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SUMMARY

Amyotrophic lateral sclerosis (ALS) is a complex disease that leads to motor neuron death. Despite heritabil-

ity estimates of 52%, genome-wide association studies (GWASs) have discovered relatively few loci. We

developed a machine learning approach called RefMap, which integrates functional genomics with GWAS

summary statistics for gene discovery.With transcriptomic and epigenetic profiling ofmotor neurons derived

from induced pluripotent stem cells (iPSCs), RefMap identified 690 ALS-associated genes that represent a

5-fold increase in recovered heritability. Extensive conservation, transcriptome, network, and rare variant an-

alyses demonstrated the functional significance of candidate genes in healthy and diseased motor neurons

and brain tissues. Genetic convergence between common and rare variation highlighted KANK1 as a new

ALS gene. Reproducing KANK1 patient mutations in human neurons led to neurotoxicity and demonstrated

that TDP-43 mislocalization, a hallmark pathology of ALS, is downstream of axonal dysfunction. RefMap can

be readily applied to other complex diseases.

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a fatal and relatively com-

mon neurodegenerative disease. The hallmark of the disease is

motor neuron (MN) loss (Hardiman et al., 2017). 10% of ALS is

autosomal dominant, but even for sporadic ALS heritability

is estimated to be �50% (Ryan et al., 2019; Trabjerg et al.,

2020). Genome-wide association studies (GWASs) in ALS (van

Rheenen et al., 2016, 2021; Nicolas et al., 2018) have identified

several risk loci. However, these changes occur in <10% of

ALS patients, and thus, there are likely to be a large number of

ALS risk genes yet to be discovered.

ALS GWASs to date have lost power by considering genetic

variants in isolation, whereas in reality, a biological system is

the product of a large number of interacting partners (Wang

et al., 2011; Li et al., 2019). Moreover, noncoding regulatory re-

gions of the genome have been relatively neglected in efforts

to pinpoint the genetic basis of ALS, despite their functional syn-

ergy with the coding sequence (Wang et al., 2018; Cooper-

Knock et al., 2020). ALS GWAS have demonstrated that missing

heritability is distributed throughout noncoding chromosomal re-

gions (van Rheenen et al., 2016; Nicolas et al., 2018). The func-

tion of noncoding DNA is often cell-type specific (Heinz et al.,

2015). Developments in understanding of cell-type-specific

(dys)function in neurological diseases (Lopategui Cabezas

et al., 2014; Bryois et al., 2020) has created an opportunity to

dramatically reduce the search space and so boost power for

genetic discovery, by focusing on genomic regions that are func-

tional in the cell type of interest.

Here, we present regional fine-mapping (RefMap), a machine

learning method for analysis of GWAS summary statistics.

RefMap is a hierarchical Bayesian network which performs

genome-wide identification of disease-associated genetic varia-

tion within active genomic regions, the majority of which are

Neuron 110, 1–17, March 16, 2022 ª 2021 The Author(s). Published by Elsevier Inc. 1
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Figure 1. RefMap identifies ALS risk genes by integrating ALS GWAS data with the molecular profiling of motor neurons

(A) Schematic of the study design. (1 and 2) We sequenced the transcriptome and epigenome of the iPSC-derived MNs. By integrating (3) ALS GWAS data with

functional genomics of MNs, (4) a machine learning model called RefMap was developed to fine-map ALS-associated regions. (5) After linking those identified

regions to their regulatory targets, 690 ALS-associated genes were pinpointed. (6) Transcriptome analysis based on iPSC-derived MNs, human tissues, and

(legend continued on next page)
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noncoding. RefMap utilizes epigenetic profiling to determine the

prior probability of disease-association for each region. ALS is

notable for the selective vulnerability of a single cell type, MNs

(Cooper-Knock et al., 2013), which makes it ideally suited to

this approach. MNs are difficult to study in post-mortem tissues

(Corces et al., 2020) because of their relative sparsity, and so a

different approach is needed. We performed exhaustive tran-

scriptomic and epigenetic profiling, including RNA-seq, ATAC-

seq, histone ChIP-seq, and Hi-C, of MNs derived from neurolog-

ically normal controls via induced pluripotent stem cells (iPSCs).

Applying RefMap to ALS GWAS data and molecular profiling of

iPSC-derived MNs (Figure 1A) identified 690 ALS-associated

genes (RefMap ALS genes), including previous GWAS loci as

well as known ALS genes not previously detected by GWAS.

This represents a 5-fold increase in recovered SNP-based heri-

tability compared with traditional methods. We replicated

RefMap ALS genes in a recent ALS GWAS (van Rheenen et al.,

2021). We explored the functional significance of RefMap ALS

genes based on a series of orthogonal analyses. Ultimately, we

determined that RefMap genes suggest that ALS pathogenesis

is initiated in the distal axon of diseased MNs. Convergence be-

tween ALS-associated common and rare genetic variation high-

lighted a new ALS gene—KANK1. Reproducing ALS-associated

mutations within KANK1 in human neurons led to toxicity, func-

tional impairment of the distal axon, and TDP-43 mislocalization

which is the hallmark pathology of ALS (Neumann et al., 2006).

RESULTS

Transcriptomic and epigenetic profiling of iPSC-derived

motor neurons

To identify genomic regions key to MN function, we performed

transcriptomic and epigenetic profiling of iPSC-derived MNs

from neurologically normal individuals (Figure S1A; STAR

Methods). Consistent with successful differentiation, profiled

cells exhibited homogenous expression of lower MN markers

(Figure S1B). We prepared RNA-seq (Wang et al., 2009),

ATAC-seq (Buenrostro et al., 2015), H3K27ac, H3K4me1, and

H3K4me3 ChIP-seq (Creyghton et al., 2010), as well as Hi-C

(van Berkum et al., 2010) libraries using two technical replicates

and three biological replicates per assay (STAR Methods).

Sequencing data were processed and quality control (QC) was

performed according to the ENCODE 4 standards (ENCODE

Project Consortium et al., 2020) (Table S1; STAR Methods).

MNATAC-seq peak regions covered only 4.9%of the genome,

thereby reducing the search space for ALS-associated genetic

variation by >90%. Tomeasure the consistency between distinct

MN profiles, we used our RNA-seq dataset to identify promoter

regions for highly (>90th centile) and lowly (<10th centile) ex-

pressed transcripts. We compared enrichment of ATAC-seq

and histone ChIP-seq peak regions, and Hi-C loops in highly

versus lowly expressed promoters. Significant enrichment within

highly expressed promoters was confirmed for ATAC-seq (p =

1.1e�182, odds ratio [OR] = 1.9, Fisher’s exact test), H3K27ac

ChIP-seq (p = 2.0e�57, OR = 2.2, Fisher’s exact test),

H3K4me1 ChIP-seq (p = 8.5e�57, OR = 1.9, Fisher’s exact

test), H3K4me3ChIP-seq (p= 4.8e�196,OR=2.6, Fisher’s exact

test), and Hi-C loops (p = 4.0e�14, OR = 1.3, Fisher’s exact test)

(Figure S1C). Similarly, epigenetic peak regions are enriched in

MN Hi-C loops: ATAC-seq (p < 1.0e�198, OR = 1.9, Fisher’s

exact test), H3K27ac ChIP-seq (p < 1.0e�198, OR = 2.0, Fisher’s

exact test), H3K4me1ChIP-seq (p<1.0e�198,OR=2.0, Fisher’s

exact test), and H3K4me3 ChIP-seq (p < 1.0e�198, OR = 1.7,

Fisher’s exact test). These observations confirm that our epige-

netic profiling has captured functionally significant regions and

that our epigenetic profiles are internally consistent.

RefMap identifies ALS risk genes

Mismatch between the relatively small number of characterized

ALS risk genes and estimates indicating high heritability sug-

gests that a new approach is required to discover ALS-associ-

ated genetic variation. We present a machine learning model

named RefMap, which exploits epigenetic profiling of MNs to

reduce the search space and so optimize statistical power for

discovery of ALS-associated loci (Figures 1A and S1D; Note

S1; STAR Methods). The genome was first divided into linkage

disequilibrium (LD) blocks and smaller 1-kb regions, and each re-

gion was assigned with a disease-association score based on

the SNPs within it and their associated GWAS Z-scores. Next,

the disease-association score was weighted by an epigenetic

score for each region, which was calculated from a linear combi-

nation of the relevant MN ATAC-seq and histone ChIP-seq

peaks. The final weighted score assigned to every 1-kb region

is known as a Q-score (STAR Methods). In our study, the Z-

scores were calculated based on an ALS GWAS (van Rheenen

et al., 2016), including genotyping of 12,577 sporadic ALS pa-

tients and 23,475 controls.

Next, we linked ALS-associated regions identified by RefMap

to expressed transcripts in MNs (transcript per million [TPM] >1,

RNA-seq; STAR Methods). This resulted in 690 ALS-associated

genes (Table S2). Among this list, we discovered well-known

ALS genes, including C9orf72 (DeJesus-Hernandez et al.,

2011) and ATXN2 (Elden et al., 2010) (Figure 1B). Indeed,

RefMap genes are enriched with an independently curated list

of ALS genes (Eitan et al., 2021) (Table S2) including previous

GWAS loci (p = 5.2e�03, OR = 2.07, Fisher’s exact test), and

also with clinically reportable ALS genes (ClinVar) (Landrum

et al., 2018) (p = 0.03, OR = 3.06, Fisher’s exact test). Certain

ALS genes, such as UNC13A (Daoud et al., 2010; Diekstra

et al., 2012), are missing from the RefMap gene list. We

mouse models, as well as (7) network analysis were performed to demonstrate the functional significance of RefMap ALS genes. (8) CRISPR-Cas9 reproduction

of identified ALS-associatedmutations experimentally verified the proposed link to neuronal toxicity. The LD heatmapmatrix in (4) is visualized in bothR2 (red) and

D0 (blue) using LDmatrix (https://ldlink.nci.nih.gov/?tab=ldmatrix). cCRE, candidate cis-regulatory element; GO, gene ontology.

(B) A region (chr12:112,036,001-112,038,000) around ATXN2 precisely pinpointed by RefMap because of elevated SNP Z scores as well as enriched epigenetic

peaks (ATAC-seq, H3K27ac and H3K4me3 histone ChIP-seq). The output of RefMap is labeled as Q score. ATAC-seq and ChIP-seq signals are shown in fold

change (FC) based on one replicate from sample CS14.

See also Figure S1D and Note S1.
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hypothesized that even if there is not an exact overlap between

RefMap genes and certain known ALS genes, there might be

a functional overlap quantifiable by shared protein-protein inter-

actions (PPIs). To examine this, we mapped RefMap genes

(excluding any knownALS genes to produce a gene set hereafter

referred to as novel RefMap ALS genes) onto a PPI network

(Szklarczyk et al., 2019) (STAR Methods). We discovered that

the average path distance between novel RefMap genes and

known ALS genes is shorter than expected by chance (curated

ALS genes: p = 0.015, ClinVar ALS genes: p = 0.043, permutation

test using 1,000 randomly selected gene sets of equivalent size;

Figure S1E). This demonstrates the functional similarity between

genes we identified and known ALS genes.

As a negative control, we randomly shuffled SNP Z-scores and

re-derived RefMap genes; in this case there is no overlap be-

tween RefMap outputs and known ALS genes. Additional shuf-

fling of epigenetic features disrupted the signal further such

that RefMap failed to identify any significant regions. As an addi-

tional negative control, we tested for enrichment within a gene

list of equivalent size (n = 690, hereafter referred to as GWAS-

derived genes) derived by taking the nearest gene to GWAS

SNPs ranked by p value. This control list is not significantly en-

riched with the independently curated ALS gene list (p = 0.12,

Fisher’s exact test). We also derived a negative control for MN-

specific gene expression to check that RefMap genes are not

overly dependent on our epigenetic signals. We constructed a

gene list of equivalent size (n = 690; STAR Methods) associated

with expression quantitative trait loci (eQTLs) within human

spinal cord (GTEx v7) (GTEx Consortium et al., 2017). Genes

associated with spinal cord eQTLs (hereafter referred to as

eQTL-derived genes) are not significantly enriched with the inde-

pendently curated ALS gene list (p = 0.73, Fisher’s exact test).

Notably, applying RefMap to a recent ALS GWAS dataset

including 29,612 ALS patients and 122,656 controls (van Rhee-

nen et al., 2021) replicated the vast majority of RefMap ALS

genes (n = 585, 84.8%).

As benchmarking,weapplied three established approaches for

genetic discovery based on GWAS summary statistics, including

MAGMA (de Leeuw et al., 2015), Pascal (Lamparter et al., 2016),

and PAINTOR (Kichaev et al., 2014), to the same GWAS dataset

(STAR Methods). After multiple testing correction, MAGMA and

Pascal identified 10 and 5 genes, respectively, both including

C9orf72 (p < 2.76e�06; Figure S2A; Table S3). Unlike MAGMA

and Pascal, PAINTOR includes the capacity to integrate epige-

netic annotations. Despite this, PAINTOR identified only two

genes: MOB3B and LOC105376001 (Figure S2A; Table S3). In

contrast to RefMap ALS genes, genes identified by these three

methods do not consist of a significant proportion of the curated

ALS genes or of the ClinVar ALS genes (Figure S2A).

We finally used linkage disequilibrium score regression (LDSC)

(Finucane et al., 2015) to examine the SNP-based heritability

partitioned within RefMap ALS genes (STAR Methods). We

discovered that RefMap ALS genes contain 36% of heritability,

compared with 6% for genome-wide significant loci, represent-

ing a 5-fold increase in the recovered heritability. This is also

significantly higher than the 6% of heritability contained within

eQTL-derived genes.

