls the

amount of material available for the design, V the total

volume of the design domain, pi the transmissible load

i ∈ I, and I the set of indices of all such loads. Each pi

further splits into a group of loads pim acting on nodes

located along the line of action of pi , where m ∈ Mi , and

Mi is the set of indices of loads pim constituting pi .

Equation (13) leads to the following Lagrangian func-

tion:

L(ρρρ, pim, u, λ, µi) =
(

u′Ku − p′u
)

− λ
(

ρjVj − ρ0V
)

−
∑

i∈I

µi

⎛

⎝

∑

m∈Mi

pim − pi

⎞

⎠ , (14)

The stationarity of the Lagrangian function (14) with

respect to pim necessitates that

uim − µi = 0 , m ∈ Mi , (15)

where uim are the displacements produced by pim.

Equation (15) means that displacements of all nodes along

the line of action of transmissible load take on the same

value. Based on this observation, Fuchs and Moses (2000)

suggested that ‘one could assume the existence of infinity

stiff axial elements of zero mass along this line’.

The findings in Section 4.1 suggest that it is also

important to control the sign of the nodal loads pim, to

ensure that pimpi ≥ 0. A variation on the formulation

2For ease of comparison, the notation used in this Section follows that

used in Section 4 of Fuchs and Moses (2000), and is independent of

the notation used elsewhere in the current work.

32



On transmissible load formulations...

proposed by Fuchs and Moses (2000) that incorporates the

appropriate constraints can be written in the form:

max
ρ

max
pim

min
u

⎧

⎨

⎩

(

u′Ku − p′u
)

|
∑

j

ρjVj = ρ0V ;

pimpi ≥ 0 , m ∈ Mi;
∑

m∈Mi

pim = pi , i ∈ I

⎫

⎬

⎭

, (16)

with the corresponding Lagrangian function given by

L(ρρρ, pim, u, λ, µi , ξim) =
(

u′Ku − p′u
)

− λ
(

ρj Vj − ρ0V
)

−
∑

i∈I

µi

⎛

⎝

∑

m∈Mi

pim − pi

⎞

⎠

−
∑

i∈I,m∈Mi

ξim(pimpi − φim) , (17)

where φim are slack variables added to satisfy inequality

constraints in (16). Equating the derivative of (17) with

respect to pim to zero gives:

uim − µi − ξimpi = 0 , m ∈ Mi . (18)

Clearly, a slack variable, equal to ξimpi , has now been

added between µi and uim, and displacements uim along

the line of action of transmissible load pi are generally

not all the same. Thus, (18) is, essentially, a component-

wise equivalent of (11c), which indicates that optimization

problem (16) now describes the migrating load, rather

than the rigid bar, approach. This confirms the controlling

influence of the constraint that ensures the partial load

variables must all have the same sign, i.e. terms pimpi ≥ 0

in this case.

5 Conclusions

Two approaches to modelling load transmission through

a design domain to the optimal point of application in a

structure have been considered. It has been demonstrated

that there is a fundamental difference between the rigid

bar (constrained displacement) and equilibrium (migrating

load) approaches. A simple Mohr’s circle of strain analysis

has demonstrated the limitations of the rigid bar approach,

and shown that it is only suitable for use when the actual

optimal structure is either a funicular, or a rectilinear net

oriented at a specific angle to the line of action of the applied

loads.

Our numerical examples demonstrate that, in general,

the rigid bar approach is prone to generating physically

illogical forms, with the ‘optimal’ structure being artificially

strengthened by the presence of zero-cost rigid bars that

may unintentionally form part of the load carrying structure.

The use of filtering methods, commonly used in continuum

topology optimization, seems to exacerbate the issue. The

rigid bar approach with filtering has been shown to converge

to very different structural forms from the true optimal

solutions, with differences in topology accompanied by

large increases in compliance.

Conversely, the migrating load approach does not suffer

from this limitation and produces numerical results that

match known optimal forms. We have also shown that

the mathematical formulations for the migrating load

and rigid bar formulations differ only in one small but

important respect; this is that the rigid bar formulation omits

constraints ensuring that all nodal loads along the line of

action of a transmissible load are of the same sign.

In summary, it is shown that the rigid bar approach

generally fails to identify correct optimal structural forms

and should therefore be used with extreme caution.

