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Abstract

Structural optimization methods can be extremely powerful when used at the initial, conceptual, design stage of a

building or bridge structure, potentially identifying materially efficient forms that are beyond the imagination of a

human designer. This is particularly important at present, given the pressing need to reduce the carbon footprint

associated with the built environment in the face of the current climate emergency. In this contribution, a computa-

tionally efficient global-local optimization framework is proposed, in which a linear programming-based truss layout

optimization step is employed to generate initial (near-)optimal designs, with a non-linear optimization step then used

to generate designs that take account of real-world complexity. To facilitate rapid exploration of design concepts, the

proposed global-local optimization framework has been made available in the Peregrine plug-in for the popular Rhino-

Grasshopper parametric modelling environment. The efficacy of the approach is demonstrated through its application

to a range of case study problems.

Keywords: Structural optimization, Layout optimization, Topology optimization, Structural design, Parametric

design

1. Introduction

In recent years a wide range of digital tools have been applied to the design of building and bridge structures.

As part of the workflow, optimization techniques can be employed to help designers identify materially efficient

forms, that potentially consume less material and have a lower associated embodied carbon footprint. Structural

optimization methods can have a particularly significant impact when used at the initial, conceptual, design stage, as

they are capable of generating materially efficient forms that are often beyond the imagination of a human designer.

These materially efficient forms are often geometrically complex, potentially increasing their cost due to fabrication

challenges and the use of bespoke rather than standardized elements. However, the need for the world to quickly move

towards net-zero carbon emissions in the light of the current climate emergency is creating a resurgence in interest

in material efficiency. Also, manufacturing techniques have been developing rapidly in recent years, reducing, or

sometimes even eliminating, the overhead associated with complexity, with CNC systems and automated steel welding

equipment becoming commonplace, and with technologies such as additive manufacturing under development for civil

and structural engineering applications. This is increasingly providing engineers with the capability to physically

realise complex but highly materially-efficient structural forms.

In the structural design field, meta-heuristic optimization methods (e.g. genetic algorithms) have to date proved

popular, since these only require problem evaluations (i.e., structural performance indicators), rather than derivations
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(i.e., mathematical information on the relationship between structural performance indicators and problem variables,

such as gradients). This means that a wide range of problems can be tackled without difficulty. A large variety of

meta-heuristics methods have been explored, including genetic algorithms [1], simulated annealing [2], ant colony

optimization algorithms [3], the ‘big bang-big crunch’ algorithm [4], and firefly algorithms [5], with some methods

incorporated in digital, commercially available, design tools (e.g., the Galapagos solver incorporated in the Rhino-

Grasshopper parametric modelling software, which has proved very popular).

However, when using meta-heuristic methods, the lack of underpinning mathematics typically leads to computa-

tionally expensive processes and highly locally optimal solutions being identified; as Wolpert [6] suggests, there is

‘no free lunch’ when it comes to optimization methods. This is particularly true when meta-heuristic methods are

applied at the conceptual design stage, arising from the typically large design freedom available. To address this,

a designer may need to significantly constrain the problem, in some cases leaving only a handful of active design

variables. However, this limits the range of solutions that can be generated and, although attempts have been made to

generate families of designs for use at the conceptual design stage [7], the extent of the design space explored is still

usually limited. Secondly, meta-heuristic methods usually rely on randomized factors to theoretically enable globally

optimal solutions to be identified, if sufficient computational time is available. However, in practice available com-

putational time is finite and solutions are often highly sub-optimal, with the gap between these solutions and the true

mathematically optimal solution remaining unknown. Thirdly, when using meta-heuristic optimization tools, penalty

methods are typically used to approximately enforce constraints. However, choosing suitable values for the penalty

factors involved can be challenging, with large values rendering the original design objective (e.g., to minimize the

volume of material consumed) comparatively less significant, and small values leading to large constraint violations.

As an alternative, gradient-based optimization methods can be employed, which do not suffer from the aforemen-

tioned shortcomings, and which are potentially capable of solving problems with large design freedom; usage of these

methods is therefore the focus of this paper.

At the conceptual design stage it is important to feed in as many options into the process as possible. Thus for

structural design problems, topology or layout optimization methods are particularly useful. Considering topology

optimization, a range of software tools are already available to designers, whether as standalone tools (e.g., Altair

