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Fuzzy Multi-Criteria Decision-Making: Example of an

explainable classification framework
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Abstract. Explanation, or system interpretability, has always been important in applications
where critical decisions need to be made, for example in the justice system or biomedical appli-
cations. In artificial intelligence and machine learning, there is an ever increasing need for system
interpretability. This paper investigates a Fuzzy Multi-Criteria Decision-Making (MCDM) model
as the basis for an interpretable framework for explainable classification. The proposed framework
includes a Fuzzy Inference System paired with a modified MCDM-based model for data-driven clas-
sification. The modular nature of MCDM allows for the development of a model-based layer capable
of generating factual and counterfactual explanations. Results on a ‘Titanic’ survivors’ dataset clas-
sification, which illustrates a minimal trade-off in predictive performance while gaining textual and
graphical explanation, autonomously provided by the proposed model-based MCDM framework.
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1 Introduction

Interpretability has been a topic of significant inter-
est among researchers with the vision that it could
shape how machine learning (ML) frameworks are
adopted in the future [1–4]. The current state-of-
the-art ML classification frameworks are not neces-
sarily interpretable; a property of models that could
enable explainability of the models’ results. With
the advent of deep learning and the power of high
performance computing, data-driven ML seems to
be the obvious choice for data-rich tasks. For the
most part, deep learning and other state-of-the-art
ML techniques are sufficiently accurate predictive
models and, are constructed with data paired with
minimal, if any, expert knowledge. The challenge
with such models is the fact they are often black
box models; hence, they are neither inherently inter-
pretable nor explainable. The lack of transparency
is an obstacle to the wide adoption of such methods,
especially in applications requiring precise decision
justification [1, 4, 5]; for example, safety critical ap-
plications such as nuclear, medical and advanced
manufacturing.

The focus of this paper, is multi-criteria de-
cision making, and in particular interpretable
data-driven Fuzzy-Multi-Criteria Decision-Making
(Fuzzy-MCDM) for classification problems. In this
Section, a literature review summary on MCDM,
interpretability and explainability are covered. The
methodology used, in Section 2, is an expansion of
Fuzzy-Amended fused TOPSIS-VIKOR for Classifi-
cation (Fuzzy-ATOVIC) [11], a MCDM-based tech-

nique developed for achieving satisfactory perfor-
mance while being interpretable. Fuzzy-ATOVIC
is consequently augmented with an explanation
framework designed for explaining the classification
output. Section 3 includes the framework’s applica-
tion to the Kaggle ‘Titanic’ dataset, which presents
a classification problem [6]. The results demonstrate
the model’s ability to provide graphical and textual
explanation, while maintaining comparable classi-
fication performance. The paper finishes with con-
cluding remarks and future work.

Multi-Criteria Decision Making (MCDM) is a
set of modelling methods capable of providing deci-
sion support based on several criteria [7]. MCDM
are applied in a variety of applications such as
business, supply chain and manufacturing [8]. The
methods often use a range of criteria to determine
a rank for each object. An example of a typical
MCDM application is the ranking of a supplier list.
In this case, a company would compare a set of sup-
pliers by using a set of criteria such as speed of deliv-
ery, pricing, and payment terms. Depending on the
circumstances, different levels of importance can be
assigned to different criteria using weights. The pro-
cess results in a ranked list with the alternatives. Al-
though MCDM was not initially intended as a clas-
sifier, nevertheless, there were attempts of develop-
ing MCDM-based classification frameworks [9, 10].
MCDM can utilise human-understandable criteria,
hence it can become interpretable by nature deem-
ing it a viable candidate for explainable AI systems,
when combined with AI-based methods.
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Amended fused TOPSIS-VIKOR for Classifica-
tion (ATOVIC) is a supervised learning MCDM
framework that can be trained by a combination
of data and expert knowledge [9]. A Fuzzy Logic-
based extension of the method, Fuzzy-ATOVIC,
makes use of a Fuzzy Inference System (FIS) to
replace the final step in the decision making pro-
cess, introducing greater potential for interpretabil-
ity to the overall MCDM framework [11]. Fuzzy-
ATOVIC as an initial proposal was the first step
towards adapting ATOVIC as a fully data-driven
classification framework while maintaining its inter-
pretability [11]. Achieving explainability in complex
ML structures has always been a challenge due to
the inherent non-interpretable nature of many such
models. The lack of explanatory information in such
models delayed the long awaited wide adoption in
several industries. Explanation, as a functional re-
quirement, is considered important in areas where
the wrong decision is likely to have a major or catas-
trophic consequence. In these applications, it is im-
perative that ML models can provide explanation

because without it, the user is faced with relying
on their own calculations to make decisions, defy-
ing the ultimate purpose of the model - improving
the overall efficiency and accuracy of the process.

