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Hamiltonian cycles in graphs were first studied in the 1850s. Since then, an impressive amount of research has been

dedicated to identifying classes of graphs that allow Hamiltonian cycles, and to related questions. The corresponding

decision problem, that asks whether a given graph is Hamiltonian (i. e. admits a Hamiltonian cycle), is one of Karp’s

famous NP-complete problems.

In this paper we study graphs of bounded degree that are far from being Hamiltonian, where a graph G on n vertices

is far from being Hamiltonian, if modifying a constant fraction of n edges is necessary to make G Hamiltonian.

We give an explicit deterministic construction of a class of graphs of bounded degree that are locally Hamiltonian,

but (globally) far from being Hamiltonian. Here, locally Hamiltonian means that every subgraph induced by the

neighbourhood of a small vertex set appears in some Hamiltonian graph. More precisely, we obtain graphs which

differ in Θ(n) edges from any Hamiltonian graph, but non-Hamiltonicity cannot be detected in the neighbourhood of

o(n) vertices.

Our class of graphs yields a class of hard instances for one-sided error property testers with linear query complexity. It

is known that any property tester (even with two-sided error) requires a linear number of queries to test Hamiltonicity

(Yoshida, Ito, 2010). This is proved via a randomised construction of hard instances. In contrast, our construction

is deterministic. So far only very few deterministic constructions of hard instances for property testing are known.

We believe that our construction may lead to future insights in graph theory and towards a characterisation of the

properties that are testable in the bounded-degree model.

Keywords: Hamiltonian cycle, property testing, bounded-degree graphs, bounded-degree model, lower bound

1 Introduction

A Hamiltonian cycle in a graphG is a cycle that visits every vertex of G exactly once. A graphG is Hamil-

tonian if G contains a Hamiltonian cycle. Research on Hamiltonian graphs has a long and rich history,

see e. g. Gould (1991). Dirac’s early Theorem Dirac (1952) gave sufficient conditions for Hamiltonicity,

and subsequently, many further classes of Hamiltonian graphs were identified. Interestingly, it was shown

by Robinson and Wormald that for d ≥ 3, almost all d-regular graphs are Hamiltonian Robinson and

Wormald (1994).

Hamiltonian graphs play an important role in routing, including network design Wang et al. (2005);

Parhami (2005), circuit design Wang et al. (2012), and computer graphics Zhang et al. (2013), as well as
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in scheduling via tight links to the Travelling Salesperson Problem. Deciding whether a given graph is

Hamiltonian is NP-complete Karp (1972), even on cubic planar graphs Garey et al. (1976).

In this paper we study graphs of bounded degree that are far from being Hamiltonian, where intuitively,

a graphG is far from being Hamiltonian if many edge modifications (insertions or deletions) are necessary

to make G Hamiltonian (note that deletions may help, because of the degree bound).

Motivation. The wider motivation for our study stems from the well-known tight connection between

structural properties of graphs and their algorithmic properties, which has been used successfully for de-

signing efficient algorithms for numerous problems, all the way to reaching the boundaries of efficient

solvability. Hence for many important graph properties (where by property we simply mean an isomor-

phism closed graph class), the structure of graphs having the property is studied in great detail. We propose

studying the structure of graphs that are far from having a given property. This is motivated by the area

of property testing, in which computational decision problems are relaxed to distinguishing graphs that

have a certain property from graphs that are far from having the property. We study graphs that are far

from being Hamiltonian. Hamiltonicity is known to be hard for property testing Yoshida and Ito (2010);

Goldreich (2020). However this is shown via a randomised construction. We give an explicit, determin-

istic construction of hard instances for testing Hamiltonicity. In computer science, explicit constructions

are often of interest as they can further our understanding of the complexity of related computational

problems, and knowledge of explicit structural properties and parameters can be exploited.

We now give more details. For a given ǫ in the real interval [0, 1], we say that a graph G of maximum

degree d with n vertices is ǫ-close to being Hamiltonian, if at most ǫdn edge modifications (insertions or

deletions) are needed to make G Hamiltonian, and G is ǫ-far from being Hamiltonian otherwise. Note

that dn is an upper bound on the total number of edges in an n-vertex graph of degree at most d.

(a) Caterpillar (b) C4’s arranged in a cycle.

Fig. 1: Example graphs which are far from being Hamiltonian but are not locally Hamiltonian.

It is easy to find graphs that are far from being Hamiltonian. For example, let G be a caterpillar graph

on n = 2k vertices as shown in Figure 1 for k = 10 (i. e. G is a path of length k−1 where every vertex has

a pendant edge). With a degree bound of at most 3, G is 1/13-far from being Hamiltonian, because n/4
edges need to be added to make G 2-connected. As another example, consider the graph H consisting of

k 4-cycles (C4’s) arranged in a cycle as shown in Figure 1 for k = 11. Assume k > 1. The graph H has

n = 4k vertices and, with a degree bound of 3, H is 1/25-far from being Hamiltonian. This is because
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any Hamiltonian cycle in a graph has to traverse both edges incident to any vertex of degree 2. Hence

in H a Hamiltonian cycle would have to traverse all four edges of every C4. To avoid this we have to

increase the degree of at least one of the degree 2 vertices for every C4 and hence we have to add at least

n/8 edges to make H Hamiltonian.

In both examples it is possible to see locally, in the neighbourhood of a constant number of vertices,

that the graphs are not Hamiltonian. We ask whether there exist graphs that locally look as if they might

be Hamiltonian, but globally they are far from being Hamiltonian, and we give a positive answer to this.

More precisely, for δ ∈ (0, 1] we define a graph G with vertex set V and |V | = n to be δ-locally

Hamiltonian if the subgraph induced by the neighbourhood of any subset S ⊆ V with |S| ≤ δn appears

in some Hamiltonian graph on n vertices. We then show the following by giving an explicit construction

(cf. Theorem 5.5).

There is a d ∈ N and there are constants δ := δ(d), ǫ := ǫ(d) ∈ (0, 1) and a sequence of d-bounded

degree graphs (GN )N∈N of increasing order, such that GN is δ-locally Hamiltonian and ǫ-far from being

Hamiltonian for every N ∈ N.

A similar approach was taken in Bogdanov et al. (2002) for 3-colourability, where graphs, which are

far from being 3-colourable but locally look 3-colourable, are implicitly obtained using a reduction from

the constraint satisfaction problem (CSP). An explicit construction of a CSP, which is far from being

satisfiable but every sublinear subset of constraints is satisfiable, is given. To our knowledge this is the

only other known deterministic construction of a similar kind.

Property Testing. Property testing on graphs is a framework for studying sampling-based algorithms

that solve a relaxation of classical decision problems. Given a graph G and a property P (e. g. triangle-

freeness), the goal of a property testing algorithm, called a property tester, is to distinguish if a graph

satisfies P or is far from satisfying P , where the definition of far depends on the model. Property testing

of dense graphs is well understood through its tight links with Szemerédi’s regularity Lemma Alon et al.