OptiStruct [8]), plug-ins (e.g., Ameba [9], Millipede [10]), or educational tools (e.g., the interactive web- [11] or

app-based [12] TopOpt tools developed by Sigmund and co-workers). However, topology optimization tools, which

involve identifying an optimal continuum form, are not particularly well-suited to identifying the kind of skeletal spa-

tial structures generally used to form buildings or bridges. Although it is possible to derive truss layouts from topology

optimization solutions (e.g. [13–15]), numerical layout optimization employing a ‘ground structure’ provides a pow-

erful and highly efficient alternative for such structures, being capable of rapidly identifying (near-) optimal structural

forms (e.g., [16–22]). For example with truss layout optimization, an optimal structure formed from discrete truss

elements is sought, and linear programming (LP) can be used to solve basic problems. This leads to a very efficient

optimization process, capable of identifying globally optimal solutions for the given numerical discretization. This

brings two benefits: (i) the highly efficient nature of the optimization process means that a wide range of solutions

can be obtained rapidly at the conceptual design stage [23]; (ii) the global optimality of the solution means that this

can be used as a benchmark, against which other designs can be judged, as outlined by Fairclough et al.[24]. How-

ever, a framework that systematically exploits these benefits and is suitable for use by practitioners at the conceptual

design stage is still lacking. To address this, a global-local framework is proposed, and is incorporated in the Rhino-

Grasshopper parametric modelling software to provide a powerful conceptual design tool for use in industry, adding

to the range of structural optimization tools already developed for this platform (e.g., [25, 26]).

To ensure the framework is useful, one issue to overcome is the fact that the raw solutions generated by the truss

layout optimization process are often complex in form, and hence difficult to interpret and/or to directly fabricate in

practice. One means of addressing this is to directly incorporate practicality constraints in the optimization problem

formulation from the outset. However, this will generally lead to complex problem formulations that are computa-

tionally expensive to solve. Alternatively, the process can be divided into different stages, with layout optimization

used in the first stage and practical issues taken into account in a follow-up, potentially computationally inexpensive,

post-processing stage. The solution obtained in the first stage then also provides a benchmark against which trade-offs

associated with various practical constraints can be evaluated. This multi-stage process forms a ‘global-local’ opti-

mization framework, where globally optimal solutions obtained in the first stage are complemented by more practical,

though only locally optimal, solutions obtained in the second stage. This is considered in more detail in this paper.
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Note that in the present work priority has been given to computational efficiency, so that the resulting tool can be

used to rapidly generate a range of designs for use at the conceptual design stage. To achieve this, the first stage of the

global-local framework employs LP, which is computationally inexpensive. However, this also means that geometrical

stability and/or Euler buckling are only considered in the second stage. For problems where stability considerations

are important, semidefinite programming (SDP) or other methods could instead be used in the first stage with a view to

obtaining improved second stage solutions, taking advantage of recently developed methods for treating global and/or

local stability in truss layout optimization (e.g., [27–29]), albeit at the expense of increased computational effort.

The paper is organised as follows. In section two, the basic layout optimization procedure for trusses is briefly

outlined, with the proposed global-local design framework then presented along with the associated workflow. In

section three, usage of the framework within the Rhino/Grasshopper parametric modelling tool is briefly outlined. In

section four, a number of case-study problems are described, with a range of design solutions presented to demonstrate

the efficacy of the framework developed. Finally, in section five, key conclusions are drawn.

2. Conceptual design framework

2.1. Layout optimization

The standard layout optimization process for truss structures [16–18] involves a number of steps, as shown in

Fig. 1. Firstly the design domain, load and support conditions are specified, Fig. 1(a). Secondly, the design domain is

discretized using nodes, Fig. 1(b). Thirdly, these nodes are interconnected with potential members to create a ‘ground

structure’, Fig. 1(c), which contains a very large number of potential structural layouts, comprising combinations of

all the potential members present (up to
n(n−1)

2 , where n is the number of nodes). Here The goal is then to find the

optimal structural layout, Fig. 1(d). When it is required to minimize the volume of material consumed, the problem

can be formulated mathematically as follows:

minimize
a,q(w)

V = lTa (1a)

subject to

Bq(w) = f (w)

q(w) ≥ −σ−a

q(w) ≤ σ+a







for w = 1, 2, ..., p (1b)

a ≥ 0, (1c)

where V is the structural volume, l = [l1, l2, ..., lm]T is a vector of member lengths, and a = [a1, a2, ..., am]T is

a vector containing member cross-sectional areas, with m denoting the number of members. Also, B is a 3n × m

equilibrium matrix comprising direction cosines (for three-dimensional problems), with n denoting the number of

nodes, and q(w) and f (w) are vectors containing the internal member forces and the external forces, respectively, in

the wth of p load cases. Finally, σ+ and σ− are respectively the limiting tensile and compressive stresses sustainable

by the material employed.

Note that (1) is a plastic formulation, which is computationally efficient and which implicitly takes advantage

of the plastic response exhibited by many common engineering materials, enabling greater material savings to be

realized when multiple load cases are involved. (For single load-case problems a statically determinate layout can be

found, which will also be optimal when an elastic material is involved; for multiple load-case problems the optimal

elastic and plastic solutions will diverge, with the volumes computed using the formulation described here being lower

bounds on the corresponding elastic solutions.)

With respect to optimization variables, which are member areas a and internal forces q, problem (1) is a linear

programming (LP) problem, which can be solved very efficiently using modern LP solvers (e.g. see [30]). This forms

the starting point of a fully automated and systematic numerical approach that can handle problems with significant

design freedom, thus providing great potential when used at the conceptual design stage.
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Figure 1: Truss layout optimization steps: (a) specify design domain, loads and supports; (b) discretize domain using nodes; (c) interconnect nodes

with potential truss members; (d) use optimization to identify the optimal structural layout.

