
This is a repository copy of Cervical cancer prognosis and diagnosis using electrical 
impedance spectroscopy.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/183027/

Version: Published Version

Article:

Li, P., Highfield, P.E., Lang, Z.Q. et al. (1 more author) (2021) Cervical cancer prognosis 
and diagnosis using electrical impedance spectroscopy. Journal of Electrical 
Bioimpedance, 12 (1). pp. 153-162. ISSN 1891-5469 

https://doi.org/10.2478/JOEB-2021-0018

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



 

 

J Electr Bioimp, vol. 12, pp. 153-162, 2021 

Received 25 Sep 2021 / published 18 Dec 2021 

https://doi.org/10.2478/joeb-2021-0018 

 

© 2021 Li P, Highfield PE, Lang ZQ, Kell D. This is an open access article licensed under the Creative Commons Attribution License 4.0. 

(http://creativecommons.org/licenses/by/4.0/). 

153 

 

Cervical cancer prognosis and diagnosis  

using electrical impedance spectroscopy 
 

Ping Li 1,3, Peter E. Highfield 2 , Zi-Qiang Lang 1, and Darren Kell 2 

 

1. Department of Automatic Control and Systems Engineering, The University of Sheffield, Sheffield, UK 

2. Zilico Ltd, Manchester, UK 

3. E-mail any correspondence to: p.li@sheffield.ac.uk 

 

 

Abstract 

Electrical impedance spectroscopy (EIS) has been used as an 

adjunct to colposcopy for cervical cancer diagnosis for many years. 

Currently, the template match method is employed for EIS 

measurements analysis, where the measured EIS spectra are 

compared with the templates generated from three-dimensional 

finite element (FE) models of cancerous and non-cancerous cervical  

tissue, and the matches between the measured EIS spectra and the 

templates are then used to derive a score that indicates the 

association strength of the measured EIS to the High-Grade Cervical 

Intraepithelial Neoplasia (HG CIN). These FE models can be viewed 

as the computational versions of the associated physical tissue 

models. In this paper, the problem is revisited with an objective to 

develop a new method for EIS data analysis that might reveal the 

relationship between the change in the tissue structure due to 

disease and the change in the measured spectrum. This could 

provide us with important information to understand the 

histopathological mechanism that underpins the EIS-based HG CIN 

diagnostic decision making and the prognostic value of EIS for 

cervical cancer diagnosis. A further objective is to develop an 

alternative EIS data processing method for HG CIN detection that 

does not rely on physical models of tissues so as to facilitate 

extending the EIS technique to new medical diagnostic applications 

where the template spectra are not available.   

An EIS data-driven method was developed in this paper to 

achieve the above objectives, where the EIS data analysis for 

cervical cancer diagnosis and prognosis were formulated as the 

classification problems and a Cole model-based spectrum curve 

fitting approach was proposed to extract features from EIS readings 

for classification. Machine learning techniques were then used to 

build classification models with the selected features for cervical 

cancer diagnosis and evaluation of the prognostic value of the 

measured EIS. The interpretable classification models were 

developed with real EIS data sets, which enable us to associate the 

changes in the observed EIS and the risk of being HG CIN or 

developing HG CIN with the changes in tissue structure due to 

disease. The developed classification models were used for HG CIN 

detection and evaluation of the prognostic value of EIS and the 

results demonstrated the effectiveness of the developed method. 

The method developed is of long-term benefit for EIS–based 

cervical cancer diagnosis and, in conjunction with standard 

colposcopy, there is the potential for the developed method to 

provide a more effective and efficient patient management 

strategy for clinic practice.  

 

Keywords: Electrical impedance spectroscopy (EIS); cervical 

cancer; diagnosis; prognosis; Cole model; spectrum curve fitting; 
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Introduction 

Cervical cancer is the third most common cancer for women 

in the world [1].  Screening for cervical cancer is usually 

performed using a multi-tiered paradigm which begins with 

the Papanicolaou (Pap) smear with human papillomavirus 

(HPV) co-testing, followed by colposcopy guided biopsy and 

prevention of cervical cancer depends on colposcopic 

detection and treatment of high-grade cervical 

intraepithelial neoplasia (HG-CIN) in women referred with 

abnormal cytology. Cervical epithelium is a highly structured 

and stratified tissue that exhibits changes as it progresses 

from normal epithelium to HG-CIN. These changes are 

associated with losses in the layer of flattened epithelial cells 

close to the surface of the cervix, and increases in both the 

nuclear/cytoplasmic ratio and  the extracellular space. All of 

these changes caused by the disease will eventually lead to 

a change in the impedance compared with a normal cervix. 

As a result, in contrast to colposcopy, the Electrical 
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Impedance Spectroscopy (EIS) can be used as a non-visual 

technique to image epithelia. The research on HG-CIN 

detection using EIS had been carried out for many years [2-

4] and the EIS measurement device ZedScanTM (see Fig.1) has 

been developed for real-time diagnostics [5].  

 
Fig.1: The ZedScan handset for making the EIS measurements 

used in this paper. The handset is shown placed on the base. 

 

Currently, EIS has been used as an adjunct to colposcopy 

for HG-CIN detection to improve the diagnostic performance 

[6]. The impedances are measured with  ZedScanTM  at 14 

frequencies, logarithmically spaced between 76 Hz and 625 

kHz. The template matching method has been used for 

analysing the 14-frequency EIS spectra measured from a 

maximum of 12 reading sites around the cervix for diagnosis 

[5,6] where the measured spectra are compared with the 

‘template’ spectra generated from the 3-D finite element 

models of the normal and abnormal cervical tissues and 

matching between the measured spectra and the templates 

is made using the least squares method, finally the results 

from matching are then used to generate a probability index 

for the detection of HG-CIN.  