(2009). In Goldreich and Ron (2002), Goldreich and Ron introduced property testing on bounded-degree

graphs, and since then much attention has been paid to property testing in sparse graphs. Nevertheless,

our understanding of testability of properties in such graphs is still limited. In the bounded-degree graph

model Goldreich and Ron (2002), the tester has oracle access to the input graph G with maximum degree

d, where d is constant, and is allowed to perform neighbour queries to the oracle. That is, for any specified

vertex v and index i ≤ d, the oracle returns the i-th neighbour of v if it exists or a special symbol ⊥
otherwise in constant time. A graph G with n vertices is called ε-far from satisfying a property P , if

one needs to modify more than εdn edges to make it satisfy P . The goal now becomes to distinguish,

with probability at least 2/3, if G satisfies a property P or is ε-far from satisfying P , for any specified

proximity parameter ε ∈ (0, 1]. Here the choice of success probability 2/3 is arbitrary, any constant

strictly greater than 1/2 can be used. A property P is testable with query complexity q(n) in the bounded-

degree model, if for every ε ∈ (0, 1] there is an algorithm (an ε-tester), that makes this distinction while

using at most q(n) oracle queries, where n is the size of the input graph. Property P is testable with one-

sided error if instances in P are always correctly identified. If q is independent of n, we have constant

query complexity. Here the constant can depend on ε and d.

So far, it is known that some properties are constant-query testable, including subgraph-freeness, k-

edge connectivity, cycle-freeness, being Eulerian, degree-regularity Goldreich and Ron (2002), minor-

freeness Benjamini et al. (2010); Hassidim et al. (2009); Kumar et al. (2019), hyperfinite properties

Newman and Sohler (2013), k-vertex connectivity Yoshida and Ito (2012); Forster et al. (2020), and
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subdivision-freeness Kawarabayashi and Yoshida (2013). On the other hand there are some properties

whose query complexity is sublinear but not constant, e. g. bipartiteness Goldreich and Ron (2002, 1999).

Furthermore, there are some properties for which no tester with sublinear query complexity exists, e. g.

Hamiltonicity Yoshida and Ito (2010); Goldreich (2020), 3-colourability Bogdanov et al. (2002), indepen-

dent set size Goldreich (2020). Note that for any computable property there is a linear query complexity

property tester, i. e. the tester, which accesses the entire graph and then uses any exact algorithm for the

property, as we do not bound the running time of a property tester. We further want to point out that it

is not true that NP-hard problems are in general hard for property testing, as Newman and Sohler (2013)

shows that any property is constant query testable on the class of bounded-degree, planar graphs and many

problems remain NP-hard even on bounded degree, planar graphs, e. g. Hamiltonicity Garey et al. (1976).

The major open problem in the area of property testing is finding a full characterisation of the testable

properties in the bounded degree model. Ito et al. Ito et al. (2020) gave characterisations of one-sided

error constant-query testable monotone graph properties, and one-sided error testable hereditary graph

properties in the bounded-degree (directed and undirected) graph model. The characterisation is based

on the presence of many forbidden configurations – subgraphs in the case of monotone properties and

induced subgraphs in the case of hereditary properties. Note that Hamiltonicity is a property that is neither

monotone nor hereditary. Hence we believe that our results advance our understanding of testability of

such properties.

We show that any one-sided error property tester with sublinear query complexity needs to accept any

locally Hamiltonian graph. Since every graph in our constructed class is locally Hamiltonian and far from

being Hamiltonian we get the following, previously known lower-bound (see Yoshida and Ito (2010);

Goldreich (2020)) as a direct consequence of Theorem 5.5 (cf. Corollary 6.2).

Hamiltonicity is not testable with one-sided error and query complexity o(n) in the bounded-degree

model.

This provides evidence that using deterministic constructions is a viable route for finding lower bounds

for property testing.

Structure of the paper. We begin with the preliminaries in Section 2. In Section 3 we introduce local

Hamiltonicity, discuss distance to Hamiltonicity, and we provide our construction. The construction takes

a d-regular graph and turns it into a graph of degree at most d+ 3 with additional properties. In Section 4

we prove that there is a small ǫ such that any family of graphs obtained via the construction is ǫ-far from

being Hamiltonian. Section 5 then shows that if we start our construction with d-regular expander graphs,

we obtain a family that is locally Hamiltonian. In Section 6 we prove a known lower-bound for property

testing from our construction.

2 Preliminaries

Let N denote the set of natural numbers including 0. We denote N≥n := {m ∈ N : m ≥ n} and

[n] := {1, . . . , n} for any n ∈ N (where we let [0] := ∅). For two sets A,B we use A△B to denote the

symmetric difference of A and B.

This paper concerns simple undirected graphs, however, we will use directed graphs in our construction.

Unless otherwise specified graphs are undirected.

An undirected graph G is a tuple (V (G), E(G)) where V (G) is a finite set of vertices and E(G) ⊆
{e ⊆ V (G) : |e| = 2} is the set of edges. A directed graph G is a tuple (V (G), E(G)) where V (G) is a
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finite set of vertices and E(G) ⊆ V ×V is the set of edges. For a directed graph G and a vertex v ∈ V (G)
we denote the set of all incoming edges of v by E−

G(v) and the set of all outgoing edges of v by E+
G(v).

The order of a graph G is the size of V (G).
An isomorphism from a graph G to a graph H is a bijective map f : V (G) → V (H) which preserves

the edge relation, i. e., {v, w} ∈ E(G) iff {f(v), f(w)} ∈ E(H). Equivalently an isomorphism from a

directed graph G to a directed graph H is a bijective map f : V (G) → V (H) such that (v, w) ∈ E(G)
iff (f(v), f(w)) ∈ E(H). Two graphs G,H are called isomorphic, denoted by G ∼= H , if there is an

isomorphism between them. A graphH is a subgraph of a graphG if V (H) ⊆ V (G) and E(H) ⊆ E(G).
For any graph G and S ⊆ V (G) we let G[S] := (S, {{v, w} ∈ E(G) : v, w ∈ S}) be the subgraph of G
induced by S. We call a subgraph H of G an induced subgraph of G if H is the subgraph of G induced

by some set S ⊆ V (G). For a graph G and vertices v, w ∈ V (G) we say that v is a neighbour of w
or that v is adjacent to w if {v, w} ∈ E(G). For S ⊆ V (G) we define the neighbourhood of S in G,

denoted NG(S) to be the set of vertices S ∪ {v ∈ V (G) : v is a neighbour of some w ∈ S}. This notion

of neighbourhood is often referred to as the closed neighbourhood.

For a graph G (directed or undirected) the degree of a vertex v ∈ V (G), denoted degG(v), is the

number of edges that contain vertex v. The degree of a graph G, denoted deg(G), is the maximum degree

over all vertices. A graph is called d-regular if every vertex v ∈ V (G) has degree d, where d ∈ N. A

graph has bounded degree d if deg(G) ≤ d, where d ∈ N. For d ∈ N we denote the class of all bounded

degree d graphs by Cd.

A path of length ℓ in a graph G (undirected or directed) is a sequence (p0, p1, . . . , pℓ) of vertices of G
such that {pi−1, pi} ∈ E(G)/(pi−1, pi) ∈ E(G) for i ∈ [ℓ]. A simple path in G is a path in which no

vertex appears twice. A cycle is a path C = (c0, . . . , cℓ) such that c0 = cℓ and (c1, . . . , cℓ) is a simple

path. A Hamiltonian cycle is a cycle which contains every vertex of G. We call G Hamiltonian if G
contains a Hamiltonian cycle. A path P ′ = (p′1, . . . , p

′
ℓ′) is a subpath of a cycle C = (c0, . . . , cℓ) if there

is an index i ∈ [ℓ] such that either p′j = p(i+j mod ℓ) for every j ∈ [ℓ′] or p′j = p(i+ℓ′−j mod ℓ) for every

j ∈ [ℓ′]. Note that this means that subpaths appear either in the path or in the reversed path. We choose

this definition of subpath for convenient notation below.