2.2. Global-local optimization framework

The two stages of the proposed global-local design optimization framework can be illustrated via the use of

the example shown in Fig. 2. Since the idealized layout optimization problem (1) is convex (see dashed line in

Fig. 2(a)), the global optimality of the solution obtained for a given ‘ground structure’ is mathematically guaranteed

(i.e., the design consuming the least amount of material is found). However, being mathematically optimal does

not mean a given generated design is necessarily practically feasible or desirable. In fact, in addition to often being

over-complex in form, the linear nature of the standard LP layout optimization problem formulation (1) means that

important practical considerations cannot be directly addressed. For example, Euler buckling cannot be addressed

directly since this would require the inclusion of non-linear constraints. To address this, rather than attempting to

navigate the search space directly (e.g., Fig. 2(b)), here an incremental approach involving two optimization stages is

proposed. In the first stage, the standard layout optimization problem with relaxed (linearized) constraints is solved,

allowing rapid exploration of a large solution space. When a fine nodal discretization is used, the solution obtained

can be considered for practical purposes to be equivalent to the globally optimal solution for the problem. In the

second stage, the (im-)practicality of the Stage 1 solution(s) is addressed by solving one or more potentially more

complex optimization problems with reduced design freedom in order to generate a more practical design (Fig. 2(c)).

This forms the basis of a global-local optimization design framework, which has the following benefits:

1. The identified globally optimal solution to the relaxed problem provides an invaluable benchmark that can be

used to evaluate the quality of other design solutions (since the gap to the globally optimal solution is known).

2. When the Stage 1 solution lies close to good local optima, as it often will, these can then be identified relatively

quickly.

Each of the two stages in the process are now considered in more detail.

2.3. Stage 1: layout optimization

Numerical layout optimization provides a reliable and computationally inexpensive means of obtaining solutions

to the idealized (or ‘relaxed’) problem. Usually each node should be connected to every other node in the design

domain to ensure the available design space is extensively explored. If this is not done, then less efficient designs may

be identified (e.g., see Fig. 3). Additionally, a reasonably fine nodal grid should be used to generate (near-) optimal

solutions in order to provide a suitably accurate benchmark solution. It has been shown that solutions will converge on

the theoretical minimum by increasing nodal density in the ‘ground structure’; e.g., see Darwich et al 31, Bolbotowski

et al 32.

To solve problems involving fine nodal grids, interior-point LP solvers generally outperform solvers that use the

traditional simplex method [30], and an adaptive ‘member adding’ solution scheme [17, 21] can be used. Initially only

a small proportion of the potential members in the fully connected ‘ground structure’ are included in (1); then a small

number of members are successively added to improve the solution, until the optimal solution is found. This means

that, rather than solving a single large-scale LP problem, a series of relatively small-scale LP problems are instead
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(a)

Starting point Starting point

Local optimium Local optimium

Local optimium

Starting point

Global optimium

(b)

Starting point (stage 1)

Starting point (stage 2)

Local optimum

Global optimum

(c)

Figure 2: Sample design problem: (a) solution space, showing idealized LP layout optimization and more practical design solutions; (b) navigating

solution space with practicality constraints included directly; (c) navigating solution space using a two-stage process, as part of the proposed

global-local optimization framework.
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Figure 3: Simple example to illustrate the importance of including sufficient design freedom in the problem setup: (a) problem specification

(design domain, supports and applied load); (b) optimum design obtained using a ground structure involving a coarse nodal grid and only adjacent

connectivity; (c) optimum design obtained using a ground structure with full connectivity, which consumes 33% less material than design (b).

solved in sequence, reducing total CPU cost and memory requirements; see Fig. 4. Note also that although efficient

parallel computing schemes for solving LP problems are not yet widely available, the process of identifying which

members to add to a given small-scale problem in the adaptive ‘member adding’ scheme is readily parallelizable.

The peak number of members involved when using this approach is normally significantly smaller than when the full

problem is solved directly (e.g., 24,151 compared with 1,086,938 members in the half wheel example considered in

Fig. 4). The approach is also mathematically rigorous, with the solution guaranteed to converge to the same solution

as is obtained when the full problem is solved. An educational Python script implementing the adaptive ‘member

adding’ solution scheme is available for interested readers [21].

Figure 5 shows that for the half wheel example considered above a numerical solution within 1% of the theoretical

optimal [33] can be obtained quickly (in 1s), though significantly more time is required to reduce the error down

to 0.1% (requires 470s). However, for use at the conceptual design stage, the former solution may be of sufficient

accuracy to provide a reasonable benchmark, and, as the corresponding layout obtained is comparatively simple, it

is also likely to provide a more useful starting point for the second stage of the proposed two stage framework. (For

example, the presence of fewer slender members reduces the likelihood of Euler buckling issues in Stage 2, although

for problems where local Euler buckling effects are significant, an improved starting point for Stage 2 could potentially

be obtained simply by adjusting the limiting compressive stress as part of an iterative LP layout optimization process,

similar to that undertaken in [34] to solve a cantilever truss problem originally studied by Achtziger [35].)