Conservation analysis demonstrates the functional

importance of RefMap genes

We performed conservation analysis to examine the functional

significance of RefMap ALS genes. Compared with all protein-

coding genes, RefMap genes are significantly haploinsufficient

based on their haploinsufficiency (HI) scores (Huang et al.,

2010) (p = 2.59e�19, one-sided Wilcoxon rank-sum test; Fig-

ure 2A). RefMap genes are intolerant to loss-of-function (LoF)

mutations as measured by the LoFtool score (Fadista et al.,

2017) (p = 2.28e�04, one-sided Wilcoxon rank-sum test; Fig-

ure 2B), and to other mutation types as measured by the RVIS

score (Petrovski et al., 2013) (p = 8.08e�13, one-sided Wilcoxon

rank-sum test; Figure 2C); these tests were performed within the

ExAC dataset (Lek et al., 2016). Within the larger gnomAD data-

set (v2.1), RefMap genes are intolerant to LoF mutations as

measured by the o/e score (Karczewski et al., 2020) (p =

4.08e�10, one-sidedWilcoxon rank-sum test; Figure 2D). Taken

together, these results support the functional importance of

RefMap ALS genes and suggest that genetic variation identified

by RefMap is likely to be toxic if it leads to altered expression/

function of these genes.

A B

DC

Figure 2. RefMap genes are haploinsufficient and intolerant to loss

of function

(A–D) Comparison of haploinsufficiency score (A), LoFtool percentile (B), RVIS-

ExAC percentile (C), and o/e score (D) between RefMap genes and all protein-

coding genes in the background transcriptome. Comparison was performed

using the one-sidedWilcoxon rank-sum test. The bottom and top of the boxes

indicate the first and third quartiles, respectively, where the black line between

indicates the median. Whiskers denote the minimal value within 1.5 inter-

quartile range (IQR) of the lower quartile and themaximum value within 1.5 IQR

of the upper quartile. Red symbols denote outliers. In (D), black dashed lines

indicate the lower and upper limits of the regions with regular scale. Outliers

beyond the black dashed lines are visualized with a compressed scale in the

regions denoted by gray lines. See also Figures S2B and S2C.
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To examine the contribution of transcriptomic and epigenetic

profiling in identifying relatively conserved genes, we performed

additional control analysis to compare measures of HI and con-

servation between RefMap ALS genes and genes identified by

transcriptomic or epigenetic profiling in isolation. Specifically,

we identified all genes within active chromatin defined by MN

ATAC-seq peaks, and all genes expressed in MNs (TPM > 1);

these two gene lists were substituted for the background set in

the conservation analysis. Despite this change, we observed

that RefMap genes are still more likely to be haploinsufficient

and more intolerant to genetic variation compared with both

gene lists (p < 0.05, one-sided Wilcoxon rank-sum test; Figures

S2B and S2C). However, if the contribution of epigenetic

profiling is removed entirely then the resulting genes are not

conserved: GWAS-derived genes are not intolerant of LoF muta-

tions for all scores including LoFtool, RVIS, and o/e (p > 0.05,Wil-

coxon rank-sum test).

Transcriptome analysis supports functional

significance of RefMap genes in MNs and in ALS

We hypothesized that the ALS-associated genetic variation in

regulatory regions of MNs identified by RefMap is likely to be

pathogenic through reduced expression of the 690 linked genes.

To explore this possibility, we examined whether change in

expression of RefMap genes is associated with ALS, using tran-

scriptomic data from central nervous system (CNS) tissues, pa-

tient-derived MNs, and an ALS animal model.

First, we examined the expression of RefMap genes within our

iPSC-derived MNs from neurologically normal individuals.

RefMap genes are higher expressed (p = 3.07e�17, one-sided

Wilcoxon rank-sum test; Figure 3A) compared with the overall

transcriptome (TPM>1). No differential expressionwas observed

for genesderived fromRefMapusing randomly shuffledZ-scores.

Next, we examined the expression of RefMap ALS genes in

CNS tissues derived from ALS patients (n = 18) and controls

A B

DC

E F

Figure 3. Transcriptomics supports the func-

tional importance of RefMap genes in motor

neurons and in ALS

(A) Comparative gene expression analysis of RefMap

genes in iPSC-derived MNs from neurologically

normal individuals (n = 3). For a fair comparison, we

only considered those genes with evidence for MN

expression (TPM > 1).

(B) Comparative gene expression analysis of RefMap

genes in post-mortem CNS tissues from C9orf72-

ALS (n = 8) and sporadic ALS (n = 10) patients versus

neurologically normal controls (n = 17). FC, frontal

cortex; CB, cerebellum.

(C) Comparative gene expression analysis of RefMap

genes in iPSC-derived MNs from ALS patients (n =

55) versus neurologically normal controls (n = 15). All

comparisons in (A–C) were performed using the one-

sided Wilcoxon rank-sum test, and the Benjamini-

Hochberg (BH) correction was carried out in (B). In

(A–C), the bottom and top of the boxes indicate the

first and third quartiles, respectively, where the black

line in between indicates the median. Whiskers

denote the minimal value within 1.5 IQR of the lower

quartile and the maximum value within 1.5 IQR of the

upper quartile. Red symbols denote outliers. In (B)

and (C), black dashed lines indicate the lower and

upper limits of the regions with regular scale. Outliers

beyond the black dashed lines are visualized with a

compressed scale in the regions denoted by gray

lines.

(D) Heatmap showing hierarchical clustering of

expression changes of RefMap genes during disease

progression based on the SOD1-G93A mouse

model. RefMap genes were mapped to their mouse

homologs (n = 510). Gene expression levels were

estimated using the b scores calculated in (Maniatis

et al., 2019), and were averaged across different

sections of spinal cords at each time point. Time

points p30, p70, p100, and p120 represent presymptomatic, onset, symptomatic, and end-stage, respectively. Difference of gene expression levels between

SOD1-G93A and SOD1-WT mice at each time point was quantified by the difference in bðDbÞ. Before clustering, Db were standardized across genes, and one

minus correlation was used as the clustering distance.

(E) Two distinct expression patterns (C1: 286 genes; C2: 224 genes) of RefMap genes were identified after clustering. The larger cluster C1 was progressively

downregulated during ALS progression. Solid plot represents the mean of expression levels within each cluster, and the standard error is shown as shading.

(F) Gene ontology analysis of C1, showing that C1 is enriched with functions related to theMN distal axon and synapse. GO, gene ontology; GOBP, gene ontology

biological process; GOCC, gene ontology cellular compartment. Black vertical line represents p = 0.05.

See also Table S4.
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(n = 17) (Prudencio et al., 2015). A significant decrease in the

expression of RefMap genes was observed in both frontal cortex

(C9orf72-ALS (cALS): false discovery rate (FDR) = 0.002, one-

sided Wilcoxon rank-sum test) and cerebellum (cALS: FDR =

0.002, sporadic ALS (sALS): FDR = 0.005, one-sided Wilcoxon

rank-sum test) of ALS patients compared with the overall tran-

scriptome (Figure 3B; STAR Methods). As an independent vali-

dation, we analyzed gene expression in iPSC-derived MNs

from ALS patients (n = 55, https://www.answerals.org/) and

confirmed that RefMap genes were downregulated (p =

3.85e�04, one-sided Wilcoxon rank-sum test; Figure 3C)

compared with neurologically normal controls (n = 15).

Finally, we used longitudinal data to infer whether change in

the expression of RefMap ALS genes occurs upstream or down-

stream in the development of neuronal toxicity. We re-analyzed

the transcriptomic data from a spatiotemporal transcriptomics

study on the SOD1-G93A-ALS mouse model (Gurney et al.,

1994; Maniatis et al., 2019). Longitudinal gene expression aver-

aged across spinal cord sections from SOD1-G93A (n = 32) and

SOD1-WT (n = 24) mice revealed two distinct expression pat-

terns for RefMap homologs (Figures 3D and 3E; Table S4). Inter-

estingly, the largest group (C1, 286/510) of RefMap homologs

were progressively downregulated through consecutive disease

stages, consistent with our observations in human data. Func-

tional enrichment analysis of C1 genes pointed to distal axon

function (Figure 3F), which is consistent with known ALS biology

(Cooper-Knock et al., 2013) and with the positioning of ALS as a

distal axonopathy (Frey et al., 2000; Moloney et al., 2014). Func-

tional enrichment of C2 genes did not reach statistical signifi-

cance (data not shown).

Systems analysis identifies ALS-associated modules

We next examined biological functions associated with RefMap

ALS genes by first mapping RefMap genes to the global PPI

network and then inspecting the functional enrichment of ALS-

associated network modules (Figure S3A; Table S5; STAR

Methods). Two modules were found to be significantly enriched

with RefMap genes: M421 (721 genes; FDR < 0.1, hypergeomet-

ric test; Figure 4A; Table S5) and M604 (308 genes; FDR < 0.1,

hypergeometric test; Figure 4B; Table S5). Functionally, both

M421 and M604 are enriched with GO/KEGG terms related to

the distal axon and neuromuscular junction (NMJ) (Figures 4C,

4D, and 4E). This is consistent with previous literature suggesting

that ALS pathogenesis is initiated in the distal axon (Frey et al.,

2000; Moloney et al., 2014). Finally, both M421 and M604 are

overexpressed in control iPSC-derived MNs (p < 1e�06, one-

sided Wilcoxon rank-sum test; Figure 4F), in a similar manner

to the total set of RefMap genes. Interestingly, many functions

ascribed to M421 and M604 overlap with the functions of the

C1 cluster from our analysis of the SOD1-G93A mouse model

(Figure 3F).

Rare variant analysis validates RefMap genes

Our transcriptome analysis suggests that reduced function of

RefMap ALS genes is associated with MN toxicity. On this basis,

we hypothesized that rare mutations that disrupt the transcrip-

tion/translation of RefMap genes would also modify ALS

severity.We first screened RefMap genes for rare LoFmutations,

including nonsense mutations, high-effect splice-site mutations

(Jaganathan et al., 2019), and mutations changing transcription

initiation within the 50UTR (Zhang et al., 2021) (STAR Methods).

By analyzing whole-genome sequencing (WGS) data from

5,594 sporadic ALS patients and 2,238 controls (Project MinE

ALS Sequencing Consortium, 2018), we observed that 53% of

ALS patients carry an ALS-associated rare LoF mutation within

a RefMap gene. Notably, patients with a higher burden of rare

LoF mutations within RefMap ALS genes suffered earlier age of

disease onset (p = 7e�03, log rank test; Figure 5A). This is

consistent with previous literature in which ALS genetic risk

has been associated with the age of disease onset (Shepheard

et al., 2021). As a control test, we again examined the two

matched gene lists of equivalent size: GWAS-derived genes

and eQTL-derived genes. In neither of the control gene lists

was the burden of rare LoF mutations associated with the age

of disease onset (p > 0.05, log rank test).

As an additional rare variant validation of the total set of

RefMap ALS genes, we examined rare deleterious variation

within enhancer regions. Enhancer regions were defined as pre-

viously described (Fishilevich et al., 2017; Cooper-Knock et al.,

2020). Significant variants were identified based on evolutionary

conservation, functional annotations, and population frequency

(Ritchie et al., 2014; Huang et al., 2017; Rentzsch et al., 2019;

Karczewski et al., 2020) (STAR Methods). We performed gene-

level association testing for differences in rare variant burden be-

tween ALS patients and controls (STAR Methods) for all genes

expressed in iPSC-derivedMNs (n = 19,519, TPM> 1). The resul-

tant p values for RefMap ALS genes are significantly smaller than

for the total set of genes (p = 0.01, Wilcoxon rank-sum test). As a

final rare variant validation we analyzed rare (minor allele fre-

quency [MAF] < 0.001%) missense variants in an independent

exome sequencing cohort (n = 3,864 ALS patients and n =

7,839 controls) (Farhan et al., 2019). The median p value for

ALS-associated genetic burden in RefMap genes is lower than

expected by chance (l = 2.06 versus l = �1 for all genes; Fig-

ure S3B; Table S6; STAR Methods).

To identify candidate genes for further experimental validation,

we first ranked RefMap genes by the number of linked regions.

Taking top scores over 3 standard deviations from the mean

nominated 15 genes (Table S6). We were particularly interested

in top RefMap genes with genetic convergence between com-

mon and rare ALS-associated variation. To examine this, we

tested whether these 15 common-variant-derived genes are en-

riched with rare LoF variants within coding and noncoding re-

gions. As before, we filtered for rare deleterious variants based

on evolutionary conservation, functional annotations, and popu-

lation frequency but we extended our analysis to enhancer, pro-

moter, and coding regions (STAR Methods). Gene-level associ-

ation testing for differences in rare variant burden between ALS

patients and controls identified significant enrichment in one or

more regions for four of the 15 genes, including ADAMTSL1,

BNC2, KANK1, and VAV2 (p < 0.05, SKAT-O; Table S6), none

of which have been linked to ALS previously. In ADAMTSL1,

BNC2, and KANK1, ALS patients are enriched with rare delete-

rious variants which are relatively absent from controls, whereas

in VAV2 the direction of association is reversed, suggesting that

the loss of VAV2 function is protective against MN toxicity. These
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four genes were replicated when RefMapwas applied to the new

ALS GWAS (van Rheenen et al., 2021).

We then examined expression levels of ADAMTSL1, BNC2,

KANK1, and VAV2 in iPSC-derived MNs from ALS patients (n =

55; https://www.answerals.org/). Expression of all four genes is

significantly correlated with the age of ALS onset (FDR < 0.05,

Pearson correlation; Figures 5B–5E). For ADAMTSL1, BNC2,

and KANK1, lower expression is associated with earlier age of

ALS onset (Figures 5B–5D), which is consistent with a toxic

LoF model. For VAV2, the association is in the opposite direction

(Figure 5E), which is consistent with our rare variant analysis

where LoF mutations are significantly absent from ALS patients.

Indeed, VAV2 has been associated with neuroprotection medi-

ated via TREM2 signaling (Painter et al., 2015). To ensure that

A C

B D

E F

Figure 4. Network analysis associates Re-

fMap genes with distal axonopathy in MNs

(A and B) PPI network analysis revealed two mod-

ules that are significantly (FDR < 0.1) enriched with

RefMap genes: M421 (721 genes) (A) andM604 (308

genes) (B). Hypergeometric test was performed to

quantify the enrichment followed by BH correction.

Module nodes are colored to demonstrate the

enrichment, where RefMap genes are in blue and

other module genes are yellow. Edge thickness is

proportional to STRING confidence score (>700).

(C and D) RefMap modules, including M421 (C) and

M604 (D), are enriched for MN functions localized

within the distal axon. GOBP, gene ontology bio-

logical process; GOCC, gene ontology cellular

compartment. Black vertical line represents p =

0.05.

