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A B S T R A C T

The urbanization and expansion of megalopolises have led to concerns on traffic, energy crisis and

deteriorated green-house gas emissions, and thus the electric vehicles (EVs) are expected to be an

essential role in alleviating these problems. In this study, a flexible-possibilist chanced constraints

programming (FCCP) model is developed to plan low-carbon energy-transportation systems at the

metropolitan scale (METS), which can incorporate multiple uncertainties in both the soft constraints

and objective function. By integrating the possibilist programming with fuzzy sets and chanced con-

straint, the FCCP could tackle multiple complexities such as the combination of vague possibilities,

flexibilities and probabilities, hence is superior to conventional approaches. The FCCP model is then

applied for the planning METS in Beijing, and solutions are obtained under different satisfactory

degrees and confidence levels. The results reveal that: 1) the power demand will be increasingly de-

pendent on the imported power and renewable energy in Beijing; 2) the mass roll-out of EVs will

reduce 6.7 million tonnes of CH, 44.7 million tonnes of CO and 1.08 ×105 million tonnes of CO2

respectively, while the need of battery supply facilities will cost approximately 4 × 109 dollars; 3) the

carbon emissions will decrease with the growing number of EVs, the upgraded power supply pattern

and the stringent policies. These findings could support decision-makers to plan the METS system

when faced with multiple uncertainties.

1. Introduction

Highly urbanized areas and expansion of megalopolises

lead to increased concerns on traffic system, energy crisis

and environmental pollution, especially the climate change

due to carbon emissions which has become a global con-

cern [1]. The Chinese government announced the com-

mitment to achieve the carbon peak by 2030 and the car-

bon neutralization by 2060. As the capital of China, Beijing

has a central transportation system. By 2020, the number of

vehicles in Beijing has reached 6 million, which consumes

a massive amount of gasoline and diesel fuels, leading to

a large amount of carbon emissions each year, such as car-

bon monoxide (CO), hydrocarbon (CH) and carbon dioxide

(CO2). According to the Beijing Municipal Environmental

Protection Bureau, about 80% of CO and 70% of CH were

produced from the transportation system in 2020 [5]. There-

fore, the government has committed to respond actively by

stimulating renewable energies by introducing new laws and

taking measures to reduce carbon emissions. Among vari-

ous alternatives to fossil fuel powered combustion engine ve-

hicles, electric vehicles (EVs) that are environment-friendly

with higher efficiency and better dynamic performance are

expected to play a significant role [29], and the decision sup-

port tools are necessary for assisting the planning for integra-

tion of renewable energies and EVs at a metropolitan scale

to achieve sustainable development.

Taking the metropolitan energy-traffic system (METS)

as a unity, several factors should be considered in its plan-
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ning. First, uncertainties exist in both the objective function

(e.g. fluctuating energy purchase cost, uncertain electric-

ity generation and capacity expansion cost) and constraints

(e.g. uncertain electricity demands, varying capacities and

resources) [44]. Besides, the integration of EVs such as EV

types, electric vehicle supply equipment (EVSE) (e.g. in-

definite battery charging and swapping capacity) and other

elements (e.g. travel distance and energy consumption fac-

tor) would considerably affect the operating planning of the

METS [17]. Third, the introduction of renewable energies

brings uncertainties and complexities(e.g. imprecise renew-

able power utilization and installation capacity) [23]. More-

over, the environmental issues related to carbon mitigation

(e.g. variable emission and control cost) also introduce com-

plexities in the system management [25]. These uncertain-

ties can be brought not only from the measurements and eval-

uations, but also from all the aspects of energy generation,

conversion, transition and utilization. Besides, various un-

certainties not only exist in the soft constraints with stochas-

tic parameters expressed as a probability distribution (such

as power demand and renewable energy supply), but also ex-

ist in the capacity expansion constraints presented as flexi-

ble possibilist (such as capacity expanded for EVSE system).

These uncertainties and complexities make it laborious to

obtain effective strategies for the METS planning problems

using conventional optimization methods. Hence, efficient

system analysis techniques are desired in response to vari-

able uncertainties and complexities.

The main objective of this manuscript is to propose a

flexible-possibilist chanced constraints programming (FCCP)

method for the integrated energy-traffic system planning at

a metropolitan scale. Take Beijing as a case study, and the
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planning would be formulated as a system cost minimiza-

tion problem in association with a series of constraints, such

as electricity supply-demand balance, EVs battery charging

and swapping capacity expansion and environmental require-

ment. In this system, the tasks can be described as follows:

1) the end users’ (e.g. primary industry, industry, construc-

tion, residential and tertiary industry) power consumption

over the planning horizon would be estimated based on the

Monte Carlo simulation; 2) plan the optimal system with

flexible, possibilist and random uncertainties being intro-

duced into the proposed model; 3) analyze the optimization

results in terms of the system cost, integration of renewable

energies and EVs, and carbon mitigation; 4) evaluate the

strategy obtained from simulation and compare with the real

system to assess the effectiveness of the proposed model.

2. Literature review

2.1. influence of EVs
As one of the three largest markets, China accounts for

4.9% market share of EVs, much larger than that of U.S. and

Japan [21]. Numerous researches have been conducted to

explore the EVs impacts on electricity and environment [18].