For a graph G we define the expansion ratio to be

h(G) := min
{S⊂V (G):|S|≤|V (G)|/2}

|{e ∈ E(G) : |e ∩ S| = 1}|

|S|
.

For d ∈ N and any constant ǫ > 0 we call a sequence (Gm)m∈N of d-regular graphs of increasing number

of vertices a family of ǫ-expanders if h(Gm) ≥ ǫ for all m ∈ N.

3 Local Hamiltonicity and distance to Hamiltonicity

In this section we introduce the central concepts in this paper and explain our construction. The proofs of

the central properties of the construction are given in the next sections.

Definition 3.1 (ǫ-farness from being Hamiltonian). Let d ∈ N and ǫ ∈ [0, 1]. A graph G ∈ Cd is ǫ-far

from being Hamiltonian if for every set E ⊆ {e ⊆ V (G) : |e| = 2} of size less than or equal to ǫd· |V (G)|
the graph (V (G), E(G)△E) is not Hamiltonian.

Definition 3.2 (Locally Hamiltonian). Let C be a class of graphs and let δ ∈ (0, 1]. A graph G ∈ C
is called δ-locally Hamiltonian on C if for every set S ⊆ V (G) of at most δ · |V (G)| vertices there is
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a Hamiltonian graph H := HS ∈ C with |V (H)| = |V (G)|, a subset T := TS ⊆ V (H) and an

isomorphism from G[NG(S)] to H [NH(T )] which maps S onto T .

Note that by relaxing |V (G)| = |V (H)| to |V (H)| > |NG(S)| we get an equivalent definition. As

long as the Hamiltonian cycle in H contains at least one edge which is not in H [NH(T )] we can contract

or subdivide edges on the Hamiltonian cycle of H that are not in H [NH(T )] to make |V (H)| = |V (G)|.

Remark 3.3. Let C be a graph class. Every Hamiltonian graph in C is δ-locally Hamiltonian for every

δ ∈ (0, 1]. And every graph G ∈ C is 1-locally Hamiltonian iff G is Hamiltonian.

Let d ≥ 2. A graph G on n ≥ 2d vertices is 1/n-locally Hamiltonian on Cd iff the minimum degree of G
is greater than 1. The ‘only if’ part is easy to see. The ‘if’ part is true because the closed neighbourhood

of any vertex v contains at most d + 1 vertices and contains at least one path of length two. This path of

length two can be completed into a Hamiltonian cycle without adding edges within the neighbourhood of

v, because G contains at least d − 1 further vertices, via which we connect the vertices and the path of

length two in the neighbourhood of v.

The next lemma states that if G ∈ Cd has many subsets of vertices whose neighbourhoods witness

non-Hamiltonicity, then it is far from being Hamiltonian. Here we say that the neighbourhood of S ⊆
V (G) witnesses non-Hamiltonicity if for every Hamiltonian H ∈ Cd of the same order as G and every

T ⊆ V (H) there is no isomorphism from G[NG(S)] to H [NH(T )] that maps S onto T . For example

the neighbourhood of every vertex of degree 1 in a graph G witnesses non-Hamiltonicity of G and the

neighbourhood of any connected component of G (unless G is connected) witnesses non-Hamiltonicity

of G.

Lemma 3.4. Let d ∈ N≥2 and G ∈ Cd. For all 0 ≤ ǫ < 1/2d, there is a number λ = λ(ǫ, d) ∈ (0, 1)
such that if there are λn subsets of V (G) whose (closed) neighbourhoods are pairwise disjoint and each

witnesses non-Hamiltonicity, then G is ǫ-far from being Hamiltonian.

Proof: Let λ(ǫ, d) := 2dǫ. First note that if a set S ⊆ V (G) witnesses non-Hamiltonicity then every

set E ⊆ {e ⊆ V (G) : |e| = 2}, for which (V (G), E(G)△E) is Hamiltonian, must contain e such that

S ∩ e 6= ∅. Since the λn neighbourhoods of sets witnessing non-Hamiltonicity are pairwise disjoint we

get that the size of every set E ⊆ {e ⊆ V (G) : |e| = 2}, for which (V (G), E(G)△E) is Hamiltonian, is

at least λn/2 = ǫdn and hence G is ǫ-far from being Hamiltonian.

Note that for the caterpillar (see Figure 1) such pairwise disjoint sets of vertices, whose neighbourhoods

witness non-Hamiltonicity, are the singleton sets consisting of the vertices of degree one. Similarly, for

the cycle of C4’s (see Figure 1), we can choose the vertex set of every other C4 on the cycle.

One might wonder if the converse of Lemma 3.4 is true, i. e., if G is ǫ-far from being Hamiltonian,

then G contains a linear fraction of pairwise disjoint sets of vertices whose neighbourhoods witness non-

Hamiltonicity. (This would actually imply the existence of a one-sided error property tester with constant

query complexity.) Our examples below show that this is not the case. In fact it even shows that for some

constant c ∈ N there is a class of graphs which are ǫ-far from being Hamiltonian but we cannot even find

c sets of vertices with pairwise disjoint neighbourhoods witnessing non-Hamiltonicity. In other words

there is a class of graphs which are ǫ-far from being Hamiltonian but δ-locally Hamiltonian for some

δ, ǫ ∈ (0, 1).
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v1 v2 v3 . . . v31

Fig. 2: P (v1, . . . , v31).

v1

v3

v5

v8 v9

v12

v14w1

w2

w3 w4

w5

w6

u31

u29

u24u23

u18

Fig. 3: A link from P (u1, . . . , u31) to P (v1, . . . , v31) via w1, . . . , w6.

3.1 Construction

In this section we introduce the main step of our construction of graphs which are locally Hamiltonian

and far from being Hamiltonian. At a high level, we construct a graph GE by choosing a d-regular base

graph E and building GE by introducing a path-gadget for every edge of E , connecting these path-gadgets

into a large cycle and linking path gadgets together if the edges of E corresponding to the path gadgets are

incident to the same vertex. We give the precise construction in the following.

First we create a gadget (see Figure 2 for illustration). Let v1, . . . , v31 be a set of vertices. Then we let

P (v1, . . . , v31) be the graph with vertex set {v1, . . . , v31} and edge set

{

{vi, vi+1}, {vj, vj+3}, {vk, vk+5} : i ∈ {1, . . . , 30}, j ∈ {2, 27}, k ∈ {6, 12, 15, 21}
}

.

For a graphG with {u1, . . . , u31, v1, . . . , v31, w1, . . . , w6} ⊆ V (G), G[u1, . . . , u31] = P (u1, . . . , u31)
andG[v1, . . . , v31] = P (v1, . . . , v31) we say that G contains a link from P (u1, . . . , u31) to P (v1, . . . , v31)
via w1, . . . , w6 (see Figure 3 for illustration), if E(G) contains

{

{u23, v3}, {u18, v8}, {u29, v9}, {u24, v14},{v5, w1}, {w1, w2}, {w2, w3}, {w3, u23},

{u24, w4}, {w4, w5}, {w5, w6}, {w6, v12}
}

.

Finally to any graph G we associate a directed graph ~G which is the graph that is obtained from G by

replacing every edge {u, v} ∈ E(G) by the two directed edges (u, v) and (v, u). We can now define the

graph construction.

