
1. Introduction
The layer of nickel (Ni) atoms in the upper mesosphere and lower thermosphere (MLT) as well the layers of other 
metals (Fe, Na, Mg, Ca, and K) produced by meteoric ablation provide a unique means of observing the physics 
and chemistry of the atmosphere between 75 and 110 km (Plane, 2003; Plane et al., 2015). Although the Ni layer 
was only observed for the first time in 2012 (Collins et al., 2015), much progress in understanding the characteris-
tic features of the layer has been made in the past 5 years. This has been achieved through a combination of further 
observations (Gerding et al., 2019; Wu et al., 2021), laboratory studies of relevant physicochemical parameters 
(Bones et al., 2019, 2020; Daly et al., 2020; Mangan et al., 2019), and atmospheric modeling (Carrillo-Sánchez 
et al., 2020; Daly et al., 2020).

Measurements of the atomic Ni layer were first made at Chatanika, Alaska (65°N, 147°W), on two nights in 
midwinter 2012 by using lidar to probe the Ni ( 3F4 –  3D) transition at λair = 336.96 nm (Collins et al., 2015). 
The peak density was reported to be 1.6 × 10 4 cm −3 at 87 km with a column abundance of 2.7 × 10 10 cm −2. 
Surprisingly, the Fe:Ni column abundance ratio was only 1.2, which is much smaller than the carbonaceous 
Ivuna (CI) chondritic ratio of 18 (Asplund et al., 2009). This result prompted a further lidar study during six 
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nights between January and March 2018 at Kühlungsborn in Germany using the same spectroscopic transition as 
Collins et al. (2015), as well as the stronger Ni(a 3D3 -  3F4) transition at λair = 341.48 nm (Gerding et al., 2019). 
The Ni  densities were found to be much lower with peak densities ranging from 280 to 450 cm −3 and column 
abundances from (3.1–4.9) × 10 8 cm −2. The implied Fe:Ni ratio of 38 is a factor of 2 larger than the CI ratio.

The very large discrepancy between the results from Chatanika and Kühlungsborn stimulated a further Ni lidar 
study over 25 nights between April and December 2019 at Yanqing, China (40.41°N, 116.01°E) (Wu et al., 2021). 
This study reported that the Ni peak density ranged from 98 to 460 cm −3 with a peak altitude between 80 and 
88 km. The average peak density of 258 ± 115 cm −3 and the Ni column abundance, which varied from (1.5–6.0) 
× 10 8  cm −2 between midsummer and midwinter, is in good agreement with the earlier Kühlungsborn result 
(Gerding et al., 2019). One standout feature that all three studies agree on is that the underside of the Ni layer 
profile is significantly broader than that of the Fe layer, often extending to below 80 km (Collins et al., 2015; 
Gerding et al., 2019; Wu et al., 2021).

These observations were complemented by two types of experimental work on Ni in the laboratory at Leeds. 
First, the rate of ablation of Ni from meteoritic fragments was measured under conditions of atmospheric entry 
using the Meteoric Ablation Simulator (MASI) (Bones et al., 2019). The results were then used to develop a new 
version of the Leeds Chemical ABLation MODel (CABMOD-3), where the Ni is hosted in Ni-Fe-S grains sepa-
rate from the bulk Fe-Mg-SiO4 phase (Carrillo-Sánchez et al., 2020). The Meteoric Input Function (MIF) of Ni is 
the injection rate of Ni as a function of height in the atmosphere. This was estimated by combining CABMOD-3 
with the Zodiacal Cloud Model (ZoDy) (Nesvorný et al., 2011), which provides the mass, velocity, and radiant 
distributions for cometary and asteroidal particles in the near-Earth environment (Carrillo-Sánchez et al., 2020).

The second type of experimental work was a series of kinetic studies of the relevant neutral (Daly et al., 2020; 
Mangan et al., 2019) and ion-molecule (Bones et al., 2020) chemical reactions that Ni-containing species are 
likely to undergo in the MLT. This work was supplemented by estimating the rate coefficients of other pertinent 
reactions that could not be measured using quantum theory calculations combined with semiempirical rate theory 
(Daly et al., 2020). The important neutral and ion-molecule chemistry of Ni is discussed below in Section 4.