It is noteworthy that the mass roll-out of EVs can support

the societal transition to deliver a low carbon and sustainable

environment in the future. For example, the COx emission

would be greatly dropped because of the incorporation of

EVs into the power grid [26]. In the past ten years, EVs

have become a key measure to achieve greenhouse gases

(GHG) emission reduction [2]. The International Energy

Agency reports that EVs have contributed to overall 29.4

million tonnes of CO2 emission reduction worldwide based

on the average carbon emission factor in 2015 [4]. Bat-

tery EVs account for a significant portion in the EV market,

given its zero-tailpipe emissions and high efficiency [39].

In the U.S., transportation is a major source of greenhouse

gas (GHG) emissions, accounting for 28.2% of 2018 total

U.S. GHG emissions, and vehicle electrification is expected

to achieve great environment benefits [40]. The impacts of

EVs on the electricity side also have been researched inten-

sively in the literature. The electricity demand pressure due

to aggressive deployments of EVs should be concerned in a

land and resource constrained and densely populated urban

place, such as Singapore [42]. Vehicle-to-grid could be the

‘tipping point‘ [9]. The huge volume of EVs imposes huge

demand on electricity consumption in a local area and con-

sequently can cause voltage fluctuations and shortage of the

electricity supply [3]. The battery EVs would cause more

overload pressure on power grid compared with plug-in hy-

brid EVs [19]. The optimal operations of distributed energy

resources in a residential district are discussed with the con-

sideration of private and public transportation systems [7]. It

was shown that the application of one million EVs would in-

crease the normal electric demand by about 1% in Germany

[22]. Generally, these researches mainly focus on determin-

istic analysis with linear or dynamic programming, and they

can not reflect the complex couplings between renewable en-

ergies, EVs types, battery supply facilities and emissions.

2.2. programming methods
Over the past decades, many programming methods have

developed for the system management planning problems.

The linear programming is well known by its simple model,

but at the application stage, the corresponding expert knowl-

edge or problem specific details have to be introduced in

the model. In many circumstances, the parameters or the

measurements are of a vague nature, and this lack of preci-

sion can be avoided by simplifying the problem to be exact

[34]. The other conventional optimization approaches typi-

cally aim to find the economical solutions with minimal cost,

where the impacts of uncertainties can be roughly quantified

in the objective function or rigidly reflected in the constraints

[16]. However, it cannot handle various uncertainties ex-

pressed as soft constraints and fuzzy possibility distributions

[32, 27]. For many real-world problems, the optimization re-

sults could be highly unreliable if the modelling inputs can-

not be expressed precisely, however this uncertainties are in-

evitable, for example the renewable energy introduces more

variability and uncertainty due to its intermittent nature [33].

Various inexact optimization approaches have been devel-

oped for planning the system operation strategy under uncer-

tainty, such as fuzzy, interval and stochastic programming

etc.[24, 12]. The fuzzy linear programming is proposed for

solving the problem which has a vague (fuzzy) nature and

not exact [31]. The fuzzy programming method can be ap-

plied for the situations which can not be clearly defined and

thus have uncertainties, but it has difficulties to handle un-

certainties with soft constraints and flexibility [41, 13]. The

chance-constrained programming method provides a means

of considering constraints in terms of the possibility [8, 46].

However, the flexibility on the target value can not be solved

by different fuzzy sets [28]. The interval-parameter chance-

constrained program can tackle uncertainties expressed as

probability distributions and intervals while can not solve

problems with initial fixed cost of facilities but having vari-

able cost expressed as soft constraints [20]. Although these

methods are effective for tackling uncertainties associated to

random variables with interval parameters, known probabil-

ity distributions and fuzzy sets, they are incapable of dealing

with multiple soft uncertainties related to the integration of

possibility distributions, stochastic and flexibility [45]. Fur-

thermore, few studies have investigated the optimal planning

strategies for the integrated energy-transportation system at

a metropolitan level, considering multiple end-users, vari-

ous renewable energies, diverse electric vehicles and differ-

ent emissions over a planning period.

3. Mathematical formulation of FRCP-METS

3.1. flexible-possibilist chanced constraints

programming (FCCP) model
Possibilist programming (PP) can handle the situation

which lacks the knowledge of the exact parameters in the

model (i.e. epistemic uncertainty in the form of imprecise/ambiguous

Yanxia Wang et al.: Preprint submitted to Elsevier Page 2 of 12
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parameters). The algorithm is modelled using possibility

distributions, where the objective data and subjective knowl-

edge/experience are available but most often insufficient to

the decision-maker [37]. A PP model can be formulated as:

Min z = fg + cx

s.t. Ax ≥ d,

Sx ≤ Ny,

y ∈ {0, 1}, x ≥ 0

(1)

where the vectors f , c and d denote the fixed costs, vari-

able costs and end-users′ demands respectively; the matrices

A, S and N are coefficient matrices of constraints; vectors

y and x represent the binary and continuous parameters re-

spectively.