Complementary to colposcopy, EIS has been shown able  

to differentiate between normal, pre-cancerous and 

cancerous tissues. It plays an important role in improving 

performance of colposcopy-only diagnosis as shown in 

previous studies [5,6]. The template matching method used 

in the previous studies for EIS data analysis relies on the 

template spectra generated from the 3-D finite element 

models of the normal and abnormal cervical tissues. These 

3-D finite element models can be viewed as the 

computational versions of the associated physical tissue 

models. Building quality 3-D finite element model to obtain 

template spectra is a time and effort demanding job, 

requiring extensive domain knowledge and involving 

detailed histopathological analysis of normal and diseased 

tissues, and in some cases this may be difficult. This hinders 

the extension of EIS-based technique in new areas of medical 

diagnosis where template spectra are not available. In 

addition to producing a probability index used for HG CIN 

detection, it would also be desirable to be able to establish a 

direct link between this probability index and the associated 

tissue structure properties as this will provide important 

information for us to understand the histopathological 

mechanism that underpins the EIS-based cervical cancer 

prognosis and diagnosis, and to improve interpretability of 

the diagnostic results. 

The problems mentioned above are addressed in this 

paper. A EIS data-driven modelling based approach was 

developed for EIS measurement data analysis. The new 

approach does not rely on the template spectra and HG CIN 

detection was formulated as a classification problem where 

a Cole model-based spectrum curve fitting method was 

proposed to extract the features from EIS readings and a 

logistic regression model was employed for performing the 

classification which revealed the association between the 

tissue structure changes caused by disease and the changes 

in the measured EIS through the Cole parameter estimates. 

The developed approach was also used for a longitudinal EIS 

data analysis to evaluate prognostic value of the EIS for 

cervical cancer diagnosis and the results are reported in this 

paper.   

 

Methods 

The EIS measurements with confirmed diagnostic outcomes 

used in the study presented in this paper were taken from 

1704 women and there were at least 8 impedance spectra 

(taken from different reading sites around the cervix) for 

each individual. For HG CIN detection, the entire population 

was divided into two groups, those women with confirmed 

HG CIN which had N=528 ( 30.99% ) and those women 

without confirmed HG CIN which had N=1176. The objective 

of the study is to develop a template-free method for 

separating these two groups using the measured EIS. Among 

1176 women with non-HG CIN, 569 women were followed 

up to three years after their initial colposcopy. Of these, 35 

(6.15%) women were found to develop HG-CIN within three 

follow-up years and 534 women were not. The EIS data of 

these 569 women were used for a longitudinal study to 

evaluate prognostic value of the EIS for cervical cancer 

diagnosis. In this case, the entire population of size 569 was 

divided into two groups, with one group including all women 

who had developed HG-CIN within three follow-up years and 

another group including women who had not. The objective 

of this longitudinal study is to see if it is possible to identify 

women who are likely to develop HG-CIN within three 

follow-up years based on the EIS measurement taken at their 

initial colposcopy so as to evaluate the prognostic value of 

EIS for cervical cancer diagnosis. 

        The basic idea behind the EIS-based template match 

method for HG-CIN detection as mentioned above is to 

identify the difference in spectrum shapes between diseased 

and non-diseased tissues by directly comparing the 

measured spectra with the template spectra to generate 

features for diagnosis. In contrast to direct comparison, a 

model-based spectrum curve fitting approach was proposed 

in this paper to extract features from EIS readings for 

diagnosis with an aim to reveal how the tissue structure 

changes due to disease might be reflected in the measured 
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EIS, in addition to detecting HG CIN. Specifically, we try to fit 

a model to the measured spectrum, and then derive the 

required features for disease detection from the fitted 

model parameters. 

This study was a service evaluation carried out in the 

Jessop Wing Colposcopy clinic in Sheffield and so no ethical 

approval was required [6]. All patient data mentioned above 

was anonymised. 

 

Model-based bio-impedance spectrum curve fitting 

The commonly used model for biological tissue impedance is 

the Cole equation of the following form [7,2]: 
 𝑍(𝑓) = 𝑅∞ + 𝑅0 − 𝑅∞1 + (𝑗𝑓𝑓𝑐 )1−𝛼                                  (1) 

 

This is an equivalent model that is commonly used by 

researchers in the field to describe the relationship between 

the measured tissue impedance Z and frequency f. In 

equation (1), 𝑅0  and 𝑅∞  are the resistances at zero and 

infinite frequency that will determine the values of 

impedance spectrum at low and high frequency bands 

respectively. f is the frequency of excitation current used in 

measurement and 14 logarithmically spaced frequencies 

(with 𝑓1 = 76 Hz and 𝑓14 = 625 kHz) are used in 

measurement. 𝑓𝑐  is often referred to as the characteristic 

frequency and 𝛼  is a constant (0 ≤ 𝛼 ≤ 1) . These four 

model parameters are associated with the tissue structure 

and properties under investigation and need to be 

determined from the measured EIS data.  

       Equation (1) is a nonlinear complex model and spectrum 

curve fitting for determination of the model parameters can 

be formulated as a complex nonlinear optimization problem. 

This can be solved using the trust-region-reflective algorithm 

[8], subject to the bounds determined with the measured EIS 

spectra. Fig. 2 below shows some typical results of Cole 

model-based EIS fitting with the aforementioned algorithm, 

where solid lines represent the measured spectra and 

dashed lines represent the model fitted spectra. 

 

 
Fig.2: Comparison between measured and model fitted EIS 

 

Feature extraction from fitted model 

The structure of biological tissue is complex and the 

impedance change with frequency will depend upon many 

factors, such as cellular arrangement (layering of cells), 

extracellular space, cell size, conductivity of extracellular 

fluid, thickness of cell membrane, electrical properties of cell 

membrane and so on. When cervical epithelium progresses 

from normal epithelium to high-grade CIN, the tissue 

properties mentioned above will also be altered which are 

reflected in the changes in the measured EIS spectra, hence 

allowing EIS to be used for disease detection [9]. Ultimately, 

these changes will lead to changes in the four estimated 

parameters 𝑅0, 𝑅∞, 𝑓𝑐  and 𝛼  of the Cole model (1), this 

enables us to derive features from four estimated Cole 

model parameters for HG CIN detection using classification 

techniques.  

