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Abstract

Linear modal analysis is a useful and effective tool for the design and analysis
of structures. However, a comprehensive basis for nonlinear modal analysis
remains to be developed. In the current work, a machine learning scheme is
proposed with a view to performing nonlinear modal analysis. The scheme
is focussed on defining a one-to-one mapping from a latent ‘modal’ space
to the natural coordinate space, whilst also imposing orthogonality of the
mode shapes. The mapping is achieved via the use of the recently-developed
cycle-consistent generative adversarial network (cycle-GAN) and an assembly
of neural networks targeted on maintaining the desired orthogonality. The
method is tested on simulated data from structures with cubic nonlinearities
and different numbers of degrees of freedom, and also on data from an exper-
imental three-degree-of-freedom set-up with a column-bumper nonlinearity.
The results reveal the method’s efficiency in separating the ‘modes’. The
method also provides a nonlinear superposition function, which in most cases
has very good accuracy.

Keywords: Generative adversarial networks (GANs), cycleGAN, nonlinear modal
analysis, inductive biases.

1. Introduction

Many approaches have been followed throughout the years in order to perform
dynamic analysis of structures, the most dominant being modal analysis

[1]. The reason that modal analysis has proved so powerful is because it
provides a meaningful decomposition of the oscillations of a structure. The5

components of this decomposition, the modes, are independent, and each
one has its own dynamic characteristics, i.e. mode shape, natural frequency,
modal damping, modal mass, etc; providing the users with independent
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movements to study, and ways to isolate potential problems while designing
a structure. For linear structures, linear modal analysis is by far the most10

common method of analysis [2]. Both in modelling and at the experimental
level, modal decomposition of linear structural behaviour has been achieved
to a high level of accuracy. The scheme also provides a practical solution for
multi-degree-of-freedom (MDOF) systems by decoupling them into single-
degree-of-freedom (SDOF) systems, using an eigen-decomposition of the15

system matrices where the modes are related to eigenvectors and natural
frequencies related to the eigenvalues.

Apart from assisting in understanding the resonant behaviour of structures,
modal analysis also provides a convenient model reduction technique. Higher-
frequency modes absorb less energy from the excitation and so tend to affect20

the behaviour of the structure less; thus, they can quite often be omitted.
Under a such a framework, techniques, such as principal component analysis
(PCA) [3] and proper orthogonal decomposition (POD) [4], are similarly
followed with a view to identifying vibration modes from available data [5] and
to solve by projecting the algebraic systems onto a lower-dimensional vector25

basis. The aforementioned scheme is followed when one has no information
about the excitation and is often referred to as operational modal analysis

(OMA) or data-driven modal analysis.

Despite the fact that existing modal analysis methods are focussed on linear
systems, they are often used on structures with suspected nonlinearities.30

Modal analysis of structures, which may have structural elements with
nonlinear behaviour, is often plausible in cases of real structures, for some
range of external loads that does not suffice for the nonlineartities to affect
the behaviour of the structure. Consider the Duffing oscillator [6], which
has a cubic term in its differential equation. For small values of excitation35

force, the system may not exhibit notable nonlinear behaviour, making
linear analysis appropriate and sufficient. For MDOF systems with similar
nonlinearities, decomposition of the movement into modes may be achieved
in similar cases of low-force excitation, if there is a stable underlying linear
system; a necessary but not always sufficient criterion. Nevertheless, this is40

not always the case. Real-life structures exhibit nonlinear behaviour quite
often and linear modal analysis methods fail to define nonlinear modes of
vibration. Methods have been developed to deal with such issues [7], but only
achieve preservation of a subset of the properties of linear modal analysis
[8, 9].45

An approach to data-driven nonlinear modal analysis using machine learning
was proposed in [10] and [11]. The idea of structural independence, together
with a Shaw-Pierre concept [12] ansatz were used to motivate a new definition
of nonlinear normal modes (NNMs). In [10], a genetic algorithm was used
to define a decomposition of the displacements of various nonlinear systems50

2



into a modal space. With the objective function of the algorithm, a type of
orthogonality of the modes, via their statistical independence, was enforced.
The approach agreed with the POD in the limit of linear behaviour. The
results were encouraging and revealed that such an approach can decouple
NNMs from nonlinear systems more effectively than conventional linear55

decomposition methods. Although the approach presented in [10] yielded a
good modal decomposition for a two-degree-of-freedom simulated system with
cubic nonlinearity, the results were not as good for a three-degree-of-freedom
system with similar nonlinearity and for an experimental case. Moreover,
the best model selection was achieved ‘by eye’, since the objective function60

of the optimisation problem did not yield the best results in terms of mode
separation. Also, the nonlinear superposition function studied in [10] did not
yield satisfactory results.

In the current work, following the same machine learning framework and
defining an NNM using the same assumptions, an alternative approach is65

followed. Instead of trying to decompose the natural coordinate space into
modal coordinates, a mapping between the two is sought, using a predefined
modal space. In order to achieve the desired result, a recently-developed
algorithm is used, the cycle-consistent generative adversarial network (cycle-
GAN) [13]. The algorithm is used to define a forward mapping from the70

natural coordinate space to a modal space, as well as the inverse mapping,
to achieve (nonlinear) superposition of the modes. A great advantage of the
algorithm, as it will be described, is its invertibility property, so one has, as a
consequence, a smooth mapping from one space to the other. Furthermore, a
second neural network assembly is used that forces the transition from modal75

to natural coordinates to enforce the orthogonality of the mode shapes and
so to satisfy an NNM criterion. Compared to previous approaches, the new
method is a way of training both forward and backward mappings at the
same time and identifying the mapping that most efficiently separates the
structural movement into independent modes.80

The layout of the paper is as follows. Section 2 provides a brief introduction
to generative adversarial networks, to problems that arise when using them
and to the cycle-GAN algorithm and how it resolves some of these problems.
In Section 2.4, the layout of the neural network, which is used in parallel with
the cycle-GAN in order to maintain the desired orthogonality, is described.85

In Section 3 the proposed nonlinear modal analysis algorithm is described.
In Section 4, applications to simulated dynamical systems are presented,
together with an application to an experimental dataset. Section 5 considers
the inverse mapping and superposition of the modes. In Section 6 the
correlation of the modes is studied for two correlation metrics, a linear and90

a nonlinear metric. Finally, in Section 7, conclusions are drawn about the
method.
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2. Generative adversarial networks (GAN)

2.1. Vanilla GAN

A recent approach to machine learning is that of using generative models.95

Such models are able to learn the distribution of given data and generate
artificial data according to it. A trivial approach to the problem of generating
artificial data would be to define a Gaussian distribution using the mean
and the covariance of the data. Following such an approach, the normal
distribution could be used to generate artificial data. However, real data100

distributions are more complicated; for example, to cope with multi-modal
distributions, a kernel density estimate [14] could be calibrated according to
the data.