In practical planning problems, the vectors f , c and d

and the coefficient matrixN that represent the facility capac-

ities are usually approximate values. Flexible programming

can be applied to cope with flexible targets and constraints

(i.e. fuzziness in the form of vague/unsharp boundaries and

imprecise parameters) which is modelled by subjective or

preference-based fuzzy set [6]. By integrating the flexible

programming with PP, a flexible-possibilist programming

(FPP) model can be developed as follows:

Min z = f̃ y + c̃x

s.t. Ax ≥ d − t̃(1 − �),

Sx ≤ Ny + [r̃(1 − �)]y,

y ∈ {0, 1}, x ≥ 0

(2)

where a convex fuzzy set substitutes the constraints; � and �

are set to obtain the minimum value of an objective function

with different satisfaction levels; the fuzzy numbers t̃ and r̃

are brought in to reflect the violations of the constraints in

model. In this study, the triangular possibility distributions

are adopted for modelling imprecise parameters that can be

defined by their three prominent points [36]. Thus, the trian-

gular fuzzy sets t̃ and r̃ can be represented as t̃ = (tp, tm, to)

and r̃ = (rp, rm, ro). t̃ and r̃ can be defuzzied by:

{

t̃ = (tm +
vt−v

′
t

3
)

r̃ = (rm +
ℎr−ℎ

′
r

3
)

(3)

where vt and v′
t

(ℎr and ℎ′
r
) are the lateral margins of the

triangular fuzzy sets and could be defined as vt = to− tm and

v′
t
= tm − tp

Accordingly, the FPP model can be rewritten as:

Min z =
f p + fm + f o

3
y +

cp + cm + co

3
x

s.t. Ax ≥ d − (tm +
vt − v′

t

3
)(1 − �),

Sx ≤ Ny + [(rm +
ℎr − ℎ′

r

3
)(1 − �)]y,

y ∈ {0, 1}, x ≥ 0

(4)

It is evident that the FPP model can effectively handle the

uncertainties in the objective function and soft constraints,

while uncertainties often exist as random variables with known

probability distributions [43]. Chance constraints program-

ming (CCP) can tackle the problems whose constraints are

not known crisply but can be described as probabilistic dis-

tributions [35]. Integrating CCP with FPP, a flexible-possibilist

constraint programming (FCCP) model can be stated as fol-

lows:

Min z =
f p + fm + f o

3
y +

cp + cm + co

3
x

s.t. Pr

{

Ax ≥ d − (tm +
vt − v′

t

3
)(1 − �)

}

≥ �,

Pr

{

Sx ≤ Ny + [(rm +
ℎr − ℎ′

r

3
)(1 − �)]y

}

≥ �,

y ∈ {0, 1}, x ≥ 0

(5)

where "Pr" means "probability"; � and � represent the con-

fidence level of embracing uncertain constraints in the sys-

tem. In the above formulation, the chance constraints should

be satisfied with the confidence levels greater than 0.5.

3.2. FCCP-METS model formulation
Considering the real METS in Beijing, some compli-

cated processes should be considered, such as different types

of power generation (e.g. fossil-fired, wind, hydro, biomass,

waste, photovoltaic and pumped storage), seven imported

power grids (e.g. Hebei, Inner Mongolia, Jingjintang, Lang-

fang, Qinhuangdao, Shanxi and Zhangjiakou), five end-users

(e.g. primary industry, industry, construction, residential

and others), six types of transportation (e.g. bus, truck, taxi,

private car, metro and special purpose vehicle) and three

types of EV power supply facilities (e.g. DC fast charging,

level-I AC charging and level-II AC charging). For instance,

power demand varies with some factors such as economic

development, technology innovation and general random-

ness of individual usages. These imprecise processes would

bring considerable complexities and uncertainties which can

affect the optimization decision schemes. Based on the pro-

posed FCCP method, an FCCP-METS model can be devel-

oped for planning the METS of Beijing. The model objective

is to obtain the power generation pattern and transportation

types with a minimized system cost associated with the car-

bon emission requirement. The total system cost contains

energy resources purchase, electricity importation, genera-

tion and transmission, fixed and variable costs of power fa-

cilities and EVs charging infrastructures, transportation cost

and carbon mitigation costs. The complex objective function

is defined as follows:

Min E = (1)+ (2)+ (3) + (4) + (5) + (6) + (7) + (8) (6)

(1) Purchase cost for energy resources: In practical ap-

plications, energy resource (i.e. coal, gas and oil) purchase

Yanxia Wang et al.: Preprint submitted to Elsevier Page 3 of 12
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cost in METS consists of purchase cost of local and imported

energy.

3
∑

i=1

3
∑

t=1

̃PCEi,t × ̃NSEi,t (7)

(2) Cost for electricity importation: In Beijing, the amount

of local electricity generation is insufficient to meet the de-

mand, thus importing electricity from neighboring regions

is necessary. The cost for electricity importation from other

regions is determined by the quantity and the unit-price.

3
∑

t=1

̃PCPt × ̃NIPt (8)

(3) Fixed and variable costs for power generating sta-

tions: The power generation station entails fixed and vari-

able costs, which is remarkably complex. The fixed cost is

essentially capital and land cost while the variable cost in-

cludes fuel, labour and maintenance costs.

7
∑

k=1

3
∑

t=1

̃FPGk,t × ( ̃RCk,t + ̃ECk,t × Y Ck,t)

+

7
∑

k=1

3
∑

t=1

̃V PGk,t × ( ̃PGAk,t + ̃ECk,t × Y Ck,t ×
̃STk,t)

(9)

(4) Fixed and variable costs for capacity expansion: The

power capacity expansion cost include the costs for labor,

maintenance and operation, as well as financial investment.