Appendix 1. SIMP-based rigid bar
transmissible load topology optimization
formulation

The continuum topology optimization formulation used in

this paper follows that presented by Sigmund (2001), and

can be written as follows:

min
ρ

C = UT KU =
N

∑

e=1

(ρe)
puT

e k0ue (19a)

subject to:

V (ρ) = f V0; (19b)

KU = F; (19c)

0 < ρmin ≤ ρ ≤ 1; (19d)

where C is the compliance of the structure, U and F are

respectively global displacement and force vectors, K is the

global stiffness matrix, and ue and k0 are respectively the

element displacement vector and stiffness matrix. Also ρ

is a vector containing density variables, ρmin is a vector of

minimum relative densities (non-zero to avoid singularities),

N is the number of elements used to discretize the design

domain, p is the penalization power (typically p = 3) and

V (ρ) and V0 are respectively the volumes of the structure

and the design domain. Finally, f is the prescribed volume

fraction.

The sensitivity of the objective function can be written

as:

∂C

∂ρe

= pρ
p−1
e uT

e k0ue (20)

This is used in the variable update scheme (for further

details, see Sigmund 2001).

To apply transmissible loads via the rigid bar approach,

displacement constraints are applied to limit displacements
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in the relevant direction (i.e. here in the y direction).

Therefore, (19c) needs to be modified to:
[

K K

K 0

] [

U

U

]

=
[

F

0

]

(21)

where K is a matrix containing information on the degrees

of freedom to be constrained and U is a supplementary

displacement vector.

Since (21) only affects the finite element analysis, the

variable update scheme remains unchanged. Further details

of how the displacement constraints are applied can be

found in Houlsby et al. (2000).

Appendix 2. A symmetric Michell cantilever
that carries a uniformly distributed load
along its centre axis

A symmetric cantilever for a point load applied on the bisec-

tor of a fixed line support is one of the most recogniz-

able Michell structures. It was seemingly first described

by Chan (1962), based on earlier work on an equiv-

alent rigid placticity problem (Hill 1998, Chapter VI,

Section 7). Extensions of the problem were considered by

Chan (1967), Lewiński et al. (1994), Graczykowski and

Lewiński (2006a), Graczykowski and Lewiński (2006b),

Graczykowski and Lewiński (2007a), and Graczykowski

and Lewiński (2007b). A basic solution comprises three

kinds of T-type regions (see Fig. 9).

I A triangular region near the support (shaded in

Fig. 9) contains a grid of mutually orthogonal straight

members. If the length of the support is denoted by

h, the distance l from the support to the tip of the

triangular region O is given by l = h/2. If the external

point force was placed within the triangle, i.e. for

L ≤ l, the optimal solution reduces simply to a strut

and a tie aligned with the lines of principal strains to

transfer the load to the support line.

II Two sectorial regions of orthogonal straight lines and

circular arcs are placed symmetrically along the outer

sides of the triangle. The radius of the relevant circular

arcs R is found as R = h/
√

2. The angle of each

sector is denoted θ ; θ > 0 as long as L > l. If the

cantilever is to remain in the right half-plane from the

line support, we must assume that θ ≤ 3π/4.

III The remaining fourth T-type region features a curvi-

linear Hencky net that can be built from two outer cir-

cular arcs intersecting at point O by using Riemann’s

method for solving hyperbolic PDEs (see Chan 1962

for detailed derivations).

Angles θ are related to the cantilever length L via the

following implicit formula

L

h
= 1

2
I0(2θ) +

∞
∑

n=0

(−1)nI2n+1(2θ) , (22)

where Ik(x) is the modified Bessel function of the first kind

(Hemp 1973, eqn. (4.120)). Length L is a monotonically

increasing function of θ , so for cantilevers contained in the

right half-plane from the support, the maximum possible

value of L = Lmax corresponds to the angle θ = 3π/4 and

is given by Lmax ≈ 23.0132h. A more complex layout for

a cantilever is needed for lengths L > Lmax (see Lewiński

Fig. 9 Symmetric Michell

cantilever for a point load on the

bisector to a fixed line support
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et al. 1994). Thus, for the sake of brevity, we will here

always assume that our L ≤ Lmax.

The volume of such symmetric cantilevers is given by

VF = Fh

σ
(I0(2θ) + 2θI∗(2θ)) , (23)

where I∗(2θ) = I0(2θ) + I1(2θ), F is the magnitude

of the point load and σ is the maximum allowable stress

(Hemp 1973, eqn. (4.123)). For example, for a cantilever

with L = 3h, one uses (22) to find that θ ≈ 1.11156 and

then (23) gives VF ≈ 12.9649Fh/σ . This specific layout

was considered by Gilbert et al. (2005), who employed

large scale numerical layout optimization to obtain VF ≈
12.978Fh/σ , which is within 0.1% of the exact value.

Suppose now that, just like in Section 3.2, a uniformly

distributed load with intensity w per unit length is applied

to the entire centre axis from the support to the point L. The

construction of an appropriate solution can be simplified

greatly by noticing that the symmetric Michell cantilever

is an example of a statically determined structure, in the

sense that the stress field in this case is not coupled to the

virtual displacement field (Hill 1998, p. 131). In particular,

this implies that one can superimpose an infinite number

of point load cantilevers for incremental components of the

distributed load and determine the volume of the resulting

structure directly.