         A commonly used interpretation [10] of the four Cole 

model parameters for tissue structure is that the inverse of 

extracellular volume determines 𝑅0, the inverse of the total 

volume determines 𝑅∞, cell sizes determine 𝑓𝑐, which is the 

centre of the dispersion, and α is determined by the 
inhomogeneity of the cells within the dispersion. The 

conductivity of the intracellular and extracellular spaces will 

also affect both 𝑅0 and 𝑅∞. If the classification model for HG 

CIN detection can be constructed with the features derived 

from the four Cole parameter estimates, the above 

interpretation will provide us with valuable information to 

understand how the tissue structure changes due to disease 

might be reflected in the observed EIS spectrum. This would, 

in turn, be very helpful for us to understand the fundamental 

mechanism that underpins the EIS based HG CIN detection.  

When used as an adjunct to colposcopy, EIS spectral 

measurements are made at up to 12 reading sites around 

cervix (minimum number of sites is 8) of individual women. 

As the lesion can either be large to cover many sites or be 

small covering a few sites, or even a single site on cervix, two 

types of feature were derived from Cole model parameter 

estimates. The first type of feature consists of the four Cole 

model parameter estimates (denoted as: �̅�∞, �̅�0, 𝑓�̅�, �̅�) of the 

mean spectrum over all reading sites of an individual woman 

which aims to provide information for detecting large lesions 

that cover many reading sites. The second type of feature 

consists of the four maximum differences of Cole model 

parameter estimates over all (up to 12) reading sites around 

the cervix of an individual woman defined as follows: 
 ∆𝑅∞ = max𝑖 𝑅∞𝑖 − min𝑖 𝑅∞𝑖  ∆𝑅0 = max𝑖 𝑅0𝑖 − min𝑖 𝑅0𝑖  ∆𝑓𝑐 = max𝑖 𝑓𝑐𝑖 − min𝑖 𝑓𝑐𝑖         (𝑖 = 1,2, ⋯ ,12)                (2) ∆𝛼 = max𝑖 𝛼𝑖 − min𝑖 𝛼𝑖 

 

The features defined by (2) can be viewed as a measure 

of spatial inhomogeneity of the tissue around cervix and are 

expected to provide information for detecting small lesions 
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presented in a few or just a single reading site. The rationale 

behind this is that, if there are no lesions around cervix, EIS 

taken at all sites will have approximately the same shape, 

thus similar Cole model parameter estimates are expected 

when performing spectrum curve fitting and the differences 

defined by equation (2) will be small. However, if a lesion 

does exist and only presents in a few or a single site, the EIS 

taken at these sites will significantly differ from those taken 

at sites where no lesions were present. Hence, the 

differences defined in equation (2) will be large. To sum up, 

using both Cole model parameter estimates associated with 

the mean spectrum and the differences defined by equation 

(2) (i.e. �̅�∞, �̅�0, 𝑓�̅�, �̅�, ∆𝑅∞, ∆𝑅0, ∆𝑓𝑐, ∆𝛼)  from individual 

women as features will allow both large and small lesions to 

be detected. 

 

Feature selection using multivariate analysis of variance  

Cervical cancer diagnosis, or more specifically, HG CIN 

detection using EIS can be viewed as a problem of detecting 

changes in the measured EIS taken around cervix which are 

caused by the change in tissue structure due to HG CIN. 

Whereas, the evaluation of prognostic value of EIS for 

cervical cancer diagnosis can be viewed as a problem of 

detecting early signs in the EIS taken at the initial colposcopy 

which is caused by the incipient change in tissue structure as 

neoplasia develops (i.e. the early stage in the evolution of 

neoplasia). Both problems are formulated as a classification 

problem in this paper and machine learning technique (see 

e.g. [11, 12]) was employed to solve the problem. 

Specifically, the feature/predictor vector defined as: 
 

 𝒙 = [�̅�∞, �̅�0, 𝑓�̅�, �̅�, ∆𝑅∞, ∆𝑅0, ∆𝑓𝑐, ∆𝛼]𝑇                   (3)  
 

derived from the fitted Cole model in last subsection will be 

used to build a predictive model for solving this classification 

problem.  

The complexity of any predictive model for classification 

depends on the number of input dimensions (i.e. the number 

of features to be used). In the last subsection, eight 

handcrafted features defined in (3) have been derived from 

the EIS measurements. However, the effect of neoplasia on 

the four Cole model parameters, hence the features derived, 

is complex and some of these features may be redundant or 

not informative. Statistically, it is often more attractive to 

estimate a simpler model with non-informative features 

being removed as this usually leads to a reduced estimation 

variance and improved robustness in prediction, and also 

prevents over fitting for the given data set of fixed size.  From 

a practical point of view, a simpler model may also be more 

interpretable.  Our early study [13] had shown that using any 

single feature collected in 𝒙 was not statistically sufficient to 

allow a separation of two groups. To this end, multivariate 

analysis of variance (MANOVA) [14] was used for evaluating 

and ranking the capability of the various combinations of the 

derived features collected in 𝒙 to separate two groups for 

both problems of HG CIN detection and prognostic value 

evaluation. The results from analysis are summarized in 

Table 1 and 2, which enable us to identify the most 

informative feature combinations to be use for building 

classification models for HG CIN detection and evaluation of 

prognostic value of EIS respectively. 