A more recent approach is to use a Generative Adversarial Network (GAN)
[15]. The algorithm was initially created to generate synthetic images that105

look real; i.e. the model learns how to embed figures into some latent space
and simultaneously how to generate data according to a proper distribution.
Apart from the main goal of the algorithm, a novel way of training neural
networks was introduced. Adversarial training is defined as a competition
between two neural networks. In the basic GAN, the first network is the110

generator, which tries to generate samples that look real and the second is
the discriminator, which tries to identify whether a sample comes from the
real dataset or is artificial.

Training is orchestrated as a competition between two networks. The dis-

criminator D is a network with an output representing the probability of115

its input sample x being real; i.e. Px∼pdata = D(x). Throughout training,
real and fake samples are introduced to the discriminator and using back-
propagation it becomes better at distinguishing samples from the real dataset
from generated/artificial samples. The discriminator essentially draws a
decision boundary around the manifold of the available data. On the other120

hand, the generator G takes as input a noise vector z from some pre-defined
probability distribution pz(z) and creates a sample G(z) in the feature space
of the dataset. Thereafter, the sample is passed through the discriminator
in order to decide whether it is real or generated. The probability of a
generated sample being real is given by D(G(z)). Forcing the generator to125

create samples that ‘fool’ the discriminator into classifying them as real (i.e.
minimisation of log(1 −D(G(z)))), results in creating samples/images that
look real. The optimisation problem based on an objective function V (D,G)
for the training of both networks is given by,

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]+Ez∼pz(z)[log(1−D(G(z)))] (1)
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where Ex∼pdata(x)[ ] is the mean value of the functions within the brackets [ ]130

with respect to the distribution pdata.

The layout of a basic GAN is shown in Figure 1. In practice, training is
performed in two steps. During the first step, a batch of samples is randomly
sampled from the dataset along with an equally-large batch sampled from
the generator. Training of the discriminator only is then performed using as135

target labels 1 (real) for the dataset samples and 0 (fake) for the generated
samples. During this step, the discriminator is trained to better distinguish,
real from fake samples. During the second step, the generator is trained,
while the parameters of the discriminator are held constant. For this step,
a batch of noise vectors are sampled and the two networks are connected140

together as shown in Figure 1. The second term of equation (1) is used alone
for training and the target labels for the output of the discriminator are 1s,
meaning that the generator should transform the noise vectors into samples
that the discriminator accepts as real.

Noise, z Generator

Generated
samples G(z)

Real
samples x

Discriminator Probability D(G(z))

Figure 1: Layout of a basic (vanilla) GAN in full assembly; the generator transforms noise
into generated samples and the discriminator attempts to distinguish between real and
generated samples.

GANs in structural dynamics can be used in order to generate artificial data;145

in cases where acquiring data from structures is expensive, this aspect of
GANs is useful and reduces the cost of recording data. GANs may also
be used in other ways, to learn mappings from one space to another. A
simple approach would be to learn a mapping from a latent space to a
high-dimensional space of data. One would hope that via such mappings,150

each latent variable would encode distinct features of the data, but this is
not usually the case; GANs tend to provide an entangled representation of
the data via their latent variables.

In order to illustrate the problem of the aforementioned entangled representa-
tion, a linear example borrowed from structural health monitoring (SHM) is155

presented. A GAN is used to map a two-dimensional Cartesian space to the
manifold formed by collecting frequency response function (FRF) samples of
a simulated system under various levels of damage. Given a lumped-mass
system as an example (Figure 2), and introducing two damage cases, one
for spring 1 and one for spring 2, samples of the FRF of the first degree of160

freedom can be collected (damage is simulated as a stiffness reduction [16]).
Performing a PCA on the dataset in order to visualise the data, the first three
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principal component scores of the dataset are shown in Figures 3a and 3b as
the blue semiopaque points. The variations applied were stiffness reductions
for the first and second spring in the interval [0%, 20%] and combinations165

according to the Cartesian product [0%, 20%] × [0%, 20%].

m1 m2 m3

F

k1 k2 k3

Figure 2: Three-degree-of-freedom mass spring system.

(a)

(b)

Figure 3: First three principal component scores of the dataset (blue). On the top, points
corresponding to constant damage for spring 1 and varying damage percentage for spring
2 (red), and points corresponding to constant damage for spring 2 and varying damage
percentage for spring 1 (green). In the bottom, GAN-generated samples (red and green)
by locking one latent variable to 0 and varying the other in the interval [−1, 1]; regular
GAN used.
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In Figure 3a, curves are shown, along which one of the damage parameters
is constant and the second varies. There are two damage parameters and no
other parameter varies during simulation, so the manifold is two-dimensional
and each curve is parametrised by one of the two damage parameters.170

After collecting the data, they are used to train a GAN. The noise vector is
a two-dimensional vector and the latent variables are drawn from uniform
distributions over the interval [−1, 1] and the output space is the three-
dimensional principal component space of the collected FRFs. As a universal
GAN cross-validation scheme does not exist, the GAN was trained according175

to the procedure followed in the original paper [15]. Using the trained
generator to output data by varying one latent variable at a time and keeping
the other constant, the resulting samples are shown in Figure 3b. It is clear
that a disentangled representation of the manifold has not been achieved,
since the green and red lines intersect. The algorithm is not expected to180

perform so, since there are no restrictions on how the latent variables are used
in order to generate artificial data. To achieve a disentangled representation
in the current work, the inductive bias of invertibility is enforced in the
mapping provided by the GAN.

2.2. Invertibility of the GAN185

In an attempt to avoid entanglement, as shown in Figure 3b, imposition
of the property of invertibility to a GAN is considered in the current work.
Given that a mapping is invertible, meaning that it is a bijective mapping
from one manifold to another, entanglement in Figure 3b would probably be
alleviated and the mappings should be smoother and more meaningful.190

Given a continuous bijection φ : M → N , where M and N are manifolds, it
is straightforward to show that if c1, c2 are curves in N , then φ−1 ◦ c1 and
φ−1 ◦ c2 are curves in M with the same number of points of intersection.
Considering φ : M → N and two curves c1, c2 ∈ N then φ−1 ◦ c1 = c′1 and
φ−1 ◦ c2 = c′2 are curves in M . For every parameter ti corresponding to the195

intersections of the two curves c1, c2, it stands that c1(ti) = c2(ti), which
leads to c′1(ti) = c′2(ti) because φ is a bijection. Therefore, c1 and c2 have the
same points of intersection as c′1 and c′2. Consequently, by introducing the
invertibility inductive bias in a GAN, helps to avoid mappings like the one
shown in Figure 3b, where two orthonormal axes from the latent variable space200

are mapped onto the entangled green and red lines. Enforcing invertibility
might force the GAN to more efficiently achieve a disentanglement of the
features of the data in the, not so rare, case that underlying parameters
affect the behaviour of the system in a different way (as in the SHM example
presented above) and the mapping from the parameter space to the feature205

space is a bijection.