Interpretability has two main categories: model-
based or post-hoc [3]. Model-based, as the name
suggests, is interpretability that utilises the model
itself (its parameters and variables), as the source of
interpretation. In contrast, post-hoc interpretabil-
ity relies solely on the input(s) and output(s) as
the source of interpretation [3]. Many researchers
have attempted to utilise post-hoc to attempt to
explain the output [12, 13]. One of the weaknesses
of post-hoc interpretability is the fact that it does
not directly explain how the model arrived at a cer-
tain decision, rather it is in some way an explana-
tion estimator. On that account, model-based in-
terpretability offers the potential for a direct expla-
nation of the models’ decision making process. One
of the main challenges in pursuing model-based in-
terpretability is to overcome the trade-off of perfor-
mance (accuracy, interpretability) [1].

2 Methodology

2.1 ATOVIC and Fuzzy-ATOVIC

Amended Fused TOPSIS-VIKOR for Classification
(ATOVIC) is an MCDM-based classification tech-
nique introduced by Baccour in 2018 [9]. ATOVIC
is a fusion of two MCDM-based techniques: TOP-
SIS and VIKOR [9]. As opposed to most MCDM
techniques, ATOVIC is supervised and data-driven:
however, it relies on expert knowledge for setting

whether a feature is a cost or benefit. It is vital
to set features as costs or benefits effectively to
maximise performance. Furthermore, relying on ex-
pert knowledge for data-driven applications could
be problematic for datasets where such knowledge
does not exist; thus, a method was implemented, as
will be explained in Step 2 of model construction,
to numerically classify a feature as a cost or bene-
fit. Fuzzy-ATOVIC is a fuzzy extension of ATOVIC
that uses a Fuzzy Inference System (FIS) for the fi-
nal step of decision making [11].

Construction of the ATOVIC model is achieved
using the following steps. The procedure is based
on Baccour’s literature [9], while steps 2 and 3 were
modified to enhance the methods of weight calcula-
tion and feature classification; to improve the accu-
racy performance and eliminate the requirement of
expert knowledge.

1. Training dataset normalisation using (1, 2)
where θ is the normalised term, r denotes the
reference matrix, x is the non-normalised term
and h is the normalisation coefficient, p is the
class number, i is the object number and j is
the feature number.

2. Weight calculation using (3) where wj is the
weight and ρj is the Pearson correlation coeffi-
cient [15]; of feature j.

3. Classifying features as a benefit or cost is deter-
mined using ρ. If ρj ≤ 0 then j is a cost for Class
2 and a benefit for Class 1; while if ρj > 0 then
j is a cost for Class 1 and a benefit for Class 2.
Where j is the feature number. To achieve this,
the labels for class 1 and 2 data have to be set
as 1 and 2 respectively.

4. Ideal solutions calculation using (4, 5) where
two sets of ideal solutions f are calculated: pos-
itive and negative. For positive ideal solutions
f+
p , the maximum is used for a benefit feature
while the minimum is used for a cost feature.
Intuitively, it is vice versa for negative ideal so-
lutions, as shown in (5). The ideal solutions are
later used for classification.

θrijp =
xr
ij

hr
jp

(1)

hjp
=

√

√

√

√
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∑
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After model construction, the data is classified
by executing the steps below.

1. Testing data normalisation using (1) and, based
on the values of hr

jp
defined during model con-

struction.
2. Distance measures S and R are the Manhattan

and Chebyshev distances, respectively. They are
obtained by calculating the distance types from
the ideal solutions for class c = 1 to 2. This
implementation of ATOVIC, as opposed to the
original version, does not use the Q measure -
a weighted sum of S and R. The purpose is to
improve traceability and simulatability [1].