(E) Representation of pathways enriched in each

module (C and D) in MNs.

(F) Comparative gene expression analysis of

RefMap module genes in control MNs. All compar-

isonswere performed using the one-sidedWilcoxon

rank-sum test. The bottom and top of the boxes

indicate the first and third quartiles, respectively,

where the black line in between indicates the me-

dian. Whiskers denote the minimal value within 1.5

IQR of the lower quartile and the maximum value

within 1.5 IQR of the upper quartile. Red symbols

denote outliers. Black dashed lines indicate the

lower and upper limits of the regions with regular

scale. Outliers beyond the black dashed lines are

visualized with a compressed scale in the regions

denoted by gray lines.

See also Figures S3A, S3C, and S3D and Table S5.

our analysis was not confounded, we

tested for a similar association with age

of onset for random selections of four

genes, but our findings are highly signifi-

cant (p < 1e�04, permutation test; STAR

Methods).

Notably, of top-ranked RefMap genes

only KANK1 (accounting for 3% of herita-

bility) is enriched with ALS-associated

rare mutations across both coding and

noncoding regions in the Project MinE da-

taset. Indeed, KANK1 promoter and enhancer regions are inde-

pendently enriched with ALS-associated rare variants (p < 0.05,

SKAT-O; Table S6). Nonsense coding variants within KANK1 are

absent from controls and present in a small number (n = 4) of ALS

patients; an additional 8 ALS patients carry a deleterious variant

within the KANK1 50UTR. Combining coding and noncoding

associations in a single test revealed a significant enrichment

of rare deleterious variants within KANK1 in ALS patients

compared with controls (p = 5.6e�03, Stouffer’s method (Whit-

lock, 2005); FDR < 0.1 after considering tests applied to all 15

genes). Furthermore, in the independent exome sequencing

cohort (Farhan et al., 2019), KANK1 is significantly enriched

with ALS-associated rare missense variants after Bonferroni

multiple testing correction (p = 4.5e�05, OR = 1.36, Fisher’s
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exact test; Figure S3B; Table S6), but not with rare synonymous

variants (p = 0.11). KANK1 is located within a distinct module

(M826, 687 genes; Figure S3C; Table S5) in our network analysis,

and this module is enriched with RefMap genes (p = 5.6e�03,

hypergeometric test), while not after multiple testing correction.

Functionally, the KANK1-module is highly expressed in normal

MNs (p < 1e�06, one-sided Wilcoxon rank-sum test; Figure 4F)

and is enriched for biological functions centered on the distal

axon and synapse (Figure S3D), which is consistent with other

RefMap modules.

Experimental evaluation ofBNC2 andKANK1 function in

human neurons

We sought to experimentally investigate the effect of LoF of top-

ranked RefMap genes on neuronal health (Figure 6A). We tested

BNC2 andKANK1;ADAMTSL1was also tested, but wewere un-

able to achieve a knockdown by CRISPR due to the absence of

appropriate protospacer adjacent motif (PAM) sites (data not

shown). gRNAs were designed to target PAM sites within

BNC2 exon 2 and KANK1 exon 2, so as to introduce a series

of indels by CRISPR-SpCas9 editing; edited exons coincide

with the location of ALS-associated nonsense mutations in our

rare variant analysis. BNC2 and KANK1 nonsense mutations

were edited into SH-SY5Y neurons (Figure 6A; STAR Methods).

Sanger sequencing and waveform decomposition analysis

(Hsiau et al., 2019) in undifferentiated SH-SY5Y cells confirmed

editing efficiency (Figures S4A–S4D).

Among ALS-associated active regions identified by RefMap,

chr9:663,001-664,000 has the highest concentration of risk

SNPs (22 SNPs). We hypothesized that ALS-associated genetic

A

B C D E

Figure 5. Rare variant analysis demonstrates

the association of RefMap genes with ALS

severity

(A) Survival curves showing the number of rare LoF

variants within RefMap ALS genes carried by an

ALS patient is inversely correlated with the age of

disease onset. Plot shows age of onset for ALS

patients grouped by the number of rare LoF variants

affecting one or more RefMap ALS genes. p value

by the log rank test.

(B–E) Correlation analysis of the expression of

ADAMTSL1 (B), BNC2 (C), KANK1 (D), and VAV2 (E)

in iPSC-derived MNs obtained from ALS patients

(n = 55) versus the age of ALS onset. Gene

expression level (x axis) is plotted against the age of

onset (y axis). Lines (blue) of best fit are shown with

95% confidence interval (CI, gray area). The BH

method was used for multiple testing correction.

See also Figure S3B and Table S6.

variation within chr9:663,001-664,000

would reduce the expression of the associ-

ated gene, KANK1, leading to MN toxicity.

To replicate disruption of this sequence,

we designed gRNAs to target PAM sites

up- and downstream of chr9:663,001-

664,000 so as to delete the entire region

(Zheng et al., 2014) in SH-SY5Y cells

(Figure 6A; STARMethods). Successful deletion of the enhancer

region was confirmed by RT-PCR in undifferentiated SH-SY5Y

cells (Figure S4E).

For experimental evaluation, a commercially available control

gRNA targeting HPRT served as a negative control. Edited SH-

SY5Y cells were differentiated to a neuronal phenotype (Forster

et al., 2016) (Figures S5A and S5B). Differentiated cells were

harvested and RNA was extracted for quantitative PCR

(qPCR). We confirmed reduced expression of BNC2 and

KANK1 mRNA in edited neurons, including BNC2-exon-edited

cells, KANK1-exon-edited cells, and KANK1-enhancer-edited

cells (BNC2 exon: 83% reduction, p < 1e�04; KANK1 exon:

19% reduction, p = 0.1; KANK1 enhancer: 36% reduction, p =

7e-03, paired Student’s t test; Figures 6B and 6C).

Reduction in BNC2 and KANK1 expression was associated

with reduced neuronal viability in neuronally differentiated cells

(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

[MTT] assay; BNC2 exon: p = 0.02, KANK1 enhancer: p =

3e�03, paired Student’s t test; Figures 6D and 6E; STAR

Methods). Edited neurons also exhibited shorter neurites

(BNC2 exon: p = 0.02, KANK1 exon: p = 0.04, KANK1 enhancer:

p = 0.02, paired Student’s t test; Figures 6F and 6G) and reduced

branch length (KANK1 exon: p =0.02,KANK1 enhancer: p = 0.01,

paired Student’s t test; Figures 6H and 6I). When comparing

KANK1-exon-edited and KANK1-enhancer-edited neurons, it is

notable that in all instances, the measures of neuronal toxicity

were correlated with KANK1 expression (Figure 6C).

These experimental observations collectively demonstrate the

neuronal toxicity focused on the axon caused by the loss of

BNC2 and KANK1 function, which further supports both BNC2
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and KANK1 as new ALS risk genes. All of the phenotypes we

measured have previously been observed in cell models of

ALS (Watanabe et al., 2020; Mehta et al., 2021). In particular,

MTT defects reflect bioenergetic dysfunction that has been

linked specifically to axonal shortening in C9orf72-ALS models

(Mehta et al., 2021) and reduced length of dendrites have been

found in C21orf2-ALS cell models (Watanabe et al., 2020).

Loss of KANK1 function in iPSC-derived MNs places

axonal dysfunction upstream of key ALS molecular

phenotypes

In our analysis, we have identified both common and rare ALS-

associated mutations which reduce the expression of KANK1,

disrupt neuronal function, and modify disease severity. Finally,

we sought to investigate the effect of loss of KANK1 function in

iPSC-derived MNs, which is the gold standard cell model for

A

B

D F H

C

E G I

Figure 6. Loss of function of BNC2 or KANK1

produces neurotoxicity

(A) Study design of experimental evaluation of BNC2

and KANK1 function in human neurons. We per-

formed CRISPR-SpCas9 perturbation proximate to

patient mutations in coding and enhancer regions of

RefMap genes in SH-SY5Y neurons and then inves-

tigated gene expression change and neuronal health.

(B and C) Comparison of expression levels of BNC2

(B) and KANK1 (C) in corresponding edited neurons

versus in control cells.

(D and E) Comparison of neuronal viability by MTT

assay between BNC2-edited (D), KANK1-edited

neurons (E), and control cells.

(F and G) Comparison of axonal length between

BNC2-edited (F), KANK1-edited neurons (G), and

control cells.

(H and I) Comparison of axonal-branch length be-

tween BNC2-edited (H), KANK1-edited neurons (I),

and control cells.

Data are mean ± SD. All comparisons were per-

formed using the paired Student’s t test. p values

smaller than 0.05 are annotated. See also Figures S4,

S5A, and S5B.

ALS (Sances et al., 2016; Fujimori et al.,

2018). In particular, we used CRISPR-

SpCas9 editing of iPSCs derived from an

aged healthy control (STAR Methods) to

recapitulate ALS LoF mutations before

differentiating cells into mature MNs. MNs

were evaluated for evidence of toxicity,

electrophysiological dysfunction, and pa-

thology (Figure 7A).

To reproduce ALS-associated variants in

iPSCs, we re-used the CRISPR gRNAs uti-

lized in the SH-SY5Y experiment targeting

KANK1 exon 2. We confirmed the editing

efficiency at the iNPC and iPSC stages (Fig-

ures S5C and S5D; STAR Methods).

Reduction in KANK1 expression was

confirmed in mature MNs (23% reduction,

p = 0.026, paired Student’s t test; Figure 7B)

compared with a separate line edited with a control gRNA target-

ing HPRT. We also utilized isogenic unedited iPSCs as an addi-

tional control. We confirmed successful differentiation of mature

MNs for all lines at day 45 post-differentiation (Figure S6; STAR

Methods). All molecular phenotypes were confirmed in a mini-

mum of three technical replicates and >100 MNs per condition

(STAR Methods).

We observed increased apoptosis (STARMethods) inKANK1-

edited MNs as evidenced by staining for cleaved caspase-3

(versus isogenic control cells: 59% increase in the mean number

of cleaved caspase-3-positive cells, p = 7e�03; versus HPRT-

edited cells: 120% increase in the mean number of cleaved cas-

pase-3-positive cells, p = 5e�03, paired Student’s t test; Figures

7C and S7A) and nuclear fragmentation (versus isogenic control

cells: 29% increase in the mean number of cells with nuclear

fragmentation, p < 1e�04; versus HPRT-edited cells: 42%
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increase in the mean number of cells with nuclear fragmentation,

p = 4e�04, paired Student’s t test; Figure 7D). Excessive cell

death was observed with withdrawal of neurotrophic factors

from the culture media, suggesting that KANK1 may have a

downstream role in neurotrophic signaling.

At day 40 post-differentiation MNswere electrophysiologically

functional. However, patch-clamp electrophysiology (STAR

Methods) demonstrates that KANK1-edited lines were hypoex-

citable relative to isogenic control cells (up to 53% reduction in

number of action potentials, p = 4e�03, Mann-Whitney U test;

Figures 7E and S7B) as well as to HPRT-edited cells (up to

54% reduction in number of action potentials, p = 8e�04,

Mann-Whitney U test; Figures 7E and S7B). This is reflected in

a moderate increase in input resistance (versus isogenic control

cells: p = 0.09, versus HPRT-edited cells: p = 0.05, Mann-Whit-

ney U test; Figure S7C), reduced resting membrane potential

(RMP) (versus HPRT-edited cells: p = 0.03, Mann-Whitney U

test; Figure 7F), and reduced whole-cell capacitance (versus

isogenic control cells: p = 3e�03, versus HPRT-edited cells:

p = 5e�03, Mann-Whitney U test; Figure 7G). These observa-

tions together demonstrate electrophysiological dysfunction in

the distal axon of MNs with loss of KANK1 function.

The pathological hallmark of ALS is TDP-43 mislocalization,

including nuclear loss and the formation of cytoplasmic protein

aggregates (Neumann et al., 2006). Specifically, loss of nuclear

TDP-43 has been linked to splicing changes with a role in down-

stream pathogenesis (Melamed et al., 2019; Ma et al., 2021;

Brown et al., 2021). At day 45, post-differentiation iPSC-derived

MNs were fixed and stained for TDP-43 (STAR Methods). In the

absence of any exogenous stressor, KANK1-edited neurons ex-

hibited dramatic loss of nuclear TDP-43, which was not present

in either isogenic control cells (30% reduction, p = 6e�03, one-

way ANOVA; Figures 7H and 7I) or in HPRT-edited cells (31%

reduction, p = 9e�03, one-way ANOVA; Figures 7H and 7I).

KANK1-edited neurons also displayed evidence of cytoplasmic

TDP-43-positive protein aggregates (Figure 7J).

Overall, our experimental data indicate that the loss of KANK1

function produces neuronal toxicity, disrupts distal axon func-

tion, and reproduces key phenotypes associated with ALS,

including TDP-43 mislocalization (Neumann et al., 2006), hypo-

excitability (Sareen et al., 2014; Devlin et al., 2015; Naujock

et al., 2016; Martı́nez-Silva et al., 2018), and failure of neurotro-

phic signaling (Lamas et al., 2014; Sances et al., 2016; Shi

et al., 2018).

DISCUSSION

Study of the genetic architecture of complex diseases has been

advanced by GWAS. However, previous studies have not

considered cell-type-specific aspects of genomic function,

which is particularly relevant for noncoding regulatory sequence

(Heinz et al., 2015). Thismay explain why complex diseases such

as ALS have been linked to relatively few risk genes despite sub-

stantial estimates of heritability (Ryan et al., 2019; Trabjerg et al.,

2020). Fine-mapping methods have been proposed to disen-

tangle causal SNPs from genetic associations (Hormozdiari

et al., 2014; Kichaev et al., 2014; Pickrell, 2014; Benner et al.,

2016; Chen et al., 2016b; Schaid et al., 2018), but these ap-

proaches are not integrated with cell-type-specific biology (Hor-

mozdiari et al., 2014; Benner et al., 2016), or assume a fixed

number of causal SNPs per locus (Kichaev et al., 2014; Pickrell,

2014; Chen et al., 2016b), limiting their power for gene discovery.