In order to visualise the effects of imposing the property of invertibility on
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Figure 4: First three principal component scores of the dataset (blue) and cycleGAN-
generated samples (red and green) by locking one latent variable to various constant values
and varying the other the interval [−1, 1].

training of the GAN, the cycleGAN algorithm, which will be described in
detail, is applied on the same dataset. Similar plots of the results are shown
in Figure 4. It is clear that there is no entanglement of features present,210

in contrast to when training a regular GAN without any restrictions and
that the mapping from the two-dimensional noise to the three-dimensional
feature space is closer to the mapping shown in Figure 3a.

For modal analysis, invertibility is quite important. Firstly, it ensures a
bijective mapping, and therefore a unique encoding of every different state of215

the structure into a modal space. Secondly, securing an inverse mapping is
fundamental, since a way to perform superposition of the modes is desirable.
To satisfy the aforementioned criteria, the algorithm chosen herein is the
cycle-consistent generative adversarial network [13]. In the following sub-
sections, this variation of the GAN is presented, together with a way to220

induce the desired orthogonality of the modes in the mapping.

2.3. Cycle-GAN

The algorithm chosen to search for invertible mappings under the framework
of GANs, is that of the Cycle-Consistent Adversarial Network (cycle-GAN)
[13]. The algorithm was initially introduced as an attempt to transfer images225

from one style to another; for example, to transform photos into paintings in
the style of famous artists. What is interesting, is the way this is achieved;
the whole procedure is similar to defining an autoencoder [17], but in terms
of a GAN.

A cycle-GAN uses two generators (GX→Y and GY→X) and two discriminators230

(DX and DY ). Each pair of networks acts similarly to the classic GAN scheme.
The layout of a cycle-GAN is shown in Figures 5 and 6. The first generator
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learns to transform samples from domain X into samples of domain Y . If
used on images, the samples most probably live in the same space, but
in different regions or sub-manifolds. The second generator learns to map235

figures from domain Y back to domain X. More specifically, as shown in
Figure 5, the generator GY→X learns to map the sample generated by GX→Y

back to the original sample in domain X. Training is performed in two steps;
during the first step, the procedure from domain X to domain Y is followed
(Figure 5) and during the second, the opposite (Figure 6).240

Sample from Domain X,
zX

Generator X → Y
Sample from Domain Y ,

zY

Domain Y samples Discriminator, domain Y

Adversarial Loss

Generator Y → X
Reconstructed sample

from Domain X,
zX

Reconstruction
loss

Figure 5: Cycle GAN layout assembled in order to learn the mapping from domain X

to domain Y and back. Samples are converted from X to Y by the generator GX→Y .
The generated samples are used for adversarial training of the discriminator DY and the
generator GX→Y . Subsequently, the samples are inverse-mapped back to domain X via
generator GY →X and both generators are trained using the reconstruction-loss error.

Sample from Domain Y ,
zY

Generator Y → X
Sample from Domain X,

zX

Domain X samples Discriminator, domain X

Adversarial Loss

Generator X → Y
Reconstructed sample

from Domain Y ,
zY

Reconstruction
loss

Figure 6: Cycle GAN layout assembled in order to learn the mapping from domain Y to
domain X and backwards. Anti-symmetrical to the procedure shown in Figure 5.

In both steps, the adversarial loss L1 is computed, exactly as in the GAN
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scheme from,

L1(GX→Y , DY , X, Y ) = Ey∼py(y)[logDY (y)]+

Ex∼px(x)[log(1 −DY (GX→Y (x)))]
(2)

and accordingly for the inverse training step. The second type of loss used in
training - the reconstruction loss (cycle loss in the original work) - is given
by,

L2(GX→Y , GY→X) = Ex∼px(x)[‖GY→X(GX→Y (x)) − x‖n]+

Ey∼py(y)[‖GX→Y (GY→X(y)) − y‖n]
(3)

where ‖ ‖n is the nth order norm. In the original work, a first-order norm
was used, but in the current work, a second-order one yielded better results.

The total training loss is computed from,

L(GX→Y , GY→X , DX , DY ) = L1(GX→Y , DY , X, Y )+

L1(GY→X , DX , Y,X)+

λL2(GX→Y , GY→X)

(4)

where λ controls the relative importance between the adversarial loss and
the reconstruction loss (in the original work, a nominal value suggested is
λ = 10). The optimisation problem solved is,

G∗
X→Y , G

∗
Y→X = min

GX→Y ,GY →X

max
DX ,DY

L(GX→Y , GY→X , DX , DY ) (5)

In practice, training is performed in the two stages described by Figures 5
and 6, and each stage comprises three training steps. The first two steps are
similar to the GAN scheme described in Section 2.1. The newly-introduced245

third step is that of the reconstruction loss. Samples that change domain in
each stage via each generator, are mapped back to their original domain and
the reconstruction loss is computed. The error is back-propagated and both
generators’ trainable parameters are calibrated according to it.

Using this scheme instead of a vanilla GAN ensures the invertibility of the250

mappings and therefore the advantages discussed in the previous section.
The discriminators, for the purposes of the current work, have an auxiliary
role in the training procedure.

2.4. Orthogonality enforcement

Orthogonality constraints have been used in GANs before [18], with a view255

to dealing with mode (not in a structural modal analysis sense) collapse
problems [19]. Orthogonality may be considered as another inductive bias
that users impart in training, in order for the results to be closer to their
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physical understanding of the data. In some cases, orthogonality may assist
in achieving disentanglement of features. In the current work, orthogonality260

is a desired property of the modal analysis procedure. As described in
the next sections, the approach to be followed, using cycle GANs, assumes
domain X to be the natural coordinate space of the displacements of some
structure and domain Y the modal space. Under this framework, it is desired
that samples mapped from modal to natural coordinates be orthogonal when265

they correspond to different modes, enforcing the orthogonality of the mode
shapes.

Departing for a while from the modal framework and returning to GANs,
orthogonality enforcement means that “two vectors tangent to the latent
manifold and parallel to two of the axes of the latent space are, of course,270

orthogonal and shall remain orthogonal in the real space. A schematic
representation of the idea is shown in Figure 7. Trying to enforce this
behaviour in the generator, a new assembly of networks is defined with a
view to locally ensuring the orthogonality of the partial derivatives of the
mappings from the modal space to the real space. Mappings with such275

behaviour are called conformal or angle-preserving.

