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Automated Multi-Objective Reaction Optimisation: Which 

Algorithm Should I Use?  

Pia Mueller,†a Adam D. Clayton,†a Jamie Manson,a Samuel Riley,a Oliver S. May,bc Norman Govan,b 

Stuart Notman,b Steven V. Ley,c Thomas W. Chamberlaina and Richard A. Bourne*a 

Multi-objective optimisation algorithms (MOOAs) are, of increasing interest for the efficient 

optimisation of chemical processes. However, an algorithms performance can vary on a case-by-case 

basis, depending on the complexity of the search space and the nature of the underlying response 

surfaces. This makes appropriate algorithm selection for chemical reaction optimisation a challenging 

problem. An open-source reaction simulator has been developed, which enables the performance of 

multi-objective algorithms to be benchmarked against a series of chemistry-inspired test problems. 

The performance of four different MOOAs were compared, including three state-of-the-art Bayesian 

optimisation algorithms, and their ability to optimise different types of systems quantified using the 

hypervolume metric. In general, EIMEGO was found to achieve the highest hypervolume in the lowest 

number of experiments and was only outperformed by TSEMO in cases with three objectives. To verify 

the simulated results, EIMEGO and TSEMO were tested experimentally using a three-objective 

optimisation of methyl phenyl sulfide oxidation. Both algorithms successfully identified a trade-off 

between conversion, selectivity, and productivity with respect to the desired sulfoxide. In this case, 

TSEMO outperformed EIMEGO in terms of hypervolume, which was in agreement with the simulated 

results. 

 

Introduction 

With the current digital transformation in manufacturing, 

known as Industry 4.0, there has been a rise in the 

digitalisation of chemistry. Intelligent systems fuelled by data 

and machine learning enable the automation of complex 

tasks, such as route design and reaction discovery, as well as 

more routine experimentation, such as synthesis, reaction 

screening and optimisation studies.1–5 Specifically, 

‘self-optimising’ systems utilise machine learning algorithms 
to define the next set of reaction conditions to explore, based 

on the results of the previous experiments.6 Reaction 

optimisation is considered to be an expensive-to-evaluate 

problem, with staff time and high-value materials 

contributing to a significant expense. Therefore, it is 

imperative that self-optimising systems are able to find the 

global optimum in as few experiments as possible, whilst 

maximising the amount of information gained per 

experiment. This has recently led to the application of 

Bayesian optimisation algorithms, which aim to balance the 

trade-off between exploration and exploitation.7 This 

approach has also been used to enable multi-objective 

reaction optimisation, which has been shown to save time 

and resources by simultaneously optimising multiple 

performance criteria.8 Notably, these identify the trade-off 

curve (Pareto front) between conflicting objectives (e.g. 

economic vs. environmental), which provides valuable 

information during the development of chemical 

processes.9,10 

The end-user of these systems is typically a chemist, who in 

general does not have an extensive knowledge of 

programming and algorithm design. However, the efficiency 

of the optimisations is dependent on the algorithm selected 

on a case-by-case basis. So, how does a chemist know which 

algorithm to use and when? This question does not have a 

single answer, as the performance of algorithms can vary 

depending on the type of problem.11 Furthermore, it would 

be unrealistic to compare multiple algorithms using an 

experimental platform, as this would be very expensive and 

time-consuming. Therefore, in computer science, algorithm 

performance is compared on a series of different in silico test 

problems which are designed to have different 

characteristics. However, these test problems are 

mathematical functions, which do not relate to chemical 
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reaction applications. A series of chemistry inspired test 

problems based on reaction models would be more 

informative. This approach was recently reported by Lapkin 

et al., where an open-source framework (Summit) was 

produced to compare algorithms on chemically-motivated 

benchmarks.12 Herein, we report six test problems designed 

to compare multi-objective optimisation algorithms. The 

suitability of each algorithm for different types of chemical 

reactions is identified.  