2.4. Stage 2: improving practicality

As indicated in Fig. 2, the starting point for Stage 2 of the proposed global-local optimization framework is a

truss layout generated via layout optimization during Stage 1. In the interests of practicality, and to ensure Stage 2

computations take a reasonable time, it is usually prudent to employ a truss generated using a relatively coarse nodal

grid as the starting point, such that the number of members present in the optimized layout is not excessive.

2.4.1. Rationalization

In layout optimization the nodal positions are fixed, so the forms of the layouts generated are influenced by the

positions of the nodes. However, geometry optimization, which involves adjusting the nodal positions, can be used to

improve and rationalize the solutions [38]. This means that the optimization objective function becomes:

minimize
a,q(w),x,y,z

V = lTa, (2)

where, x, y and z are vectors containing x, y, and z nodal positions, respectively. With these new design variables, it

becomes a nonlinear optimization problem (NLP) (e.g., member length l is a nonlinear function of the nodal positions),
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Without ‘member adding’

1,086,938 members

7,290 members 7,290 members 18,816 members 24,151 members

41 members

(a)

Simplex solver

Adaptive ‘member adding’ scheme using interior-point solver

Interior-point solver

CPU time: 799 seconds

CPU time: 68 seconds (11.4x speedup)

CPU time: 34 seconds (22.5x speedup)

Memory: 6,521,628 nonzeros in LP problem

Memory: 6,521,628 nonzeros in LP problem

Memory: 192,354 nonzeros in LP problem (34x reduction)

Computational cost

(b)

Figure 4: Effect of using an interior-point solver and adaptive ‘member adding’ solution scheme on CPU time and memory usage for a half wheel

truss layout optimization problem comprising 60 × 30 nodal divisions and approx. one million members in the ‘ground structure’: (a) initial

ground structures and intermediate and final solutions; (b) comparative CPU times and memory usage. (Python script presented in [21] used to

solve (1), with the Gurobi simplex [36] and Mosek interior-point [37] solvers used on a laptop equipped with an Intel i7-7700HQ CPU. The problem

comprises roller supports at the bottom corners of the domain and a downward vertical point load applied midway between these supports. The

same volume was obtained in all cases, 0.3% above the exact analytical solution.)
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Figure 5: Influence of nodal density on accuracy for the half wheel example. (Python script presented in [21] used to obtain solutions.)

Remove isolated nodes

Remove member chains

Geometry optimization

Create crossover nodes

Merge close nodes

Geometry optimization

Rationalized solutionIntermediate stepRaw solution via layout optimization

Figure 6: Use of geometry optimization to rationalize a solution generated via layout optimization, after [38].

which is now more challenging to solve. However, as this NLP problem is here solved as a post-processing step, the

number of variables is significantly smaller than in Stage 1, ensuring the computational cost associated with the

process is generally not excessive, and much lower than when both these stages are solved simultaneously (e.g., see

[39, 40]). Prior to the process commencing, isolated nodes are removed and co-linear chains of members are converted

to single members; then at each iteration in the geometry optimization process nodes in close proximity to one another

are merged and nodes at crossover locations are created; see Fig. 6.

2.4.2. Euler buckling

The use of NLP optimization not only allows rationalization of structural forms, but also provides a means of

addressing various practical constraints that are non-linear in form, such as Euler buckling. This can be incorporated

in Stage 2 by adding the following constraint (after [41, 42]):

qi ≥ −α
a2i
l2i
, for i = 1, 2, ...m, (3)

where α is a cross-sectional constant calculated using the shape of the cross-section, elastic modulus, and effective

length factor. For circular hollow sections, α can be calculated from:

α =
πE

4k2
·
1 + β2

1− β2
(4)

where E is the elastic modulus of the material employed, k is the effective length factor (taken as 1 for a pin-ended

strut), and β is the ratio between the outer and inner radii of the section. Note that the moment of inertia of the

cross-section is expressed in terms of area variable a, which is possible for some cross section types.
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3. Implementation: Rhino-Grasshopper plug-in

To facilitate use at the conceptual design stage, the proposed global-local design framework has been implemented

in the Peregrine [43] plug-in for Rhino-Grasshopper. The problem data, e.g., design domain, loads and support

conditions, are specified via parametric controls, facilitating rapid exploration of the influence of the parameters

involved. The LP and NLP problems are respectively solved via the Mosek [37] and IPOPT [44] solvers, both of

which employ efficient interior point methods [45]. In the case of NLP problems, first- and second-order derivatives

of the functions involved are computed via an automatic differentiation routine.