 

Table.1: p-values from MANOVA using EIS data taken from 1704 

women for HG CIN detection 

Feature 

combinations 

p-values Feature 

combinations 

p-values �̅�0, �̅�, ∆𝑅0 1.1003× 10−31 

�̅�0, �̅�, ∆𝑅0, ∆𝑓𝑐  5.0124× 10−31 �̅�0, ∆𝑅0 1.5861× 10−31 

�̅�∞, �̅�0, ∆𝑅∞, ∆𝑅0 5.3276× 10−31 �̅�0, �̅�, ∆𝑅∞, ∆𝑅0 2.6287× 10−31 

�̅�0, ∆𝑅0, ∆𝑓𝑐  6.5955× 10−31 �̅�0, ∆𝑅∞, ∆𝑅0 3.1665× 10−31 

�̅�0, ∆𝑅0, ∆𝛼 7.2683× 10−31 �̅�0, �̅�, ∆𝑅0, ∆𝛼 3.4687× 10−31 

�̅�0, 𝑓�̅� , �̅�, ∆𝑅0 7.4318× 10−31 

 
 

Table 1 shows the results for comparing the multivariate 

means of the different combination of features from the two 

groups of women (i.e. HG CIN vs no HG CIN) with entire size 

of 1704 for HG CIN detection. Columns 1 and 3 in Table 1 

specify the feature combinations to be compared and 

columns 2 and 4 show the corresponding p-values for testing 

whether the specified combinations have the same means 

(i.e. the corresponding mean vectors lie in a space of 

dimension 0). The smaller the p-value, the more confidence 

there is that the two groups have different means when 

compared using a particular feature combination. Hence, 

these p-values can be used as the indices to measure the 

capability of the corresponding feature combinations to 

separate two groups. Extensive multivariate analysis of 

variance had been carried out and Table 1 lists the ten 

feature combinations with the smallest p-values among all 

possible combinations of eight features. From Table 1 and 

for the given EIS data set of size 1704, the p-values are very 

small hence we can safely reject the null hypothesis that the 

means of two groups are the same. Table 1 also shows that 

using more features does not necessarily increase capability 

to separate two groups. This indicates that some features in 𝒙 may be redundant and the most informative features for 

separating two groups (HG CIN vs non-HG CIN) are 

associated with the extracellular volume and inhomogeneity 

of the cells within the tissue (�̅�0 and �̅�), as well as the spatial 

inhomogeneity of the tissue around cervix (i.e. ∆𝑅0). These 

results provide useful information for selecting features to 

build classifier for HG CIN detection.  

Similarly, Table 2 below shows the results for comparing 

the multivariate means of the different combinations of 

features from the two groups of women (i.e. HG CIN 

developed vs no HG CIN developed within three follow-up 

years) with entire size of 569 for evaluating the prognostic 



Li et al.: Cervical cancer diagnosis using EIS. J Electr Bioimp, 12, 153-162, 2021 

157 

 

value of EIS for cervical cancer diagnosis. Ten different 

feature combinations with the smallest p-values among all 

possible combinations of eight features are listed in Table 2.   

 

Table.2: p-values from MANOVA using EIS data taken at initial 

colposcopy of 569 women for evaluation of prognostic value of EIS 

Feature 

combinations 

p-values Feature 

combinations 

p-values �̅�, ∆𝛼 0.0168 𝑓�̅� , ∆𝛼 0.0286 �̅�, ∆𝑅0 0.0231 �̅�0, �̅� 0.0295 𝑓�̅� , �̅� 0.0256 �̅�∞, �̅� 0.0296 �̅�, ∆𝑅∞ 0.0274 𝑓�̅� , �̅�, ∆𝛼 0.0314 �̅�, ∆𝑓𝑐  0.0275 �̅�0, �̅�, ∆𝛼 0.0335 

 

It can be seen that, in comparison with Table 1, the p-

values shown in Table 2 are much larger than those in Table 

1. This suggests that there is a lower level of confidence (in 

comparison with the case of HG CIN detection using EIS) in 

the ability to separate the two groups using these feature 

combinations. This might be expected, because it will be 

more difficult to detect early signs of neoplasia in the 

measured EIS than to detect the more substantial changes 

caused by severe neoplasia or HG CIN. Nonetheless, the 

results do reach statistical significance (at the usual 5% 

significance level) to allow a rejection of null hypothesis that 

the means of two groups are the same. Again, Table 2 also 

shows that using more features does not necessarily 

increase the capability to separate two groups. But in this 

case, the most informative features for separating two 

groups are associated with the inhomogeneity of the cells 

within the tissue and the spatial inhomogeneity of tissue 

around cervix (i.e. �̅� and ∆𝛼 ). From a histopathological 

perspective, this is reasonable. Inhomogeneity of the cells 

(i.e. cell diversity) within the tissue and the spatial 

inhomogeneity of tissue around cervix are the properties 

associated with the evolution of neoplasia, hence are 

features for detecting early sign in the measured EIS. Once 

the neoplasia becomes more severe and/or has transferred 

into HG CIN, in addition to cellular diversity, another 

property i.e. extracellular volume that determines �̅�0 

becomes the main property to differentiate between normal 

and cancerous tissues as previously described. 

 

Stratified cross-validation for classification model 

determination 

As discussed above, the problems to be solved in this study 

can be viewed as a binary classification problem, once the 

features to be used for classification are determined, 

classification models can be trained using the available EIS 

measurements. There are many machine learning algorithms 

that can be used to solve the classification problem. Logistic 

regression, an established and widely used classification 

method in medical/clinical data analysis [15] for disease 

diagnosis, was selected in this study to solve our problems of 

HG CIN detection and evaluating the prognostic value of EIS 

due to its simplicity and interpretability.  