Definition 3.5. Let E be a d-regular graph (the base graph) and f : E(~E) → {1, . . . , |E(~E)|} be any

linear order on E(~E). We define the graph GE as follows.

V (GE) := {ae1, . . . , a
e
31 : e ∈ E(~E)} ∪ {bv1, . . . , b

v
6 : v ∈ V (~E)}.

E(GE ) consists of the minimum set of edges such that

• GE [a
e
1, . . . , a

e
31] = P (ae1, . . . , a

e
31) for every e ∈ E(~E),
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• a
f−1(i)
31 is adjacent to a

f−1(j)
1 for every i ∈ [|E(~E)|], j := 1 if i = |E(~E)| and j := i+ 1 otherwise

and

• GE contains a link from P (a
(u,v)
1 , . . . , a

(u,v)
31 ) to P (a

(v,w)
1 , . . . , a

(v,w)
31 ) via bv1, . . . , b

v
6 for every

triple of vertices u, v, w ∈ V (~E) with (u, v), (v, w) ∈ E(~E).

See Figure 4 for an illustration. We would like to point out that the minimality condition on the set

of edges of GE in the above definition is necessary, as omitting it would allow adding of any number of

edges between different path gadgets.

Note that the construction of GE depends on f as well as E , but since being locally Hamiltonian and

being far from Hamiltonian are independent of which linear order f we use, we omit the dependency on f .

Remark 3.6. If E is d-regular, for d ≥ 1, and |V (E)| = n, then the degree of GE is at most d + 3 and

|V (GE)| = (6 + 31d)n.

Note 3.7. GE contains a large cycle of length 31dn, i. e., the cycle

(. . . . . . , a
f−1(i−1)
31 , a

f−1(i)
1 , a

f−1(i)
2 , . . . , a

f−1(i)
31 , a

f−1(i+1)
1 , . . . . . . ).

However GE also contains 6n vertices which are not part of this cycle.

4 The construction is far from being Hamiltonian

In this section we prove the following.

Theorem 4.1. For every d ∈ N≥2 there is ǫ = ǫ(d) ∈ (0, 1) such that for any d-regular graph E the

graph GE constructed in 3.5 is ǫ-far from being Hamiltonian.

To prove Theorem 4.1 we use the two technical lemmas below (Lemma 4.3 and Lemma 4.4). They will

be applied to graphs G obtained from GE by modifying a small fraction of the edges of GE . Therefore

they are stated for graphs G which share certain induced subgraphs with GE . The first of the two lemmas

(Lemma 4.3) states that if G has a Hamiltonian cycle and a certain induced subgraph, which also appears

in GE , then the Hamiltonian cycle has certain subpaths. The proof of Lemma 4.3 is illustrated in Figure 4.

We will use the following easy observation in the proof of Lemma 4.3.

Remark 4.2. Let G be a graph, u ∈ V (G) a vertex of degree 2 and v, w the two neighbours of u. Then

any cycle C containing the vertex u must contain (v, u, w) as a subpath.

Recall that subpaths appear either in the path or in the reversed path.

Lemma 4.3. Let E be any d-regular graph and GE as defined in Definition 3.5. Pick v ∈ V (~E) and let

Sv := {ae1, . . . , a
e
31 : e ∈ E(~E), e contains v}∪{bv1, . . . , b

v
6}. Let G be a graph with Sv ⊆ V (G). Assume

GE [NGE
(Sv)] ∼= G[NG(Sv)] and f : Sv → Sv defined by f(v) = v for v ∈ Sv is an isomorphism from

GE [Sv] to G[Sv]. Then for every Hamiltonian cycle C in G and every edge e ∈ V (~E) incident to v the

following properties hold.

1. Either (ae1, . . . , a
e
5) or (ae1, a

e
2, a

e
5, a

e
4, a

e
3) is a subpath of C.

2. Either (ae27, . . . , a
e
31) or (ae29, a

e
28, a

e
27, a

e
30, a

e
31) is a subpath of C.

3. Either (ae12, . . . , a
e
20) or (ae14, a

e
13, a

e
12, a

e
17, a

e
16, a

e
15, a

e
20, a

e
19, a

e
18) is a subpath of C.
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a
(v,w)
1 a

(v,w)
6 a

(v,w)
12 a

(v,w)
21 a

(v,w)
27

a
(u,v)
20 a

(u,v)
26 a

(w,x)
5 a

(w,x)
11

bv1

bv2 bv5

bv6

bw1

bw2 bw5

bw6

Fig. 4: Close-up of GE with vertices of high degree (d+ 1, d+ 2 or d+ 3) indicated by ‘fans’.

4. If e ∈ E+
G(v) then either (ae6, . . . , a

e
11) or (ae8, a

e
7, a

e
6, a

e
11, a

e
10, a

e
9) is a subpath of C.

5. If e ∈ E−
G(v) then either (ae21, . . . , a

e
26) or (ae23, a

e
22, a

e
21, a

e
26, a

e
25, a

e
24) is a subpath of C.

Proof: To prove (1) let us observe that ae1 and ae4 have degree 2 in G, as GE [NGE
(Sv)] ∼= G[NG(Sv)] and

ae1 and ae4 have degree 2 in GE . Hence (ae1, a
e
2) and (ae3, a

e
4, a

e
5) have to be subpaths of C as in Remark 4.2.

Since ae2 has exactly three neighbours ae1, a
e
3 and ae5 in GE and GE [NGE

(Sv)] ∼= G[NG(Sv)] we get that

either (ae1, . . . , a
e
5) is a subpath of C or (ae1, a

e
2, a

e
5, a

e
4, a

e
3) is a subpath of C. Property (2) follows with a

similar argumentation.

For (3) let us assume that neither (ae12, . . . , a
e
17) nor (ae14, a

e
13, a

e
12, a

e
17, a

e
16, a

e
15) appear in C as a

subpath. Since both ae13 and ae16 have degree 2 in G, we know that (ae12, a
e
13, a

e
14) and (ae15, a

e
16, a

e
17)

are subpaths of C. Hence neither (ae14, a
e
15) nor (ae12, a

e
17) are subpaths of C. Since both ae15 and ae17

have degree 3 in G, this implies that (ae20, a
e
15, a

e
16, a

e
17, a

e
18) is a subpath of C. Since ae19 has degree

2, then (ae20, a
e
15, a

e
16, a

e
17, a

e
18, a

e
19, a

e
20) has to be a subpath of C. Since this is a cycle, C must be

equal to (ae20, a
e
15, a

e
16, a

e
17, a

e
18, a

e
19, a

e
20) which contradicts the assumption that Sv is contained in C. A

symmetric argument shows that either (ae15, . . . , a
e
20) or (ae17, a

e
16, a

e
15, a

e
20, a

e
19, a

e
18) has to be a subpath

of C, proving (3).

We will prove (4) and (5) simultaneously using a counting argument. Let us first observe that for every

edge e ∈ E(~E) incident to v we know that (ae6, a
e
7, a

e
8), (a

e
9, a

e
10, a

e
11), (a

e
21, a

e
22, a

e
23) and (ae24, a

e
25, a

e
26)

are subpaths of C, because ae7, ae10, ae22 and ae25 have degree 2 in G. Let S be the set of all maximal

subpaths of C which only contain vertices from {ae21, . . . , a
e
26, a

ẽ
6, . . . , a

ẽ
11 : e ∈ E−

~E
(v), ẽ ∈ E+

~E
(v)}.