The main workflow is illustrated in Fig. 7, and comprises the following main elements:

• Specification: All problem data can be created via parametric controls in Rhino & Grasshopper. For example,

various geometric entities can be defined in terms of lines, polygons, NURBS surfaces, and complex BReps that

are controlled by user-defined parameters. These can then be used to create problem data such as the design

domain, load, and support conditions. A number of bespoke components have been programmed to aid this

process.

• Stage 1 (layout optimization): Numerical layout optimization is used to generate an idealized solution for use

as the starting point for Stage 2. A relatively coarse nodal grid can be used for this purpose, with a finer nodal

grid used to generate an accurate benchmark against which other designs can be judged.

• Stage 2 (improving practicality): Various tools can be utilized to improve the practicality of the designs. In

addition to the rationalization techniques described in Section 2.4.1, the automatic simplification method de-

scribed in [22, 46] can be used to e.g. control the number of members, connections and/or the complexity of

connections.

In this way the designer can freely adjust one or more of a number of controlling parameters to generate a wide

range of optimized designs, each of which can be evaluated against the benchmark identified in Stage 1. Candidate

designs can also easily be analysed in more detail using tools such as Karamba 3D [47] structural analysis plugin, to

allow in-depth evaluation of the designs generated.

Figure 7: Workflow utilizing the proposed global-local optimization framework.

4. Design examples

A number of design examples are now used to demonstrate the efficacy of the proposed global-local design frame-

work and the underlying layout and geometry optimization methods. All examples were solved using a laptop com-

puter equipped with an Intel i7-7700HQ CPU, 32GB of memory and running Windows 10. For sake of simplicity
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Figure 8: Simple load path example: problem specification, showing extent of design domain and the applied loads.

self-weight loads are ignored in all design examples. Note that although for sake of simplicity the examples presented

involve two-dimensional design domains, either single domains or multiple intersecting domains, the methodology

described can equally be applied to fully three-dimensional design problems.

4.1. Simple load path example

The first design example involves finding the form of the least volume structure to transmit a pair of opposing

forces across a rectangular design domain, as shown in Fig. 8. In the case of this design problem, for comparative

purposes the Genetic Algorithm (GA) meta-heuristic method is used to generate solutions in addition to the proposed

global-local optimization framework.

An initial intuitive solution to the problem comprises two horizontal members connecting the pairs of forces, as

shown in Fig. 9(a). However, layout optimization methods are useful in helping the designer to identify more efficient

solutions, which may not be intuitively obvious. In this case a more complex alternative solution is indeed found, as

shown in Fig. 9(d). This Stage 1 benchmark solution was obtained using approximately 3,000 nodes and 3,000,000

potential members, and can be observed to require 62% less material than the solution involving two horizontal

members. Once a designer is shown this alternative solution, it starts to make sense: each pair of opposing forces can

be seen to form a couple (i.e., an applied moment) and the optimized solution incorporates tensile and compressive

members that are pushed to opposite edges of the domain in order to maximise bending resistance. Since the Stage 1

benchmark solution is rather complex in form, the Stage 2 rationalization process can be used to furnish more practical

solutions, as shown in Fig. 9(b) and Fig. 9(c).

Alternatively, the same problem can be solved using a GA based method, in this case using the ga function

from the Global Optimization Toolbox in Matlab R2019b. In this approach, binary variables are used to indicate the

existence of members in the ‘ground structure’. Finite element analysis is performed to calculate internal forces in

the members, allowing the volume of material consumed to be evaluated as the objective function. Two population

sizes (100 and 1,000) are considered, and each is tested with 10 independent runs, with the best reported. Results

are shown in Fig. 9(e) and (f), with the reported CPU time only including time spent evaluating the objective (i.e.,

fitness) function (programmed using vectorized commands in the interests of computational efficiency). It is evident

that the resulting designs are both indistinct in form and consume significantly higher volumes of material than the

benchmark. It was also observed that these solutions were not markedly improved by adjusting control parameters

(e.g., the crossover fraction number, elite count). This stems from the number of design variables (603 in total), which

is large for a meta-heuristic algorithm like GA to deal with. To use such methods efficiently, designer assumptions are

often required to reduce the design space. For example, by grouping variables and removing long diagonal members,

only 75 binary variables are required, which allows an improved solution to be obtained, as shown in Fig. 10. In

this case, the solution is only 7% above the benchmark and the associated structure is much clearer. Also, the CPU

cost reduces to 3.2 seconds. This indicates that the efficacy of meta-heuristic methods depend heavily on designer

assumptions. However, if used without a known benchmark, such methods are prone to identify solutions that are

highly sub-optimal, though with the designer oblivious to the degree of this sub-optimality.