Logistic regression is concerned with direct modelling 

the posterior probability 𝑃(𝐶1|𝒙)  that an instance belongs 

to a particular class or group 𝐶1 (e.g. women likely to have 

HG CIN for problem of HG CIN detection, or women likely to 

develop HG-CIN within follow-up years for problem of 

evaluating prognostic value of EIS) given the observed 

feature vector 𝒙 . In logistic regression, this posterior 

probability 𝑃(𝐶1|𝒙)  is modelled with the logistic function 

defined below [11]: 
 𝑃(𝐶1|𝒙) = 11 + 𝑒−𝑎(𝒙)                             (4) 

 

where 𝑎(𝒙) , in the basic form, is a linear function of 𝒙 

defined as:  
 𝑎(𝒙) = 𝜷𝑇 [1𝒙]                                      (5) 

 

and the regression coefficient vector 𝜷  (with up to 9 

elements i.e. 𝜷 = [𝛽0  𝛽1  𝛽2 ⋯ 𝛽8]𝑇  in this study) will be 

estimated from the training data. Classification using the 

above linear logistic regression model will result in a linear 

decision boundary (hyperplane 𝑎(𝒙) = [1 𝒙]𝜷 = 0 ) which 

does not have enough flexibility for classifying the data that 

is not linearly separable. However, it can easily be extended 

to obtain a non-linear decision boundary by using e.g. 

polynomial functions of the predictors. In general, 𝑎(𝒙) can 

be expressed as: 

 

 𝑎(𝒙) = 𝛽𝟎 + ∑ 𝛽𝑖𝜑𝒊(𝒙)𝒌𝒊=𝟏                      (6) 

 

where 𝜑𝑖(𝒙) (𝑖 = 1, ⋯ , 𝑘)  are some known (e.g. 

polynomial) functions of x. In such a case, 𝑎(𝒙) is still linear-

in-the-parameters and can actually be viewed as the linear 

logistic regression model in terms of new features/or 

predictors 𝜑𝑖(𝒙) (𝑖 = 1, ⋯ , 𝑘).  

        However, a major challenge for using the above model 

in this study is the determination of the model structure and 

evaluating the performance of the corresponding model 

with a class-imbalanced EIS data set of limited size. The 

problem is particularly severe in the data set used for the 

longitudinal study to evaluate the prognostic value of EIS, 

where the number of women who developed HG-CIN within 

three follow-up years in the whole population is very small 

(35 of 569). Hence simple partitioning of the data into two 

(i.e. training and test)  sets for building and validating model 

may not work as this is likely to result in substantially 

different class distributions between the training and test 

sets and even no HG-CIN sample at all in some sets. To 

overcome this difficulty, k-fold cross validation with 

stratified random sampling (see e.g. [12]) was used to 

evaluate the classification performance so as to determine 

the optimal model structure to be used in the final model, 

this includes determining the degree of the polynomial to be 
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used and the terms (i.e. 𝜑𝑖(𝒙)) to be included in the final 

model. For HG CIN detection, the size of available EIS data 

set is relatively large (1704), so 2-fold (training/testing) cross 

validation with stratified random sampling was applied to 

the data set, where one fold of size 1000 was used to train 

the classification model and another fold of size 704 was 

used to evaluate the classification performance of the 

trained model so as to determine the best model structure 

to be used. The two folds of data were constructed by first 

proportionately and randomly partitioning the original data 

in each class group into two subsamples, then merging a 

subsample from each class group to form a fold such that 

each fold contains roughly the same proportions of the two 

types of classes as in the original population. For the 

longitudinal study, 5-fold cross validation with stratified 

random sampling was used. Specifically, the original EIS data 

in each class group was randomly partitioned into 5 equal 

sized subsamples respectively. A fold was then constructed 

by merging a single subsample from each class group and 

this ensured that each fold contains roughly the same 

proportions of the two types of classes as in the original 

population (in this case, each fold will contain 7 women who 

developed HG-CIN) and the 5-fold cross validation procedure 

was then used to choose the best classification model to be 

used for evaluation of prognostic value of EIS for cervical 

cancer diagnosis. 

As can be seen, the logistic regression model defined by 

equations (4) and (6) is computationally simple. The 

posterior probability 𝑃(𝐶1|𝒙)  is expressed as an explicit 

function of the features, hence has good interpretability. 

This allows us to get a better idea about the relationship 

between the increased risk of having or developing HG-CIN 

and the changes in cervix tissue structure. 

 

Informed consent 

Informed consent has been obtained from all individuals 

included in this study.  

 

Ethical approval 

The research related to human use has been complied with 

all relevant national regulations, institutional policies and in 

accordance with the tenets of the Helsinki Declaration, and 

has been approved by the authors’ institutional review board 
or equivalent committee.  

 

Results 

Following the discussion in the last section, the area under 

the receiver operating characteristic (ROC) curve 

(abbreviated as AUC), a commonly used index for measuring 

the performance of classifier [16], together with the 

stratified k-fold cross validation procedure discussed 

previously, were used in this study for evaluating the 

classification performance of various logistic regression 

models so as to determine the final models to be used for 

HG CIN detection and evaluation of the prognostic value of 

the EIS respectively.  

 

Results for HG CIN detection  

The EIS device ZedScanTM has been developed as an adjunct 

diagnostic device to be used alongside colposcopy to provide 

an objective assessment of the cervical epithelial tissue in 

real time so that the colposcopist can take the ZedScan 

results into account when reaching their decision on patient 

management. With the current template matching method 

for HG CIN detection, the EIS device is programmed so that 

the threshold used for any given patient will depend upon 

the referral cytology result and also whether the 

colposcopist has identified the presence of HG CIN (i.e. 

colposcopic impression (CI), see [5]). In other words, the 

clinical information (i.e. referral cytology result and CI which 

can be viewed as two qualitative variables that taken values 

of either HG CIN or non-HG CIN) has been integrated into the 

template matching-based diagnostic decision making 

procedure when using ZedScanTM in clinic practice. The new 

logistic regression classification-based method for HG CIN 

detection developed in this paper will be used in a similar 

way with the same setting. Hence in addition to the 

quantitative features/predictors defined in (3), the 

qualitative clinical information mentioned above also need 

to be incorporated into the logistic regression model. This 

can be done with two dummy variables (denoted as CI and 

Ref hereafter) that take on two numerical values (e.g. 1= HG 

CIN and 0=non-HG CIN) and the full expression of 𝑎(𝒙) in the 

logistic regression model can then be re-written as: 
 𝑎(𝒙) = 𝛽𝟎 + ∑ 𝛽𝑖𝜑𝒊(𝒙)𝒌𝒊=𝟏 + 𝛽CI ∙ CI + 𝛽Ref ∙ Ref           (6)   

where 𝛽𝑖  (𝑖 = 1, ⋯ , 𝑘) are the coefficients associated with 

the terms derived from EIS readings, coefficients 𝛽CI  and 𝛽Ref  determine the strength of influence of the 

corresponding clinical information on the possibility of 

patient being HG CIN which, together with 𝛽𝑖  (𝑖 =0,1, ⋯ , 𝑘), will be learnt from the training data set.  