The first global atmospheric model of Ni (WACCM-Ni) incorporated the Ni MIF and a comprehensive set of 
43 neutral, ion-molecule, and photochemical reactions involving Ni species into a chemistry-climate model, the 
Whole Atmospheric Community Climate Model (WACCM6) (Daly et al., 2020). The model was able to reproduce 
satisfactorily the late winter/early spring Ni layer measured over 6 nights at Kühlungsborn (Gerding et al., 2019) 
as well earlier rocket-borne mass spectrometric measurements of Ni + ions (Daly et al., 2020). WACCM-Ni also 
predicted that the Ni column abundance would exhibit a wintertime maximum and a summertime minimum at 
40°N, varying by a factor of ∼3 (Daly et al., 2020).

In contrast to Ni, the Na layer has been observed for over 40 years (Plane, 2003). Knowledge of its seasonal 
variation has been obtained at several latitudes by long-term lidar observations (Gardner et al., 2005; Megie & 
Blamont, 1977; She et al., 2000; Simonich et al., 1979; States & Gardner, 1999) and near-globally by spaceborne 
spectroscopy (Fan et al., 2007; Fussen et al., 2010; Langowski et al., 2017). At midlatitudes near 40°N, the Na 
column abundance exhibits a strong annual variation by a factor of ∼3 with a maximum in midwinter and a mini-
mum in midsummer. The Na layer has also been satisfactorily modeled by WACCM-Na (Dunker et al., 2015; 
Feng et al., 2017; Langowski et al., 2017; Li et al., 2018; Marsh et al., 2013; Yuan et al., 2019).

In this paper, we report for the first time the seasonal and nocturnal variations of the mesospheric Ni at midlati-
tudes, measured over the past two years at the Yanqing lidar station near Beijing (40°N, 116°E). The characteristic 
features of the layer are contrasted with those of the Na layer, which were observed simultaneously. This data set 
is also compared with simulations of the WACCM-Ni and WACCM-Na models, thereby providing a rigorous test 
of our current understanding of the atmospheric chemistry of these two meteoric metals.

2. Data and Methods
2.1. The Na-Ni Lidar

The lidar system at Yanqing is designed to observe the Ni and Na layers simultaneously. The system consists of a 
transmitter unit, receiver unit, data acquisition unit, and an automatic control unit. These are shown schematically 
in Figure 1. A pulsed 532 nm Nd:YAG laser (optically pumped using flashtubes) is used to pump two pulsed dye 
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lasers used for the Na and Ni layer detection. The repetition rate of the Nd:YAG laser is 30 Hz. One dye laser 
excites the Na resonance fluorescence transition at 589 nm (Jiao et al., 2015). The second is frequency-doubled 
to produce light at 341 nm with an average pulse energy of ∼30 mJ, which is used for Ni resonance fluorescence 
scattering (Wu et al., 2021). A 1200-mm-diameter Cassegrain telescope, coupled with the receiver unit (optical 
filters, photomultiplier tubes, and photon counters), detects Rayleigh scattering from air molecules and resonant 
fluorescence scattering from the Ni and Na layers.

The Ni or Na densities at altitude z are calculated using the standard lidar equation:
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where 𝐴𝐴 𝐴𝐴𝑀𝑀𝑀𝑀(𝑧𝑧) is the resonance count rate of Na or Ni atoms, ��(��) is the Rayleigh count rate at the reference 
altitude, 𝐴𝐴 𝐴𝐴𝐵𝐵 is the background count rate, ��(��) is the air density at the reference altitude taken from NRLM-
SISE-00 (Picone et al., 2002), and 𝐴𝐴 (𝑍𝑍𝑅𝑅) is the reference altitude chosen as 50 km for the Ni layer (that is, avoiding 
corrections for stratospheric aerosol backscatter and ozone absorption) and 30 km for the Na layer. The effective 
differential backscatter cross sections are calculated as described by Chu and Papen (2005). The laser linew-
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Rayleigh and resonance backscatter at 341 nm, respectively. For Rayleigh and resonance backscatter at 589 nm, 
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−1 . The Na-Ni lidar recorded data with a temporal resolu-
tion of 33 s and a vertical height resolution of 96 m.