7
∑

k=1

3
∑

t=1

( ̃FPEk,t + ̃V PEk,t) × ̃ECk,t × Y Ck,t (10)

(5) Cost for power transmission loss: The generating

facilities are often located in remote places, far from the

point of consumption. Thus, the distance of power trans-

mission always reaches thousands of kilometres, leading to

large power loss.

7
∑

k=1

3
∑

t=1

( ̃PGAk,t + ̃ECk,t × Y Ck,t ×
̃STk,t) × ̃CUk,t (11)

(6) Cost for transportation system: For the transportation

system, the cost mainly depends on the types of vehicles,

their energy consumption factor and service distance

6
∑

j=1

3
∑

t=1

̃TCAj,t × ̃TOVj,t × ̃TSDj,t (12)

(7) Fixed and variable costs for electric vehicle power

supply equipment (EVSE): The electric vehicle power sup-

ply equipment (EVSE) provides power to vehicles, including

the electric conductors, related equipment and communica-

tions protocols. The EVSE is mainly classified as battery

charging facilities which indicate DC Fast Charger (480 volts

DC and higher), Level-I AC charger(120 volts) and Level-II

AC charger (240 volts) and battery swapping facilities.

5
∑

m=1

3
∑

t=1

( ̃FBCm,t + ̃V BCm,t) × ̃BCEm,t × Y BCm,t

+

5
∑

m=1

3
∑

t=1

( ̃FBSm,t + ̃V BSm,t) × ̃BSEm,t × Y BSm,t

(13)

(8) Cost for carbon mitigation: The carbon mitigation of

METS is related to various power generation and transporta-

tion processes. Thus the associated cost is calculated based

on the emission rates, the unit cost of control and relevant

financial subsidies.

7
∑

k=1

3
∑

t=1

3
∑

q=1

( ̃PGAk,t + ̃ECk,t × Y Ck,t × ̃STk,t)

× (CPt,q + CEt,q∕ ̃STk,t − SUk,t)

(14)

Constraints consider the energy resource, power demand-

supply balance, capacity expansion (e.g. power generation,

EVSE facilities) and carbon abatement. They can be formu-

lated as follows.

a) Energy resource availability: It is required that energy

resource utilisation must be no more than the available quan-

tity of energy supply.

̃NSEi,t ≤
̃ARi,t

̃PGAk=1,t × ̃CRk=1,t ≤

2
∑

i=1

̃NSEi,t

(15)

b) Capacity limitation of power generation facilities: There

are several power generating techniques in the system and

this constraint can guarantee that the capacity is greater than

the total amount of output.

Pr

{

̃PGAk,t ≤ ( ̃RCk,t + ̃ECk,t × Y Ck,t) × ̃STk,t

+

[

(rm +
ℎr − ℎ′

r

3
) × (1 − �)

]

× Y Ck,t × ̃STk,t

}

≥ �

(16)

c) Capacity limitation of EVSE facilities: The capacity

of battery charging and swapping facilities should satisfy the

demand of the whole EV population.

Pr

{

̃TOVm,t × ̃SOCm,t ≤
̃RBCm,t + ̃RBSm,t + ̃BCEm,t

× Y BCm,t + Y BSm,t × ̃BSEm,t +

[

(rm +
ℎr − ℎ′

r

3
) × (1 − �)

]

×
(

Y BCm,t + Y BSm,t

)

}

≥ �
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(17)

d) Constraint of electricity power demands: It is estab-

lished to ensure that the total power generated from the exist-

ing and expanded facilities and purchased from other areas

should not be less than the power demands.

Pr

{

7
∑

k=1

̃PGAk,t + ̃NIPt +

7
∑

k=1

Y Ck,t × ̃STk,t × ̃ECk,t

≥

5
∑

d=1

̃Dedt,d −

[

tm +
vt − v′

t

3

]

× (1 − �)

}

≤ �

(18)

e) Constraint of carbon emission: The constraint is to

confirm that the amount of carbon emission should satisfy

the policy permits.

Pr
{

7
∑

k=1

( ̃ECk,t × Y Ck,t × ̃STk,t + ̃PGAk,t) × ̃AMRk,t,q

+

6
∑

j=1

̃TCAj,t × ̃TOVj,t × ̃TSDj,t × ̃TEFj,t,q ≤
̃AAPt,q

}

≥ �,∀t, q

(19)

f) Constraints for capacity expansion: These constraints

are formulated to ensure that the capacity of facilities should

satisfy the power demand in the long-term planning. And the

integer variables can indicate if a facility expansion can be

undertaken.

Pr
{

̃RCk,t + ̃ECk,t × Y Ck,t ≤ CapUk,t

}

≥ � (20)

g) Nonnegative constraints: It is assured to eliminate in-

feasibilities while computing the solutions.