Since there are no edges of the form {aei , a
ẽ
j} for i, j ∈ {6, . . . , 11, 21, . . . , 26}, e 6= ẽ ∈ E(~E), ev-

ery subpath in S is either of length 2 or length 5. For every path P = (p1, . . . , pℓ) ∈ S, we de-

fine the vertices uP , wP to be the neighbours of P on C, i.e. (uP , p1, . . . , pℓ, wP ) is a subpath of

C. Since GE [NGE
(Sv)] ∼= G[NG(Sv)] and every path P ∈ S is maximal, we know that uP , wP ∈

{ae18, a
e
20, a

e
27, a

e
29, a

ẽ
3, a

ẽ
5, a

ẽ
12, a

ẽ
14 : e ∈ E−

~E
(v), ẽ ∈ E+

~E
(v)} ∪ {bv3, b

v
4}.

Properties (1),(3) imply that for every edge e ∈ E−
~E
(v), only one of the two vertices ae18, a

e
20 and only

one of the two vertices ae27, a
e
29 can be in the set {uP , wP : P ∈ S}. Therefore the contribution of the

set {ae18, a
e
20, a

e
27, a

e
29 : e ∈ E−

~E
(v)} to the size of {uP , wP : P ∈ S} is at most 2|E−

~E
(v)|. Similarly,

(2),(3) imply that for every edge ẽ ∈ E+
~E
(v) only one of the two vertices aẽ3, a

ẽ
5 and only one of the two

vertices aẽ12, a
ẽ
14 can be in the set {uP , wP : P ∈ S}. In addition, there are two not necessarily distinct

edges e, ẽ ∈ E+
~E
(v) such that (ae1, . . . , a

e
5, b

v
1) and (bv6, a

ẽ
12, . . . , a

ẽ
20) are subpaths of C since bv1’s and
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bv6’s only other neighbour in GE is bv2 or bv5 respectively. Hence the vertices ae3, a
e
5, a

ẽ
12, a

ẽ
14 cannot be

in {uP , wP : P ∈ S} for these two specific edges e, ẽ ∈ E−
~E
(v). Therefore, the contribution of the

set {aẽ3, a
ẽ
5, a

ẽ
12, a

ẽ
14 : ẽ ∈ E+

~E
(v)} to the size of |{uP , wP : P ∈ S} is at most 2|E+

~E
(v)| − 2. Hence

|{uP , wP : P ∈ S}| ≤ 2|E+
~E
(v)|−2+2|E−

~E
(v)|+2 = 4d where adding 2 accounts for the size of the set

{bv3, b
v
4}. In addition, note that (1),(2), (3) and degG(b

v
2) = 2 and degG(b

v
5) = 2 imply that every maximal

subpath of C only containing vertices in Sv \ {ae21, . . . , a
e
26, a

ẽ
6, . . . , a

ẽ
11 : e ∈ E−

~E
(v), ẽ ∈ E+

~E
(v)} has

length at least 2. Hence on C in between any two subpaths in S there is a subpath of at length at least

2, which implies that no two distinct subpaths in S can share a neighbour on C. Therefore we have

|{uP , wP : P ∈ S}| = 2|S| and hence |S| ≤ 2d.

On the other hand, if a path in S contains only 3 vertices (has length 2) then |S| > 2d, because every

path in S contains either 3 or 6 vertices (as argued at the beginning of the proof), no vertex can appear

on more than one path of S and |{v : P ∈ S, v appears on P}| = |{ae21, . . . , a
e
26, a

ẽ
6, . . . , a

ẽ
11 : e ∈

E−
~E
(v), ẽ ∈ E+

~E
(v)}| = 12d. This yields a contradiction and hence (4) and (5) are true.

Let G be a graph with aei , . . . , a
e
j ∈ V (G) for some edge e ∈ E(~E) and 1 ≤ i ≤ j ≤ 31. Assume

C is a cycle in G which contains aei , . . . , a
e
j . We say that C traverses the vertices aei , . . . , a

e
j in order if

(aei , . . . , a
e
j) is a subpath of C and we say that C traverses aei , . . . , a

e
j out of order otherwise. Note that

for certain 1 ≤ i ≤ j ≤ 31 and e ∈ E(~E) there is only one way in which a cycle C can traverse aei , . . . , a
e
j

out of order (as specified in Lemma 4.3).

The next lemma shows that for every vertex v ∈ V (~E) and every Hamiltonian cycle C in GE the

number of edges e ∈ E−
~E
(v) for which C traverses ae12, . . . , a

e
20 out of order is exactly one larger than the

number of edges ẽ ∈ E+
~E
(v) for which C traverses aẽ12, . . . , a

ẽ
20 out of order. This still holds for every

graph G which contains a certain induced subgraph of GE .

Lemma 4.4. Let E be any d-regular graph and GE as defined in Definition 3.5. Let Sv := {ae1, . . . , a
e
31 :

e ∈ E(~E), e is incident to v} ∪ {bv1, . . . , b
v
6} for some v ∈ V (~E). Let G be a graph with Sv ⊆ V (G).

Assume GE [NGE
(Sv)] ∼= G[NG(Sv)] and f : Sv → Sv defined by f(v) = v for v ∈ Sv is an isomorphism

from GE [Sv] to G[Sv]. Then for every Hamiltonian cycle C in G the cardinalities of the two sets

T in
v,C :=

{

e ∈ E−
~E
(v) : (ae12, a

e
17) is a subpath of C

}

and (1)

T out
v,C :=

{

e ∈ E+
~E
(v) : (ae12, a

e
17) or (ae12, b

v
6) is a subpath of C

}

(2)

are equal.

Proof: First note that the condition GE [NGE
(Sv)] ∼= G[NG(Sv)] implies that no vertex in the set

{ae15, . . . , a
e
30, a

ẽ
2, . . . , a

ẽ
17 : e ∈ E−

~E
(v), ẽ ∈ E+

~E
(v)} ∪ {bv1, . . . , b

v
6} has neighbours in G \ Sv . This

will implicitly be used in the following argument whenever we exhaustively consider neighbours of ver-

tices in G as successors on C.

Let us first define a map Fv,C : T in
v,C → T out

v,C , given by Fv,C(e) := ẽ, where ẽ ∈ T out
v,C is the edge such

that (ae18, a
ẽ
8) is a subpath of C. We first have to argue that Fv,C is well defined.

By Lemma 4.3 (3), e ∈ T in
v,C implies that (ae14, a

e
13, a

e
12, a

e
17, a

e
16, a

e
15, a

e
20, a

e
19, a

e
18) is a subpath of C.

Since the two neighbours ae17 and ae19 of ae18 are already part of this subpath this implies that (ae18, a
ẽ
8) has

to be a subpath of C for some edge ẽ ∈ E+
~E
(v). This implies that (aẽ6, . . . , a

ẽ
11) cannot be a subpath of C
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and hence, by Lemma 4.3 (4), (aẽ8, a
ẽ
7, a

ẽ
6, a

ẽ
11, a

ẽ
10, a

ẽ
9) has to be a subpath of C. This further implies that

(aẽ11, a
ẽ
12) cannot be a subpath of C. Then if (aẽ12, . . . , a

ẽ
20) is a subpath of C then (aẽ12, b

v
6) has to be a

subpath of C by excluding all possible other neighbours of aẽ12. On the other hand if (aẽ12, . . . , a
ẽ
20) is not

a subpath of C then, by Lemma 4.3 (3), (aẽ14, a
ẽ
13, a

ẽ
12, a

ẽ
17, a

ẽ
16, a

ẽ
15, a

ẽ
20, a

ẽ
19, a

ẽ
18) is a subpath of C and

hence (aẽ12, a
ẽ
17) is a subpath of C. Therefore ẽ ∈ T out

v,C . This shows that Fv,C is well defined.