The initial measurements of the Ni layer made by this lidar were analyzed by Wu et al. (2021): for 25 nights of 
measurements, the Ni peak density ranged from 98 to 460 cm −3 with the peak altitude between 80 and 88 km. In 
the present paper, this initial data set is substantially increased: from April 2019 to March 2020 and April 2021 
to August 2021, we obtained 1090 hr of Ni and Na number density data, covering 126 nights of observations 
at Yanqing. Figure 2 shows the statistics of the observational hours and nights as a function of month. Data in 
different years are folded into a single year according to the day number of the observation. Fewer measurements 
were made in summer due to the prevailing cloudy/rainy weather.

2.2. The WACCM-Ni/Na Models

The global atmospheric model WACCM-Ni (Daly et  al.,  2020) is outlined in Section  1. The version of the 
Whole Atmosphere Community Climate Model used here was WACCM6, developed from the second iteration 
of the fully coupled Community Earth System Model (CESM2) (Danabasoglu et al., 2020). WACCM6 extends 
vertically from the Earth's surface to the lower thermosphere at ∼140 km. For this study, we used a specific 

Figure 1. Schematic diagram of Beijing Na-Ni lidar system. SHG = second harmonic generator; PMT = photomultiplier tube.
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dynamics (SD) version of WACCM6 (Plane et al., 2018), nudged with NASA's ModernEra Retrospective Analy-
sis for Research and Applications (MERRA2) (Molod et al., 2015). The model has a horizontal resolution of 1.9° 
latitude × 2.5° longitude and 88 vertical model levels (height resolution ∼3.5 km in the MLT). The original Na 
chemistry in our first WACCM-Na model (Marsh et al., 2013), with some updates (Plane et al., 2015), was ported 
into WACCM6 for this study. The Ni MIF and its latitudinal/season variations are described in Daly et al. (2020). 
The Na MIF was taken from Carrillo-Sánchez et al.  (2020) and treated in the same way as the Ni MIF. The 
model simulations were performed for a whole year following on from our earlier Ni layer modeling study (Daly 
et al., 2020) and now included the updated Na layer modeling work in WACCM6. Hourly output of global fields 
of Ni, Na, and related species was stored during the simulation.

3. Results
3.1. Seasonal Variation of the Ni and Na Layers

The observed and modeled seasonal variations of the Ni and Na layers are illustrated in Figures 3–6. Figure 3a 
shows the observed monthly mean Ni density as a function of height and month from the full data set consisting 
of 126 nights (including sporadic Ni layers). The raw Ni observations were smoothed by accumulating signal 
for 30 min time intervals in 2 km altitude bins. A Hamming window with a full width at half maximum of 1 km 
was also used to oversample the lidar data. The nightly averages of the resulting data were then used to compute 
the monthly mean profiles shown in Figures 3a and 4a. There is a clear annual variation in the layer with a mini-
mum peak density in summer (May – July) of ∼120 cm −3 at an 85-km altitude, when the layer is also narrower. 
The peak density occurs in midwinter (December – January), where the layer peak is ∼2 km lower with a peak 
density of ∼400 cm −3. There is perhaps a secondary peak in autumn (October/November) with a peak density of 
∼250 cm −3 at 86 km. Figure 3b shows the monthly averaged Ni density as a function of height and month, simu-
lated by WACCM-Ni. The model captures the annual variation with a midsummer minimum. However, although 
the peak density in winter is in good agreement with the observations (Figure 3a), the midsummer minimum 
value of ∼200 cm −3 is not as low as that observed. Note that the model also predicts an autumnal secondary 
maximum though a month earlier than observed.

Inspection of Figure 3a shows that between May and July, a secondary Ni layer was observed above 95 km, which 
is not simulated by the model. Note that in July, an intense, narrow layer of Ni was observed at 95 km for only 
2 hr (unlike the secondary layers in May and June, which were present nearly continuously). The July layer (not 
shown) was most likely a sporadic metal layer (Plane, 2003); since there were relatively few measurement hours 
during July, this has been removed from the data set in order to avoid distorting the monthly average.

Figure 2. Statistics of the observational hours and nights of observation in each calendar month, made by the Beijing Na-Ni 
lidar. The measurement took place from April 2019 to March 2020 and April 2021 to August 2021.
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Figure 3c shows vertical profiles of the Ni density averaged over each season. For the lidar, the average peak 
density in spring (green solid line) is 181  cm −3 at 84.8  km; in summer (red solid line), the peak density is 
146 cm −3 at 84.6 km; in autumn (orange solid line), the peak density is 272 cm −3 at 87.1 km; and in winter (blue 
solid line), the peak density is 384 cm −3 at 82.6 km. That is, the layer is lower at the solstices than the equinoxes 
and particularly low in midwinter. In all four seasons, the Ni layer has a steeper density gradient (scale height) 
on the bottom side compared with the topside. This feature is captured by WACCM-Ni (dashed-dotted lines in 
Figure 3c), which also predicts that the layer is lowest in winter. However, although the model captures the bottom 
side (78–84 km) of the summertime layer well, it then greatly overpredicts the Ni density above 85 km with the 
peak density altitude ∼5 km higher than observed.