̃PGAk,t,
̃NSEi,t ≥ 0 ∀i, k, t (21)

Y BCm,t, Y BSm,t, Y Ck,t

{

= 1 undertaken

= 0 otℎerwise
(22)

The specific definition of parameters and variables are

provided in the Appendix. All variables in the FCCP-METS

model are considered either as continuous variables or bi-

nary (0-1) variables. The proposed model is solved using

the simplex algorithm [38, 14]. The optimal solution under

different confidence degree and satisfaction level with viola-

tions can be obtained by taking various �, �, � and � values.

The detailed process for calculating the FCCP-METS model

can be summarized as follows.

Step 1: formulate the FCCP-METS model.

Step 2: solve the FCCP-METS model to obtain a global

solution under a � and � level.

Step 3: solve the FCCP-METS model (under the same �

level) to achieve a global solution under a � and �.

Step 4: repeat step 2 and step 3 for every � and � in order

to get all solution results.

Step 5: analyze the results and provide them to decision-

makers.

4. applications

4.1. overview of the study system
Beijing is the capital of China. It is one of the most fa-

mous capital cities globally, with over 21 million residents in

an administrative area of 16,808 km2. As one of the world‘s

leading economic and culture centers, the adverse impacts

of energy crises, transportation, and environmental issues

should be considered (as shown in fig 1). The current power

generation in Beijing primarily depends on fossil fuels and

renewable energy occupies about 10% of the total power gen-

eration [30].

On the other hand, the extensive transportation network

of buses, taxis, trucks and passenger cars not only bring con-

venience to people but also significant pollutant emissions

at the same time. In the transportation system, the EVs are

treated as new energy vehicles and reached 225,000 in 2018,

and the annual growth rate reaches to 35.6% from 2017 to

2018 [10]. These growth has led to massive carbon emis-

sion reduction, but this is not yet sufficient. Based on the

Municipal Environmental Protection Bureau in Beijing, the

daily average concentration of CO is 1.3 mg∕m3 in 2020

which only meets the second level of National Ambient Air

Quality Standard. Thus, the electric power generation, trans-

portation system and carbon emissions should be considered

holistically as they are all significant factors to consider in

the METS planning in Beijing, and high emphasis should be

focused on the integration of renewable energy, transporta-

tion system, EVSE and battery swapping facilities and car-

bon emission reductions. For example, based on the electric

vehicles infrastructure strategy of Beijing, there are approx-

imate 0.4 million charging facilities required by the end of

2021; the capacity of renewable energy would reach to 2GW,

which will account for about 15% of total capacity.

4.2. data collection and scenario design
This context focuses on the energy-transportation sys-

tem of Beijing and its carbon emissions. The relevant cost

parameters are based on the China statistical yearbook, Bei-

jing traffic development annual report and Beijing statisti-

cal yearbook; technical data are obtained from government

official reports, published papers and survey [11, 15]. The

power energy demand is simulated based on the Monte Carlo

under one thousand runs with probability level being 0.05.

The simulated power demands are used as the FCCP-METS

model input values in the planning. The emission factors of

carbon pollutants from different vehicles are specified by tri-

angle fuzzy numbers and are listed in table 1. For instance,

the emission factor of CH of buses in period 1 would be

Yanxia Wang et al.: Preprint submitted to Elsevier Page 5 of 12
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EV Charging Station

Battery Swapping Station

Wind Power

Waste Power

Hydro Power

Biomass Power

Pumped Storage power

Photovoltaic power

Figure 1: The study system of Beijing

Table 1

emission factors of pollutants from different vehicles (g ⋅ km−1)

time emissions bus truck taxi pravite car special purpose vehicle

CH (0.187,0.190,0.212) (1.616,2.210,2.977) (0.086,0.092,0.103) (0.085,0.098,0.104) (0.009,0.011,0.014)
CO (0.775,0.800,0.814) (2.001,3.300,3.541) (0.521,0.623,0.724) (0.521,0.625,0.728) (0.012,0.014,0.017)period 1
CO2 (1115,1173,1197) (6720,7432,7987) (118,130,154) (142,189,225) (83,106,142)
CH (0.155,0.170,0.176) (1.269,2.500,2.726) 0.085,0.090,0.103) (0.083,0.092,0.102) (0.009,0.010,0.013)
CO (0.765,0.798,0.835) (2.626,3.104,3.588) (0.519,0.620,0.722) (0.522,0.623,0.726) (0.008,0.009,0.012)period 2
CO2 (877,951,1043) (5147,5929,6897) (102,112,132) (142,152,163) (61,81,91)
CH (0.112,0.130,0.148) (1.045,1.403,1.448) (0.082,0.099,0.101) (0.082,0.091,0.099, (0.007,0.009,0.011)
CO (0.754,0.770,0.794) (2.655,2.920,3.042) (0.517,0.619,0.720) (0.518,0.620,0.721) (0.005,0.007,0.008)period 3
CO2 (767,845,936) (4254,5558,6263) (88,98,127) (107,117,137) (39,59,88)

[0.187, 0.190, 0.212] g ⋅ km−1, which means the possible

value is 0.19 g⋅km−1 and there is no possibility that the value

is lower than 0.187 g ⋅ km−1 or more than 0.212 g ⋅ km−1.

Moreover, the planning horizon includes three periods, each

covering three years.