4.2. Simple bridge example

The problem specification for a simple bridge example is shown in Fig. 11(a) and the complete design process

is shown in Fig. 11(b). Taking advantage of symmetry conditions, only half of the design domain is considered,

with the line of symmetry modelled using roller supports. Circular hollow sections with β = 0.9 were assumed,

with the tensile and compressive yield stress and elastic modulus of the steel material used taken as 350MPa and

210GPa respectively. In Stage 1 a relatively dense nodal grid (approx. 1900 nodes) was employed to generate a
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Figure 9: Simple load path example: (a) initial intuitive design; (b)-(d) designs obtained using the proposed framework; (e)-(f) using GA. Dashed

trend lines drawn between data points provide an indication of the relative computational costs associated with mathematical programming vs GA

based optimization schemes (% gap to the benchmark solution shown in parenthesis).
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Figure 10: Simple load path example: GA solution identified after reducing the number of binary design variables, (a) ground structure (using

top-right quadrant); (b) identified solution, 7% above the benchmark in Fig. 9(d)
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Figure 11: Simple bridge example: (a) problem specification (all dimensions in metres and uniformly distributed load of 100kN/m discretized via

11 point loads); (b) two stage optimization process; in Stage 1 fine and coarse grids are used to generate a benchmark solution and the starting point

for Stage 2, which involves use of NLP to obtain more practical solutions, after [38].

Uniformly distributed load
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ry

Potential supports

Figure 12: Simple bridge: parametric study considering five potential roller support locations.

benchmark solution, against which other designs can be judged. Since layout optimization is highly efficient, this

step took only around 20 seconds to complete. A relatively coarse nodal grid was then used to generate a simpler

design (nearly instantaneously, in 0.2 seconds). After the initial Stage 1 solution was identified, local Euler buckling

constraints were imposed, with all members resized to satisfy constraint (3). This led to an initial consumed volume

of material increase of 12%. Rationalization was then performed to improve the design (taking 8.5 seconds). The

subsequently generated structure was found to be both more rational and more efficient (volume just 2.5% higher than

the benchmark design).

Note that the entire design process shown in Fig. 11(b) was completed within a minute. This rapid run time makes

the proposed optimization process amenable to use within an interactive parametric modelling environment, with the

designer able to quickly explore a range of design scenarios at the conceptual design stage. For example, in Fig. 12

12



(a) Support location 1, benchmark (vol. = 1.67V0) (b) Rationalized (vol. diff. = +4.3%)

(c) Support location 2, benchmark (vol. = 1.28V0) (d) Rationalized (vol. diff. = +7.4%)

(e) Support location 3, benchmark (vol. = 1.08V0) (f) Rationalized (vol. diff. = +23%)

(g) Support location 4, benchmark (vol. = 1.03V0) (h) Rationalized (vol. diff. = +10%)

(i) Support location 5, benchmark (vol. = V0) (j) Rationalized (vol. diff. = +15%)

Figure 13: Simple bridge example: parametric study solutions obtained by varying the roller support locations (see Fig. 12).

the pin support in Fig. 11(a) is replaced with two roller supports, the lower of which is placed at one of a number

of possible locations along a circular arc of radius 5m. Repeating the optimization process of Fig. 11(b) leads to the

generation of a range of benchmarks and more practical designs, as shown in Fig. 13. In most cases the volumes of

the Stage 2 designs are within 15% of the benchmark volume. However, in one case the gap is greater (Fig. 13(f)),

likely due to the influence of the Euler buckling constraint. In this case, the designer has evidence to suggest that it

may be worthwhile to rerun the problem with alternative inputs, or to intervene manually (e.g., as was done in [48]).
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(a)

Figure 14: Two intersecting planar trusses example: design domain formed by two (L× L/4) rectangular planar domains

#1 Separated design

(Warren truss, 3 groups†)

#2 Separated design

(Warren truss‡)

#3 Separated design

(optimized)

#4 Holistic design

Plane 1

1.36V0 0.81V0 0.64V0 NA

Plane 2

1.96V0 1.13V0 0.88V0 NA

Total Volume 3.32V0 1.94V0 1.52V0 1.005V0

† Using three member groups in top chord, bottom chord, and diagonals; members in a group have the same cross-sectional area.

‡ Sizing optimization of all members.

Figure 15: Two intersecting trusses example: traditional and optimized solutions

4.3. Two intersecting trusses example

Figure 14 shows details of another relatively simple design problem, this time comprising two intersecting planar

design domains. In this case, fixed pin supports are present at the ends of each domain and all loads are assumed to be

applied simultaneously, in a single load case. In standard design practice a truss for each domain would be designed

separately. For example, Warren trusses, each employing three cross-sections (one cross-section for each of the top

and bottom chords and one for the diagonals) may be selected. When this was done for this problem the total volume

of material consumed was found to be 3.32V0 (#1 in Fig. 15), where V0 is the corresponding benchmark solution

(Fig. 16(a)). By sizing each member in each truss separately, a lower structural volume of 1.94V0 (#2) was obtained,

whilst by using layout optimization to design each truss separately, a much reduced volume of 1.52V0 was obtained

(#3). Finally, when the problem was considered in a holistic manner, a much more efficient means of transferring the

forces was identified, with a reduced structural volume of 1.005V0 (#4), which is only 0.5% larger than the benchmark

in Fig. 16(a).