Figure 3d compares the observed and modeled annual average nighttime Ni layer. The WACCM-Ni peak density 
is 311 cm −3 at 85.9 km, which is 41% larger than the observed average peak density of 221 cm −3 at 84.8 km.

Figures 4a and 4b show the monthly mean Na density as a function of height and month, measured by lidar 
and modeled by WACCM-Na, respectively. The observed layer exhibits an annual cycle with a maximum in 

Figure 3. (a) Contour plot of the measured monthly mean Ni density as a function of month and altitude over Beijing (40°N). Note that the seasonal maximum of 
the Ni density occurs in December and the minimum in June. (b) Contour plot of the Ni density versus month and altitude over Beijing (40°N), simulated by the 
WACCM-Ni model. (c) Height profiles of the average measured and modeled Ni density in different seasons. (d) Height profile of the average Ni density for the entire 
lidar data set compared with WACCM-Ni. Note that all observations and model data are nighttime only.



Journal of Geophysical Research: Space Physics

JIAO ET AL.

10.1029/2021JA030170

6 of 16

midwinter that is ∼3 times higher than the minimum in early summer (May); these features are satisfactorily 
captured by WACCM-Na. Both observations and the model also suggest a secondary maximum later in the year 
in August (WACCM-Na) or October (lidar). Figure 4c shows the average Na layer in each season. The modeled 
layer peak is consistently 3–4.5 km below the observed peak and has a higher peak density apart from in spring. 
These discrepancies are summarized in Figure 4d, which compares the annual average observed and modeled 
layers.

In order to compare further the observed and modeled seasonal variations of the Ni and Na layers, we now exam-
ine the seasonal variations of their column abundances, peak densities, centroid heights, and RMS widths. The 
results are shown in Figure 5 for Ni and Figure 6 for Na; the blue lines are the monthly mean values observed by 
lidar, and the red curves are the corresponding modeled values. Figure 5a shows the annual variation in Ni peak 
density with a midwinter peak and a midsummer maximum, which the model captures well in the first 6 months 
but then overestimates between July and November. Figure 5b demonstrates that the Ni column abundance varies 

Figure 4. (a) Contour plot of the measured monthly mean Na density as a function of month and altitude over Beijing (40°N). (b) Contour plot of the Na density versus 
month and altitude over Beijing (40°N), simulated by the WACCM-Na model. (c) Height profiles of the average measured and modeled Na density in different seasons. 
(d) Height profile of the average Na density for the entire lidar data set compared with WACCM-Na. Note that all observations and model simulations are for nighttime 
only.
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Figure 5. Comparison of the nighttime monthly Ni layer parameters at Beijing measured by lidar (blue lines) and modeled by WACCM-Ni (brown lines): (a) peak 
density, (b) column abundance, (c) centroid height, and (d) RMS width between 70 and 120 km.

Figure 6. Comparison of the nighttime monthly Na layer parameters at Beijing measured by lidar (blue lines) and modeled by WACCM-Ni (brown lines): (a) peak 
density, (b) column abundance, (c) centroid height, and (d) RMS width between 70 and 120 km.
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from a midsummer minimum of 1.8 × 10 8 to a midwinter maximum of 5.7 × 10 8 cm −2 with an annual mean of 
3.3 × 10 8 cm −2. This behavior is captured very well by WACCM-Ni over the entire year.

The monthly variation of the centroid height is shown in Figure 5c. Ignoring the measured centroid height in 
May – July, which is distorted by the high-lying secondary layers (see Figure 3a), there is good agreement with 
the model prediction of a small increase in the layer height of 1–2 km during summer. The monthly variation of 
the Ni layer RMS width is plotted in Figure 5d. Again, ignoring the observations between May and July, both 
observations and model indicate little seasonal variation (<1.5 km) in the layer width though the modeled layer 
is consistently narrower.