Furthermore Fv,C is injective since if (ae18, a
ẽ
8) and (ae18, a

e′

8 ) are subpaths of C then ẽ = e′ because

(ae19, a
e
18) is also a subpath of C. Fv,C is surjective as for ẽ ∈ T out

v,C both (aẽ12, a
ẽ
17) or (aẽ12, b

v
6) being a

subpath of C together with Lemma 4.3 (3) implies that (aẽ12, a
ẽ
11) cannot be a subpath of C. This further

implies that (aẽ8, a
ẽ
7, a

ẽ
6, a

ẽ
11, a

ẽ
10, a

ẽ
9) is a subpath of C by Lemma 4.3 (4) and hence there is an edge

e ∈ E−
~E
(v) such that (ae18, a

ẽ
8) is a subpath of C. Then with the same argument as before (ae12, a

e
17) is

a subpath of C and hence e ∈ T in
v,C and Fv,C(e) = ẽ. Therefore Fv,C is bijective which implies the

statement of the lemma.

As a direct consequence from Lemma 4.4 we get that GE cannot be Hamilonian for any base graph

E . To see that this is true, suppose towards a contradiction that there is a Hamiltonian cycle C in GE .

Then by Lemma 4.4 the equation
∑

v∈V (~E) |T
in
v,C | =

∑

v∈V (~E) |T
out
v,C | must hold. Now every edge in

⋃

v∈V (~E) T
in
v,C is also contained in

⋃

v∈V (~E) T
out
v,C . However, since for every v ∈ V (E) the vertex bv6 ∈ GE

has only one neighbour not of the form a
(v,w)
12 , there must be edges (v, w) in ~E for which (a

(v,w)
12 , bv6) is a

subpath of C. Hence
⋃

v∈V (~E) T
out
v,C must contain some edges (all the edges (v, w) for which (a

(v,w)
12 , bv6)

is a subpath of C) that are not contained in
⋃

v∈V (~E) T
in
v,C , so the equation cannot hold, a contradiction.

Hence GE cannot be Hamiltonian. This argument works similarly if a small number of edges in GE have

been altered and the equality from Lemma 4.4 still has to hold for many vertices as we will see in the

following proof.

Proof Proof of Theorem 4.1: Let ǫ := 1/(8(d+3)2(6+ 31d)). Assume E is d-regular and n := |V (E)|.
Let n′ := V (GE ) = (6 + 31d)n and d′ := d+ 3 be the degree of GE .

Towards a contradiction let us assume that GE is not ǫ-far to being Hamiltonian and let E be a set

of edges in GE such that |E| ≤ ǫd′n′ and the graph G := (V (GE), E(GE )△E) is Hamiltonian. Let

B ⊆ V (~E) be the set of vertices defined by

B :={v ∈ V (~E) : there is e ∈ E, i ∈ {1, . . . , 31}, ẽ ∈ E−
G(v) ∪E+

G(v) such that aẽi ∈ e}

∪{v ∈ V (~E) : there is e ∈ E, i ∈ {1, . . . , 6} such that bvi ∈ e}.

Note that |B| ≤ 4 · ǫd′n′, because every edge e ∈ E contributes at most 4 vertices to B, and hence

|V (~E) \B| ≥ n− 4ǫd′n′ > n/2.

Let C be a Hamiltonian cycle in G. Then for every vertex v ∈ V (~E) \ B we have that Sv ⊆ V (G),
GE [NGE

(Sv)] ∼= G[NG(Sv)] and f : Sv → Sv defined by f(v) = v for v ∈ Sv is an isomorphism from

GE [Sv] to G[Sv] where Sv := {ae1, . . . , a
e
31 : e ∈ E(~E), e is incident to v} ∪ {bv1, . . . , b

v
6}. Since C is

Hamiltonian C contains all vertices in Sv for every v ∈ V (~E)\B (amongst others). Hence by Lemma 4.4

we have |T in
v,C | = |T out

v,C | for every v ∈ V (~E) \ B where T in
v,C and T out

v,C are as defined in Equation 1 and

Equation 2. Therefore
∑

v∈V (~E)\B

|T in
v,C | =

∑

v∈V (~E)\B

|T out
v,C |. (3)
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Since for every v ∈ V (~E) \ B the vertex bv5 has degree 2 we know that (bv4 , b
v
5, b

v
6) is a subpath of C.

Since every neighbour of bv6 in G apart from bv5 is of the form ae12 for some e ∈ E+
G(v), we know that for

precisely one edge e ∈ E+
G(v) the path (bv6 , a

e
12) is a subpath of C. Hence

∑

v∈V (~E)\B

∣

∣

∣

{

e ∈ E+
G(v) : (ae12, b

v
6) is a subpath of C

}∣

∣

∣
= |V (~E) \B| >

n

2
. (4)

Since every edge (u, v) ∈ E(~E) such that u, v ∈ V (~E) \ B contributes 1 to both sides of Equation 3,

Equation 3 and Equation 4 imply that

∑

v∈V (~E)\B

∣

∣

∣

{

(u, v) ∈ E(~E) : u ∈ B, (a
(u,v)
12 , a

(u,v)
17 ) is a subpath of C

}
∣

∣

∣
>

n

2
.

But this is a contradiction as the number of edges (u, v) ∈ E(~E) for which u ∈ B is bounded from above

by d′|B| ≤ n/2.

5 Ensuring local Hamiltonicity

In this section we prove the following theorem.

Theorem 5.1. For every d ∈ N≥2 and every d-regular graph E with expansion ratio h(E) ≥ 1 the graph

GE constructed in Definition 3.5 is δ-locally Hamiltonian for some constant δ = δ(d) ∈ (0, 1].

Our proof strategy for Theorem 5.1 is to add edges to GE which are incident to at most one vertex in

NGE
(S) to obtain a graph H which is Hamiltonian, for any given S ⊆ V (GE) of size at most δ|V (G)|.

We prove the Hamiltonicity of H by dividing the vertex set of H into pairwise disjoint small sets. For

each of these sets we obtain a set of vertex disjoint paths which cover the entire small set and start and

end in prescribed vertices. To conclude the proof of the Hamiltonicity of H we find a Hamiltonian cycle

by patching together these paths. The next lemma will be used to show the existence of such paths for all

those subsets of vertices of H which contain a vertex from S.

Lemma 5.2. Let E be any d-regular graph and GE as defined in Definition 3.5. Let v ∈ V (~E) and Sv :=
{ae18, . . . , a

e
31, a

ẽ
1, . . . , a

ẽ
17 : e ∈ E−

~E
(v), ẽ ∈ E+

~E
(v)} ∪ {bv1, . . . , b

v
6}. Let G be a graph such that GE [Sv]

is a subgraph of G. Then for any two sets T in
v ⊆ E−

~E
(v) and T out

v ⊆ E+
~E
(v) with |T in

v |− 1 = |T out
v | there

is a set of 2d pairwise vertex disjoint simple paths {P in
e , P out

ẽ : e ∈ E−
~E
(v), ẽ ∈ E+

~E
(v)} in G with the

following properties.