We have characterized epigenetic features of MNs, which are

the key cell type for ALS pathogenesis. Integrating MN epige-

netic features with ALS GWAS data in our RefMap model re-

vealed 690 ALS risk genes and 36% of SNP-based heritability,

which represents a 5-fold increase in recovered SNP-based her-

itability compared with conventional methods. Others have per-

formed more limited epigenetic profiling of MNs (Song et al.,

2019), but our data are unique with respect to the depth and

number of assessments.

RefMap ALS genes were identified through analysis of com-

mon genetic variation; LD between common and rare variants

is minimal (Pritchard and Cox, 2002) and therefore analysis of

rare variants provides an orthogonal test of underlying disease

biology. Rare deleterious genetic variation within the total set

of RefMap genes is associated with ALS. Moreover, rare LoF

mutations within RefMap genes modify ALS clinical severity.

Finally, we have shown experimentally that LoF of top-ranked

RefMap genes produces key molecular phenotypes associated

Figure 7. Loss of function of KANK1 in iPSC-derived motor neurons leads to neuronal toxicity, distal axon dysfunction, and TDP-43 misloc-

alization

(A) Schematic of experimental study design. To experimentally evaluate the effect of loss of function of KANK1, we performed CRISPR-SpCas9 perturbation

proximate to patient KANK1 exonic mutations in iPSCs, which were then differentiated into mature MNs. MNs were evaluated for evidence of toxicity, deficient

electrophysiological function, and for molecular phenotypes associated with ALS, including cytoplasmic displacement of TDP-43 with formation of cytoplasmic

inclusions.

(B) Comparison of KANK1 expression in KANK1-edited versus HPRT-edited cells.

(C) Comparison of the proportion of cleaved caspase-3-positive cells between KANK1-edited iPSC-derived motor neurons and controls.

(D) Comparison of the proportion of nuclear fragmentation between KANK1-edited motor neurons and controls. Comparisons in (B–D) were performed using the

paired Student’s t test.

(E) Comparison of action potential firing between KANK1-edited motor neurons and controls. *p < 0.05; **p < 0.01; ***p < 0.001.

(F) Comparison of resting membrane potential (RMP) between KANK1-edited motor neurons and controls.

(G) Comparison of whole-cell capacitance between KANK1-edited motor neurons and controls. Comparisons in (E–G) were performed using the Mann-Whitney

U test.

(H) Immunocytochemistry reveals loss of nuclear TDP-43 in KANK1-edited motor neurons.

(I) Comparison of the ratio of nuclear to cytoplasmic TDP-43 intensity between KANK1-edited motor neurons and controls. Comparison was performed using the

one-way ANOVA.

(J) Immunocytochemistry reveals cytoplasmic TDP-43-positive protein aggregates in KANK1-edited motor neurons.

Data are mean ± SD. p values smaller than 0.05 are annotated. See also Figures S5C, S5D, S6, and S7.
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with ALS, including TDP-43 mislocalization (Neumann et al.,

2006), hypoexcitability (Sareen et al., 2014; Devlin et al., 2015;

Naujock et al., 2016; Martı́nez-Silva et al., 2018), and disruption

of neurotrophic signaling (Lamas et al., 2014; Sances et al., 2016;

Shi et al., 2018). Altogether, our data strongly support the utility

of the RefMap framework for gene discovery.

In addition to rare genetic variation within the total set of

RefMap genes, we also identified a significant enrichment of

ALS-associated rare variants in a number of top-ranked RefMap

genes including ADAMTSL1, BNC2, KANK1, and VAV2. For

KANK1 in particular, rare genetic variation is ALS associated

even after stringent multiple testing correction across multiple

independent cohorts. Expression of these genes in patient-

derived MNs is correlated with ALS severity. We were able to

use CRISPR editing to replicate ALS-associated mutations in

two of these genes—KANK1 and BNC2—in human neurons.

BNC2 is not well characterized in the context of human neu-

rons. We discovered that reduced expression of BNC2 is toxic

and leads to an axonopathy in human neurons. Moreover, the

expression of BNC2 in patient-derived MNs is directly correlated

with disease severity. BNC2 is localized to nuclear speckles and

has been associated with regulation of RNA splicing (Vanhoutte-

ghem and Djian, 2006). It is interesting that sequestration of

SC35/SRSF2, the major marker of nuclear speckles, has been

previously associated with ALS (Lee et al., 2013; Cooper-Knock

et al., 2014). Further work is needed to understand how LoF of

BNC2 leads to axonal dysfunction and neuronal death.

KANK1 is functionally related to a number of known ALS genes

that are important for cytoskeletal function, including PFN1,

KIF5A, and TUBA4A. In particular, PFN1, like KANK1, is impli-

cated in actin polymerization (Roy et al., 2009; Kakinuma et al.,

2009; Boopathy et al., 2015). Disruption of actin polymerization

has been associated with alterations in synaptic organization

(Dillon and Goda, 2005), including the NMJ (Mallik and Kumar,

2018), but also with nucleocytoplasmic transport defects (Giam-

petruzzi et al., 2019). We have experimentally verified the link be-

tween variants identified by our analysis and KANK1 expression.

Moreover, we have demonstrated that the reduced expression

of KANK1 in iPSC-derived MNs is toxic and reproduces key

pathological hallmarks of ALS, including TDP-43 pathology

(Neumann et al., 2006). It is plausible that KANK1 upregulation

could be a therapeutic target for ALS patients carrying mutations

that disruptKANK1 function, and possiblymore broadly. Of note,

we showed that expression of KANK1 in patient-derived MNs is

directly correlated with disease severity, without selecting for

patients carrying KANK1 mutations.

Consistent with previous literature, RefMap ALS genes are

functionally associated with the distal axon (Frey et al., 2000;

Moloney et al., 2014). Several known ALS risk genes are related

to axonal function and axonal transport in particular (De Vos and

Hafezparast, 2017). Unlike previous literature, our work is based

on a comprehensive genome-wide screening and not on a small

number of rare variants. As a result, our data suggest that the

distal axon may be the site of disease initiation in the majority

of ALS patients, and should be a major focus of future transla-

tional research. It has previously been proposed that axonal

dysfunction is secondary to TDP-43 dysfunction (Herzog et al.,

2017; Briese et al., 2020), but. Importantly, our work suggests

that the opposite is true. KANK1 is a key protein for distal axon

function (Roy et al., 2009; Kakinuma et al., 2009), and ALS-asso-

ciated mutations within KANK1 disrupt distal axon function but

also lead to TDP-43 mislocalization from the nucleus in iPSC-

derived MNs. We conclude that axonal dysfunction precedes

TDP-43 pathology in the cascade of pathogenesis.

Our study has certain limitations. First, 84.8% of RefMap ALS

genes were re-discovered when we replicated the RefMap anal-

ysis in a new GWAS dataset with a more heterogeneous popula-

tion structure (van Rheenen et al., 2021), but some genes were

not replicated. This may be a result of mismatch in population

structure between the two GWAS datasets. Second, in order to

make our method more portable we rely on out-sample estima-

tion of LD structure using the 1000 Genomes dataset, which is

suboptimal in modeling common variants (Benner et al., 2017)

compared with in-sample estimation, which is often not widely

available. Third, we present evidence for the functional signifi-

cance of the total set of RefMap genes including enrichment

with known ALS genes, transcriptomics, conservation and sys-

tems analysis, and rare variant burden within exons, promoters,

and enhancers. However, our experimental validation is limited

to top-rankedRefMapgenes, andwe reproduce ALS-associated

genetic variants in iPSC-derived MNs only for KANK1. We await

future efforts to perform similar study of other RefMap genes.

In summary, our study generates significant new resources,

including transcriptomic and epigenetic profiling ofMNs for future

study ofMNdiseases such as ALS, andwe also provide a general

framework that can be applied for the identification of risk genes

involved in a large number of complex diseases and traits.
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De-Solorzano, C. (2010). 3D reconstruction of histological sections: applica-

tion to mammary gland tissue. Microsc. Res. Tech. 73, 1019–1029. https://

doi.org/10.1002/jemt.20829.

Basu, S., and Pan, W. (2011). Comparison of statistical tests for disease asso-

ciation with rare variants. Genet. Epidemiol. 35, 606–619.

Benner, C., Havulinna, A.S., J€arvelin, M.R., Salomaa, V., Ripatti, S., and

Pirinen, M. (2017). Prospects of fine-mapping trait-associated genomic re-

gions by using summary statistics from genome-wide association studies.

Am. J. Hum. Genet. 101, 539–551.

Benner, C., Spencer, C.C., Havulinna, A.S., Salomaa, V., Ripatti, S., and

Pirinen, M. (2016). FINEMAP: efficient variable selection using summary data

from genome-wide association studies. Bioinformatics 32, 1493–1501.

Bilican, B., Livesey, M.R., Haghi, G., Qiu, J., Burr, K., Siller, R., Hardingham,

G.E., Wyllie, D.J., and Chandran, S. (2014). Physiological normoxia and

absence of EGF is required for the long-term propagation of anterior neural

precursors from human pluripotent cells. PloS One 9, e85932.

Blei, D.M., Kucukelbir, A., and McAuliffe, J.D. (2017). Variational inference: a

review for statisticians. J. Am. Stat. Assoc. 112, 859–877. https://doi.org/10.

1080/01621459.2017.1285773.

Blondel, V.D., Guillaume, J., Lambiotte, R., and Lefebvre, E. (2008). Fast un-

folding of communities in large networks. J. Stat. Mech. 2008, P10008.

Boopathy, S., Silvas, T.V., Tischbein, M., Jansen, S., Shandilya, S.M.,

Zitzewitz, J.A., Landers, J.E., Goode, B.L., Schiffer, C.A., and Bosco, D.A.

(2015). Structural basis for mutation-induced destabilization of profilin 1 in

ALS. Proc. Natl. Acad. Sci. USA 112, 7984–7989.

Bray, N.L., Pimentel, H., Melsted, P., and Pachter, L. (2016). Near-optimal

probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527.

Briese, M., Saal-Bauernschubert, L., L€uningschrör, P., Moradi, M., Dombert,

B., Surrey, V., Appenzeller, S., Deng, C., Jablonka, S., and Sendtner, M.

(2020). Loss of Tdp-43 disrupts the axonal transcriptome of motoneurons

accompanied by impaired axonal translation and mitochondria function.

Acta neuropathol. commun. 8, 116.

ll
OPEN ACCESSArticle

Neuron 110, 1–17, March 16, 2022 13

Please cite this article in press as: Zhang et al., Genome-wide identification of the genetic basis of amyotrophic lateral sclerosis, Neuron (2021), https://

doi.org/10.1016/j.neuron.2021.12.019



Brinkman, E.K., Chen, T., Amendola, M., and van Steensel, B. (2014). Easy

quantitative assessment of genome editing by sequence trace decomposition.

Nucleic Acids Res 42, e168.

Brooks, B.R. (1994). El Escorial World Federation of Neurology criteria for the

diagnosis of amyotrophic lateral sclerosis. Subcommittee on motor neuron

diseases/amyotrophic lateral sclerosis of the World Federation of Neurology

Research Group on neuromuscular diseases and the El Escorial ‘‘Clinical limits

of amyotrophic lateral sclerosis’’ workshop contributors. J. Neurol. Sci. 124

(Suppl ), 96–107.

Brown, A.-L., Wilkins, O.G., Keuss, M.J., Hill, S.E., Zanovello, M., Lee, W.C.,

Lee, F.C.Y., Masino, L., Qi, Y.A., Bryce-Smith, S., et al. (2021). Common

ALS/FTD risk variants in UNC13A exacerbate its cryptic splicing and loss

upon TDP-43 mislocalization. bioRxiv https://www.biorxiv.org/content/10.

1101/2021.04.02.438170v1.abstract.

Bryois, J., Skene, N.G., Hansen, T.F., Kogelman, L.J.A., Watson, H.J., and Liu,

Z.; Eating Disorders Working Group of the Psychiatric Genomics Consortium;

International Headache Genetics Consortium; 23andMe Research Team;

Brueggeman, L., et al. (2020). Genetic identification of cell types underlying

brain complex traits yields insights into the etiology of Parkinson’s disease.

Nat. Genet. 52, 482–493.

Buenrostro, J.D., Wu, B., Chang, H.Y., and Greenleaf, W.J. (2015). ATAC-seq:

a method for assaying chromatin accessibility genome-wide. Curr. Protoc.

Mol. Biol. 109, 21–29, 1–21.29.9.

Bulik-Sullivan, B., Finucane, H.K., Anttila, V., Gusev, A., Day, F.R., and Loh,

P.-R.; ReproGen Consortium, Psychiatric Genomics Consortium; Genetic

Consortium for Anorexia Nervosa of the Wellcome Trust Case Control

Consortium 3; Duncan, L., et al. (2015). An atlas of genetic correlations across

human diseases and traits. Nat. Genet. 47, 1236–1241.

Bulik-Sullivan, B.K., Loh, P.-R., Finucane, H.K., Ripke, S., Yang, J., Patterson,

N., Daly, M.J., Price, A.L., and Neale, B.M.; Schizophrenia Working Group of

the Psychiatric Genomics Consortium (2015a). LD score regression distin-

guishes confounding from Polygenicity in genome-wide association studies.

Nat. Genet. 47, 291–295. https://doi.org/10.1038/ng.3211.

Chen, L., Jin, P., and Qin, Z.S. (2016a). DIVAN: accurate identification of non-

coding disease-specific risk variants using multi-omics profiles. Genome Biol

17, 252.

Chen, W., McDonnell, S.K., Thibodeau, S.N., Tillmans, L.S., and Schaid, D.J.

(2016b). Incorporating functional annotations for fine-mapping causal variants

in a Bayesian framework using summary statistics. Genetics 204, 933–958.

https://doi.org/10.1534/genetics.116.188953.

Cooper-Knock, J., Jenkins, T., and Shaw, P.J. (2013). Clinical and Molecular

Aspects of Motor Neuron Disease (Biota Publishing).

Cooper-Knock, J., Walsh, M.J., Higginbottom, A., Robin Highley, J., Dickman,

M.J., Edbauer, D., Ince, P.G., Wharton, S.B., Wilson, S.A., Kirby, J., et al.

(2014). Sequestration of multiple RNA recognition motif-containing proteins

by C9orf72 repeat expansions. Brain 137, 2040–2051.