For this problem, potential interactions between the two trusses may have not been foreseen by the designer.

Thus traditional engineering design solutions that do not take advantage of these interactions may be proposed (e.g.,

Fig. 16(c)), which have been shown to be inefficient. The proposed two stage optimization framework can in this case

generate significantly more efficient conceptual designs that, although not necessarily practical in this case, can serve

as inspiration to the designer.

4.4. Multiple intersecting trusses example

Many of the structures generated for the previous example problems can be observed to be in unstable equilibrium

with the applied loading. This in part results from the fact that the structures have only been required to carry a single

set of loads, whereas real-world structures are generally required to deal with a number of sets of loads or load cases.
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(a) (b) (c)

Figure 16: Two intersecting trusses example: (a) Stage 1 benchmark obtained with approx. 6,000 nodes, V = V0; (b) Stage 2 conceptual design

obtained using the proposed optimization framework, V = 1.005V0; (c) traditional Warren truss design comprising three member cross-sections

(one each for the top and bottom chords, and one for the diagonals), V = 3.32V0.

The next example involves the conceptual design of a series of intersecting trusses for a real world project and involves

multiple load cases. An overview of the problem is shown in Fig. 17 (a). A holistic study involving simultaneous

optimization of the trusses in all domains is performed since, as demonstrated in the previous example, this should

ensure the most materially efficient design is found. The four load cases considered are shown in Fig. 18; these

comprise two primary load cases involving vertical point loads and two secondary load cases designed to stabilize the

structure (though this is not guaranteed; for details of a formulation that ensures the generated structure is globally

stable see e.g. [27, 28]). In addition, square hollow sections are utilised in the Euler buckling constraint (3), where

the cross-sectional constant α for square hollow sections is calculated from α = π2E
12k2 ·

1+β2

1−β2 , where here β = 0.9.

For this problem the tensile and compressive yield stress and elastic modulus were taken as 350MPa and 210GPa

respectively.

A Stage 1 benchmark design was initially obtained by solving a standard layout optimization problem with approx.

5,000 nodes, leading to the structural layout shown in Fig. 17(b) which has a structural volume of 25.020m3. The nodal

density in the ground structure was then reduced and a Stage 2 rationalization step performed, leading to generation

of the simpler design shown in Fig. 17(c). This design has a volume of 26.112m3, which is only 4.4% higher than the

benchmark solution shown in Fig. 17(b). The design can be further simplified if fewer nodes are utilised in Stage 1;

Fig. 17(d) shows a more practical design obtained using approx. 100 nodes, though the associated volume of material

consumed is in this case 10% higher than the benchmark.

4.5. Staircase support design example

The final example involves another real-world design problem, this time involving the design of the support for a

staircase, as shown in Fig. 19. The applied loads include a line load of 120kN/m from the stair, a 900kN point load

(at point E) transferred from structures above, and a 90kN point load (at point F ) from the stair arch. The structure

is supported by a pin support at point A, and a pin/roller support at point B. In addition to strength requirements, a

maximum deflection of 10mm has been specified. Since the problem involves a single primary load case, the optimal

layouts obtained when using stress or deflection design constraints are equivalent [49]. Typically, either stress or

deflection limits are critical; in the latter case the limiting stress can be scaled down to ensure the generated structure

satisfies the prescribed deflection limit. For this reason, the structural volume for a given deflection limit can be

calculated even when using stress-based formulation (1) (e.g., see [50]). A post optimization elastic analysis can also

be carried out using the Karamba3D plugin [47], in line with the workflow shown in Fig. 7.

An initial design for this problem was produced manually using steel (yield stress 355MPa; elastic modulus

210GPa; density 7850kg/m3), as shown in Fig. 19(a). The line load was modelled as point loads, lumped at five

points (D, E, C, F and the midpoint of line segment DE). To evaluate the material efficiency of this design, a Stage

1 benchmark solution was found using layout optimization with approx. 2,500 nodes. The benchmark design is shown

in Fig. 20(a), revealing a very different structural form. The weight of steel required for this benchmark solution was

found to be 0.99t. In contrast the weight of the design developed manually (Fig. 20(b)) was found to be 1.78t, 80%

higher than the benchmark. This assumes the use of bespoke sections; if catalogue sections are used (e.g., British
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(a) (b)

(c) (d)

Figure 17: Multiple intersecting trusses example: (a) design domain, load and support conditions; (b) design benchmark obtained with 5,000 nodes,

25.020m3; (c) rationalized conceptual design derived with 400 nodes, 26.112m3; (d) more practical design derived with 100 nodes, 27.581m3

Figure 18: Multiple intersecting trusses example: details of the loads in the four load cases considered (all distances in m).
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(a)

(b)

Figure 19: Staircase support design example: (a) problem specification; (b) details of initial manually obtained design.