In the case of the Na layer, Figure 6a shows there is more variability in the modeled peak density than that 
observed. In contrast, the agreement in the annual variation of the Na column density (Figure 6b) is much better: 
the measured column abundance has a minimum in May of 3.5  ×  10 9  cm −2 and a maximum in January of 
5.8 × 10 9 cm −2, whereas the model minimum is 2.8 × 10 9 cm −2 in June and the maximum is 6.4 × 10 9 cm −2 in 
December. Figure 6c shows that the measured and modeled centroid height have very similar seasonal variations 
though the modeled layer is on average ∼1 km lower. Note that the Ni layer centroid height is observed to be 
around 2 km lower than the Na layer in agreement with the model. Figure 6d shows the monthly RMS width of 
the Na layer. Apart from midsummer, WACCM-Na predicts a layer that is ∼1.5 km wider than that observed.

3.2. Nocturnal Variation of the Ni and Na Layers

Figure 7 compares the observed and modeled annual average nighttime variation of the Ni and Na layers as a 
function of altitude and local solar time (18:00–05:00 LT). The monthly averages of the observed nighttime 

Figure 7. Comparison of the observed and modeled seasonally averaged nocturnal variations of the Ni and Na density versus height: (a) Lidar-Ni, (b) WACCM-Ni, (c) 
Lidar-Na, and (d) WACCM-Na.
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variation are illustrated in Figure 8a for Ni and Figure 9a for Na. These plots show that in the summer months, 
there is no data before 21:00 LT or after 03:00 LT and before 20:00 or after 04:00 during spring and autumn. 
This means that the annual average data in Figure 7 are strongly biased to the winter months before 20:00 and 
after 04:00 LT. Since the wintertime layers have higher concentrations (Figures 3 and 4), this largely explains 
the apparent increase in both metals at the start and end of the night. Nevertheless, inspection of Figure 8a shows 
that in January and December there are increases in the observed peak density in the early evening (<21:00 
LT) and early morning (>02:00 LT) and some evidence of this behavior in February, April, and November. 
This nocturnal variability is also seen in some months (January, February, April, October, and November) in 
the WACCM-Ni simulations in Figure 8b. During the period from 21:00 to 02:00 LT, where the annual average 
in Figure 7 represents contributions from most of the year, there is very little variation in the Ni layer, and this 
behavior is well-simulated by WACCM-Ni. The model also satisfactorily predicts the layer peak height in the 
individual months.

Figure 8. Comparison of the observed and modeled nocturnal variations of the Ni density (atom cm −3) for each month of the year: (a) Lidar-Ni and (b) WACCM-Ni. 
Note that the plots for May and June in panel (a) are extended to a height of 115 km in order to show the high-lying Ni layers that were observed during these summer 
months.
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Although the observed annual average Na layer does exhibit early evening and early morning maxima (Figure 7), 
the comparison with the individual months in Figure 9a shows that this arises from the winter bias in the aver-
age before 20:00 and after 04:00, because this variation is essentially absent in the individual winter months. 
Although this nocturnal behavior is satisfactorily simulated by WACCM-Na in Figure 9b, the modeled Na layer 
peak is 3–4 km too low in all months.

One feature in Figure 8a is the presence of high-lying secondary Ni layers during the summer months May and 
June. Although this was the period with the least observation nights (see Figure 2), these secondary layers were 
present on nearly every night during these months and so are clearly visible in the monthly average layer profile 
plotted in Figure 3. Particularly striking is the absence of any corresponding layers in the Na observations in 
Figure 9a.

Figure 9. Comparison of the observed and modeled nocturnal variations of the Na density (atom cm −3) for each month of the year: (a) Lidar-Na and (b) WACCM-Na.
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4. Discussion
4.1. Comparison With Other Observations

The nightly mean Ni peak density at Beijing (40°N, 116°E) is between ∼150 and 500 cm −3 with a column abun-
dance ranging from 1.5 × 10 8 to 4.5 × 10 8 cm −2. These measurements are in good accordance with the previous 
measurements at Kühlungsborn, Germany (54°N, 12°E), where the nightly mean Ni peak density from a limited 
set of measurements between January and March was between ∼280 and 450 cm −3 and the column abundance 
between 3.1 × 10 8 and 4.9 × 10 8 cm −2 (Gerding et al., 2019). Clearly, the ∼50 times higher Ni column abundance 
measured at Chatanika, Alaska (65°N, 147°W) (Collins et  al.,  2015) is anomalous, as discussed by Gerding 
et al. (2019).

