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Abstract—This paper proposes a novel Quantum Spatial
Graph Convolutional Neural Network (QSGCNN) model that
can directly learn a classification function for graphs of arbitrary
sizes. The main idea is to define a new quantum-inspired spatial
graph convolution associated with pre-transformed fixed-sized
aligned grid structures of graphs, in terms of quantum informa-
tion propagation between grid vertices of each graph. We show
that the proposed QSGCNN model can significantly reduce either
the information loss or the notorious tottering problem arising
in existing spatially-based Graph Convolutional Network (GCN)
models. Experiments on benchmark graph datasets demonstrate
the effectiveness of the proposed QSGCNN model.

I. INTRODUCTION

GCNs [1] have proven to be effective tools to extract

meaningful features for graph analysis. One prevalent way

of defining novel GCN models is to generalize the graph

convolution operation to the spatial structure of a graph, by

directly defining an operation on neighboring vertices [2].

These so-called spatially-based GCN models are not restricted

to the same-sized graph structures, and have been widely

employed for graph classification tasks.

Unfortunately, for the local-level vertex features extracted

from the convolution operation, most existing spatially-based

GCN models tend to directly sum them up through a SumPool-

ing layer [3] or only preserve the vertices with high ranks

through a SortPooling layer [2]. Thus, these GCN models tend

to suffer from drawbacks of information loss, and have fairly

poor performance on graph classification.

This paper aims to address the aforementioned problems

by developing a novel QSGCNN model [4]. Specifically, we

make the following contributions. First, we convert graphs of

arbitrary sizes into fixed-sized aligned vertex grid structures,

through a transitive graph alignment method. Second, we

define a new spatial graph convolution operation associated

with the grid structure of each graph, by propagating vertex in-

formation through quantum walks. We show that the quantum-

inspired convolution simultaneously reduces the information

loss and tottering problems arising in classical spatial graph

convolution operation. Third, we empirically demonstrate the

effectiveness of the QSGCNN model.

II. FORMULATIONS AND PRELIMINARY CONCEPTS

We aim to develop a new spatial graph convolution layer

by propagating information between vertices. To this end,

we employ the vertex information propagation process of the

continuous-time quantum walk (CTQW), that is the quantum

analogue of the classical continuous-time random walk (CTR-

W) [5]. Since the evolution of the CTQW is not dominated by

the low frequency components of the Laplacian spectrum, it

can not only reduce the tottering problem arising in classical

CTRW, but also better discriminate between different graphs.

Specifically, we propose to employ the average mixing

matrix (AMM) to capture the time-averaged behaviour of the

CTQW being transmitted between the graph vertices. For a

sample graph G(V,E) with vertex set V and edge set E, we

adopt the adjacency matrix as the Hamiltonian. Based on [6],

the behaviour of a CTQW over G(V,E) at time t can be

summarized using the mixing matrix

QM (t) = U(t) ◦ U(−t) = eiHt
◦ e−iHt, (1)

where the operation symbol ◦ represents the Schur-Hadamard

product of eiHt and e−iHt. Because U is unitary, QM (t) is a

doubly stochastic matrix and each entry QM (t)uv indicates the

probability of the CTQW visiting vertex v at time t when the

walk initially starts from vertex u. However, QM (t) cannot

converge. Thus, we enforce convergence by taking a time

average, and we take the Cesàro mean to define the AMM

Q = lim
T→∞

∫ T

0

QM (t)dt, (2)

where each entry Qvivj
of the AMM Q represents the average

probability for a CTQW to visit vertex vj starting from vertex

vi, and Q is still a doubly stochastic matrix. Note that, since

the entries of Q are rational numbers, one can easily compute

Q from the spectrum of the Hamiltonian.