The layout of the assembly used to enforce orthogonality is schematically
shown in Figure 8. The goal is to maintain orthogonality of the grid of the
latent space into the real space. As shown in Figure 8, a random latent
point u1 is sampled. An axis/variable in the latent space is then chosen,280

and a small quantity ǫ is added to that latent coordinate to get the point

u
+
1a = u1 + {0, 0, ..., ǫ, 0..., 0}. In the same way, but by subtracting ǫ, yields

the point u
−

1a = u1 − {0, 0, ..., ǫ, 0..., 0}. Afterwards, another axis/latent
variable is chosen and the same procedure is repeated generating points

u
+
1b = u1 + {0, 0, ..., 0, ǫ, 0..., 0} and u

−

1b = u1 − {0, 0, ..., 0, ǫ, 0..., 0}.285

All these points are passed through the generator and their real space

counterparts are generated (y+
1a = G(u+

1a), y−
1a = G(u−

1a), y+
1b = G(u+

1b)

and y
−

1b = G(u−
1b)). Consequently, the vectors v1a and v1b are computed as

v1a = y
+
1a − y

−

1a and v1b = y
+
1b − y

−

1b . Finally, the inner product between
v1a and v1b is computed and divided by the quantity ‖v1a‖ ‖v1b‖ to get290

the cosine of the angle between the two vectors. Optimising the Generator’s
weights so that this quantity is as close to zero as possible will enforce
the desired orthogonality. The orthogonality assembly proposed is in fact
calculating the numerical gradient (in geometrical terms ∂

∂ui
). along two

different axes of a specific point in the manifold in the real space. In the295

case of modal analysis, as it will be described, if this bias is enforced in the
generator mapping from modal to natural coordinates, the orthogonality of
the mode shapes is ensured.
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Generator

Figure 7: Preservation of orthogonality of vectors by the mapping of the generator from the
source Cartesian space (x, y coordinate system) to the target manifold (u, v, w coordinate
system).

Point u1

u
+
1a = u1 + {0, 0, ..., ǫ, 0..., 0}

u
−

1a = u1 − {0, 0, ..., ǫ, 0..., 0}

Generator

Generator

u
+
1b = u1 + {0, 0, ..., 0, ǫ, 0..., 0}

u
−

1b = u1 − {0, 0, ..., 0, ǫ, 0..., 0}

Generator

Generator

y
+
1a = G(u+

1a)

y
−

1a = G(u−
1a)

y
+
1b = G(u+

1b)

y
−

1b = G(u−
1b)

v1a = y
+
1a − y

−

1a

v1b = y
+
1b − y

−

1b

a =
vT
1a

v
1b

‖v1a‖‖v1b‖

Figure 8: Orthogonality enforcement assembly using the generator that maps samples from
the source Cartesian space to the target manifold.
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3. Performing nonlinear modal analysis using a cycle-GAN

As described, the cycle-GAN provides a practical method for creating bijective300

mappings from a source domain to a target domain; this is useful for modal
analysis. Given a linear structure, mode shapes provide a representative
way of analysing the various independent ways (modes) that the structure
oscillates under some external load. The modes in such cases, can be used
to decompose any response of the structure into independent responses, each305

one referring to a different natural frequency. Unfortunately this is not the
case for nonlinear structures.

In linear structures, modal analysis can be performed either by eigenvalue
analysis of the structural parameters (mass and stiffness matrices), or in
an operational manner, via principal component analysis PCA [3] of the310

displacements (or accelerations) given by sensors placed on a structure; this
procedure in some cases coincides with linear modal analysis. For structures
with nonlinearities, these methods cannot be applied. PCA itself is a linear
method and therefore provides only a linear decomposition of the data.
Motivated by PCA’s data-driven scheme, an attempt to perform similarly315

data-driven nonlinear modal analysis was proposed in [10] and [11].

The decomposition in [10] aimed at maintaining the statistical independence
and orthogonality aspects of a modal analysis. More specifically, a genetic
algorithm was used to learn a decomposition of the displacements into latent
variables with correlation close to 0. The approach performed better than a320

linear PCA analysis of the data and, under the criteria of [10, 11], in the case
of a two-degree-of-freedom lumped-mass system with a cubic nonlinearity,
a very efficient decomposition into modes was achieved. However, as the
degrees-of-freedom of the systems increase, the algorithm seems to not
perform equally well, because the mapping was more complicated.325

A major drawback of the algorithm is that the maps used in order to perform
the decomposition are restricted to a fixed polynomial order. For example,
for a three-degree-of-freedom system, the equation used to transform the
physical coordinates {y1, y2, y3}

T into the corresponding modal {u1, u2, u3}
T

was,







u1
u2
u3







=





a11 a12 a13
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where aij , i, j ∈ {1, 2, 3} and bi,j , i ∈ {1, 2, 3}, j ∈ {1, 2..., 9} are the tunable
parameters that are optimised using the objective function,

J = |{A1} · {A2}|+|{A1} · {A3}|+|{A2} · {A3}|

+ Cor(u1, u2) + Cor(u1, u3) + Cor(u2, u3)

+ Cor(u31, u2) + Cor(u31, u3) + Cor(u32, u1)

+ Cor(u32, u3) + Cor(u33, u1) + Cor(u33, u2)

(7)

where Ai = {a1i, a2i, a3i}. The problem with the decomposition of equation
(6) is that it is a truncated polynomial, which is not a universal approximator.

The above objective function, aims at the orthogonality of the modal co-
ordinates and their statistical independence in the u space. In the current
work a different approach is followed. Instead of decomposing the dataset330

of displacements into a modal space, a mapping from a pre-defined latent
space to the observed dataset and back will be sought. Using the cycle-GAN
scheme, and considering domain X as the displacement domain and domain
Y as the modal domain, this composition is attempted. For the rest of the
paper, in order to use the same symbols as in [10], the physical domain and335

its corresponding coordinates will be Y and yi respectively and the ‘modal
space’ and coordinates will be U and ui respectively.

For the purposes of modal analysis and trying to impose the statistical inde-
pendence of the modal coordinates ui, they are chosen to be n-dimensional
random Gaussian vectors, with mean values equal to zero and correlation340

matrix equal to In which is an n-dimensional identity matrix. Using this
modal space, all correlation terms described as in equation (7) are expected
to be zero.

To help ensure the statistical independence of the modal coordinates, PCA
was applied to the physical coordinates before training the cycle-GAN. PCA345

is selected in order to minimise the initial correlations and because it is a
linear and easily-invertible transformation.

In addition to minimising linear correlations between modal coordinates,
PCA is expected to assist further. Assuming that the system’s response can
be decomposed in modes which are excited on a different level and contribute350

unevenly to the total movement, a scaling problem arises. The axes of the
modal space correspond to curves in the physical space. These curves, in
the linear case, are the (linear) axes of the ellipsoid, which is formed if one
plots points that correspond to displacements of the structure’s degrees-of-
freedom in the physical displacement space. By introducing nonlinearities355

to the system, the aforementioned ellipsoid is deformed and its axes are
no longer lines, they become curves. The algorithm proposed is called to
find a mapping φ, which maps the axes of the predefined modal coordinates
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onto the deformed-by-the-nonlinearity axes of the aforementioned ellipsoid.
Because every mode contributes on a different level to the total motion of360

the structure, some of these axes are longer than others. By performing
PCA, the coordinate system is rotated so that the axes’ variance are in
descending order. Subsequently, by scaling every coordinate of the samples
in the interval [−1, 1], as needed for the neural networks to perform, it is
expected that the axes representing each mode will be scaled almost similarly,365

facilitating the task of the cycle-GAN; i.e. defining a mapping from the modal
coordinates to the physical coordinates.