Cooper-Knock, J., Zhang, S., Kenna, K.P., Moll, T., Franklin, J., Allen, S.,

Nezhad, H.G., Yacovzada, N.S., Eitan, C., Hornstein, E., et al. (2020). Rare

variant burden analysis within enhancers identifies CAV1 as a new ALS risk

gene. Neuron Journal. https://doi.org/10.2139/ssrn.3606796.

Corces, M.R., Shcherbina, A., Kundu, S., Gloudemans, M.J., Frésard, L.,

Granja, J.M., Louie, B.H., Eulalio, T., Shams, S., Bagdatli, S.T., et al. (2020).

Single-cell epigenomic analyses implicate candidate causal variants at in-

herited risk loci for Alzheimer’s and Parkinson’s diseases. Nat. Genet. 52,

1158–1168.

Creyghton, M.P., Cheng, A.W., Welstead, G.G., Kooistra, T., Carey, B.W.,

Steine, E.J., Hanna, J., Lodato, M.A., Frampton, G.M., Sharp, P.A., et al.

(2010). Histone H3K27ac separates active from poised enhancers and pre-

dicts developmental state. Proc. Natl. Acad. Sci. USA 107, 21931–21936.

Daoud, H., Belzil, V., Desjarlais, A., Camu, W., Dion, P.A., and Rouleau, G.A.

(2010). Analysis of the UNC13A gene as a risk factor for sporadic amyotrophic

lateral sclerosis. Arch. Neurol. 67, 516–517.

de Leeuw, C.A., Mooij, J.M., Heskes, T., and Posthuma, D. (2015). MAGMA:

generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11,

e1004219.

De Vos, K.J., and Hafezparast, M. (2017). Neurobiology of axonal transport de-

fects in motor neuron diseases: opportunities for translational research?

Neurobiol. Dis. 105, 283–299.

DeJesus-Hernandez, M., Mackenzie, I.R., Boeve, B.F., Boxer, A.L., Baker, M.,

Rutherford, N.J., Nicholson, A.M., Finch, N.A., Flynn, H., Adamson, J., et al.

(2011). Expanded GGGGCC hexanucleotide repeat in noncoding region of

C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256.

Devlin, A.-C., Burr, K., Borooah, S., Foster, J.D., Cleary, E.M., Geti, I., Vallier,

L., Shaw, C.E., Chandran, S., and Miles, G.B. (2015). Human iPSC-derived

motoneurons harbouring TARDBP or C9ORF72 ALS mutations are dysfunc-

tional despite maintaining viability. Nat. Commun. 6, 5999.

Dewey, F.E., Murray, M.F., Overton, J.D., Habegger, L., Leader, J.B., Fetterolf,

S.N., O’Dushlaine, C., Van Hout, C.V., Staples, J., Gonzaga-Jauregui, C., et al.

(2016). Distribution and clinical impact of functional variants in 50,726 whole-

exome sequences from the DiscovEHR study. Science 354. https://doi.org/10.

1126/science.aaf6814.

Diekstra, F.P., van Vught, P.W., van Rheenen, W., Koppers, M., Pasterkamp,

R.J., van Es, M.A., Schelhaas, H.J., de Visser, M., Robberecht, W., Van

Damme, P., et al. (2012). UNC13A is a modifier of survival in amyotrophic

lateral sclerosis. Neurobiol. Aging 33, 630, e3–630.e8.

Dillon, C., and Goda, Y. (2005). The actin cytoskeleton: integrating form and

function at the synapse. Annu. Rev. Neurosci. 28, 25–55.

Du, Z.-W., Chen, H., Liu, H., Lu, J., Qian, K., Huang, C.-L., Zhong, X., Fan, F.,

and Zhang, S.-C. (2015). Generation and expansion of highly pure motor

neuron progenitors from human pluripotent stem cells. Nat. Commun. 6, 6626.

Eitan, C., Barkan, E., Olender, T., van Eijk, K.R., Moisse, M., Farhan, S.M.K.,

Siany, A., Hung, S.-T., Yacovzada, N., Cooper-Knock, J., et al. (2021). Non-

coding genetic analysis implicates interleukin 18 receptor accessory protein

30UTR in amyotrophic lateral sclerosis. bioRxiv https://www.biorxiv.org/

content/10.1101/2021.06.03.446863v1.abstract.

Elden, A.C., Kim, H.-J., Hart, M.P., Chen-Plotkin, A.S., Johnson, B.S., Fang, X.,

Armakola, M., Geser, F., Greene, R., Lu, M.M., et al. (2010). Ataxin-2 interme-

diate-length polyglutamine expansions are associated with increased risk for

ALS. Nature 466, 1069–1075.

ENCODE Project Consortium, Moore, J.E., Purcaro, M.J., Pratt, H.E., Epstein,

C.B., Shoresh, N., Adrian, J., Kawli, T., Davis, C.A., Dobin, A., et al. (2020).

Expanded encyclopaedias of DNA elements in the human and mouse ge-

nomes. Nature 583, 699–710.

Fadista, J., Oskolkov, N., Hansson, O., and Groop, L. (2017). LoFtool: a gene

intolerance score based on loss-of-function variants in 60 706 individuals.

Bioinformatics 33, 471–474.

Farhan, S.M.K., Howrigan, D.P., Abbott, L.E., Klim, J.R., Topp, S.D., Byrnes,

A.E., Churchhouse, C., Phatnani, H., Smith, B.N., Rampersaud, E., et al.

(2019). Exome sequencing in amyotrophic lateral sclerosis implicates a novel

gene, DNAJC7, encoding a heat-shock protein. Nat. Neurosci. 22, 1966–1974.

Finucane, H.K., Bulik-Sullivan, B., Gusev, A., Trynka, G., Reshef, Y., Loh, P.-R.,

Anttila, V., Xu, H., Zang, C., Farh, K., et al. (2015). Partitioning heritability by

functional annotation using genome-wide association summary statistics.

Nat. Genet. 47, 1228–1235.

Fishilevich, S., Nudel, R., Rappaport, N., Hadar, R., Plaschkes, I., Iny Stein, T.,

Rosen, N., Kohn, A., Twik, M., Safran, M., et al. (2017). GeneHancer: genome-

wide integration of enhancers and target genes in GeneCards ((Oxford) 2017:

Database). https://doi.org/10.1093/database/bax028.
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STAR+METHODS

KEY RESOURCES TABLE

Reagent or Resource Source Identifier

Antibodies

Anti-H3K4me1 Cell Signaling Technologies #5326S, lot 3; RRID: AB_10695148

Anti-H3K4me3 Cell Signaling Technologies #9751S, lot 10; RRID: AB_2616028

Anti-H3K27ac ActiveMotif #39133, lot 28518012; RRID:

AB_2561016

Nestin Biolegend #841901; RRID:AB_2565468

Pax6 Millipore #MAB5552; RRID:AB_2159810

Anti-Beta III Tubulin Millipore #AB9354; RRID:AB_570918

Pax6 Abcam #AB5790; RRID:AB_305110

Anti-Alpha Tubulin Sigma #T9206; RRID:AB_477593

Islet 1/2 Abcam #AB109517; RRID:AB_10866454

NeuN Millipore #MAB377; RRID:AB_2298772

Chat Millipore #AB144P; RRID:AB_2079751

SMI32 Biolegend #801701; RRID:AB_2564642

phospho TDP-43 (Ser409) Affinity Biosciences #AF7365; RRID:AB_2843805

TDP-43 Proteintech #12892-1-AP; RRID:AB_2200505

Anti-MAP-2 Synaptic systems #188004; RRID:AB_2138181

Caspase 3 Millipore #AB3623; RRID:AB_91556

Donkey anti-Mouse IgG Alexa Fluor 488 Thermofisher #A-21202; RRID:AB_141607

Donkey anti-Rabbit IgG Alexa Fluor 568 Thermofisher #A-10042; RRID:AB_2534017

Donkey anti-Goat IgG Alexa Fluor 555 Thermofisher #A-21432; RRID:AB_2535853

Goat anti-Guinea Pig IgG Alexa Fluor 647 Thermofisher #A-21450; RRID:AB_2735091

Donkey anti-Mouse IgG Alexa Fluor 594 Thermofisher #A-32744; RRID:AB_2762826

Donkey anti-Rabbit IgG, Alexa Fluor 488 Thermofisher #A-21206; RRID:AB_2535792

Donkey anti-Mouse IgG Alexa Fluor 568 Thermofisher #A-10037; RRID:AB_2534013

Goat anti-Chicken IgY (H+L) Alexa Fluor Plus 488 Thermofisher #A-32931; RRID:AB_2762843

Chemicals, Peptides and Recombinant Proteins

Thiazolyl Blue Tetrazolium Bromide (MTT) Sigma-Aldrich #M2128

Alt-R S.p. Cas9 Nuclease V3 Integrated DNA technologies #1081059

Alt-R Cas9 Electroporation Enhancer Integrated DNA technologies #1075915

Dulbecco’s Modified Eagle medium Lonza #12-604F

KnockOut DMEM/F-12 ThermoFisher Scientific #12660012

Neurobasal medium ThermoFisher Scientific #12348017

Penicillin-Streptomycin Sigma #P4333

Fibronectin Merck #FC010

10x Trypsin Sigma #59427C

Foetal bovine serum ThermoFisher Scientific #10270106

Matrigel Corning #356230

mTeSR-Plus Medium StemCell Technologies #05825

ReLeSR StemCell Technologies #05872

Ethidium bromide solution Sigma #E1510

VeriFi mix red PCRBio #PB10.42-01

Tri reagent Sigma #93289-100ML

M-MLV reverse transcriptase ThermoFisher Scientific #28025-013

5x First Strand buffer ThermoFisher Scientific #18057-018
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Continued

Reagent or Resource Source Identifier

0.1M Dithiothreitol ThermoFisher Scientific #707265ML

dNTP Mix ThermoFisher Scientific #10534823

SYBR Green Brilliant III master mix Agilent #600882

Random hexamer primer ThermoFisher Scientific #SO142

Purmorphamine Tocris Bioscience #4551

StemPro Accutase Cell Dissociation Reagent Gibco #A1110501

ROCK inhibitor (Y-27632 dihydrochloride) Tocris Bioscience #1254

Compound E Tocris Bioscience #6476

NEBNext 2xMasterMix New England Biolabs M0541

EDTA Sigma #E5134

HEPES Sigma #H3375

PMSF protease inhibitor ThermoFisher Scientific #36978

Protease inhibitor tablet Roche #1697498

Gibco GlutaMAX Supplement ThermoFisher Scientific #35050061

TracrRNA Integrated DNA technologies #1072533

TE Buffer, RNAse-free pH 8 ThermoFisher Scientific #AM9849

Dulbecco’s Phosphate Buffered Saline Sigma #D8537-500ML

Triton X-100 Sigma-Aldrich #T8787

Normal horse serum Vector #S-2000-20

Hoechst 33342 ThermoFisher Scientific #62249

All-trans retinoic acid Sigma #R2625

BDNF PeproTech #450-02

IGF ThermoFisher Scientific #PHG0078

CNTF ThermoFisher Scientific #PHC7015

N-2 supplement ThermoFisher Scientific #17502048

B-27 supplement ThermoFisher Scientific #17504001

DMH-1 Tocris Bioscience #4126

SB431542 Tocris Bioscience #1614

CHIR99021 Tocris Bioscience #4423

Critical Commercial Assays

Pierce BCA Assay Protein Assay Kit ThermoFisher Scientific #23225

GenElute Mammalian Genomic DNA Miniprep Kit Sigma #G1N350

Direct-zol RNA Miniprep Kit Zymo Research #R2050

Neon Transfection System 10 mL Kit ThermoFisher Scientific #MPK1096

Alt-R CRISPR-Cas9 Control Kit, Human, 2 nmol Integrated DNA technologies #1072554

QIAquick PCR Purification kit Qiagen #28104

MiElute kit. Qiagen #28004

KAPA Library Quantification kit Roche #07960140001

KAPA HiFi HotSTARt ReadyMix Roche #07958927001

KAPA Library Amplification Primer Mix Roche #07958978001

QIAquick Gel Extraction Kit Qiagen #28506

Ribo-Zero rRNA depletion kit Illumina #20040526

NEBext Ultra RNA prep kit New England Biolabs #E7530

Experimental Models: Cell Lines

SH-SY5Y ATCC Cat.#CRL-2266

GM23338 (iPSC line derived from healthy

volunteer)

Coriell Institute #CVCL_F182

Epigenetic profiling see Figure S1A N/A N/A
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to andwill be fulfilled by the LeadContact, Micheal P.

Snyder (mpsnyder@stanford.edu).

Materials availability

All unique/stable reagents generated in this study are available from the Lead Contact without restriction.

Data and code availability

Data files for ATAC-seq, Hi-C and histone ChIP-seq are available at encodeproject.org with the following link or accessions numbers

mentioned below: https://www.encodeproject.org/publications/de19555b-a49f-471c-bfbc-be3b628fe9bf/.

The source code of RefMap can be accessed at https://github.com/szhang1112/refmap.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study cohorts

iPSC-cells were derived from fibroblasts obtained from three neurologically normal controls of different ages: 55-year old male, a 52-

year old female and a 6-year old male (Figure S1A). Human SH-SY5Y neuroblastoma cells were utilised within the range of 7-32

passages.

GWAS summary statistics were previously published (van Rheenen et al., 2016). The 5,594 patients and 2,238 controls subject to

WGS and included in this study were recruited at specialized neuromuscular centers in the UK, Belgium, Germany, Ireland, Italy,

Spain, Turkey, the United States and the Netherlands (Project Mine ALS Sequencing Consortium, 2018). Patients were diagnosed

with possible, probable or definite ALS according to the 1994 El-Escorial criteria (Brooks, 1994). All controls were free of neuromus-

cular diseases and matched for age, sex and geographical location.