• If e ∈ T in
v then P in

e is a path from ae20 to ae31.

• If e ∈ E−
~E
(v) \ T in

v then P in
e is a path from ae18 to ae31.

• If e ∈ T out
v then P out

e is a path from ae1 to ae15.

• If e ∈ E+
~E
(v) \ T out

v then P out
e is a path from ae1 to ae17.

• The set {x ∈ V (G) : x is contained in P in
e or P out

e for some e} is equal to Sv.
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Proof: First we pick a vertex n(v) ∈ V (~E) such that (v, n(v)) /∈ T out
v . This is possible because v has the

same number of incoming and outgoing edges and |T in
v |−1 = |T out

v |. Then |T in
v | = |T out

v ∪{(v, n(v))}|,
and hence we can find a bijection g : T in

v → T out
v ∪{(v, n(v))}. Then we can define the paths as follows.

For e ∈ T in
v we let

P in
e := (ae20, a

e
19, a

e
18, a

g(e)
8 , a

g(e)
7 , a

g(e)
6 , a

g(e)
11 , a

g(e)
10 , a

g(e)
9 , ae29, a

e
28, a

e
27, a

e
30, a

e
31),

P out
g(e) := (a

g(e)
1 , . . . , a

g(e)
5 , bv1, b

v
2, b

v
3, a

e
23, a

e
22, a

e
21, a

e
26, a

e
25, a

e
24, b

v
4, b

v
5, b

v
6, a

g(e)
12 , . . . , a

g(e)
17 )

if g(e) = (v, n(v)) and

P out
g(e) := (a

g(e)
1 , a

g(e)
2 , a

g(e)
5 , a

g(e)
4 , a

g(e)
3 , ae23, a

e
22, a

e
21, a

e
26, a

e
25, a

e
24, a

g(e)
14 , a

g(e)
13 , a

g(e)
12 , a

g(e)
17 , a

g(e)
16 , a

g(e)
15 )

if g(e) 6= (v, n(v)).
Furthermore for e ∈ E−

~E
(v) \ T in

v we let P in
e := (ae18, . . . , a

e
31) and for e ∈ E+

~E
(v) \ T out

v we let

P out
e := (ae1, . . . , a

e
17). These paths clearly satisfy all conditions.

Proof Proof of Theorem 5.1: Let δ := 1/(2 · (6 + 31d)) and let S ⊆ V (GE) be any set of vertices with

|S| ≤ δ · |V (GE)|. We will find a Hamiltonian graph H by modifying GE in such a way that GE [NGE
(S)]

is not affected by any modifications. In the following we exclude the trivial case S = ∅.

Let Sv := {ae18, . . . , a
e
31, a

ẽ
1, . . . , a

ẽ
17 : e ∈ E−

~E
(v), ẽ ∈ E+

~E
(v)} ∪ {bv1, . . . , b

v
6} for every v ∈ V (~E).

Let S′ := {v ∈ V (~E) : Sv ∩ S 6= ∅}. By Remark 3.6 |V (GE)| = (6 + 31d) · |V (E)|. Since the sets Sv

are pairwise disjoint this implies that |S′| ≤ |S| ≤ δ · |V (GE )| = 1/2 · |V (E)|. Let S′ = {s′1, . . . , s
′
m}

where m := |S′|.

Claim 5.3. There are pairwise edge disjoint paths Q1, . . . , Qm in E such that Qi is of the form Qi =
(q1i , . . . , q

ℓi
i ) for some ℓi ∈ N and qℓii = s′i, q

j
i ∈ S′ for all j > 1 and q1i ∈ V (E) \ S′.

Proof: By induction on the size of S′. If |S′| = 1 then this is trivially true. If |S′| = n then h(E) ≥ 1
implies that there must be a vertex v with at least as many neighbours in V (E) \ S′ as neighbours in S′.

Then S \ {v} has n− 1 vertices. Hence by induction hypothesis there is such a set of paths for S′ \ {v}.

But then we can extend every path which starts in v by a different edge so it starts in V (E) \ S. Let

Q1, . . . , Qm be as in Claim 5.3. Further, for every vertex v ∈ V (E) \ S′ we pick one vertex u ∈ V (E)

with (v, u) ∈ E(~E) and define n(v) := u. Now let E be the set

{

{

bv3, a
(v,n(v))
4

}

,
{

bv4, a
(v,n(v))
13

}

: v ∈ V (E) \ S′

}

∪

{

{

a
(q1

i
,q2

i
)

14 , a
(q1

i
,q2

i
)

17

}

: 1 ≤ i ≤ m

}

.

We now define the graph H by setting V (H) := V (GE) and E(H) := E(GE) ∪ E. Note that H has

degree d + 3, as we only added at most one edge to vertices of degree at most d + 1. Further note that

by definition of S′ we have that S ⊆
⋃

v∈S′ Sv . Since every edge in E is incident to at most one vertex

in NG(
⋃

v∈S′ Sv) it follows that if H is Hamiltonian then it fulfils the conditions from Definition 3.2.

Therefore, if we prove that H has a Hamiltonian cycle then GE must be locally Hamiltonian.
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Claim 5.4. There is a set of 2d pairwise vertex disjoint simple paths {P in
e , P out

ẽ : e ∈ E−
~E
(v), ẽ ∈ E+

~E
(v)}

for every v ∈ V (~E) \ S′ with the following properties.

• If e ∈ E−
~E
(v) then P in

e is a path from ae18 to ae31.

• If e = (q1i , q
2
i ) for some i ∈ [m] then P out

e is a path from ae1 to ae15.

• If e ∈ E+
~E
(v) \ {(q1i , q

2
i ) : i ∈ [m]} then P out

e is a path from ae1 to ae17.

• The set {x ∈ V (G) : x is contained in P in
e or P out

e for some e} is equal to Sv.

Proof: These conditions can be achieved by letting P in
e := (ae18, . . . , a

e
31) for e ∈ E−

~E
(v). Addi-

tionally, for every edge e = (q1i , q
2
i ) we let P out

e := (ae1, . . . , a
e
14, a

e
17, a

e
16, a

e
15) if q2i 6= n(q1i ) and

P out
e = (ae1, . . . , a

e
4, b

v
3, b

v
2, b

v
1, a

e
5, . . . , a

e
12, b

v
6, b

v
5, b

v
4, a

e
13, a

e
14, a

e
17, a

e
16, a

e
15) otherwise. Finally for ev-

ery e ∈ E+
~E
(v) \ {(q1i , q

2
i ) : i ∈ [m]} we set P out

e := (ae1, . . . , a
e
17) for e = (v, w), w 6= n(v) and

P out
e := (ae1, . . . , a

e
4, b

v
3, b

v
2, b

v
1, a

e
5, . . . , a

e
12, b

v
6, b

v
5, b

v
4, a

e
13, . . . , a

e
17) for e = (v, n(v)).

For v ∈ S′ we define the sets T in
v := {(qj−1

i , qji ) : i ∈ [m], j ∈ {2, . . . , ℓi}, q
j
i = v} and T out

v :=

{(qji , q
j+1
i ) : i ∈ [m], j ∈ {2, . . . , ℓi − 1}, qji = v}. Since for every v ∈ S′ there is exactly one path out

of Q1, . . . , Qm that ends in v, we get that |T in
v | − 1 = |T out

v | and hence the preconditions for Lemma 5.2

are met. Therefore we obtain a set of paths {P in
e , P out

ẽ : e ∈ E−
~E
(v), ẽ ∈ E+

~E
(v)} for every v ∈ S′ as in

Lemma 5.2.