      Extensive studies have been carried out to evaluate the 

diagnostic performance of logistic regression models with 

different structures, i.e. the models constructed with 

different polynomial terms (up to degrees 3) of the selected 

features in 𝒙  using the stratified 2-fold cross validation 

procedure with a 1000/704 training/testing split described 

previously. To reduce the uncertainty in the performance 

estimates, the procedure was repeated 10 times for each 

model and a different splitting of the dataset into 2 folds was 

implemented (via random permutation of data points in two 

groups respectively) for each repetition. The AUCs of ROC for 

the testing data sets of each repetition were summarized in 

Table 3 below, where three models with the best mean AUC 

values over 10 repetitions for polynomial degrees 1, 2, and 3 

respectively are listed and the terms of the regression model 

are specified in the first row of the table.  
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Table.3: AUC values for testing sets from 10 repeated two-fold 

cross validation runs with three logistic regression models 

Repetitions �̅�0, �̅�, ∆𝑅0, CI, Ref �̅�02, �̅�2, ∆𝑅02, CI, Ref �̅�03, �̅�3, ∆𝑅03, CI, Ref 1 0.9127 0.9160 0.9165 2 0.9177 0.9178 0.9190 3 0.9013 0.9034 0.9045 4 0.9165 0.9210 0.9238 5 0.8830 0.8840 0.8858 

6 0.9206 0.9222 0.9230 

7 0.9164 0.9165 0.9172 

8 0.9053 0.9061 0.9075 

9 0.9122 0.9146 0.9155 

10 0.9181 0.9215 0.9222 

Mean AUC 0.9104 0.9123 0.9135 

  

It can be seen that the model corresponding to the 

Column 4 of Table 3 has the largest mean AUC value among 

three models, so the final model structure is specified by the 

first row of Column 4 and 𝑎(𝒙) in the final logistic regression 

model is then defined as: 
 𝑎(𝒙) = 𝛽𝟎 + 𝛽1�̅�03 + 𝛽2�̅�3 + 𝛽3∆𝑅03 + 𝛽CI ∙ CI + 𝛽Ref ∙ Ref   (7) 

 

Once the final model structure is determined, all the 

coefficients in (7) can be estimated using the entire 1704 EIS 

data and the resulting estimated coefficients and the 

associated p-values are summarized in Table 4. As can be 

seen in Table 4, at the usual 5% significance level, all 

coefficients can be considered as statistically significant. 

 

Table.4: Regression coefficient estimates and the associated 

p-values for the final logistic regression model 

 

To validate the new method for HG CIN detection 

developed above and to compare the performance of the 

new method with that of the template match method 

currently used, the new method with the final model (7) and 

coefficients given in Table 4 was applied to a new set of EIS 

data from Royal Free Hospital in London. The size of this new 

data set was relatively small with severe class-imbalance 

(17.12% of HG CIN), N= 111 patients. The ROC curve from 

new method is shown in Figure 3. For comparison, the ROC 

curves from the template match method currently used, as 

well as colposcopy only are also displayed in Figure 3, where 

the blue line is the ROC from the new method with the 

logistic regression model specified by equation (7) and 

AUC=0.83524; the red line was the ROC from template 

match method with AUC=0.81808. 

 
Fig.3:  ROC comparison between new method, template match 

method and colposcopy only. 

 

It can be seen that the new method can achieve similar 

performance as the template match method and both of 

them outperform colposcopy alone. Figure 3 shows a clear 

improvement in diagnostic performance when EIS is used 

(with either the new method developed in this paper or the 

current template match method) alongside colposcopy in 

comparison with colposcopy alone. 

 

Results for evaluation of prognostic value of EIS 

The research on the evaluation of prognostic value of EIS 

carried out in this paper is the continuation of the study 

presented in [10]. All the women in the study had a negative 

outcome at their initial colposcopy and were then followed 

up for three years. The main objective of the research was to 

see if we were able to identify any increased risk of HG-CIN 

developing over the follow-up years based on the EIS 

readings taken at the initial colposcopy so as to evaluate the 

prognostic value of EIS readings. 

 The stratified 5-fold cross validation procedure 

discussed previously was applied to the data set taken from 

569 women who had been followed up to three years so as 

to determine the final model to be used for evaluating the 

prognostic value of the EIS and the results were summarized 

in Table 5 and 6 below, where Columns 1 and 3 of these 

tables specify the feature combinations used for building the 

logistic regression models and columns 2 and 4 show the 

corresponding mean AUC values from 100 repeated 5-fold 

cross validation runs. A different partitioning of the dataset 

into 5 folds was implemented (via random permutation of 

data points in two groups respectively) for each run.  
 