Several scenarios are designed with different confidence

and satisfactory levels. The optimal solutions related to var-

ious confidence and satisfactory levels could be obtained by

taking different �, �, � and � values. In the experiment, ten

satisfaction degrees (e.g. � = � = 0.1 to 1) are adopted for

the soft constraints on violating the power energy demands

from end users and capacity expansion activities, and six

confidence levels (e.g. � = � = 0.5, 0.6, 0.7, 0.8, 0.9 and 1)

are used for embracing uncertainties with the imprecision of

parameters and they are used to represent the uncertainties

in both the soft constraints and the objective function.

5. results analysis

5.1. system cost
The system cost is the sum of all costs generated from

every sector in the considered planning period. It is shown

in fig 2 that the system cost changes with different satisfac-

tion degrees (� and �) and confidence levels (� and �) which

is corresponding to the preference of decision-makers. The

satisfaction degree is related to the system violation risk,

namely the demand backlog. The demand backlog indicates

the robustness of the tradeoff between demand and supply

(e.g. energy resource and EVs battery charging and swap-

ping capacity). Higher � and � values mean lower violation

risk, and then the decision-makers prefer to achieve planning

with a lower backlog in the system, thus leading to a higher

total cost. On the other hand, the confidence level presents

a valuation element associated with the probability of meet-

ing soft constraints of the system, which is also somehow re-
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Figure 2: The system costs with satisfaction degree � and � changing from 0.1 to 1
(×1012$)

lated to the outputs. Since higher � and � values mean easier

to implement the uncertain constraints for decision-makers,

the system cost would increase with the confidence level.In

summary, the higher satisfaction degree (� = � = 1) and

confidence level (� = � = 1) will lead to a higher system

cost ( $ 76288 × 1012), while lower cost ($ 81695 × 1012) is

achieved by lower satisfactory degree and lower confidence

level.

5.2. renewable energy power
As illustrated in Fig 3, uncertainties could affect the op-

timization processes and thus the electricity power supply

patterns. For instance, as the satisfaction degree and con-

fidence level vary, the fossil power could even account for

more than 80% of the total energy generation while the re-

newable energy power only accounts for a small percent-

age, [11.24, 17.39]% throughout. The proportion of renew-

able power is far smaller than the developed countries, even

though relevant policies are introduced to improve the power

supply structure in the local regions. When � = � = 1 and

� = � = 1, the ratio of renewable energy power changes

from 11.24% to 15.73 along with the time. In detail, the hy-

dro, photovoltaic and waste power generation are among the

top three and account for about 3.31%, 2.80% and 4.38% at

the end of the planning period. The status of these types

of non-fossil fuel based power generation would become in-

creasingly more important over time. At the end of the plan-

ning period, the proportions of power from renewable ener-

gies are in the range of [3.31, 4.85]%, [1.88, 2.45]%, [2.80,

3.02]%, [0.81, 1.39]%, [4.38, 5.16]% and [1.48, 1.95]% for

hydro, wind, photovoltaic, biomass, waste and pumped-storage

power respectively as the satisfactory and confidence lev-

els change. The capacity expansion of renewable energy

power is necessary to meet the rapid change of the gener-

ation mix. Besides, the percentage of imported power could

vary along with time, mainly caused by increased power de-

mands, available energy resources and incentives for adopt-

ing renewable energies. In summary, the power demands

are expected to increase continuously; the proportion of re-

newable energy power would increase accordingly with time

over the planning horizon.

5.3. carbon emission
For the carbon emission requirement, the satisfactory de-

gree and the confidence level are both employed in the con-

straints. The higher satisfactory and confidence values would

refer to a tighter environment requirement, thus leading to

a lower emission. Fig 4 shows the multiple carbon emis-

sions –CH, CO and CO2 of the METS system (e.g. electric-

ity power plants, trucks, buses and private cars) when satis-

factory and confidence levels are both equal to 1. It is ob-

vious that the fossil-fired (e.g. gas-fired) power generation

process has a bigger influence on the air quality than the re-

newable energy (e.g. hydro and waste) plant. Furthermore,

the carbon emissions of all the power generation processes

are much less than the transportation sector. Two reasons

can explain this scenario: 1) about 60% power demand in

Beijing is met by the imported power from other regions; 2)

Beijing has ended coal-fired power plants in 2017, and the

fossil-fired plants are all gas-fired which produce less emis-

sions. Moreover, for the end-users sector, the amount of in-

dustry would decrease due to the pollutant mitigation.
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Figure 3: The power supply patterns with various renewable energies
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Figure 4: The sectoral carbon emissions (×104 ton)

For the transportation sector, the trucks are the major

contributor to the pollution accounting for nearly 54.39%,

73.37% and 80.59% of the transport carbon emissions (CH,

CO andCO2 respectively), and the emissions from trucks are

about ten times of the ordinary cars and this implies that the

logistic has developed swiftly and aggressively over these

periods. The next important emission source is from the

private cars. In comparison, the proportion of this part de-

creases along with time in the planning period because of

the vehicles‘ upgrade (such as lightweight) and roll-out of
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Figure 5: Carbon emission reduction in the planning horizon (×104 ton)

EVs. For public transport, the total emissions from buses

and metros are even less than that of private cars while they

serve more people. It is therefore highly recommended to

encourage people to take public transportation by consider-

ing the economic and environment impacts. In summary,

the carbon emission would be reduced over time in response

to various carbon emission control policies in the planning

horizon, such as incentives for renewable energies and mass

adoption of EVs in the METS system.