Continued

Reagent or Resource Source Identifier

Software and Algorithms

Sickle v1.200 https://github.com/najoshi/sickle N/A

Cutadapt v1.2.1 https://pypi.org/project/cutadapt/1.2.1/ N/A

Kallisto v0.46.0 https://pachterlab.github.io/kallisto/ N/A

SKAT-O https://cran.r-project.org/web/packages/SKAT/

index.html

N/A

R v4.0.1 https://cran.r-project.org/mirrors.html N/A

snpStats https://www.bioconductor.org/packages/release/

bioc/html/snpStats.html

N/A

VariantAnnotation https://www.bioconductor.org/packages/release/

bioc/html/VariantAnnotation.html

N/A

VAutils https://github.com/oyhel/vautils/ N/A

PLINK V1.90 http://zzz.bwh.harvard.edu/plink/download.shtml N/A

PRISM 7 GraphPad N/A

ICE CRISPR analysis tool https://ice.synthego.com/#/ N/A

CRISPOR guide RNA design tool http://crispor.tefor.net/ N/A

CFX Maestro Bio-Rad N/A

Harmony Imaging Analysis Software PerkinElmer N/A

FIJI (FIJI Is Just ImageJ) NIH N/A

IGV v2.4.16 https://software.broadinstitute.org/software/igv/ N/A

MATLAB R2018b MathWorks N/A

MAGMA v1.08 https://ctg.cncr.nl/software/magma N/A

Pascal https://www2.unil.ch/cbg/index.php?title=Pascal N/A

PAINTOR v3.0 https://github.com/gkichaev/PAINTOR_V3.0 N/A

LD Score Regression https://github.com/bulik/ldsc N/A

RefMap https://github.com/szhang1112/refmap DOI: 10.5281/zenodo.5774249
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The studywas approved by the South Sheffield Research Ethics Committee. Also, this study followed study protocols approved by

Medical Ethical Committees for each of the participating institutions. Written informed consent was obtained from all participating

individuals. All methods were performed in accordance with relevant national and international guidelines and regulations.

METHOD DETAILS

Cell culture

Human SH-SY5Y neuroblastoma cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) (Lonza) supplemented with

10% (v/v) foetal bovine serum (FBS) (Thermo-Fisher Scientific), 50 units/mL of penicillin and 50 mg/mL of streptomycin. Cell lines

were maintained at 5% CO2 in a 37�C incubator and split every 3-4 days.

Human induced pluripotent stem cells iPSCs were maintained inMatrigel-coated plates (Corning) according to the manufacturer’s

recommendations in complete mTeSR-Plus Medium (StemCell Technologies). The culture medium was replaced daily and

confirmedmycoplasma free. Cells were passaged every four to six days as clumps using ReLeSR, an enzyme-free reagent for disso-

ciation (StemCell Technologies) according to themanufacturer’s recommendations. For all the experiments in this study, iPSCs were

between passage 20 and 32.

iPSC-derived motor neuron differentiation

iPSCs derived from unaffected controls were differentiated to motor neurons using the modified version of the dual SMAD inhibition

protocol (Du et al., 2015). Briefly, iPCS cells were transferred for Matrigel-coated plate (Corning). On the day after plating (day 1), after

the cells had reached�100% confluence, the cells were washed once with PBS and then the medium was replaced with neural me-

dium (50% of KnockOut DMEM/F-12, 50% of Neurobasal), 0.53 N2 supplement (Thermo Fisher), 1x Gibco GlutaMAX Supplement

(ThermoFisher), 0.5x B-27 (ThermoFisher), 50 U ml�1 penicillin and 50 mg ml�1 streptomycin, supplemented with SMAD inhibitors

(DMH-1 2 mM; SB431542 10 mM; and CHIR99021 3 mM). This medium was changed every day for 6 days, on day 7, the medium

was replaced for neural medium supplemented with DMH-1 2 mM, SB431542-10 mM and CHIR 1 mM, All-Trans Retinoic Acid

0.1 mM (RA), and Purmorphamine 0.5 mM (PMN), the cells were kept in this medium until day 12 when it was possible to observe

a uniform neuroepithelial sheet. At this point the cells were split 1:6 with Accutase (Gibco), onto matrigel substrate in the presence

of 10 mM of ROCK inhibitor (Y-27632 dihydrochloride, Tocris), giving rise to a sheet of neural progenitor cells (NPC). After 24 hours of

incubation the medium was changed for neural medium supplemented with RA 0.5 mM and PMN 0.1 mM, the medium was changed

every day for 6 more days. On day 19 motor neuron progenitors were split with accutase onto to matrigel-coated plates and the me-

dium was replaced with neural medium supplemented with RA 0.5 mM, PMN 0.1 mM, compound E 0.1 mM (Cpd E, Tocris), BDNF

10ng/mL, CNTF 10ng/mL and IGF 10ng/mL until day 28. On day 29, the media was replaced with neuronal media (neurobasal media

supplemented with 1% of B27, BDNF 10ng/mL, CNTF 10ng/mL and IGF 10ng/mL). The cells were then fed alternate days with

neuronal medium until day 40.

ATAC-seq

50,000 viable motor neurons were spun down at 500 RCF at 4�C for 5 min. Supernatant was discarded. 50 ml cold ATAC Resuspen-

sion Buffer (RSB) (10 mM Tris-HCl pH 7.4, 10 mM NaCl, 3 mM MgCl2, sterile H2O) containing 0.1% NP40, 0.1% Tween-20, and

0.01% Digitonin was added and carefully mixed. Tubes were incubated on ice for 3 min. 1 ml of cold ATAC-RSB containing 0.1%

Tween-20 was added and the tubes were inverted three times. Nuclei were spun down at 500 RCF for 10 min at 4�C. Supernatant

was aspirated. Cell pellet was resuspended in 50 ml of transposition mix (25 ml 2x TD buffer, 2.5ml transposase (100 nM final), 16.5 ml

PBS, 0.5 ml 1% digitonin, 0.5 ml 10% Tween-20, 5 ml H2O) by pipetting up and down 6 times. TD buffer consists of 20mM Tris-HCl pH

7.6, 10mMMgCl2, 20%DMF, sterile H2O. pHwas adjusted with acetic acid before adding DMF. The reaction was incubated at 37�C

for 30 minutes in a thermomixer while shaking at 1000 RPM. Reaction was cleaned up with a Qiagen MiElute kit. DNA was eluted in

20 mL elution buffer. DNAwas amplified using the NEBNext 2xMasterMix. Cycling conditions: 5 min at 72�C, 30 sec at 98�C, followed

by 5 cycles of 10 sec at 98�C, 30 sec at 63�C and 1 min at 72�C, hold at 4�C. 5ml (10% of the pre-amplified mixture) were used for

qPCR to determine the number of additional cycles needed (3.76 mL H2O, 0.5 mL 25 mM Primer1, 0.5 mL 25 mM Primer2, 0.24 mL 25x

SYBR Green, 5 mL NEBNext MasterMix). Cycling conditions: 30 sec at 98�C, followed by 20 cycles of 10 sec at 98�C, 30 sec at 63�C

and 1min at 72�C, hold at 4�C. Amplification profiles were assessed as previously described (Buenrostro et al., 2015). The remainder

of the pre-amplified DNA (45mL) was used to run the required number of additional cycles. The final PCR reaction was cleaned up

using Qiagen MinElute kit and eluted in 20 ml H2O. Libraries were quantified with the KAPA Library Quantification kit (Roche) and

sequenced on a NovaSeq 6000 system (Illumina). Raw data were processed with the ENCODE 4 pipeline for ATAC-seq according

to ENCODE 4 standards (https://www.encodeproject.org/atac-seq/). All samples exceeded ENCODE 4 standards for % mapped

reads, enrichment of transcription start sites, the fraction of reads that fall within peak regions (FRiP), and reproducibility between

technical replicates (Table S1).

Files are available at encodeproject.org with the following accession numbers: ENCSR065CER, ENCSR410DWV, ENCSR812ZKP,

ENCSR634WYX, ENCSR459PVP, ENCSR913OWV, ENCSR704VZY, ENCSR131HOY, ENCSR516YAD, ENCSR709QRD.
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Histone ChIP-seq

5millionmotor neuronswere crosslinked and resuspended in 10mL of cold L1 buffer (50mMHepes KOH, pH 7.5, 140mMNaCl, 1mM

EDTA, 10% Glycerol, 0.5% NP-40, 0.25% Triton X-100, dH2O, 1 protease inhibitor tablet (Roche) per 50ml buffer). Cells were incu-

bated on a rocking platform at 4�C for 10 minutes and spun down at 3000 rpm at 4�C for 10 minutes. Pellets were resuspended in

10 mL of L2 buffer (200mMNaCl 1mM EDTA pH 8 0.5mM EGTA 10mM Tris, pH 8, dH2O, 1 protease inhibitor tablet (Roche) per 50ml

buffer, room temperature). Tubes were incubated at room temperature for 10 minutes and spun down at 3000 rpm for 10 minutes at

4�C.Nuclei were resuspended in 3mL 1XRIPA buffer and incubated on ice for 30minutes. Sampleswere sonicatedwith Branson 250

Sonifier to shear the chromatin. 3mL of sheared chromatin lysate were transferred to two 2mL tubes and spun down at 14,000 rpm at

4�C for 15 minutes. 50 mL were saved from each replicate and pooled as input (no antibody added, kept at -20�C). 2 mL histone modi-

fication antibody was added to each 3 mL lysates and incubated at 4�C on a neutator for 12-16 hours. The following antibodies were

used: H3K4me1 (Cell Signaling Technologies), H3K4me3 (Cell Signaling Technologies), H3K27ac (ActiveMotif). 80 mL of Protein A/G-

agarose for each sample were washed twice with 1 mL of ice cold 1X RIPA buffer, spun down at 5000 rpm for 1 minute at 4�C and

resuspended in 80mL in 1x RIPA buffer. Beadswere added to tubes containing Ag-Ab complex (80 m L 1XRIPA towash out the beads)

and incubated for 1 hour at 4�Cwith neutator rocking. Tubes were spun down at 1500 rpm for 3minutes, beads were washed 3 times

15 minutes each with 10 mL of fresh, ice cold 1x RIPA buffer supplemented per 50 mL with 1 protease inhibitor tablet, 250 mL of

100 mM PMSF, 50 mL of 1M DTT, 2 ml of phosphatase inhibitor (sodium pyrophosphate 1mM, sodium orthovanadate 2mM, sodium

fluoride 10mM). Afterwards, beads were washed once with ice cold 1 x PBS for 15 minutes. Beads were resuspended in 1200 mL ice

cold 1x PBS, transferred to an 1.5mL Eppendorf tube and spun down at 5000 rpm for 1minute. PBSwas removed and 100 mL of Elute

1 solution (1% SDS, 1x TE, dH2O) was added to resuspend beads and tubes were incubated at 65�C for 10 minutes with gentle mix-

ing every 2 minutes. Beads were spun down at 5000 rpm for 1 minute at room temperature and the supernatant was kept as Elute 1.

150 mL of Elute 2 solution (0.67% SDS, 1x TE) was added to the bead pellets and incubated at 65�C for 10 minutes with gentle vor-

texing. After spinning down for 1minute at 5000 rpm, the second elutewas combinedwith the first. Input DNAwas thawed and 150 mL

of Elute 1 solution was added. All samples incubated at 65�C overnight to reverse cross-linking. 250 mL 1X TE containing 100 mg

RNase was added to each sample and incubated for 30 minutes at 37�C. 5 mL of 20 mg/mL Proteinase K was added to each sample

and incubated at 45�C for 30 minutes. After transferring samples to 15 mL tubes, DNA was purified (Qiaquick PCR purification kit,

Qiagen). DNA was eluted in elution buffer (50mL for input, 35mL for ChIP sample).

The following components were combined and mixed in a microfuge tube: ChIP DNA to be end-repaired (25ng) 34 mL, 5 mL 10X

End-Repair Buffer, 5 mL 2.5 mM dNTP Mix, 5 mL10 mM ATP, 1 mL End-Repair Enzyme Mix. The mixture was incubated at room tem-

perature for 45 minutes. DNA was purified (MinElute PCR purification kit, Quiagen) and eluted in 19 mL EB. Adapter ligated DNA was

run on a 2% EX-Gel and excised in the range of 450-650 bp with a clean scalpel. DNA was purified (Gel extraction kit, Quiagen) and

eluted in 20 mL EB. The following components weremixed in a PCR tube: 20 mL of purified DNA, 25 mL KAPAHiFi HotSTARt ReadyMix

(2X), 5 mL KAPA Library Amplification Primer Mix (10X). DNA was amplified with the following conditions: 45 sec at 98�C, 15x [15 sec

at 98�C, 30 sec at 60�C, 30 sec at 72�C], 60 sec at 72�C, hold at 4�C. The PCR product was purified (MinElute PCR purification kit,

Quiagen) and eluted in 19 mL EB. DNA was run on a 2% EX-Gel and excised in the range of 300-450 bp (or brightest smear) with a

clean scalpel. DNA was purified (Qiaquick Gel extraction kit, Quiagen) and eluted in 12 mL EB. Library concentration was measured

using Qubit and each library was run on the Bioanalyzer. Equal concentrations of different barcoded libraries were pooled and

sequenced on a NovaSeq 6000 system (Illumina). Raw data were processed with the ENCODE 4 pipeline for Histone ChIP-seq ac-

cording to ENCODE 4 standards (https://www.encodeproject.org/chip-seq/histone/). All samples exceeded ENCODE standards for

%mapped reads, the fraction of reads that fall within peak regions (FRiP), and reproducibility between technical replicates (Table S1).

Files are available at encodeproject.org with the following accession numbers: ENCSR754DRC, ENCSR672RKZ, ENCSR571HAY,

ENCSR503HWR, ENCSR207VLY, ENCSR962OTG, ENCSR745TRI, ENCSR595HWK, ENCSR312HLG, ENCSR682BFG,

ENCSR680IWU, ENCSR564EFE, ENCSR358AOC, ENCSR698HPK, ENCSR778FKK, ENCSR425FUS, ENCSR489LNU,

ENCSR540KQC.

Hi-C

We generated Hi-C libraries following the protocol previously described (Rao et al., 2014, 2017). In brief, 2-5 million cells were cross-

linked with formaldehyde. Nuclei were permeabilized and DNA was digested with 100U of MboI. DNA fragments were labelled with

biotinylated nucleotides. Ligated DNA was purified and sheared to a length of 300-500 bp after reverse cross-linking. Ligation junc-

tions were pulled-down with magnetic streptavidin beads. Libraries were amplified by PCR and purified. Library concentrations were

measured (Qubit). Hi-C libraries were paired-end sequenced on a NovaSeq 6000 system (Illumina). Raw data were processed with

the ENCODE 4 pipeline for Hi-C according to ENCODE 4 standards (https://www.encodeproject.org/documents/75926e4b-77aa-

4959-8ca7-87efcba39d79/).