Table.5: Mean AUC values from 100 5-fold cross validation runs 

with linear logistic regression models 

Feature 

combinations 

Mean AUC Feature 

combinations 

Mean AUC �̅�, ∆𝛼 0.5870 �̅�0, 𝛼, ∆𝛼 0.5723 �̅�, ∆𝑅∞ 0.5777 𝑓�̅� , 𝛼, ∆𝛼 0.5716 𝑓�̅� , �̅� 0.5745 �̅�, ∆𝑅0 0.5715 𝑓�̅� , ∆𝛼 0.5744 �̅�, ∆𝑓𝑐  0.5686 𝑓�̅� , ∆𝑅∞, ∆𝛼 0.5736 �̅�0, �̅� 0.5678 

𝜷 estimates p-values 𝛽𝟎 -2.9619 3.9518 × 10−32 𝛽𝟏 −7.4684 × 10−11 0.0047 𝛽𝟐 3.3987 0.0090 𝛽𝟑 3.0025 × 10−11 0.0044 𝛽CI 2.3621 3.9281 × 10−47 𝛽Ref 2.2241 5.8068 × 10−35 



Li et al.: Cervical cancer diagnosis using EIS. J Electr Bioimp, 12, 153-162, 2021 

160 

 

 Table.6: Mean AUC values from 100 5-fold cross validation runs with 

nonlinear logistic regression models 

Feature 

combinations 

Mean 

AUC 

Feature 

combinations 

Mean AUC �̅�2, ∆𝛼2 0.6103 𝑓�̅� , �̅�2, ∆𝛼2 0.5911 ∆𝛼, �̅�2 0.5992 �̅�02, 𝛼2, ∆𝛼2 0.5899 �̅�, ∆𝛼2 0.5989 ∆𝑅∞, �̅�2, ∆𝛼2 0.5895 �̅�2, �̅� ∙ ∆𝛼, ∆𝛼2 0.5946 ∆𝑅∞2 , �̅�2, ∆𝛼2 0.5891 𝛼, ∆𝛼, ∆𝛼2 0.5939 �̅�2, ∆𝑓𝑐 , ∆𝛼2 0.5885 

  

       Table 5 shows the ten linear combinations of features for 

building logistic regression models that have the largest 

mean AUC values among all possible linear combinations of 

8 features defined in (3). As can be seen from Table 5, 

including more features in the linear logistic regression 

model does not necessarily improve the classification 

performance and the best linear logistic regression model (in 

terms of mean AUC value) is constructed with �̅� and ∆𝛼. This 

is in agreement with the results obtained from the 

multivariate analysis of variance carried out previously. 

       Table 6 shows the ten nonlinear combinations of 

features for building the logistic regression models that have 

the largest mean AUC values among all possible nonlinear 

combinations of (up to the second order polynomial) 8 

features. Similarly, it can be seen from Table 6, using more 

features/or polynomial terms in the logistic regression 

model does not necessarily improve the classification 

performance and the best nonlinear logistic regression 

model (in terms of mean AUC value) is constructed with the 

polynomial terms �̅�2  and ∆𝛼2 , hence it has an ellipse 

decision boundary. Figure 4 below is the 2-D histogram of 

the feature data �̅� and ∆𝛼. It can be observed that the �̅�-∆𝛼 

data points from women who did not develop HG-CIN within 

follow-up years tend to be concentrated in an area relatively 

close to the origin; whereas the data points from women 

who did develop HG-CIN within follow-up years tend to be 

distributed over the outskirts of this area away from the 

origin which means that those women tend to have large �̅� 

or/and ∆𝛼 values. 

 

 
Fig.4: 2-D histogram of α̅-∆α data points from two groups 

 

         Once the “winning” model structure was determined, 

we could then train this model with the whole date set to 

finalize our classification model and determine the optimal 

operating point (OOP). In this case, the “winning” model was 

constructed with the polynomial terms �̅�2 and ∆𝛼2, so 𝑎(𝒙) 

in the final logistic regression model for evaluation of 

prognostic value of EIS was defined as: 
 𝑎(𝒙) = 𝛽𝟎 + 𝛽1�̅�2 + 𝛽2∆𝛼2                       (8) 
 

The OOP was chosen in this study such that Youden index 

[17] J=sensitivity+specificity-1 was maximized. This could 

readily be obtained from the ROC curve of the final model 

and the results are shown in Figure 5. 

 

 
Fig.5: An ROC curve of final model for separating two groups with 

OOP and the associated performance indices 

 

          In the previous study reported in [10], two single 

features derived directly from mean spectra of individual 

women, i.e. the impedance at 152Hz and the slope of the EIS 

spectra between frequencies 1.22 and 2.44kHz (used as a 

proxy for 𝛼), were respectively used to build a classifier for 

separating the two groups. The classification performance 

for the given data set of these two classifiers were compared 

with that of the new logistic regression classifier determined 

by equation (8) and the results were summarized in Table 7. 

 

Table.7: Classification performance comparison between the 

new classifier developed and the previous classifiers 

Classifier  AUC Sensitivity Specificity 

Logistic regression 

(�̅�2, ∆𝛼2) 

0.628 45.714% 82.022% 

Impedance at 152Hz 0.621 38.7% 83.4% 

Slope (between 1.22 

and 2.44kHz) as 𝛼 

0.596 45.2% 70.1% 

 

In Table 7, the sensitivity and specificity were calculated 

at the OOP determined from ROC curves of the 

corresponding classifiers. It can be seen from Table 7, 

overall, the performances from the logistic regression 

classifier developed in this paper and the previous classifiers 

are comparable, but the new classifier can achieve relatively 

balanced sensitivity and specificity. More importantly, with 
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the new classifier, the possibility of women who could 

develop HG CIN within follow-up years is expressed as an 

explicit function of the features  �̅� and ∆𝛼 via equation (8), 

this will allow us to associate the risk of developing HG CIN 

within follow-up years with the tissue structure change 

caused by the evolution of neoplasia. 
 