Fig. 5 illustrates the reductions of carbon emission in the

planning horizon. It is clear that the carbon emissions have

gradually reduced, while the abatement potentials of various

sectors are different. From the first period to the last period,

the carbon reduction of transportation sector accounts for the

largest proportion, among which the trucks play a major role.

The fossil-fired power generation is the second contributor

to the carbon emission reduction. In conclusion, the power

conversion sector and the transportation sector are the first

two dominant sector for carbon emission reduction, account-

ing for the reduction of 10% and 15% respectively by 2030.

Therefore, the power generation and transportation sectors

are promising to play a key role to reduce carbon emissions

in the future. Furthermore, it is necessary to develop more

renewable energy resources to achieve the goal of carbon

peak by 2030.

5.4. influence of EVs
In the METS system, the deployment of EVs would im-

pact the system cost and carbon emission significantly. Fig

6 illustrates the quantities of carbon emissions and their pro-

portions in the transportation sector at the end of the plan-

ning period. The emissions will decrease when considering

the EVs and the amount of reductions are 6.7 million tonnes

for CH, 44.7 million tonnes for CO and 1.08 ×105 million

tonnes for CO2 respectively. Among the transportation ve-

hicles, the adoption of electric trucks contributes hugely to

the reduction of carbon emissions. This is related to a pol-

icy issued by the government that the light logistic vehicles

(less than 4.5 tons) in the city should be mainly changed to

electric trucks. The following categories are buses and taxis

as the proportion of electric buses would be more than 70%

and the ownership of electric cabs would be more than 20

thousand in Beijing. The increase in the number of private

electric cars reduces the carbon emissions further. In addi-

tion, the special-purpose vehicles (e.g. sanitation trucks )

in Beijing are almost electrical, which also improves the air

quality. The metro system is all electrified and no carbon

emissions are discharged.

On the other hand, the EVs indicate the additional sys-

tem cost due to the capacity expansion of battery supply

facilities. Over the planning horizon, the number of pub-

lic charging piles in Beijing would increase from 9 thou-

sand to 50 thousand, approximate 5.6 times. Specifically,

22 thousand DC fast chargers (480 volts DC and higher), 18

thousand Level-I chargers (120 volts), 10 thousand Level-II

chargers (240 volts) and 150 thousand private charging piles

are required to be built at the end of the planning period.

Meanwhile, the number of batteries swapping stations would

be around 160 in Beijing. In summary, approximate 4 × 109

dollars would be spent on building and operating the elec-

tric vehicle power supply equipment (EVSE) corresponding

to the increased adoption of EVs.

6. Implementation and discussion

The proposed model is adopted for the planning of the

METS system in Beijing to obtain the optimal trade-offs be-

tween system cost, electric power and transportation sectors.

To further illustrate the accuracy of FCCT-METS model, the

comparison between the model prediction (under satisfac-
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Figure 6: The impacts of EVs for carbon emission

tion degree and confidence level being 1) and the fact situa-

tion at the end of the planning horizon is studied as follows.

For the electric power side, in fact, the proportion of the

imported power from other regions reaches 70% of the to-

tal power demand; the fossil-fired power and the renewable

energy power account for 92% and 8% of the total power gen-

eration respectively; while under the FCCT-METS model

analysis, the ratios are 65.5%, 88.4% and 11.6% separately.

This result indicates that the electric power supply pattern

of the prediction model is close to the reality. The increased

proportions of the imported power and the renewable en-

ergy power would be consistent with the government pol-

icy. According to the 14th five-year plan, the share of non-

fossil in the mixed energy would reach 20% by 2025. Among

the renewable energies, the solar and wind power generation

would be the main contributors to the incremental power ca-

pacity for the next decade.

For the transportation sector in FCCT-METS model, the

EVs ownership would reach 450,000 with 350,000 cars and

100,000 buses in the last planning period. According to the

electric vehicle charging infrastructure plan in Beijing, the

ratio of vehicle and electric charger should be less than 7 and

there would be 50 thousand chargers built which can satisfy

the battery power supply requirement of 600,000 electric ve-

hicles by 2025. In the future, there would be more EVs for

different applications (e.g. logistics and sanitation) due to

carbon control and prevention. This predictive result is con-

sistent with the actual situation of Beijing. In fact, the local

government has been taking various steps to improve the air

quality in the last ten years, especially in order to meet the

traget of reaching the carbon peak by 2030. These measures

are effective for environment and clearly benefit Beijing cit-

izens, as there is hardly haze weather nowadays in Beijing in

recent years. In summary, based on the validation with the

actual METS system in Beijing, the proposed FCCP-METS

model can be applied to the METS system planning in Bei-

jing and other cities, and the desired METS planning strate-

gies for the Beijing can be designed effectively.