Additionally, a comparison of two algorithms is 

experimentally performed to validate the findings proposed 

by the theoretical models. The reaction of selective organic 

sulfide oxidation by hydrogen peroxide is used to showcase 

experimentally the differences in algorithms and the 

additional challenges. This model reaction is well studied due 

to its pharmaceutical value13,14 but is furthermore of interest 

for simulation of chemical warfare agent degradation.15,16 The 

reaction is accessible, safe and simplistic and therefore ideal 

to study experimentally. Whilst standard experimental 

studies have previously been able to find optima for one 

objective by changing one variable at a time,17 self-optimized 

studies are able to correlate variables in a coherent 

functionality to multi-objectives.18 

Multi-Objective Reaction Simulator 

To compare the performance of multi-objective optimisation 

algorithms for optimising chemical systems, a kinetic-based 

reaction simulator was designed. Four reactions with known 

kinetic parameters (pre-exponential factors and activation 

energies) were chosen from the literature: (i) Van de Vusse 

reaction (VdV1); (ii) nucleophilic aromatic substitution (SNAr1 

& SNAr2) between 2,4-difluoronitrobenzene and morpholine; 

(iii) isomerisation of lactose to lactulose (Lactose1); (iv) Paal-

Knorr reaction (PK1 & PK2) between 2,5-hexanedione and 

ethanolamine (see SI for schemes).19–22 These examples 

provided a good representation of non-competitive (iv) and 

competitive reactions, including competing parallel (i, ii & iii) 

and consecutive pathways (ii & iii). Although reactions (iii) and 

(iv) contain reversible reactions, the k-1 rate constants are 

negligible and were therefore omitted. Six test problems 

were formulated using reaction variable limits as constraints 

and different process metrics as objectives. Details and visual 

representations of the variable and objective space for each 

test problem are provided in the supporting information. A 

summary of the test problems including descriptions of the 

Pareto fronts is provided in Table 1. Each problem was 

designed to contain between 2-4 variables and 2-3 objectives, 

as higher dimensional problems are not often encountered 

with current self-optimising chemical platforms, due to the 

self-optimisation of more complex multi-step processes and 

mixed variable problems remaining in their infancy. 

Furthermore, the variable limits and objectives for each 

problem were selected to ensure that a diverse range of 

Pareto fronts were generated in terms of morphology, 

uniformity and continuity. This was important to ensure that 

the robustness and different capabilities of the algorithms 

could be benchmarked against the standardised test 

problems.23 

The simulation procedure for each test problem is outlined 

below. Firstly, the pre-exponential factors, A, and activation 

energies, Ea, were used to calculate the rate constants, k, for 

each step in the reaction using the Arrhenius equation. The 

differential rate equations for each step were then solved 

using an ordinary differential equation (ODE) solver. This 

provided the percentage of each species in the reaction 

mixture under different sets of conditions, which were 

subsequently used to calculate the objectives for the given 

test problem. Random noise, at a level inherent with precise, 

automated experimental systems, was also included by 

applying a maximum absolute error of 0.25% and maximum 

relative error of 0.5% to the outputs.24 

To compare the performance of the algorithms, the 

hypervolume was calculated after each iteration, where the 

hypervolume is defined as the volume between the current 

Pareto front and a reference point (i. e. larger hypervolume = 

better Pareto front). The hypervolume was calculated using a 

Monte-Carlo approximation, which determined the 

proportion of 100,000 random points in the objective space 

which were dominated by the current Pareto front, 𝑃 .  

Formally, given n samples drawn uniformly from 𝑅𝑘 , where k 

is the number of objectives, within the hyperrectangle [𝑃, 𝑅], 
with 𝑅  being the reference point for the calculation, the 

following can be defined:25,26 𝐻𝑀𝐶 = 1𝑛∑𝐼(𝑃 ≤ 𝑌𝑖)𝑛
𝑖=1  (1) 𝑌𝑖  is the ith objective vector generated from the Monte-Carlo 

sampling process. 𝐼(∙) returns 1 if the argument is true and 0 

if false. An illustrative example of the estimation procedure is 

provided in Error! Reference source not found.. 

The utopian and anti-utopian points are defined as the 

combination of the best and the combination of the worst 

solutions for each objective respectively.  