Discussion 

The two objectives of the research in this paper were: 1.) to 

develop a template-free EIS data analysis method for disease 

detection to enable the EIS–based techniques to be used for 

new areas of medical diagnosis where the template spectra 

are not available; 2.) In addition to being template-free, the 

developed method should also provide information on how 

the changes in cervical tissue structure/property due to 

disease could be reflected in the changes of the observed EIS 

spectra, this would ultimately help us to better-understand 

the mechanism that underpins the EIS-based disease 

detection. To achieve the first objective, a data-driven 

approach in combination with machine learning, or more 

specifically classification, techniques were employed in this 

study to develop the new EIS data analysis method. To 

achieve the second objective, a Cole model-based spectrum 

curve fitting approach was developed to extract features 

from EIS readings for classification and a logistic regression 

technique was used to build interpretable classification 

models for HG CIN detection and evaluation of prognostic 

value of EIS. This enabled us to associate the probability of 

HG CIN being present, or developing HG CIN later, with the 

change in tissue structure due to disease via Cole parameter 

estimates.  

      Two logistic regression models, as specified by equations 

(7) and (8), were developed using real service EIS data from 

the Jessop Wing Colposcopy clinic in Sheffield, one for HG 

CIN detection and another one for evaluation of prognostic 

value of EIS. With the logistic regression model specified by 

(7), the probability of HG CIN being present given the EIS 

readings is expressed as an explicit function of the features �̅�0 , �̅�  and ∆𝑅0 . This actually establishes some histopatho-

logally interpretable links between the probability of 

detecting HG CIN and the changes in tissue structures due to 

disease. For example, CIN leads to the increase in the 

extracellular space which, in turn, results in the decrease in �̅�0 (as the inverse of extracellular volume determines 𝑅0). As 𝛽1 (regression coefficient associated with  �̅�03) in equation (7) 

has a negative sign, this finally increases the probability of 

detecting HG CIN. Hence, this classification model provides 

us with useful information to understand how the changes in 

the tissue structure and properties could increase the risk of 

HG CIN being present.  

       The new method had been validated using a set of real 

EIS data from Royal Free Hospital in London and the 

classification performance was comparable to that of the 

template match method currently used with the EIS device ZedScanTM . This demonstrates the usefulness of the 

methodology and the associated core algorithms developed. 

As the new method is purely data driven, it can readily be 

extend to other areas of medical diagnosis where the 

template spectra are not available, e.g. oral cancer diagnosis 

[18].  In addition, it can be observed from Figure 3 that, 

though the new method and the template match method 

offer similar classification performance overall, there are 

some subtle differences. The new method tends to have a 

slightly higher specificity, whereas template match method 

tends to have a slightly higher sensitivity. Based on this 

observation, it might be possible to improve the overall 

diagnostic performance by combining or integrating two 

methods together. This can be done by taking the score from 

the template match method as an extra feature to build and 

train a new logistic regression model for classification. This is 

another research topic that is being carried out by the 

authors, but it is out of the scope of this paper. 

       The logistic regression model specified by equation (8) 

had been developed with the data set for evaluation of the 

prognostic value of EIS. It shows that the increased risk of 

developing HG CIN within follow-up years essentially 

depends on the handcrafted features �̅� and ∆𝛼, which are 

determined by the inhomogeneity of the cells within the 

tissue (i.e. the diversity of cell size and structure) and the 

spatial inhomogeneity of the tissue around the cervix. This is 

very reasonable as these are the features or properties 

associated with an evolving cervical neoplasia. Equation (8) 

actually verifies the speculation postulated in [10] that the 

increased risk of developing HG-CIN is associated with the 

increased diversity of cellular structures or inhomogeneity. 

Comparing models (7) and (8), we can see that once the 

neoplasia becomes more severe and/or has transferred into 

HG CIN, the extracellular volume that determines �̅�0 

becomes another important property to differentiate 

between normal and cancerous tissues.  

       A weakness in this study is that the classification 

performance with the model specified by equation (8) was 

not so great as can be seen in Figure 5 in comparison with 

that of Figure 3 for HG CIN detection. This is, in some extent, 

expected and in agreement with the previous result from 

multivariate analysis of variance because it is more difficult 

to identify early signs caused by the incipient change in tissue 

properties as neoplasia evolves at its early stage than to 

detect signs that caused by a severe neoplasia or HG CIN. 

Another contributing factor is the limited data set available, 

in particular, the small portion of women who developed HG 

CIN within the follow-up years in the study population. It also 

needs to be pointed out that the result presented in Figure 5 

is based on EIS only, it may be possible to further improve 

performance by incorporating some clinical information into 

the classification model as we did for HG CIN detection. 

Nevertheless, the results do reach statistical significance, 

hence EIS does contain prognostic information on evolving 

cervical neoplasia, which provides important information 
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that should be useful for the development of a practical 

patient management scheme following a negative 

colposcopy.  

       To sum up, the two main novelties of the methodology 

developed in this paper are: 1.) to introduce a Cole model-

based spectrum curve fitting approach to extract features 

from EIS readings for classification. This allows the increased 

risk of HG CIN being present or developing HG CIN to be 

associated with the changes in tissue structure due to 

disease and helps us to understand the underpinning 

mechanism of EIS-based disease detection. 2.) to introduce 

the maximum differences of the Cole model parameter 

estimates over all reading sites around the cervix as features, 

in addition to the Cole parameter estimates of the mean 

spectra. These maximum differences can be viewed as a 

measure for the spatial inhomogeneity of tissue around 

cervix and allow the small or incipient lesions to be detected. 

The signs due to these small or incipient lesions could be 

smoothed out by averaging or covered by diversity of 

conditions between individual patients, hence may be 

difficult to be detected using features derived from the mean 

spectra alone. 

     The single dispersion Cole equation had been used in this 

study for feature extraction. Because it appeared to be the 

case that EIS spectra taking from cervical tissue were 

dominated by a single dispersion. However, it needs to be 

pointed out that in other applications such as oral cancer 

diagnosis, there may be more than one identifiable 

dispersion. In such a case, it may be necessary to use a 

multiple dispersion Cole equation for feature extraction. 
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