By optimising with a target value of zero for the cosine computed in the
rightmost block of computation in Figure 8, distinct modal coordinates
are forced to generate samples in the physical space that are orthogonal370

to the ones generated by different mode variables; this way imposing the
orthogonality of the mode shapes and maintaining locally the orthogonality
of the aforementioned curved axes in the real space. The major advantage
of the proposed cycle-GAN approach is that, since the neural networks
concerned can approximate any function [20], it is not restricted by the order375

of the terms used in equation (6). Furthermore, the inverse mapping provides
the nonlinear superposition mapping required for the sake of completeness of
the method. In the next sections, applications of the algorithm on simulated
and experimental data are presented.

4. Case studies380

As in [10], a two-degree-of-freedom system was studied first. In every sim-
ulated case study here, the physical system is a lumped-mass system as
shown in Figure 9. The parameters of the model are the same as in [10], i.e.
m = 1.0, c = 0.1, k = 10, k3 = 1500. The equations of motion of the system
are,

[

m 0
0 m

]{

ÿ1
ÿ2

}

+

[

2c −c

−c 2c

]{

ẏ1
ẏ2

}

+

[

2k −k

−k 2k

]{

y1
y2

}

+

{

k3y
3
1

0

}

=

{

F

0

}

(8)

The excitation was Gaussian white noise with zero mean and standard
deviation 5.0, low-pass filtered onto the frequency interval [0, 50] Hz. For
every system, two datasets of 100000 points were generated using differently-
seeded random excitations. The first dataset was used for training and model
selection and the second for testing the efficiency of the algorithm, as well as385

for the power spectral density (PSD) functions presented. The PSDs were
calculated using Welch’s method [21].

For every case study, the generators used for the cycle-GAN were three-
layered neural networks, since they are proven universal approximators [22].
All tested neural networks had an input and an output layer, both with390
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Figure 9: Two degree-of-freedom mass-spring system.

neurons equal to the dimension of the problem and a hidden layer whose size
was optimised by training networks with different sizes and picking the best
according to an inner product criterion described in the next paragraphs.
The hidden layer sizes used belonged to the set {50, 60, ...190, 200}. For every
size, 20 random initialisations of the neural networks were performed. The395

large number of initialisations is determined by the obvious sensitivity of
the algorithm to the initial placements of the principal axes on the target
manifold. Moreover, for every generator hidden layer size, the corresponding
discriminator had the same hidden layer size. This was done in order to
allow both networks to act on the same latent space and in order to reduce400

the hyperparameters by inducing such a symmetry to the algorithm. The
activation functions that performed best were hyperbolic tangent for the
hidden layer and linear for the output layer, which is actually the best
practice for regression problems. As proposed in [13], the value of the λ

parameter from equation (4) is set to 10 and the training algorithm was the405

Adam optimiser [23].

In each case study, the best model was selected as the one that minimised
the average cosine between every combination of PSD vectors in the la-
tent space ((PSD1, PSD2) for the two-dimensional case, (PSD1, PSD2),
(PSD1, PSD3), (PSD2, PSD3) for the three-dimesional, etc.). The equation
describing the model selection criterion is defined by,

Lcos =

ndof
∑

i=1,j=i+1

PSDi · PSDj

‖PSDi‖ ‖PSDj‖
(9)

where ndof is the number of degrees of freedom of the system. The cosine
criterion is an attempt to imitate the ‘by eye’ way of choosing the best
model based on the isolation of modes in the PSDs. It is not identical, since
minimisation of the dot product could be achieved if every PSD was equal410

to zero for every frequency, except for one; however, it is expected that this
will not be the case, because of the orthogonality restriction applied. Model
efficiency testing was performed every 100 epochs of training. The quantity
in equation (9) cannot go to zero, since damping forces some of the energy
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in the PSD to concentrate in frequencies around the natural frequencies;415

nevertheless, it is a convenient measure of separation of the modes.

Throughout the rest of the paper, in order to keep a similar format to [10],
PSDs referring to physical coordinates will be drawn with a blue colour,
PSDs referring to modal components (or PCA components for the case of the
experimental data) will be drawn using a black colour and PSDs referring420

to latent components of the cycle-GAN approach, presented herein, will be
drawn in a red colour.

4.1. Two-degree-of-freedom system

The described procedure was initially followed for a two-degree-of-freedom
simulated lumped mass system with a cubic nonlinearity (Figure 9). The425

PSDs of the physical degrees of freedom are shown in Figure 10. The
nonlinearity is clearly affecting the PSD1. A spreading towards higher
frequencies is clear in the second mode. Linear natural frequencies are the
ones at which the structure absorbs the most energy and are proportional to
the stiffness of the structural members. As the nonlinear member in this case430

is hardening, there are time instants during its movement that its stiffness
is higher because of the higher value of displacement of the first degree of
freedom, leading to the natural frequencies and energy in the PSD being
spread towards higher frequencies. The movement in this case is clear if one
considers the natural frequencies of the underlying linear problem, which are435

0.5 Hz and 0.87 Hz.

Using the cycle-GAN to decompose the displacements into modal coordinates,
the model that yielded the best results had 100 units in its hidden layer.
The effect of the decomposition performed by that model is shown in the
bottom PSDs in Figure 11. For comparison, the PCA decomposition, which440

in this case coincides with linear modal analysis, is shown on the top row
of the same figure. As expected, linear modal analysis cannot decouple the
modes, because of the nonlinearity. In contrast, the cycle-GAN algorithm is
able to efficiently do that. The result is very similar to that using the SADE
algorithm in [10].445

The results of this case study, which can be considered a benchmark, are
encouraging. The large size of the hidden layer might be a result of selecting
the best model, having as the single criterion, the inner product in equation
(9). Smaller networks might also perform well. If one is concerned about the
complexity of the model, a second criterion can be considered along with450

the inner product for the procedure of model selection. The algorithm is
subsequently tested on larger systems and also on an experimental system.