The present study reports the full seasonal variation of the Ni layer for the first time. The layer exhibits a 
pronounced annual variation at this midlatitude location, increasing by a factor of ∼3 from a summertime mini-
mum to a midwinter peak (Figures 3 and 5). This seasonal behavior is similar to that of the midlatitude Na layer 
(Figures 4 and 6) and the Fe layer (Plane, 2003; Yi et al., 2009). The seasonal variations of the Na and Fe layers 
increase with latitude from almost no variation at the equator to a factor of ∼9 at the poles (Feng et al., 2013; 
Gardner et al., 2005; Marsh et al., 2013), similar to the seasonal variation of Ni predicted by WACCM-Ni (Daly 
et al., 2020).

The annual mean column densities of Ni and Na from the present study are 3.1 × 10 8 and 2.5 × 10 9  cm −2, 
respectively, and that of Fe is 7.5 × 10 9 cm −2 (Yi et al., 2009), giving a mean Na:Ni ratio of 8.1 and a mean Fe:Ni 
ratio of 24.2. The ratio of the meteoric input functions for these pairs of metals predicted by the CABMOD-
ZoDy coupled models is 3.8 for Na:Ni and 16.3 for Fe:Ni (Carrillo-Sánchez et al., 2020) compared with their 
respective CI ratios of 1.2 and 17.8 (Asplund et al., 2009). The atmospheric Fe:Ni ratio is therefore close to the 
modeled injection rates and the CI ratio of the two metals (and lower than the ratio of 38:1 reported by Gerding 
et al. (2019) from a small set of measurements). The atmospheric ratio is also very close to a Fe +:Ni + ratio of 29.0 
measured during five rocket flights (Kopp, 1997).

The Na:Ni ablation ratio predicted by CABMOD-ZoDy is ∼3 times larger than the CI ratio of these metals 
because Na ablates much more efficiently than the more refractory Ni from molten cosmic dust particles (Bones 
et al., 2019). The measured Na:Ni ratio is then ∼2 times larger than the ablation ratio. This is largely explained by 
the more efficient neutralization of Na  + ions between 90 and 100 km (see below), consistent with a Na +:Ni + ratio 
of only 2.2 (i.e., 60% of the ablation ratio) measured by rocket-borne mass spectrometry (Kopp, 1997).

It is worth noting that the seasonal variation of Ni, Na, and Fe is quite different from the semi-annual seasonal 
variations of the Ca and K layers at mid-latitudes, which exhibit maxima in summer and winter, and minima in 
spring and autumn. The column abundance of the Ca layer measured at midlatitudes (Kühlungsborn, 54°N) is 
2.1 × 10 7 cm −2 (Plane et al., 2018), which is smaller than the Ni column abundance by a factor of 14.8, despite the 
CI abundance of Ca being 1.2 times larger than that of Ni (Asplund et al., 2009). This reflects the very refractory 
nature of Ca in a silicate melt (Carrillo-Sánchez et al., 2020). The column abundance of the K layer measured at 
midlatitudes (Beijing, 40°N) is 1.0 × 10 8 cm −2 (Wang et al., 2017). This is a factor of 3.1 times smaller than the 
Ni abundance, whereas the CI abundance of K is 13 times smaller than that of Ni (Asplund et al., 2009). So, this 
represents the contrasting situation where the relatively volatile K ablates very efficiently during atmospheric 
entry (Carrillo-Sánchez et al., 2020).

4.2. Contrasting Behavior of Ni and Na

Figures 10a and 10b illustrate the observed and modeled seasonal variations of the Na:Ni density ratio as a func-
tion of altitude. Both plots show that the maximum of the ratio occurs around 95 km irrespective of season. The 
modeled maximum value is ∼30. Although this agrees well with the observed ratio in autumn and early winter 
(September – November), larger values are measured during the rest of the year, reaching ∼80 during April – 
August. The main reason for this discrepancy is that the modeled Na layer is ∼3 km lower than that observed 
(Figure 4), whereas WACCM-Ni simulates the correct peak height of the Ni layer (Figure 3). This suggests that 
further development of the Na chemistry in WACCM-Na may be needed, but that is beyond the scope of this 
paper, which focuses on the Ni layer.
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Figures 10c and 10d compare the observed and modeled annual night-time average profiles of the Ni and Na 
layers at 40°N. The observed bottom-side of the Ni layer (76–83 km) is 3–5 km lower than the bottom-side of 
the Na layer (79–88 km), and the peak of the Ni layer is 8 km lower. This relative downward displacement of the 
Ni layer is also captured by WACCM (Figure 10d), though the displacement is smaller because the modeled Na 
layer is too low.