Files are available at encodeproject.org with the following accession numbers: ENCSR305RTT, ENCSR866FWQ, ENCSR550JLK,

ENCSR094EIC, ENCSR350NJV, ENCSR379CII, ENCSR228TUX, ENCSR794RDS, ENCSR444BAR.

RNA-seq

RNA libraries were prepared by first depleting ribosomal RNA using the Illumina Ribo-Zero rRNA depletion kit. Strand-specific

libraries were then prepared using NEBext Ultra RNA prep kit. RNAseq libraries were paired-end sequences on a NovaSeq 6000
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system (Illumina). Aminimum of 80million reads were obtained per sample. Raw Fastq files were trimmed for the presence of Illumina

adapter sequences using Cutadapt v1.2.1 (Martin, 2011). The reads were further trimmed using Sickle v1.200 with a minimum win-

dow quality score of 20. Reads shorter than 15 bp after trimming were removed. Reads were aligned to hg19 transcripts (n=180,253)

using Kallisto v0.46.0 (Bray et al., 2016).

Model design and inference of RefMap

In this study, allele Z-scoreswere calculated as Z=b/se, where b and se are effect size and standard error, respectively, and theywere

estimated from themixed linear model implemented in an ALSGWAS (van Rheenen et al., 2016). Given allele Z-scores and the epige-

netic profiling of iPSC-derived motor neurons, we are interested in predicting causal associations of individual genomic regions with

ALS risk. Suppose we have K 1Mb LD blocks with non-zero alleles, whose approximate between-block independence has been veri-

fied in previous literature (Loh et al., 2015). Also suppose each LD block contains Jk (k=1,...,K) 1kb regions and each region harbors Ij,k
(j=1,..., Jk, Ij,k>0) SNPs. We further denote the Z-score for the i-th SNP in the j-th region of the k-th block as zi,j,k (i=1,..., Ij,k). Under a

linearity hypothesis, we can prove that zk follows a multivariate normal distribution (Pasaniuc and Price, 2017; Han et al., 2009; Ki-

chaev et al., 2014; Bulik-Sullivan et al., 2015, n.d.; Finucane et al., 2015; Joo et al., 2016) (Note S1), i.e.,

zk juk � N Skuk ;Skð Þ; k = 1;/;K; (Equation 1)

in which uk are the effect sizes of individual SNPs which can be expressed as

uk =
h

uT
1:I1;k ;1;k ;/;uT

1:Ij;k ;j;k ;/;uT
1:IJk ;k;Jk ;k

iT

: (Equation 2)

Moreover, in Equation (1) Sk˛ℝ
Ik3Ik represents the in-sample LD matrix comprising of the pairwise Pearson correlation coefficients

between SNPs within the k-th block, where Ik is the total number of SNPs given by Ik =
PJk

j = 1Ij;k . Here, since we have no access to the

individual genotypes, we used European (EUR) samples from the 1000 Genomes Project phase 3 to estimate Sk (i.e., out-sample LD

matrix).

Here, the latent variables uk can be treated as the disentangled Z-scores from LD confounding, leaving the right place for indepen-

dence assumption and facilitating downstreammodeling. Indeed, we assume ui,j,k (i=1,..., Ij,k) are independent and identically distrib-

uted (i.i.d.), following a normal distribution given by

ui;j;k

�
�mj;k ; lj;k � N mj;k ; l

�1
j;k

� �

; i = 1;/; Ij;k ; (Equation 3)

where the precision lj;k follows a Gamma distribution, i.e.,

lj;k � Gammaða0;b0Þ: (Equation 4)

Moreover, to characterize the shift of expectation in Equation (3) from the background due to its functional effect, we modelmj,k by a

three-component Gaussian mixture model, i.e.,

mj;k

�
�tj;k ; n�1; n+ 1; t0; t�1; t + 1 � N

�
� n�1; t

�1
�1

�t
ð�1Þ
j;k

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

negative

N
�
0; t

�1
0

�t
ð0Þ
j;k

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

zero

N
�
n+ 1; t

�1
+ 1

�t
ð+1Þ
j;k

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

positive

; (Equation 5)

where the precisions follow

t�1; t0; t + 1 � Gammaða0;b0Þ; (Equation 6)

and v-1 and v+1 are non-negative variables quantifying the absolute values of effect size shifts for the negative and positive compo-

nents, respectively.

To impose non-negativity over v-1 and v+1, here we employ the rectification nonlinearity technique proposed previously (Harva and

Kabán, 2007). In particular, we assume v-1 and v+1 follow

n�1jm�1; l�1 � RNðm�1; l�1Þ; (Equation 7)

n+ 1jm+ 1; l+ 1 � RNðm+ 1; l+1Þ; (Equation 8)

in which the rectified Gaussian distribution is defined via a dumb variable. Specifically, we first define v-1 and v+1 by

n�1 =max r�1; 0ð Þ; (Equation 9)

n+ 1 = maxðr+ 1;0Þ; (Equation 10)

which guarantee that v-1 and v+1 are non-negative. The dump variable r-1 and r+1 follow Gaussian distributions given by

r�1jm�1; l�1 � N
�
m�1; l

�1
�1

�
; (Equation 11)
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r+ 1jm+ 1; l+1 � N
�
m+ 1; l

�1
+ 1

�
; (Equation 12)

where m± and l± follow the Gaussian-Gamma distributions, i.e.,

m�1; l�1 � N
�
m0; ðb0l�1Þ

�1�
Gammaða0;b0Þ; (Equation 13)

m+1; l+ 1 � N m0; b0l+ 1ð Þ�1
� �

Gamma a0;b0ð Þ: (Equation 14)

The indicator variables in Equation (5) denote whether that region is ALS-associated or not. Indeed, we define the region to be dis-

ease-associated if t
ð�1Þ
j;k = 1 or t

ð+1Þ
j;k = 1, and to be non-associated otherwise. To simplify the analysis, we put a symmetry over t

ð�1Þ
j;k

and t
ð+1Þ
j;k , and define the distribution by

p tj;k
�
�pj;k

� �
= 0:5pj;kð Þt

�1ð Þ
j;k 1� pj;kð Þt

0ð Þ
j;k 0:5pj;kð Þt

+ 1ð Þ
j;k

; j = 1;/; Jk ; k = 1;/;K: (Equation 15)

Furthermore, the probability parameter pj;k in Equation (15) is given by

pj;k = s
�
wTsj;k

�
; (Equation 16)

where sð $Þ is the sigmoid function, sj;k is the vector of epigenetic features for the j-th region in the k-th LD block, and theweight vector

w follows a multivariate normal distribution, i.e.,

wjL � N 0;L�1
� �

; (Equation 17)

and L follows

L � WðW0; n0Þ: (Equation 18)

In our study, the epigenetic features sj;k were calculated as the overlapping ratios of that region with the narrow peaks of ATAC-seq

and histone ChIP-seq, respectively.

Since our modeling is fully Bayesian, all hyperparameters were set to be non-informative, i.e., a0 = 1310�6, b0 = 1310�6, m0 = 0,

b0 = 1,W0 = I5, and n0 = 5. Based on Equations (1–18), we are interested in calculating the posterior probability p(tj,k|zi,j,k, sj,k) wherein

the calculation of integrals is intractable. Herewe seek for approximate inference based on themean-field variational inference (MFVI)

(Blei et al., 2017). To control the false positive rate, we set a hard threshold for qðt
ð0Þ
j;k Þ with respect to the ATAC-seq signal, where we

set qðt
ð0Þ
j;k = 1Þ= 1 if the corresponding region overlaps no ATAC-seq peak. This was motivated by our particular interest in active re-

gions. More technical details, including a coordinate ascent-based inference algorithm, were provided in Note S1.

In this study, we ran the inference algorithm per chromosome to accelerate the computation. TheQ+- andQ--scores were defined

as qðtð+1Þ = 1Þ and qðtð�1Þ = 1Þ, respectively, and we also defined theQ-score asQ=Q++Q-. To prioritize RefMap-scored regions, we

set a cutoff of 0.95 and defined those regions with either Q+- or Q--score larger than the cutoff as significant regions (i.e., ALS-asso-

ciated regions).

Mapping target genes

After identifying ALS-associated genomic regions using RefMap, we linked those regions to their target genes. Mapping to target

genes was performed based on two principles: (i) a region was mapped to a particular gene if the region overlaps the gene or an

area +/-10kb either side of the gene body; (ii) a region was mapped to a particular gene if the region overlapped a loop anchor

harboring the transcription start site (TSS) of that gene. Loops were identified from Hi-C data profiling of iPSC-derived MNs. Only

expressed transcripts/genes (TPM>1) were taken forward for downstream analysis.

Benchmarking details

MAGMA (v1.08) (de Leeuw et al., 2015) and Pascal (Lamparter et al., 2016) were applied using default settings. Input consisted of

summary statistics for all SNPs as measured in our ALS GWAS (van Rheenen et al., 2016). We employed PAINTOR (v3.0) following

the guidance provided in (Kichaev et al., 2014) and https://github.com/gkichaev/PAINTOR_V3.0/. The genomewas annotated based

on the epigenetic features (ATAC-seq, H3K27ac, H3K4me1 and H3K4me3 ChIP-seq peaks) in MNs. We ran the algorithm in MCMC

mode and specified the number of casuals to be 3. All other parameters in PAINTORwere left to be default. In all cases, we estimated

the LD structure using EUR samples from the 1000 Genomes Project phase 3.

Heritability analysis

Partitioned heritability analysis was carried out using LD score regression as previously described (Finucane et al., 2015). Heritability

was quantified within RefMap ALS genes and significant GWAS loci, respectively. As a control, we calculated the heritability linked to

genes associated with significant eQTLs within spinal cord tissue (GTEx v7). GTEx eQTLs were first ranked by p values along with

their associated genes, and then the top 690 unique genes were retrieved to match the number of RefMap genes.
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Transcriptome analysis

All transcriptomic data after QC were downloaded from original studies (Prudencio et al., 2015; Maniatis et al., 2019). Fold change

was calculated as the ratio of gene expression levels in ALS cases compared to controls.

For AnswerALS data, gene expression profiling of iPSC-derived MNs and phenotype data were obtained for 55 ALS patients and

15 controls (https://www.answerals.org/). Gene expression was normalized for gene length and then sequencing depth to produce

transcripts per kilobase million (TPM). Age of onset and disease status were available for all individuals and these parameters were

used to check for the correlation between expression of top-ranked RefMap ALS genes and age at disease onset. For each of

ADAMTSL1, BNC2, KANK1, and VAV2, we performed a Pearson correlation analysis to determine whether gene expression within

MNswas significantly associated with age of disease onset. As a control, we selected 10,000 random sets of four expressed genes in

MNs and compared the product of p values to the equivalent value for ADAMTSL1, BNC2, KANK1, and VAV2.

For the SOD1-G93A-ALS mouse model data (Maniatis et al., 2019), four time points were sampled, including presymptomatic

(p30), onset (p70), symptomatic (p100), and end-stage (p120). The model-estimated expression levels ðbÞ from the original paper

were adopted to quantify the gene expression difference ðDbÞ between diseased and control mice at different time points. To deter-

mine the expression changes of RefMap genes over the course of ALS pathogenesis, we first mapped RefMap genes to their mouse

homologs (n=510), and then performed unsupervised clustering based on gene expression levels over time.

Network analysis

We downloaded the human PPIs from String v11.0 (Szklarczyk et al., 2019), including 19,567 proteins and 11,759,455 protein inter-

actions. We extracted high-confidence (combined score >700) PPIs for all downstream analysis, including 17,161 proteins and

839,522 protein interactions. To eliminate the bias caused by hub proteins (Krishnan et al., 2016), we first carried out the random

walk with restart algorithm (Wang et al., 2015) over the PPI network, wherein the restart probability was set to 0.5, resulting in a

smoothed network after preserving the top 5% predicted edges. To decompose the network into different subnetworks/modules,

we performed the widely-used Louvain algorithm (Blondel et al., 2008), a classic community detection algorithm which searches

for densely connected modules by optimizing the modularity. After the algorithm converged, we obtained 912 modules with an

average size of 18.39 nodes (Table S5). Two modules (M421 and M604) are significantly enriched (FDR<0.1) with our RefMap genes

based on the hypergeometric test followed by the BH correction.

As a negative control, we constructed 100 shuffled networks by randomly rewiring the PPI network while keeping the same number

of neighbors (Milo et al., 2002). None of the randomized networks achieved the samemodularity of our smoothed network after clus-

tering, demonstrating the significance of our derived gene modules (p < 1e-6; Figure S3A).

Identification of rare deleterious variants and rare variant association testing

For analysis of WGS data from 5,594 sporadic ALS patients and 2,238 controls (Project MinE ALS Sequencing Consortium, 2018),

variants within promoter, enhancer and coding regions were determined to be rare if the minor allele frequency (MAF) within the

Genome Aggregation Database (gnomAD) is <1/100 control alleles (Lek et al., 2016). Additional filtering varied reflecting differences

in function between promoter, enhancer and coding sequences. In promoter regions, we utilized two independent scores for func-

tionality and pathogenicity: variants were included in association testing if their CADD (Rentzsch et al., 2019) score >25 and GWAVA

(Ritchie et al., 2014) score >0.5. In enhancer regions, variants were included only if evolutionary conserved based on a LINSIGHT

score >0.8 (Huang et al., 2017). We also utilized an independently compiled score for ALS-associated regulatory variation (Chen

et al., 2016a): variants were excluded with a DIVAN score <0.5. In coding regions, we annotated variants using VEP (McLaren

et al., 2016); LoF variants were defined as nonsense mutations, high-effect splice-site mutations (Jaganathan et al., 2019), or

50UTR variants involving a gain/loss of a start/stop codon (Zhang et al., 2021). The optimal unified test (SKAT-O) was used to perform

rare variant association testing in promoter and enhancer regions because it is optimized for large numbers of samples and for re-

gions where a significant number of variants may not be causal (Lee et al., 2012). SKAT-O tests upweight significance of rare variants

according to a beta density function of MAF, i.e., wj = Beta(pj, a1, a2), where pj is the estimated MAF for SNPj using all cases and

controls, parameters a1 and a2 are prespecified. Here a2=2500 was chosen for all statistical tests. In coding regions where all LoF

variants were proposed to be significant, we applied Firth logistic regression because SKAT-O can lose power when variants are

expected to have equivalent functional impact (Basu and Pan, 2011). To adjust for confounders including population structure we

used the first ten eigenvectors generated by principal components analysis of common variants as covariates. Sequencing platform

and sex were also included as covariates.