4.2. Three-degree-of-freedom system

In order to test the method on a three-degree-of-freedom system, a third
mass was added to the system shown in Figure 9, connected to the second455
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Figure 10: PSDs of two-degree-of-freedom structure; physical coordinates.
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Figure 11: PSDs of two-degree-of-freedom structure, linear modal decomposition (top) and
cycle-GAN decomposition selected via the inner product criterion (bottom).
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mass and the ground with a linear spring with k = 10 and c = 0.1. Exactly
the same procedure was followed. The PSDs for the physical coordinates
are shown in Figure 12. The natural frequencies of the underlying linear
system are 0.39 Hz, 0.71 Hz and 0.93 Hz and again the spread and the
movement because of the nonlinearity are seen. The best model for the460

current case study had 110 hidden units and the decomposition provided by
the algorithm in terms of PSDs is shown in the bottom row of Figure 13.
Again, for comparison, the linear modal/PCA coordinate PSDs are shown in
the top row. The decoupling of the modes is clear. In every PSD a different
peak is dominant and only small effects of other modes are present.465
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Figure 12: PSDs of three-degree-of-freedom structure; physical coordinates.
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Figure 13: PSDs of three-degree-of-freedom structure, linear modal decomposition (top)
and cycle-GAN decomposition selected via the inner product criterion (bottom).
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4.3. Four-degree-of-freedom system

For the case of a four-degree-of-freedom system (which was not studied in
[10]), it was noted that a larger value for the nonlinear stiffness parameter k3
was needed in order for the structure to exhibit strongly-nonlinear behaviour;
therefore, k3 was increased to 3000 for this case study. In this case the model470

that had the best performance was a neural network with 100 neurons in
its hidden layer. The PSDs of the four displacements are shown in Figure
14. The natural frequencies of the underlying linear system are 0.31 Hz, 0.59
Hz, 0.81 Hz and 0.96 Hz but again a movement and a spreading towards
higher frequencies is observed. In the first PSD, four peaks are clearly seen.475

It is expected from the decomposition to have single peaks for every modal
coordinate PSD. Using a linear modal decomposition, single peaks are not
achieved, as seen in Figure 15 in the PSDs of the third and the fourth modal
coordinates. However, using the proposed algorithm, in Figure 16, a single
peak can be seen as dominant in every modal coordinate PSD.480
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Figure 14: PSDs of four-degree-of-freedom structure; physical coordinates.

4.4. Three-degree-of-freedom experimental system

The experimental set-up for the data used in the current work was the one
described in [24]; the experimental structure is shown in Figure 17. The
structure was tested in 17 different states some of them being considered
damaged and some not. The different states and their description are shown485

in Table 1. Particularly interesting are the states 10-14. In these states,
a column between the second and the third floor is placed near a bumper,
introducing a nonlinearity into the system in the form of bilinear stiffness.
Each state has a different value for the gap between the column and the
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bumper (from 0.20mm to 0.5mm). For the analysis here, the data from State490

12 were used, where the gap was 0.13 mm, as well as from State 14, where
the gap was 0.05 mm. The latter case was severely nonlinear because of the
more frequent collisions. These cases may be considered harshly nonlinear
compared to the smooth nonlinearities of the simulated case studies. The
structure had four sensors recording accelerations, one on the base and495

one on each floor. For the current work, the displacements of the three
floors are used, considering the base acceleration as the excitation (as in an
earthquake).
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Figure 15: PSDs of four-degree-of-freedom structure, linear modal decomposition coordi-
nates.
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Figure 16: PSDs of four-degree-of-freedom structure selected via the inner product criterion,
cycle-GAN latent variables.
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Figure 17: Experimental set-up of three-floor and the bumper nonlinearity between the
second and third floor shown in the dashed box [24].
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Label
State

Condition Description

State #1 Undamaged Baseline condition
State #2 Undamaged Added mass (1.2 kg) at the base
State #3 Undamaged Added mass (1.2 kg) on the 1st floor
State #4 Undamaged Stiffness reduction in base front column
State #5 Undamaged Stiffness reduction in base front and rear

column
State #6 Undamaged Stiffness reduction in 1st floor front column
State #7 Undamaged Stiffness reduction in 1st floor front and

rear column
State #8 Undamaged Stiffness reduction in 2nd floor front col-

umn
State #9 Undamaged Stiffness reduction in 2nd floor front and

rear column
State #10 Damaged Gap (0.20 mm)
State #11 Damaged Gap (0.15 mm)
State #12 Damaged Gap (0.13 mm)
State #13 Damaged Gap (0.10 mm)
State #14 Damaged Gap (0.05 mm)
State #15 Damaged Gap (0.20 mm) and mass (1.2 kg) at the

base
State #16 Damaged Gap (0.20 mm) and mass (1.2 kg) at the

1st floor
State #17 Damaged Gap (0.10 mm) and mass (1.2 kg) at the

1st floor

Table 1: Description of different states of the experimental set-up [24].

4.4.1. Experimental data: State 12500

Similar to the simulated examples, the PSDs of the signals of the three
sensors are shown in Figure 18. The PSDs in the specific figure are computed
from one out of 50 experiments performed corresponding to State 12. Three
peaks can clearly be seen. For the rest of the experimental case studies
presented, the PSDs are calculated as the average PSD of the 50 experiments505

performed.
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Figure 18: PSDs samples of three-floor experimental structure, physical coordinates of
state 12.

Training the cycle-GAN using the accelerations from all 50 experiments, the
decomposition achieved is shown in the bottom plots of Figure 19. The
model that yielded the results shown had 100 nodes in its hidden layers.
The decoupling of the modes is clear. Each latent variable corresponds510

to a different mode and the algorithm performs better than using a PCA
decomposition (shown in the top row of the same figure). Each latent
variable’s PSD has a clearly dominant peak. In the first, and especially in
the second, plot of the PCA decomposition PSDs, the modes are coupled
and none is dominant.515

4.4.2. Experimental data: State 14

Following the same procedure, using the State 14 data (whose natural coordi-
nates PSDs are shown in Figure 20), the results of the modal decomposition
are shown in Figure 21. The comparison between the cycle-GAN decomposi-
tion and the PCA decomposition clearly indicate that the former has achieved520

better results. The separation of the modes is almost perfect compared to the
PCA case, where the yielded coordinates clearly do not achieve any modal
separation.
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Figure 19: PSDs of three-floor experimental structure, PCA decomposition (top) and cycle
GAN decomposition selected via the inner product criterion (bottom); state 12.
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Figure 20: Average PSDs of three-floor experimental structure, physical coordinates of
state 14.
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Figure 21: PSDs of three-floor experimental structure, PCA decomposition (top) and cycle
GAN decomposition selected via the inner product criterion (bottom); state 14.

5. Superposition

The second essential part of modal analysis is the superposition step. For525

linear modal analysis, superposition is defined simply as the summation of
the displacements that correspond to each mode. In the case of nonlinear
modes, clearly it cannot be that simple. A nonlinear superposition function
has to be defined in order to map coordinates from the modal space back to
the physical. Definition of a superposition function, in the current work, is a530

major addition to the method compared to [10, 11].

Since the cycle-GAN was used, this mapping has already been defined. The
inverse mapping is the goal of the second generator. The second generator
has been trained in parallel with the generator that was used to decompose
the movement of the structure into the modal space. Subsequently, the535

performance of the inverse mapping for the presented case studies is shown
and discussed.