We now examine the differences between the chemistries of Ni and Na, which affect the bottom side and topsides 
of their respective layers. In the case of Ni, oxidation by O3 to form NiO is followed either by recycling to Ni by 
O, CO, or O3 or by oxidation to higher oxides (NiO2 and ONiO2):

Ni + O3 → NiO + O2 (R1)

NiO + O → Ni + O2 (R2)

NiO + CO → Ni + CO2 (R3)

Figure 10. Height profiles of the monthly averaged ratio of the Na and Ni nighttime densities at Beijing as a function of month: (a) observed by lidar and (b) modeled 
by WACCM. The height profiles of the annual average Ni and Na densities are shown in (c) for the observations and in (d) for the model.
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NiO + O3 → Ni + 2O2 (R4a)

NiO + O3 → NiO2 + O2 (R4b)

NiO + O2(+M) → ONiO2 (R5)

where M is a third body (N2 or O2) (Daly et al., 2020; Mangan et al., 2019). However, the higher oxides are only 
temporary reservoirs because atomic O can efficiently reduce them back to NiO and then to Ni via R2 or R3 
(Daly et al., 2020):

NiO2 + O → NiO2 + O2 (R6)

NiO2 + O → NiO + O2 (R7)

The situation for Na is rather different. Na is also oxidized by O3, and NaO can be reduced back to Na by O. 
However, NaO reacts very rapidly with H2O to form NaOH, which then recombines rapidly with CO2 to make 
NaHCO3 (Plane, 2004):

Na + O3 → NaO + O2 (R8)

NaO + O → Na + O2 (R9)

NaO + H2O → NaOH + OH (R10)

NaOH + CO2(+M) → NaHCO3 (R11)

Both NaOH and NaHCO3 can be reduced back to Na by atomic H:

NaOH + H → Na + H2O (R12)

NaHCO3 + H → Na + H2CO3 (R13)

However, although R12 is a fast reaction with a large rate coefficient (Gómez-Martín et al., 2017), the concen-
tration of H is about 3 orders of magnitude lower than O (Plane et al., 2015). Furthermore, R13 is relatively slow 
because it has a significant activation energy (Cox et al., 2001), so that NaHCO3 is a stable reservoir for Na below 
87 km. This explains the large depletion of Na compared with Ni below this altitude (Figure 10c).

Two previous lidar studies of the Ni layer (Collins et al., 2015; Gerding et al., 2019) reported that the layer bottom 
side is 1–2 km lower than the Fe layer between 78 and 85 km. Our subsequent modeling study (Daly et al., 2020) 
showed that this was due to the relatively fast reaction between NiO and CO (reaction R3), which takes over from 
reaction with atomic O (reaction R2) below 83 km in recycling NiO back to Ni. This extension of the Ni layer 
to below 80 km results in the unusually large RMS width of the layer: Figure 6 shows that the average width is 
∼7 km (excluding the summer months with high-lying secondary Ni layers) compared with ∼4 km for the Na 
layer (Figure 7).

The topsides of the metal layers are controlled by ion-molecule chemistry. Charge transfer of the metal atoms 
with the ambient lower E region ions NO + and O2 + is the main pathway by which metal atoms are ionized, and 
the reactions of different metal atoms tend to have similar rate coefficients since these reactions proceed close 
to their Langevin collision frequency limits (Plane et al., 2015). It is therefore the chemistry that neutralizes the 
metal ions, which is largely responsible for the different metal atoms/ion ratios. In the case of Ni +, oxidation by 
O3 forms NiO +, which can then undergo dissociative recombination with an electron to yield Ni. However, NiO + 
also reacts rapidly with atomic O and so is overwhelmingly reduced back to Ni +, given the relative concentration 
of O and electrons in the lower E region (Bones et al., 2020):

Ni
+

+ O3 → NiO
+

+ O2 (R14)

NiO
+

+ e
−
→ Ni + O (R15)