Analysis of the exome sequencing data was performed as previously described (Farhan et al., 2019). Briefly, rare variants were

defined as MAF<0.001% in the exome datasets of DiscovEHR (Dewey et al., 2016) and ExAC (Lek et al., 2016). Burden testing for

each gene was performed using a Fisher’s exact test. Burden testing was performed separately for missense and synonymous var-

iants within each gene.

CRISPR/Cas9 editing of SH-SY5Y and iPS cells

Guide RNAs (gRNAs) were designed using the Crispor tool (http://crispor.tefor.net/) to target KANK1 regulatory and coding regions

andBNC2 coding regions. Design was guided by proximity to patient enhancer mutation sites, available protospacer adjacent motifs

(PAM), and predicted on- and off- target efficiencies.
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gRNAs targeting within 30bp either side of the KANK1-enhancer containing ALS-associated mutations (chr9:663,001-664,000,

hg19) were considered and screened for editing efficiency. One pair of guide sequences (5’ -UCAUGGGAACUCUUCAAAUA-3’

and 5’-UCAUGGGAACUCUUCAAAUA-3’) was most efficient and chosen for subsequent experimentation. Validated, commercially

available CRISPR control targeting HPRT (IDT), BNC2-exon targeting (IDT, 5’-GTTCGGAACCAGAACGACTA) and KANK1 exon-tar-

geting (IDT, 5’-GUCUAGUUGAUAACCAUAGG-3’) gRNAs were also obtained. gRNA duplexes were assembled from tracrRNA and

crRNA in a thermocycler according to manufacturer’s instructions under RNAse-free conditions. Cells were cultured to ensure 70-

90% confluency on the day of transfection. iPSCs were pre-treated with 2mMROCK inhibitor for 2 hours prior to electroporation. 24-

well plates containing either 500uL antibiotic-free DMEM (Lonza) (SH-SY5Y) or 500mL complete mTeSR-Plus Medium (StemCell

Technologies) (iPSC) were incubated at 37�C. CRISPR/Cas9 Ribonucleoproteins were formed by complexing 240ng gRNA duplex

with 1250ng Alt-R V3Cas9 Protein (IDT) in 10mL buffer R (from 10mLNeon transfection kit, ThermoFisher Scientific) - a 1:1molar ratio -

for 10minutes. 100,000 viable cells were aliquoted per transfection and centrifuged at either 400 x g for 4minutes (SH-SY5Y) or 200 x

g for 3 minutes (iPSC). Cells were washed in calcium- and magnesium-free Dulbecco’s Phosphate Buffered Saline (Sigma) and

centrifuged at either 400 x g for 4 minutes (SH-SY5Y) or 200 x g for 3 minutes (iPSC). Cell pellets were resuspended in 10mL buffer

R containing Cas9 protein and gRNA duplexes. 2mL of 10.8mM electroporation enhancer (IDT) was added and the solution mixed

thoroughly to ensure a suspension of single cells. 10mL of this mixture was loaded into a Neon transfection system (ThermoFisher

Scientific) and electroporated according to manufacturer’s instructions (1200V, 3 pulse, 20s pulse width for SH-SY5Y cells;

1400V, 3 pulse, 5ms pulse width for iPSCs). Cells were transferred to pre-warmed media in 24-well plates for expansion. For iPSCs,

media was replaced with fresh mTeSR1 without ROCK inhibitor 24 hours post electroporation. For SH-SY5Ys, media was replaced

with fresh antibiotic-free DMEM 48 hours post electroporation.

DETERMINING CRISPR EDITING EFFICIENCY

Genomic DNA was isolated from edited and control cells using a GenElute Mammalian DNAMiniprep Kit (Sigma) according to man-

ufacturer’s instructions. A�400bp region around the expected cas9 cut site was amplified by polymerase chain reaction using VeriFi

mix (PCRbio). Expected amplification was confirmed using gel electrophoresis, and the products were Sanger-sequenced.

Sequencing trace files were uploaded to both TIDE (Brinkman et al., 2014) and ICE (https://ice.synthego.com), and an indel efficiency

calculated.

QUANTITATIVE PCR (RT-PCR)

Cells were cultured until at least 70% confluent, lysed on ice using an appropriate volume of Tri Reagent (Sigma) for 5 minutes and

transferred to 1.5ml RNAse-free tubes. Total RNA was extracted using a Direct-zol RNA Miniprep Kit (Zymo) according to manufac-

turer’s instructions, and RNA concentration confirmed using a NanoDrop spectrophotometer (ThermoFisher Scientific). 2mg of total

RNA was then converted to cDNA by adding 1mL 10mM dNTPs, 1mL 40mM random hexamer primer (ThermoFisher Scientific), and

DNAse/RNAse-free water to a total volume of 14mL. This mixture was heated for 5 minutes at 70�C then placed on ice for 5 minutes.

4mL of 5x FS buffer, 2mL 0.1M DTT, and 1mL M-MLV reverse transcriptase (200U/mL) (ThermoFisher Scientific) were then added and

cDNA conversion performed in a PCR thermocycler (37�C for 60 minutes, 85�C for 10 minutes). cDNA was amplified using RT-PCR

with Brilliant III SYBR Green (Agilent) as per manufacturer’s instructions. Ct analysis was performed using CFX Maestro software

(BioRad). GAPDH was chosen as a reference gene because expression is relatively stable in SH-SY5Y cells (Hoerndli et al.,

2004). GAPDH and b-actin were both tested as endogenous controls in iPSC-derived motor neurons, with no significant differences

observed in their expression levels (data not shown); expression data from iPSC-derived cells in this manuscript were normalised

to GAPDH.

SH-SY5Y neuronal differentiation

Human SH-SY5Y neuroblastoma cells were seeded at densities of either 5x104 cells per well of a 6-well culture plate, or 2x103 cells

per well of a 96-well culture plate in DMEM (Lonza) supplemented with 10% (v/v) FBS, 50 units/mL penicillin and 50 mg/mL of strep-

tomycin. 24 hours after seeding the media was changed to DMEM supplemented with 5% (v/v) FBS, 50 units/mL penicillin, 50 mg/mL

of streptomycin, 4mM l-glutamine and 10mM retinoic acid. After 72 hours, the medium was switched to neurobasal media (Thermo-

Fisher Scientific) containing 1% (v/v) N-2 supplement 100x, 50 units/mL penicillin, 50 mg/mL of streptomycin, 1% l-glutamine and

50ng/mL human BDNF. Cells were cultured for an additional 3 days until fully differentiated.

Immunocytochemistry for SH-SY5Y cells

SH-SY5Y cells were fixed with 4% paraformaldehyde for 15 minutes and washed 3x with PBS. Cells were blocked in 5% normal

horse serum containing 0.1% Triton X-100 for 1 hour at RT. All primary antibodies were diluted in blocking solution (a-tubulin,

1:2000; anti-Pax6, 1:200). Cells were incubated in the primary antibody for 2 hours at RT and washed 3x in PBS before incubation

in the appropriate secondary antibody (1:1000 in PBS) for 1 hour at RT. Nuclear counterstain (Hoechst 33342) was applied for 10 mi-

nutes followed by a 3x wash in PBS. Cells were imaged using an Opera Phenix High Content Screening System (PerkinElmer).
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Immunocytochemistry for iPS-derived cells

For immunostaining, neural progenitor cells (NPC) and motor neurons (MN) were washed with phosphate- buffered saline (PBS) and

fixed with 4% paraformaldehyde for 10 min at room temperature. After fixation samples were washed three times with PBS and per-

meabilized with 0.3% Triton X-100 diluted in PBS for 5 min. The cells were subsequently blocked in 5%Donkey serum for 1h at room

temperature. After blocking, cell cultures were incubated with the appropriate primary antibodies diluted in PBS containing 5% of DS

overnight. Cells were then washed with PBS three times. Fluorescent secondary antibodies (Alexa Fluor 488, 555, 594 or 647, diluted

1:400 with DS) were subsequently added to the cells and incubated for 1h. The samples were washedwith PBS threemore times and

incubatedwith Hoechst 33342 for nuclear staining for 5minutes. All experiments included cultureswhere the primary antibodies were

not added, non-specific staining was not observed in these negative controls. Images were obtained from the Opera Phenix� High

Content Screening System at 3 40 magnification using the Harmony� Image analysis system. We used 405, 488 and 594 nm and

647 lasers, alongwith the appropriate excitation and emission filters. These settingswere kept consistent while taking images from all

cultures.

High-content image screening (HCS)

To investigate whether introduced KANK1mutations recapitulate MN death observed in ALS patients, MN were kept in medium with

andwithout neurotrophic factors (IGF, BDNF andCNTF) and thenwere stained for active caspase 3, a classical apoptoticmarker.MN

cells were plated on matrigel-coated 96-well plates. On day 40, MNs were fixed and stained for active caspase 3 and MAP2, which

was used as a marker that defines the boundary of cells and DAPI for nuclear staining. Quantitative imaging analysis of the MN was

conducted through the Opera Phenix� High Content Screening System at 3 40 magnification using the Harmony� Image analysis

system. The following morphological features were assessed for all the groups (Isogenic control, HPRT, Exon-edited cells): percent-

age Caspase 3 positive cells and the number of fragmented nuclei. At least 25 fields were randomly selected and scanned per well of

a 96-well plate in triplicate. To identify and remove any false readings generated by the system, three random treated and untreated

wells were selected and counted manually (blind to group).

To investigate whether the introducedKANK1mutations recapitulate the nuclear loss of TDP-43 observed in ALS patientsMNwere

stained for TDP-43. On day 40, MN were fixed and stained for TDP-43, MAP2 which was used as a marker to define the cytoplasmic

boundary of cells, and DAPI for nuclear staining. A quantitative imaging analysis of the MN was conducted through the Opera

Phenix�High Content Screening System at3 40 magnification using the Harmony� Image analysis system. The following morpho-

logical features were assessed for all the groups (Isogenic control, HPRT, Exon-edited cells): Nuclear TDP-43 intensity (Arbitrary

Fluorescence Unit) and ratio of Nuclear/ Cytoplasmic intensity. At least 25 fields were randomly selected and scanned per well of

a 96-well plate in triplicate.

MTT assays

A colorimetric assay using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) dye was used to assess neuronally

differentiated SH-SY5Y cellular metabolic activity and hence neuronal viability. 55 mL of 5mg/mL of MTT reagent in PBS was added

per well of a 24-well culture plate and incubated at 37�C for 1 hour. 550 mL of un-precipitated 20% SDS in 50% di-methyl formamide

(DMF) + dH2O (pH 7.4) was added per well and mixed thoroughly to lyse the cells. Cells were incubated in a dark environment on an

orbital shaker for 1 hour. The colorimetric change was measured using a PHERAstar FS spectrophotometer (BMG Biotech), and

absorbance readings taken at 590nm were normalized to media-only wells. Mean absorbance readings were calculated for each

biological repeat and expressed as a percentage of controls.

Patch-clamp electrophysiology for iPSC-derived motor neurons

Whole-cell patch-clamp recordings were performed in the current-clamp configuration and were performed as described (Bilican

et al., 2014; Perkins et al., 2021) using electrodes filled with (in mM): 155 K-gluconate, 2 MgCl2, 10 Na-HEPES, 10 Na-PiCreatine,

2 Mg2-ATP, and 0.3 Na3-GTP, pH 7.3, 300 mOsm. Cells were typically bathed in an extracellular recording solution comprising

(in mM): 152 NaCl, 2.8 KCl, 10 HEPES, 2 CaCl2, 1.5 MgCl2, 10 glucose, pH 7.3, 320–330 mOsm and supplemented with picrotoxin

(50 mM) CNQX (5 mM) and D-APV (50 mM) to block synaptic activity. Recordings were performed at room temperature (20-23 �C).

Measurements were typically low-pass filtered online at 2 kHz, digitized at 10 kHz and recorded to computer using the WinEDR

V2 7.6 Electrophysiology Data Recorder (J. Dempster, Department of Physiology and Pharmacology, University of Strathclyde,

UK; www.strath.ac.uk/Departments/PhysPharm/). Recordings were omitted from analysis if the series resistance changed by

more than 20% during the experiment, or if the resistance exceeded 20 MU.

QUANTIFICATION AND STATISTICAL ANALYSIS

Morphological assessment of differentiated SH-SY5Y cells and iPSC-derived motor neurons

To confirm neuronal differentiation and to assess for changes consistent with axonopathy, semi-automated analysis of neurite length

was performed using the SimpleNeuriteTracer plugin for FIJI (Longair et al., 2011). 2D images were converted to 8-bit grayscale and

successive points along the midline of a neural process were selected. The software automatically identified the path between

the two points. Tracing accuracy was improved using Hessian-based analysis of image curvatures. The AnalyzeSkeleton plugin
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(Arganda-Carreras et al., 2010) was used to quantify the morphology of the traces including the length of neurites. In the case of

joined neurites, the shorter path length was assigned to ‘branches’. To determine whether observed changes in neurite length are

significant, three fields of view were analyzed and differences were assessed by a Student’s t-test, where a one-tailed test was cho-

sen based on the hypothesis that ALS-associated mutations would reduce neurite length.

Quantitative PCR and MTT assays

Relative mRNA expression values were calculated using the 2-DDCT method (Schmittgen and Livak, 2008). Statistical analysis was

conducted in GraphPad Prism 7 (La Jolla, CA) and R (v4.0.2). All bar plots show the mean ± standard deviation. To identify statistical

differences between treatment groups the Student’s t-test was utilized.
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