For each case study, the superposition mapping is provided by the generator
GU→Y . The generator selected is taken from the same training epoch as the
forward mapping generator GY→U . To evaluate the superposition efficiency,
a normalised mean-square error (NMSE) for each reconstruction is computed
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by,

NMSE =
100

Nσ2
y

N
∑

i=1

(ŷi − yi)
2 (10)

where N is the total number of displacements samples, σ2
y is the variance

of the displacements, yi is the real recorded displacement and ŷi is the
superposition provided by GY→U (GU→Y (y)). The NMSE in each case study540

is computed using all the displacement samples from every degree of freedom
of the systems. The NMSE is a convenient measure of error in regression
problems, since it provides an objective measure of the accuracy, regardless
of the scale of the data. NMSE values close to 100% indicate that the model
does no better than simply using the mean value of the data, while the lower545

the value the better the model is calibrated. From experience, values of
NMSE lower than 5% indicate a well-fitted model, and values lower than 1%
show an excellent model.

5.1. Superposition for the two-degree-of-freedom system

Part of the results of superposition for the two-degree-of-freedom system are550

shown in Figure 22. The inverse-mapping function provided by the generator
GY→U is very accurate; This is confirmed by the NMSE value, which for this
case is 0.46%.

18000 18500 19000 19500 20000 20500 21000 21500 22000

Time step

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

Di
sp

lac
em

en
t

Figure 22: Superposition/inverse modal transformation for the two-degree-of-freedom
system (red) and original displacements (blue).

5.2. Superposition for the three-degree-of-freedom system

For the three-degree-of-freedom system, some results are shown in Figure 23.555

The inverse mapping this time seems a little less accurate visually; however,
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the NMSE value for this case is still only 0.294%.
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Figure 23: Superposition/inverse modal transformation for the three-degree-of-freedom
system(red) and original displacements (blue).

5.3. Superposition for the four-degree-of-freedom system

For the four-degree-of-freedom system, some results are shown in Figure
24. The NMSE value for this case is 1.92%. This error is higher than the560

previous cases, but still implies a good inverse mapping.
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Figure 24: Superposition/inverse modal transformation for the four-degree-of-freedom
system(red) and original displacements (blue).
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5.4. Superposition for the experimental system

5.4.1. Experimental data: State 12

For the State 12 of the experimental system, some results are shown in Figure
25; the NMSE value for this case is 1.23%.565
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Figure 25: Superposition/inverse modal transformation for the experimental system(red)
and original displacements (blue), state 12.

5.4.2. Experimental data: State 14

For the State 14 of the experimental system, some results are shown in Figure
26. The NMSE value for this case is 10.93%. Clearly the performance of
the algorithm is not as good as in the previous examples. This might be
explained by the harsh and highly-nonlinear nature of this final state of the570

experimental set up.

6. Modal correlation study

In a previous section it was mentioned that modal coordinates are expected
to be independent, since the modal space is pre-defined as sampling from
variables Y ∼ N (µ, In). However, the algorithm is searching for a mapping575

from the modal space to the natural without any constraint regarding which
samples of the modal space to use. At the same time, the algorithm has to
balance three types of losses (adversarial, reconstruction and orthogonality),
and may result in overlooking one of them in some degree. The adversarial
loss, as discussed, enforces the statistical independence of the modal coordi-580

nates and, if overlooked in some degree, the result may be that the modal
coordinates are correlated. In the current section, a further study of the
correlation of the modal coordinates is performed.
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Figure 26: Superposition/inverse modal transformation for the experimental system(red)
and original displacements (blue), state 14.

6.1. Linear correlation

The most simple case of correlation measure here will be Pearson’s correlation585

coefficient, which for a pair of random variables (X,Y ) is given by,

ρX,Y =
E[(X − µX)(Y − µY )]

σXσY
(11)

where µX , µY are the mean values of X and Y respectively, E[ ] is the expected
value of the quantity in brackets and σX , σY the standard deviations of
X and Y . The correlation coefficient ρ takes values in the interval [−1, 1].
Values closer to −1 and 1 mean that the samples are highly correlated, while590

values closer to 0 mean that the two random variables are less correlated (in
a linear manner).

Using such a correlation measure between observations of two variables
reveals only potential linear dependency between the variables. For linear
modal analysis, such a measure is minimised for the modal coordinates.595

Since linear modal analysis is equivalent to PCA, this is an expected effect of
the transformation. Therefore, to study correlation in the case of nonlinear
modal analysis, a nonlinear correlation measure should also be used.

6.2. Nonlinear correlation

The correlation measure selected here to study the nonlinear modes is distance
correlation [25]. The distance correlation can be thought of as a generalisation
of Pearson’s correlation coefficient, and is a way of detecting higher-order
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correlations between data. In order to calculate the distance correlation for
two random variables (X,Y ), two distance matrices A and B have to be
defined. To do this, elements αj,k and βj,k are first defined by,

αj,k = ‖xj − xk‖ , k, j = 1, 2, ..., n

βj,k = ‖yj − yk‖ , k, j = 1, 2, ..., n
(12)

where n is the number of observations. Subsequently, the matrices A and B

are computed as,

Aj,k = αj,k − ᾱj· − ᾱ·k + ᾱ··, k, j = 1, 2, ..., n

Bj,k = βj,k − β̄j· − β̄·k + β̄··, k, j = 1, 2, ..., n
(13)

where ᾱ·k is the mean value of the kth column, ᾱj· the mean of the jth row
and ᾱ·· the mean value of all α elements. Having computed the two matrices,
the distance covariance is given by,

dCov2(X,Y ) =
1

n2

n
∑

j=1

n
∑

k=1

Aj,kBj,k (14)

Defining as distance variance the distance covariance of a variable to itself
(dV ar2(X) = dCov2(X,X)) the distance correlation is calculated by,

dCor(X,Y ) =
dCov(X,Y )

√

dV ar(X)dV ar(Y )
(15)

The distance correlation measure is bounded in the interval [0, 1]. Lower600

values indicate independence of the random variables while higher values
indicate higher dependence. In the following subsections, both correlation
metrics will be computed for the modal coordinates defined by the algorithm
proposed here.

6.3. Correlation in the case studies605

6.3.1. Correlation of the two-degree-of-freedom modes

Calculating the correlation coefficients for the modal coordinates of the two-
degree-of-freedom system, the results are plotted in a ‘heat-map’ coloured
matrix in Figure 27. On the diagonal, obviously, the correlation coefficients
are equal to 1 since they are the autocorrelation coefficients of the modal610

coordinates. The values of the coefficients between the two modes are
quite low indicating that independence of the modes has been achieved to a
satisfactory degree.
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Figure 27: Pearson’s linear correlation coefficient (left) and distance correlation coefficient
(right) of the modal decomposition computed for the two-degree-of-freedom system.