7. Conclusion

In this study, a flexible-possibilist chanced constraints

programming (FCCP) model has been proposed for handling

multiple complexities such as the combination of fuzzy pos-

sibilities, flexibilities and probabilities. Superior to conven-

tional optimization approaches, the FCCP model could han-

dle uncertain information and enhance the robustness of the

solutions. It can also quantitatively analyze the effects of

the uncertain parameters on system cost from individual and

coupling aspects. The proposed FCCP model has been ap-

plied to the METS planning for Beijing. Several conclusions

can be drawn: 1) the system cost would increase as the sat-

isfactory degree and confidence level increase. 2) the power

demand will gradually be met by the imported power from

other regions and also more from the renewable energy as

time goes on, and the proportion of the renewable energy

power would increase to approximate 11% at the last plan-

ning period. 3) the carbon emission would be reduced with

the growing number of EVs, the upgraded power supply pat-

tern and the stringent air quality control policy. 4) the EVs

would be adopted in most transportation fields, such as cars,

buses, metros, logistics and sanitation. The mass roll-out of

EVs would have significant impact on the environment by

reducing 6.7 million tonnes of CH, 44.7 million tonnes of

CO and 1.08 ×105 million tonnes of CO2 respectively.

The FCCP-METS model has been verified with the real-

world METS system in Beijing and the results indicate that

the proposed approach could deal with the metropolitan-scale

complex problems with uncertain parameters. However, sev-

eral assumptions for the model formulation would bring lim-

itations and should be addressed in the future study. Firstly,

the capacity expansions of renewable energy plant, battery

charging facility and battery swapping facility are limited to

their service life and the financial investment. Secondly, the

binary variables are used to indicate whether a capacity ex-

pansion should be undertaken or not, which is a quite sim-

plified approach. Thirdly, the EVs could be used as energy

storage in the distributed energy source, which would benefit
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more to the METS system, but this has not yet been consid-

ered in this study.

A. Appendix

Nomenclatures for parameters and variables

i – resource type (where i = 1 for coal, i = 2 for oil and

i = 3 for natural gas)

k – power generating technology (where k = 1 for fossil-

fired power, k = 2 for hydro power, k = 3 for wind power,

k = 4 for photovoltaic power, k = 5 for biomass power,

k = 6 for waste power and k = 7 for pumped-storage power)

t – time period (t = 1 − 3)

j – traffic types (where j = 1 for bus, j = 2 for truck, j = 3

for taxi, j = 4 for private car, j = 5 for metro and j = 6 for

special purpose vehicle

m – EVs types (where m = 1 for electric bus, m = 2 for

electric truck, m = 3 for electric taxi, m = 4 for electric

private car and m = 5 for pure electric special vehicle)
̃AAPt,q – the allowed amounts of pollutant q in period t (103̂

tonne)
̃AMRk,t,q – pollutant emission coefficients (tonne/GWh)

̃ARi,t – the amount of available resource type i in period t

(TJ)
̃BCEm,t – the expanded capacities of battery charging for

EV type m in period t (unit)
̃BSCm,t – the expanded capacities of battery swapping for

EV type m in period t (unit)

CEt,q – the pollutant discharge fee for type q in period t

($/GW)

CPt,q – the pollutant control fee for type q in period t ($/GW)
̃CUk,t – the power transmission fee for technology k in pe-

riod t ($/GWh)
̃Dedt,d – the power demand for end-user d in period t (GWh)
̃ECk,t – the expanded capacity for electricity-conversion tech-

nology k in period t (GW)
̃FBCm,t – the fixed cost of battery charging for EV type m in

period t ($/unit)
̃FBSm,t – the fixed cost of battery swapping for EV type m

in period t ( $/unit)
̃FPEk,t – the fixed cost for power expanding capacity by

power k in period t ($/GW)
̃FPGk,t – fixed cost for power generation by power technol-

ogy k in period t ($/GW)
̃NIPt – the importing power amount in period t (GWh)
̃NSEi,t – the supply amount of energy resource i for power

in period t (TJ)
̃PCEi,t – the purchasing cost of energy resource i for power

in period t ($/TJ)
̃PCPt – the importing power fee in period t ($/GWh)
̃PGAk,t – the power generation amount by power technology

k in period t (GWh)
̃RBCm,t – residual capacity of battery charging for m type

EV in period t (unit)
̃RBSm,t – residual capacity of battery swapping for m type

EV in period t (unit)

̃RCk,t – residual capacity for power-conversion technology

k in period t (GW)
̃SOCm,t – service capacity of EV type m in period t (unit)
̃STk,t – service time of power-conversion technology k in

period t (h)

SUk,t – the financial subsidies for power technology k in

period t ($/GWh)
̃TCAj,t – the fuel consumption amounts for traffic type j in

period t ($/km)
̃TOVj,t – the operating vehicles for traffic type j in period t

(unit)
̃TEFj,t,q – the pollutant emission factor of pollutant q for

traffic type j in period t
̃TSDj,t – the service distance of vehicles for traffic type j in

period t (km)
̃V BCm,t – the variable cost of battery charging for m type

EV in period t ($/unit)
̃V BSm,t – the variable cost of battery swapping for m type

EV in period t ($/unit)
̃V PEk,t – variable cost for power expanding capacity by power

technology k in period t ($/GW)
̃V PGk,t – variable cost for power generation by power tech-

nology k in period t ($/GW)

Y BC – 0-1 variables for battery charging

Y BS – 0-1 variables for battery swapping

Y Ck,t – 0-1 variables for power expansion by power technol-

ogy k in period t
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