NiO
+

+ O → Ni
+

+ O2 (R16)
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Na + ions cannot react with O3 because the NaO + bond is too weak (Cox & Plane, 1998). Instead, Na + recom-
bines with N2, and the resulting Na +. N2 cluster ion either switches with CO2 to make a stable cluster ion which 
will recombine with an electron, or undergoes a slow reaction with O which usually leads back to Na + (Cox & 
Plane, 1998; Plane, 2004):

Na
+

+ N2(+M) → Na
+

.N2 (R17)

Na
+
.N2 + CO2 → Na

+
.CO2 + N2 (R18)

Na
+

.CO2 + e
−
→ Na + CO2 (R19)

Na
+

.N2 + O → NaO
+

+ N2 (R20)

Figure 11 illustrates the first-order neutralization rates of Ni + and Na + as a function of height, calculated using 
rate coefficients for R14 – R16 from Bones et al. (2020) and R17 – R20 from Plane et al. (2015). This shows that 
Na + is neutralized much more rapidly than Ni + below 100 km, which explains why the topside of the Na layer 
only starts above 92 km compared with 84 km for the Ni layer (Figure 10a).

The presence of a relatively large fraction of Ni + relative to Ni between 90 and 105 km, compared with Na + to 
Na, probably also explains the high-lying Ni layers observed during the summer months (Figure 8), which were 
not seen simultaneously for Na (Figure 9). The lifetime of Ni + under average conditions is a day or even longer 
above 95 km (Figure 11). This means that if dynamical forcing (e.g., tides, waves, or wind shears) concentrates 
the relatively long-lived Ni + as well as the dominant Fe + and Mg + ions (Plane et al., 2015) into a layer, then the 
corresponding layer of enhanced electron density will result in fast neutralization of Ni + via reaction R15. The 
resulting Ni layer will also stand out against the relatively depleted neutral Ni atoms above 90 km, in contrast to 
Na.

The modeled annual variations of both the Ni and Na layers are simulated satisfactorily (Figures 3, 4, 5 and 6). 
In the case of Ni, the summertime minimum largely arises from the reaction between ONiO2 and O (R6), which 
has a significant activation energy of 19.2 kJ mol −1 (Daly et al., 2020). This reaction therefore becomes very 
slow at the low temperatures that characterize the summertime MLT, so that ONiO2 becomes a more effective 
reservoir species. That said, ONiO2 also reacts with H to form NiOH, which can then react with H to reform Ni 
(Daly et al., 2020), thereby reducing the effectiveness of ONiO2 as a reservoir (and ameliorating the effect of the 

Figure 11. First-order rate of neutralization of Ni + and Na + ions as a function of altitude. Conditions: 40°N, April, midnight.
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temperature dependence of R6). For Na, the reaction of NaHCO3 with H (R13) also has a significant activation 
energy of 9.9 kJ mol −1, which is largely responsible for the seasonal variation of the layer (Cox et al., 2001).

5. Conclusions
This study is the first investigation of the Ni layer in the midlatitude MLT over a full seasonal cycle. An interest-
ing contrast in the morphology, nocturnal variation, and seasonal behavior of the layer was provided by simulta-
neous observations of the very well-studied Na layer. A total of 126 nights (1090 hr) of Ni/Na lidar data were used 
and compared to simulations from the whole atmosphere chemistry-climate model WACCM.

The observations reveal that the Ni layer has a strong seasonal cycle with a maximum in winter and minimum in 
summer, closely following the seasonal cycle of the Na layer. The Ni layer peak occurs about 8 km below that of 
Na, so that most of the Ni atom abundances are located below 90 km, whereas most of the Na abundances occur 
above 90 km. These features are captured satisfactorily by the WACCM-Ni and WACCM-Na model simulations 
(although the modeled Na layer peak is ∼3 km lower than observed) and are explained by significant differences 
in the neutral chemistry of Ni and Na below 90 km and their ion-molecule chemistry between 90 and 100 km. 
One striking feature is the common occurrence during summer of secondary Ni layers above 90 km, which was 
not observed in the case of Na. Future studies of this phenomenon would benefit from simultaneous lidar meas-
urements of temperature, wind, and Ca + ions to explore the ion-neutral coupling, which is most likely involved.

Data Availability Statement
The lidar data and model output used in the paper are archived and available at https://doi.org/10.5281/
zenodo.5729789.
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