3. Comparing distance measures for classification
by use of a FIS.

Sci =

n
∑

j=1

wj ∗ (f
+

ijc
− θtijc)/(f

+

ijc
− f−

ijc
), Sci ∈ [0, 1]

(6)
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j

[

wj∗(f
+

ijc
−θtijc)/(f

+

ijc
−f−

ijc
)
]

, Rci ∈ [0, 1]

(7)

The measures S and R (6, 7), are input into a FIS
to compute the fuzzy class. The FIS has six inputs
as defined by (8, 9) where ∆Mc is calculated for
M = {S,R} and class c = 1 to 2.

∆Mc = Mc,2 −Mc,1 (8)

nM = |∆M2| − |∆M1| (9)

Furthermore, the input-output membership func-
tions (MFs) were configured as below.

– Sc, Rc: two MFs: class 1, class 2

– nS , nR: two MFs: positive (positive outcome
model is used for decision), negative (negative
outcome model is used for decision)

– Output: four MFs: class c strong,
class c normal, for class c = 1 to 2.

Consequently, a set of 16 rules were configured to
cover all possible combinations of inputs; this in-
cludes cases where the two sub-models are in agree-
ment or conflict. The S measures are utilised to
take a decision, while the R measures translates to
a higher chance of certainty; if it is in agreement
with S. If the measures are in agreement, a strong
output MF, corresponding to the class, is set while
a normal one is used in the case of conflict, as il-
lustrated in Figure 1. The updated configuration
of ATOVIC means the FIS had to be modified to
process the measures S and R, instead of just the
weighted sum measure Q; in the first iteration of
Fuzzy-ATOVIC [11].

Despite ATOVIC not utilising user-defined lin-
guistic terms, using human-understandable fea-
tures meant this is not necessary for interpreta-
tion. However, for features that are not human-
understandable, it would be essential to introduce
interpretability by pre-processing techniques suit-
able for the problem.

2.2 Explanation Framework

The type of interpretability utilised in this frame-
work is model-based; it uses components from the
classification model, including traits of the Fuzzy
Logic Inference system to explain the result as op-
posed to relying on post-processing. Two types of
explanation are generated here, textual and graph-
ical. The textual explanation is implemented by us-
ing sentence templates and a series of logical op-

erations. Three statements are generated for each
data record; this includes one statement for each
of the negative/positive outcome models and one
statement for the overall decision model. The mod-
els are:

– Negative outcome model: This model is opti-
mised using Negative records however, captur-
ing the similarity for both classes.

– Positive outcome model: This model is opti-
mised using Positive records however, capturing
the similarity for both classes.

– Overall decision: This model captures the over-
all decision between the two classes using the
Positive and Negative outcome models as inputs
to a FIS.

Sentence templates are a simple way to generate
textual explanation [14]. A text sentence template
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Is nS 
positive (P) or 
negative (N)?

Is nR 
positive (P) or 
negative (N)?

Yes:
Use both 
measures

No:
Use 

only
S

n

S

Is there 
agreement between
 the two measures 

( , )?S

n

S

R

n

R

Output MF:
class_c_normal

Output MF:
class_c_strong

P: S
2

P: R
2

N: S
1

N: R
1

Fig. 1: Flowchart explaining the conditions for formulating the fuzzy rules: binary classification

for the outcome models is shown below as an exam-
ple. It is used to generate a statement for each of the
outcome models, where sim class and dis class

are replaced with the names of the similar and dis-
similar classes, respectively. To provide greater in-
sight into the level of similarity, the distance mea-
sures S for both classes (similar and dissimilar) are
included in the template as Ssim and Sdis respec-
tively. In addition, an overall explanation statement
is generated to describe whether the two outcome
models are in agreement, and states the FIS class
output - Fuzzy class.

– The negative or positive outcome model would
yield a text explanation as follows: The neg

(or pos) outcome model resulted in a simi-
larity to sim class (Ssim) and dissimilarity to
dis class (Sdis).