III. THE PROPOSED QSGCNN MODEL

The architecture. The architecture and definition of the

proposed QSGCNN model is exhibited in Fig.1 [4]. Specifi-

cally, the architecture is composed of three sequential stages,

i.e., 1) the grid structure construction and input layer, 2) the
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Fig. 1. The architecture of the proposed QSGCNN model. (1) An prototype graph GR(VR, ER) is first constructed by locating M (M = |VR|) centroids
as the prototype vertex representations from the vectorial vertex signatures over all graphs, through the classical k-means method. Then, each input graph
Gp(Vp, Ep) ∈ G of arbitrary size is aligned to GR, by identifying the structure correspondence information between the vertices of Gp and GR. Then, the
vertices of Gp aligned to the same vertex of GR will be mapped into the same aligned vertex, where each aligned vertex follows the same vertex order of
the corresponding vertex of GR, i.e., these new aligned vertices follow the same vertex spatial positions of GR. Here, the red curved arrow on the graph GR

indicates the predetermined spatial orders of its vertices. This process in turn forms a nature fixed-sized aligned vertex grid structure, where a standard CNN
can be directly performed. Since the above construction process will not discard any original vertex of Gp, the resulting aligned vertex grid structure can
reduce the problem of information loss that arises in existing graph convolutional neural network models associated with the SortPolling operation. (2) The
grid structure of Gp is passed through multiple quantum spatial graph convolution layers to extract multi-scale vertex features, where the vertex information
is propagated between specified vertices following the average mixing matrix. (3) Since the graph convolution layers preserve the original vertex orders of the
input grid structure, the concatenated vertex features through the graph convolution layers form a new vertex grid structure for Gp. This vertex grid structure
is then passed to a traditional CNN layer to learn a classification function. Note, vertex features are visualized as different colors.

quantum spatial graph convolution layer, and 3) the traditional

convolutional neural network and Softmax layers.

The quantum convolution. For each graph Gp, we com-

mence by converting its vertex feature matrix Xp and its

associated vertex adjacency matrix Ap into the fixed-sized

aligned vertex grid structure X̂p ∈ R
M×c (i.e., the aligned grid

vertex feature matrix) and the associated aligned grid vertex

adjacency matrix Âp ∈ R
M×M . The quantum spatial graph

convolution operation of the QSGCNN model is defined as

Z = Relu(QX̂pW ), (3)

where Relu is a nonlinear activation function, Q is the AMM

of the CTQW on Âp of Gp defined in Section II, W ∈ R
c×c

′

is the matrix of trainable parameters of the proposed graph

convolutional layer, and Z ∈ R
M×c

′

is the output matrix.

Discussions. The proposed QSGCNN model has a num-

ber of significant theoretical differences with existing meth-

ods, explaining its effectiveness. First, unlike the classical

spatially-based GCN models DGCNN [2] and FAGCN [1],

the QSGCNN model employs the AMM of CTQW rather

than the original vertex adjacency matrix to determine how

to pass the information among the vertices. Since the CTQW

has a better ability to distinguish different graph structures,

the QSGCNN model can extract more discriminative vertex

features. Second, in order to maintain the scale of the extracted

vertex features, the convolution operations of the DGCNN

and FAGCNN models need to perform a multiplication by

the inverse of the vertex degree matrix. This can be seen

as a normalizing process and assigns equal weights between

neighbor vertices. By contrast, the convolution operation of

the QSGCNN model assigns an average visiting probability

distribution of the CTQW to specified vertices with each

vertex having a different weight. Therefore, the QSGCNN

model can better discriminate the mutual-influences between

specified vertices. Third, the QSGCNN models propagate

vertex information in terms of CTQW, addressing the tottering

problem arising in most existing spatially-based GCN models

that are theoretical related to the classical Weisfeiler-Lehman

(WL) algorithm [2]. Forth, the QSGCNN model is defined

on aligned grid structures that are transformed from original

graph structures without discarding any vertex, reducing the

information loss arising in existing spatially-based GCN mod-

els associated with a SumPooling or a SortPooling layer.

IV. EXPERIMENTAL EVALUATION

Datasets. We empirically evaluate the classification perfor-

mance of the proposed QSGCNN model on nine benchmark

graph datasets from bioinformatics and social networks. These

datasets include: MUTAG, PTC, NCI1, PROTEINS, D&D,

COLLAB, IMDB-B, IMDB-M and RED-B.

Result. Experiments in [4] indicates that the proposed QS-

GCNN model outperforms state-of-the-art graph kernels and

GCNs on benchmark datasets, demonstrating the effectiveness.
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