Let us first consider the case when L ≤ l. The whole

structure in this case is contained in the shaded triangular

region I. If the total distributed force is denoted as F(L) =
wL, we have for the infinitesimal force increment

∂F

∂L
= w . (24)

This force increment is transferred to the support by

a combination of a mutually orthogonal tie and strut,

inclined at angles ∓π/4 to the centre axis, respectively. The

lengths of the tie and the strut would be
√

2L; hence, the

corresponding volume increment can be written as

∂V1

∂L
= 2wL

σ
, so V1(L)= wL2

σ
, where L≤ l . (25)

The volume in the case when L>l would be a combination

V (L) = V1(l) + V2(L) , (26)

with V1(l) = wh2/4σ . The term V2(L) represents the

combined contribution from all the symmetric point load

cantilevers for the infinitesimal increments of distributed

load for all L > l. To express V2(L) analytically, we note

that (22) implies that

∂L

∂θ
= hI∗(2θ) , (27)

with the key facts underlying this identity summarized e.g.

in Appendix A of Tyas et al. (2011). We also note that

since every increment of the distributed load is supported

by, effectively, a symmetric cantilever for a point load, we

can use (23) to write

∂V2

∂F
= h

σ
(I0(2θ) + 2θI∗(2θ)) . (28)

We can now combine (24), (27) and (28) to write

∂V2

∂θ
= ∂L

∂θ

∂F

∂L

∂V2

∂F

= wh2

σ
I∗(2θ)(I0(2θ) + 2θI∗(2θ)) . (29)

Therefore, we have

V2(θ) = wh2

σ

∫ θ

0

I∗(2ξ)(I0(2ξ) + 2ξI∗(2ξ))dξ

= wh2

σ
(P1 + P2 + P3) , (30)

within which

P1 =
∫ θ

0

I 2
0 (2ξ)dξ + 4

∫ θ

0

ξI0(2ξ)I1(2ξ)dξ

= θI 2
0 (2θ) , (31)

P2 = 2

∫ θ

0

ξI 2
0 (2ξ)dξ + 2

∫ θ

0

ξI 2
1 (2ξ)dξ

= θI0(2θ)I1(2θ) (32)

and P3 =
∫ θ

0

I0(2ξ)I1(2ξ)dξ = 1

4
I 2

0 (2θ) − 1

4
. (33)

Identities (31)–(33) are easily established by using inte-

gration by parts as well as the standard recurrent rela-

tionships for Bessel functions (see, e.g., Gradshteyn and

Ryzhik 2007).

Overall, we combine (25), (26), (30)–(33) and express

the volume of uniformly loaded cantilever as

V = wh2

4σ
·
{

4L2/h2 , L ≤ l ,

I 2
0 (2θ) + 4θI0(2θ)I∗(2θ) , L > l .

(34)

Figure 10 illustrates typical volumes obtained using

(34). The volumes are presented in the normalized form

V/(L/h), which ensures that the total distributed force

remains constant for a varying non-dimensional cantilever

length L/h.

The uniformly loaded cantilever in Fig. 6c has L =
3h and, therefore, the same angle θ as in the point load

case, i.e. θ ≈ 1.11156. Formula (34) then suggests that

the volume of cantilever in Fig. 6c must be equal to

V = 15.5459wh2/σ . For the sake of comparison, the

numerically obtained volume of cantilever presented in

Fig. 6c, Vnum = 15.564wh2/σ , exceeds the analytical

answer by just 0.12%.
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Fig. 10 Normalized volume V/(L/h) of the symmetric Michell

cantilever loaded along its centre axis as the function of its length L/h
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Replication of results The detailed derivation of the analytical

expressions for the geometry and volume of the new Michell structure

depicted in Fig. 6c is provided in Appendix 2.

The numerical results presented to support the conclusions outlined

can be obtained using existing approaches described in the literature.

To replicate the results shown in Figs. 3b and c and 5b and c, layout

and geometry optimization (He and Gilbert 2015) should to be used

in tandem with the equilibrium (migrating load) layout optimization

approach (Darwich et al. 2010); to replicate the results shown in

Figs. 4a, 6a, and 7a, b and c, layout and geometry optimization

should be used in tandem with the rigid bar (constrained displacement)

approach (Fuchs and Moses 2000); to replicate the results shown in

Fig. 4b, c, b, and c, the 99 line MATLAB topology optimization

script (Sigmund 2001) should be used in tandem with the rigid bar

(constrained displacement) approach (Fuchs and Moses 2000).
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