– The overall decision model would yield a text
explanation as follows (if the neg/pos models
are in conflict): Models are in conflict however,
the measures pointed towards a larger similar-
ity towards sim class (Fuzzy class), or if the
two models are in agreement:

– Models are in consensus hence the subject was
predicted to be a sim class (Fuzzy class)

To provide further insight into how the different
input features of the models impact the classifica-
tion result, a graphical explanation was designed to
illustrate how the values of the features contribute
to the models’ prediction. There are two outcome

models, each optimised for the respective class by
means of a unique set of ideal solutions. Similarity
measures for each outcome model are determined
by calculating the measures, as defined in Section
2.1. To make the distances calculated as part of the
measures more readable, they have been scaled be-
tween 0 and 5, plotted on a bar graph and named
a feature score - a more user-friendly terminology
than normalised distance. The further a feature is
from the negative ideal solution f−

jc
, the closer it

gets to the positive ideal solution f+

jc
. This trans-

lates to higher similarity to the class’ ideal solution,
which is represented with a higher feature score as
defined by (10).

F = 5

(

θt − f−

jc

f+

jc
− f−

jc

)

(10)

3 Results & Discussion

3.1 Kaggle Titanic case study

Kaggle’s Titanic dataset is used for this case
study, which is pre-divided into training and test-
ing datasets [6]. The dataset contains attributes de-
scribing the ship’s passengers. The attributes are
listed in Table 1, along with their data types and
possible values. The objective of the classification is
to classify (hence predict) whether a passenger sur-
vived based on the six attributes. Two simulation
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trials were conducted on the following divisions of
data as described below.

– The Kaggle version of the dataset was used in
which the data was pre-divided into training
and testing; in order to compare the proposed
model with models tested by other researchers.

– Performing cross-validation by k-fold: partition-
ing the data into 5-fold and 10-fold. The aim of
this is to evaluate the performance of the pro-
posed model independently.

Table 1: Titanic Dataset: Attribute Information

Attribute Type Possible Values

ID Integer [1..891]

Ticket Class Integer [1..3]

Sex Category M, F

Age Real [0, 80]

Sibling(s)/Spouse(s) Integer [0..8]

Parent(s)/Children Integer [0..6]

Embarked Category C, Q, S

Table 2: Titanic Dataset: Class Information

No. Class Count

1 Casualty 549

2 Survivor 342

Total 891

3.2 Predictive Performance

The methodologies defined in Section 2 were im-
plemented to obtain a Fuzzy-ATOVIC classification
model that achieved satisfactory performance for
classifying passengers into one of two classes: Ca-
sualty or Survivor. In addition, the model gener-
ated two modes of explanation: graphical and tex-
tual. The classification performance was compared
to Ekini et al.’s results on the same dataset [16].
As shown in Table 3, Fuzzy-ATOVIC performance
is in a comparable range, however it was not the
highest performing. Table 4 shows the detailed per-
formance figures for 5-fold and 10-fold datasets re-
spectively. Increasing the number of folds results in
a marginally higher standard deviation, however,
the predictive performance figures remain largely
similar, with less than a percent increase across the
different number of folds for the metrics measured.

Table 3: Comparison of Fuzzy-ATOVIC Titanic
Testing Dataset Results with Various Algorithms
Tested by Ekinci et al [16]

Model
ACC
%

F-
Score

Kaggle

Fuzzy-ATOVIC 79.2 75.9 76.6

Gradient Boosting 86.9 82.0 79.4

Decision Tree 81.7 73.8 78.9

Naive Bayes 78.9 71.4 76.2

Table 4: Comparison of Fuzzy-ATOVIC 5-fold and
10-fold performance

Fuzzy-ATOVIC Metrics (µ± σ%)

Metric 5-fold 10-fold

Accuracy 78.3± 2.3 79.2± 3.6

Sensitivity 67.3± 3.2 68.1± 5.5

Specificity 85.2± 2.6 86.3± 4.3

F-Score 75.1± 2.0 75.9± 4.4

Fig. 2: Fuzzy class output plotted for negative and
positive cases
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As described in Section 2, the FIS computes the
fuzzy class output based on the measures S and
R. Hence, the fuzzy class output has to be con-
verted into an integer to determine the class. Fig-
ure 2, illustrates the range of the fuzzy class output
for negative and positive cases and how the thresh-
old set at 0.5 is used to determine the class (set at
0.5, halfway between the range, however a different
threshold can be set to optimise the performance
for a given case study, as a hyperparameter).