Since Sv ∩ Sw = ∅ for every pair v, w ∈ V (~E) with v 6= w, we now have a set of pairwise vertex

disjoint simple paths {P in
e , P out

e : e ∈ E(~E)} such that every vertex of H is contained in one of the paths.

For every edge e ∈ E(~E) we now concatenate P out
e with P in

e to a path Pe. This is possible as for every

edge e ∈ E(~E) the end vertex of P out
e and the start vertex of P in

e are adjacent. Let us briefly explain why

they are adjacent. This is clearly true for every e which does not appear on any path Q1, . . . , Qm, because

in this case P out
e ends in ae17 and P in

e starts in ae18. In the case that e = (qji , q
j+1
i ) for some i ∈ [m] and

j ∈ {2, . . . , ℓi − 1} we have that P out
e ends in ae15 and P in

e starts in ae20 which are adjacent in H . This

leaves the case that e = (q1i , q
2
i ) for some i ∈ [m]. Since q1i ∈ V (E) \S′ we get that P out

e ends in ae15 and

since e ∈ T in
q2
i

we get that P in
e starts in ae20.

Finally we concatenate all paths Pe in the order given by the ordering f : E(~E) → [|E(~E)|] used in the

construction of GE . This gives us a cycle which contains every vertex in H precisely once. Hence H is

Hamiltonian.

Theorem 5.5. There are d ∈ N and constants δ := δ(d), ǫ := ǫ(d) ∈ (0, 1) and a sequence of d-bounded

degree graphs (GN )N∈N of increasing order such that GN is δ-locally Hamiltonian and ǫ-far from being

Hamiltonian for every N ∈ N.

Proof: Let D ∈ N and (EN )N∈N a sequence of D-bounded degree graphs with expansion ratio at least

1 of increasing order. For explicit constructions of such expanders, see for example Margulis (1973)

or Reingold et al. (2002). Then for every N ∈ N we set GN := GEN
be the graph constructed in

Definition 3.5. By Theorem 4.1 and Theorem 5.1 there is a degree bound d and constants δ, ǫ ∈ (0, 1),
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whose size only depends on D, such that GN has degree bounded by d and GN is δ-locally Hamiltonian

and ǫ-far from being Hamiltonian.

6 Application to property testing

In this section we introduce the bounded-degree model of property testing as introduced in Goldreich and

Ron (2002) and then use our main result from Section 5 to prove the known sublinear lower bound for

the complexity of property testing Hamiltonicity Yoshida and Ito (2010); Goldreich (2020) for one-sided

error testers.

Let d ∈ N and let Cd be the class of graphs of bounded degree d. From now on, all graphs have d-

bounded degree. A propertyP on Cd is any subset of Cd which is closed under isomorphism. An algorithm

that processes a graph G does not obtain an encoding of G as a bit string in the usual way. Instead, it has

direct access to G using an oracle which answers neighbour queries in G in constant time. In addition,

the algorithm receives the number n of vertices of G. We assume that the vertices of G are numbered

1, 2, . . . , n. The oracle accepts queries of the form (i, j), for i ≤ n, and j ≤ d, to which it responds with

the j-th neighbour of i, or with ⊥ if i has less than j neighbours.

The running time of the algorithm is defined as usual, i. e. with respect to n. We assume a uniform cost

model, i. e., we assume that all basic arithmetic operations including random sampling can be performed

in constant time, regardless of the size of the numbers involved.

Distance. For two graphs G and H , both with n vertices, dist(G,H) denotes the minimum number of

edges that have to be modified (i. e. inserted or removed) in G and H to make G and H isomorphic. For

ǫ ∈ [0, 1], we say G and H are ǫ-close if dist(G,H) ≤ ǫdn. If G,H are not ǫ-close, then they are ǫ-far.

Note that in particular, G and H are ǫ-far if their vertex numbers differ. A graph G is ǫ-close to a property

P if G is ǫ-close to some H ∈ P . Otherwise, G is ǫ-far from P . Note that this generalises Definition 3.1.

Definition 6.1 (ǫ-tester). Let P ⊆ Cd be a property and ǫ ∈ (0, 1]. An ǫ-tester for P is a probabilistic

algorithm with oracle access to an input G ∈ Cd and auxiliary input n := |V (G)|. The algorithm does

the following.

1. If G ∈ P , then the ǫ-tester accepts with probability at least 2/3.

2. If G is ǫ-far from P , then the ǫ-tester rejects with probability at least 2/3.

An ǫ-tester is called a one-sided error tester if it accepts every graph G ∈ P with probability 1.

The query complexity of an ǫ-tester is the maximum number of oracle queries made with respect to n.

Let f : N → R be a function. A property P is testable with (one-sided error and) query complexity f(n),
if for each ǫ ∈ (0, 1] and each n, there is a (one-sided error) ǫ-tester for P ∩ {G ∈ Cd : |V (G)| = n} on

inputs from {G ∈ Cd : |V (G)| = n} with query complexity f(n).
We now obtain the following result as a corollary of Theorem 5.5.

Corollary 6.2. Hamiltonicity is not testable with one-sided error and query complexity o(n) in the

bounded-degree model.

Proof: Pick d as in Theorem 5.5 and let P ⊆ Cd be the class of all Hamiltonian graphs of degree at most

d. Towards a contradiction, assume that for every ǫ ∈ (0, 1] and n ∈ N there is a one sided-error ǫ-tester

for P ∩ {G ∈ Cd : |V (G)| = n} with query complexity o(n). Let δ, ǫ ∈ (0, 1) be constants such that
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there is a sequence of d-bounded degree graphs (GN )N∈N of increasing order such that GN is δ-locally

Hamiltonian and ǫ-far from being Hamiltonian for every N ∈ N. Note that δ and ǫ exist by Theorem 5.5.

Let T be an ǫ-tester for P with query complexity f(n) ∈ o(n). Since f(n) ∈ o(n) there must be n0 ∈ N

such that f(n) ≤ δn for all n ≥ n0. Let N ∈ N such that |V (GN )| ≥ n0. Since GN is ǫ-far from

P there must be a sequence of queries (q1, . . . , qm) with m ≤ δn such that T queries the sequence

(q1, . . . , qm) with non-zero probability and rejects GN with non-zero probability after performing the

queries (q1, . . . , qm). Let S be the set of vertices v ∈ V (GN ) such that there is a query qi = (v, j) for

i ∈ [m]. Because GN is δ-locally Hamiltonian and |S| ≤ δn there is a graph H ∈ P on n vertices and

T ⊆ V (H) such that there is an isomorphism GN [NGN
(S)] to H [NH(T )] which maps S to T . Hence,

after renaming the vertices in NH(T ), the tester T gets exactly the same answers for queries in q1, . . . , qm
for GN and H . This implies that T queries the sequence (q1, . . . , qm) in H with non-zero probability and

hence must reject H with non-zero probability. This contradicts the assumption that T was a one-sided

error tester for Hamiltonicity.

Note 6.3. Note that the above argument is not sufficient for two-sided error testers. This is the case

because a two-sided error tester would be allowed to reject H with probability < 1/3. As long as for

sufficiently many other query sequences the two-sided error tester accepts H , it might still accept H with

probability at least 2/3.
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