Standard Universal Column sections, identified via Karamba3D), the total weight increases to 2.35t, more than twice

the weight of the benchmark design.

To improve the material efficiency of the manually derived layout, a geometry optimization rationalization process

can be performed. This reduces the weight of the structure down to 1.39t and 1.67t, when using bespoke and catalogue

sections respectively, Fig. 20(c). However, to take advantage of all the available design freedom, the proposed global-

local framework workflow can be employed, using approx. 100 nodes in the Stage 1 nodal grid. The resulting structure

is shown in Fig. 20(d), which, though much simpler, closely resembles the benchmark design in Fig. 20(a). If bespoke

sections are used, its weight is only slightly (3%) heavier than the benchmark; however, when catalogue member

sections are used the weight increases more significantly (by 42%). This design (weight = 1.44t) is however still

38.7% lighter than the initial manually produced design.

Finally, to take full advantage of the parametric modelling functionality of the Rhino/Grasshopper environment,

the initial design assumptions can be changed to examine various ‘what if’ scenarios. Here the potential benefit of

introducing a horizontal support at the top left of the design domain will be considered (i.e., at point D in Fig. 19). The

magnitude of the reaction force can be constrained in the optimization by adding bounded force variables to f (w) in

problem (1)(b). Therefore, by varying the allowable support reaction force, a range of design options can be generated

rapidly. As the limiting support force increases, the benchmark weight can be observed to reduce gradually until the

reaction force that can be resisted is large enough not to influence the results; see Fig. 21(f). Whilst the simplified

designs are nearly as efficient as the benchmarks, when catalogue sections are used the associated weight increase is

significant, as was observed in the case of the example shown in Fig. 20(d). Nevertheless, the solutions help inform

the designer of the trade-off associated with each design decision, helping them to identify the best design for use in

practice.
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(a)

(b)

(c)

(d)

Figure 20: Staircase support design example: comparison for the same deflection limit of 1cm, with vertical bars showing weight of the benchmark,

simplified design, and that after adopting catalogue sections: (a) benchmark design; (b) initial design proposed by designer; (c) limited design

freedom, optimized solution using the provided initial layout; (d) full design freedom, optimized solution using the proposed framework.
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Figure 21: Staircase support design example: alternative designs obtained by adding a horizontal wall support at point D with varying allowable

reaction forces, (a)-(c) simplified designs with catalogue sections; (d)-(f) corresponding benchmarks designs.
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5. Conclusions

In this paper, a two stage global-local optimization framework has been proposed that uses layout and geome-

try optimization methods in sequence to identify conceptual designs for building and bridge structures. The main

conclusions are as follows:

• Layout optimization is a highly efficient numerical method for identifying truss structures that consume as

little material as possible. This is particularly important at present, given the high embodied carbon associated

with common construction materials and the pressing need to reduce the carbon footprint associated with the

built environment in the face of the current climate emergency. Problems with significant design freedom

can be tackled, with the most materially-efficient designs quickly identified from amongst vast numbers of

alternatives (e.g., problems involving 3 million potential members can be solved in a matter of seconds; see

Fig. 9). These designs are beyond the reach of meta-heuristic optimization methods. When the design domain

is discretized using a relatively dense nodal grid, highly accurate solutions suitable for use as design benchmarks

(e.g., < 0.1% error to the theoretical minimum) can be generated. When coarser nodal grids are used, layout

optimization can be used to generate designs that can subsequently be made more practical and can serve as

inspiration to designers at the conceptual design stage.

• This observation has stimulated the development of a global-local optimization framework: in Stage 1 a bench-

mark design is generated via layout optimization, with linear optimization used to obtain a globally optimal

solution to a simplified problem that neglects various practical considerations; in Stage 2 the practicality of the

design is improved via the use of non-linear optimization methods. This means that more rational forms can be

identified, which take account of considerations such as Euler buckling. Although the Stage 2 solutions are only

locally optimal, they can be generated rapidly, allowing the influence of various other design considerations to

be readily evaluated. Significantly, given the availability of the benchmark established in Stage 1, the structural

efficiency of a given practical design can readily be evaluated. This also means that when examining various

‘what if’ scenarios as part of the design process, inefficient designs are clearly identifiable.

• The framework allows rapid exploration of the design space at the initial, conceptual, design stage. The frame-

work has been incorporated in the Peregrine plugin for the Rhino / Grasshopper parametric modelling environ-

ment for use by practitioners. Various design examples have been presented in the paper to demonstrate the

power and flexibility of the approach developed. In a real-world design problem involving a staircase support

structure it is demonstrated that large material savings can be achieved by using the Peregrine plugin (38.6%

reduction).

Finally, the flexibility of the proposed framework has been demonstrated via introduction in the Peregrine plugin

[43] of additional post-processing tools that are beyond the scope of the present paper. These tools have been designed

to facilitate further improvements in the practicality of the generated designs (e.g., by automatically simplifying the

designs and/or including global stability constraints).
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