3.3 Linguistic and Graphical Explanation

The model-generated explanation consists of two
types; graphical in the form of a bar graph to il-
lustrate the features’ impact on classification and,
textual in the form of language statements explain-
ing the sub-models’ parameters. Key information
is extracted from the model through the ATOVIC
and FIS components. The former provides informa-
tion about the similarity measures while, the latter
about the decision making process.

The first example is for a True Positive case
where the passenger was correctly identified as a
survivor. The textual explanation (Table 5) de-
scribes the result of the two outcome models with a
statement of the distance measures as described in
Section 2. Finally, the explanation is concluded with
a remark that explains whether the models are in
consensus or not and, states the fuzzy class output.

The graphical explanation (Figure 3) illustrates
which features are the most impactful in the re-
spective model’s decision making process; a larger
score implies a stronger impact. In this example, the
Pcass and Embarked are the most impactful for a
negative classification, while Sex and Sib/Spo were
the most impactful for a positive classification. De-
spite the higher mean feature score for the negative
class, the model correctly classified this passenger as
positive; attributable to the feature weights which
affect the measures’ final values.

The second example is a False Positive case
where the two outcome models were in conflict as
shown in Table 6. The fuzzy class output is further
away from the threshold compared to the first ex-
ample (True Positive), hence there is no obvious dis-
tinguishing factor between the two examples. Fur-
thermore, when comparing ID. 329 to another true
positive case (ID: 609), it appears the model’s pos-
itive classification of ID. 609 was more conclusive
due to an agreement between the models and, the

value of the fuzzy class output which is further away
from the threshold (at 0.66).

Certainty is important when justifying a de-
cision. Experts utilise mathematical formulae to
quantify the suitability of a decision. The results
show how textual explanation conveys certainty by
stating the models are in agreement or consensus.
On the other hand, uncertainty is conveyed by stat-
ing the models’ conflict. In spite of the precise word-
ing provided in the textual explanation, the vari-
ability of the model’s accuracy means some expla-
nation will be, inevitably, misleading. Nonetheless,
explanations provide an indication of the result’s
certainty and most impactful features.

Table 5: Explanation Example: ID No. 329, True
Positive

Model Explanation

Negative The Casualty outcome model re-
sulted in a similarity to Survivor
(0.00) and dissimilarity to Casualty
(0.47)

Positive The Survivor outcome model re-
sulted in a similarity to Casualty
(0.34) and dissimilarity to Survivor
(0.54)

Overall Models are in conflict however, the
measures pointed towards a larger
similarity towards Survivor (fuzzy
class: 0.56)

Table 6: Explanation Example: ID No. 437, False
Positive

Model Explanation

Negative The Casualty outcome model re-
sulted in a similarity to Survivor
(0.00) and dissimilarity to Casualty
(0.49)

Positive The Survivor outcome model re-
sulted in a similarity to Casualty
(0.35) and dissimilarity to Survivor
(0.53)

Overall Models are in conflict however, the
measures pointed towards a larger
similarity towards Survivor (fuzzy
class: 0.57)
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Fig. 3: Graphical Explanation of features ID No. 329, True Positive

Fig. 4: Graphical Explanation of features ID No. 437, False Positive
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4 Conclusion and Future Work

In summary, the proposed enhancement to
ATOVIC omits its reliance on expert knowledge,
and automatically sets classes, thereby making it
entirely data-driven. When extended with a fuzzy
component, the result is Fuzzy-ATOVIC; a data-
driven MCDM framework for classification with
traits that are amenable to textual and graphical
explanation inherent to the models involved. While
the resulting predictive accuracy is not the high-
est, the main benefit of using such a method for
classification is the higher potential of model-based
interpretability.

While the presented preliminary results only
demonstrate a simple case study of a binary clas-
sification problem, there is further work required
towards scaling up the framework to more com-
plex and multi-class case studies. Developing a FIS
structure that is able to handle more than two sub-

models is the first step towards multi-class support.
However, with increasing complexity it is impera-
tive that the framework is adequately simplified to
ensure interpretability.
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