6.3.2. Correlation of three-degree-of-freedom modes

For the three-degree-of-freedom system, the correlation coefficients are shown615

in Figure 28. In this case the correlation coefficients are also quite low.
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Figure 28: Pearson’s linear correlation coefficient (left) and distance correlation coefficient
(right) of the modal decomposition computed for the three-degree-of-freedom system.

6.3.3. Correlation of four-degree-of-freedom modes

For the four-degree-of-freedom system, the correlation coefficients are shown
in Figure 29. The correlation coefficients for this case also appear to be low
enough to assume that the modal coordinates are basically uncorrelated.620
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Figure 29: Pearson’s linear correlation coefficient (left) and distance correlation coefficient
(right) of the modal decomposition computed for the four-degree-of-freedom system.

6.3.4. Experimental data: State 12

For the State 12 of the experimental system, the correlation coefficients are
shown in Figure 30. Again, the distance correlation and Pearson’s correlation
coefficient have low values.
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Figure 30: Pearson’s linear correlation coefficient (left) and distance correlation coefficient
(right) of the modal decomposition computed for the experimental system.

6.3.5. Experimental data: State 14625

For the State 14 of the experimental system, the correlation coefficients are
shown in Figure 31. This time the correlation values are higher than before;
this might also be the result of the highly-nonlinear system. The highest
correlation is observed between the first and the second modal coordinates.
It can also be explained by energy observed in the PSD of the second modal630

coordinate (Figure 21) close to the frequencies of the first mode.
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Figure 31: Pearson’s linear correlation coefficient (left) and distance correlation coefficient
(right) of the modal decomposition computed for the experimental system.

7. Conclusions

An algorithm was described as an alternative of the framework developed in
[10]. The algorithm aims at performing data-driven nonlinear modal analysis.
The concept on which the nonlinear modal analysis is based is that of decom-635

position into SDOF systems. However, instead of decomposing the target
dataset of displacements (or accelerations) into a modal space, a mapping
from a pre-defined modal space onto the dataset is attempted. Both forward
and backward mappings are learnt using a cycle-GAN model. In contrast to
the classic application of such a model, a restriction of orthogonality is also640

imposed here. This restriction corresponds to the orthogonality of the mode
shapes. Moreover, a model selection criterion different to the loss function
used during training, based on the inner product of two PSDs, is used to
pick the model that separates the modes most efficiently.

The selection criterion, apart from selecting the model that best separates645

the modes, is also expected to implicitly minimise the correlation of the
modes. Given that a modal variable reacts only to some interval of fre-
quencies that is not overlapping with the rest of the modal coordinates, its
statistical correlation with the rest of the modal variables is minimised. The
minimisation of the correlation is also implicitly imposed via the adversarial650

training. The target distribution of the generator, which transforms from
natural coordinates to modal, is a multivariate Gaussian with diagonal cor-
relation matrix. The adversarial training is forcing the generator to generate
samples with similar distribution and therefore with correlation between
modal coordinates close to zero.655

Via three simulated case studies and two experimental, the performance of
the algorithm was illustrated. The proposed model was able to decouple
modes in two, three and four degree-of-freedom systems with cubic stiffening
nonlinearities and also in two bilinear (bumper column) experimental cases.
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The main reason that the algorithm performs better than the algorithm660

proposed in [10] is probably that there are no restrictions on the polynomial
order of the composition (or decomposition) function used or on the objective
function.

Parallel to the training of the decomposition, the superposition function is
also trained and as illustrated, yields accurate results (below 2% normalised665

mean square error, except for the second experiment, implying very good
accuracy models); thus providing a solution to invertibility problems in [10].
The second generator can be used to map from the modal space to the natural
coordinate space. The only case that a higher error in the superposition
function was observed was the most nonlinear experimental case. The670

nonlinearity in the latter case is imposed by the bumper and the column
defining a bilinear nonlinearity. When the bumper is too close to the column
and too close to the equilibrium point, the nonlinearity is also imposed by
the striking of the two elements, which causes sudden energy dissipation
and non-proportional damping, as well as additional vibration components675

to the structure. Nonlinearity on non-proportional damping might require
considering also the velocity variables within the algorithm, in order to
achieve a more efficient decomposition. The problem might also be that the
algorithm did not have enough data to satisfy all the constraints imposed
during training (adversarial loss, orthogonality loss and reconstruction loss)680

given how highly and non-smoothly (sudden stiffness change and energy
dissipation) nonlinear the case is. In any case, if the accuracy is not sufficient,
one can train a separate regression algorithm (for example a Gaussian process
or a regression neural network), in order to define a superposition function.

Two correlation coefficients (Pearson’s correlation coefficient and the distance685

correlation) are calculated for the modal coordinates that were computed
by the algorithm. The values of the coefficients seem to confirm the initial
assumption, that the a priori selection of a modal space and the application
of PCA on the physical coordinates forces the modal coordinates to be
uncorrelated. Regarding the correlations, again in the most nonlinear case690

higher values of the correlation metrics were observed. The high correlation
might be the result of lack of data as well as the largely nonlinear system
in combination with a non-smooth nonlinearity. The distance correlation is
used because Pearson’s correlation can be ‘fooled’ by nonlinear correlations.
The distance correlation cannot be tricked by higher-order correlation and695

this is verified by the values on the off-diagonals that are generally higher
than the corresponding Pearson’s correlation.

In total, the proposed algorithm solves most of the problems that remained in
[10]. The algorithm is able to perform for higher-degree-of-freedom systems
than the one presented in [10] and also for the experimental data. Moreover,700

the dot product criterion presented replaces the ‘by eye’ selection of the model
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that best separates the modes. The problem of superposition is also solved,
since by using the cycle-GAN algorithm, the superposition function is trained
in parallel. Finally, the modal coordinates seem to have low correlation values
except for the harshly-nonlinear case, an issue that remains to be solved.705
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[25] G. J. SzéKely and M.L. Rizzo. The distance correlation t-test of indepen-
dence in high dimension. Journal of Multivariate Analysis, 117:193–213,
2013.

38


	Introduction
	Generative adversarial networks (GAN)
	Vanilla GAN
	Invertibility of the GAN
	Cycle-GAN
	Orthogonality enforcement

	Performing nonlinear modal analysis using a cycle-GAN
	Case studies
	Two-degree-of-freedom system
	Three-degree-of-freedom system
	Four-degree-of-freedom system
	Three-degree-of-freedom experimental system
	Experimental data: State 12
	Experimental data: State 14


	Superposition
	Superposition for the two-degree-of-freedom system
	Superposition for the three-degree-of-freedom system
	Superposition for the four-degree-of-freedom system
	Superposition for the experimental system
	Experimental data: State 12
	Experimental data: State 14


	Modal correlation study
	Linear correlation
	Nonlinear correlation
	Correlation in the case studies
	Correlation of the two-degree-of-freedom modes
	Correlation of three-degree-of-freedom modes
	Correlation of four-degree-of-freedom modes
	Experimental data: State 12
	Experimental data: State 14


	Conclusions