Figure 1. Illustrative example of Monte-Carlo based hypervolume approximation 

procedure. The hypervolume is the proportion of 100,000 random points in the 

objective space which are dominated by the current Pareto front. 

These points were determined for the objective space of each 

problem by creating a superset of the non-dominated 

solutions from all runs across all algorithms. The reference 
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point for the objective space was then defined as the anti-

utopian point shifted by 0.01 of the difference between the 

utopian and anti-utopian point.27 

Table 1. Summary of the chemistry-inspired test problems designed using reported kinetic parameters. 

Test problem # Variables # Objectives Description of Pareto front 

VdV1 2 2 Density of solutions fall away near to the Pareto front, which is  

non-uniformly distributed between linear and convex regions 

SNAr1 2 3 Optimal solutions follow a convoluted path through objective space with 

concave regions 

SNAr2 4 3 Convex, non-uniformly distributed Pareto front 

Lactose1 2 2 Pareto front is a convex curve with many solutions 

PK1 2 2 Pareto front is a convex curve with relatively few solutions 

PK2 3 2 Pareto front consists of three discontinuous linear and concave regions 

The code required to simulate each of these test problems is 

available online (https://github.com/adamc1994/MultiChem) 

and can be used to benchmark the performance of any multi-

objective optimisation algorithm (MOOA). Herein, we use this 

simulator to benchmark the performance of five MOOAs for 

chemical reaction applications. As these applications require 

physical experiments to be conducted, which can take several 

tens of minutes and require expensive reagents, minimising the 

number of experiments required is paramount. Therefore, the 

optimisation performance is compared based on minimising the 

number of iterations required to achieve a high hypervolume. 

Algorithm Performance 

The performance of Thompson sampling efficient 

multi-objective optimisation (TSEMO), Pareto efficient global 

optimisation (ParEGO), NSGA-II and expected improvement 

matrix efficient global optimisation (EIM-EGO) were compared 

using the developed approach.27–30 TSEMO, ParEGO and EIM-

EGO are state-of-the-art Bayesian optimisation algorithms 

designed independently from each other for expensive-to-

evaluate problems, thus making them well-suited for the 

optimisation of chemical reactions using experimental 

platforms. In contrast, NSGA-II is a computationally fast and 

elitist MOOA which generally requires many iterations, thus 

providing a suitable comparison for this study. Implementations 

of ParEGO, NSGA-II and EIM-EGO were all available in the 

platform for evolutionary multi-objective optimisation 

(PlatEMO) toolbox in MATLAB.31 An implementation of TSEMO 

was available on GitHub, and was compared with experimental 

batches of one and four (batch sequential, BS-TSEMO) per 

iteration.32 For the self-optimisation of chemical reactions, 

operating in batch sequential mode has the advantage of 

reducing the overall optimisation time in cases where the 

analysis time creates a bottleneck in the experiment.  

The TSEMO, BS-TSEMO, ParEGO and EIM-EGO were initialised 

using a Latin hypercube (LHC, size = 20) for maximal 

experimental distribution.33 Each algorithm had a function 

evaluation budget of 100 and was ran 20 times for each test 

problem to compare average performance. To account for the 

function evaluation budget, the NSGA-II population size and 

total number of generations were changed to 20 and 5 

respectively. 

Plots showing the average change in hypervolume throughout 

the optimisations are shown in Error! Reference source not 

found.. Furthermore, boxplots of the optimisation results after 

60 function evaluations are displayed in Error! Reference 

source not found., which provides a more detailed view at a 

practical number of experiments. From these results, the 

following observations and conclusions can be made: 

 

▪ The NSGA-II algorithm has the lowest hypervolume after any 

number of function evaluations beyond the initial dataset in 

all examples apart from the Lactose1 test problem, where it 

has similar performance to ParEGO. Notably, NSGA-II 

requires less time per iteration (Table S1), but requires 

significantly more iterations to improve the hypervolume, 

and often fails to identify the complete trade-off curve in a 

practical number of experiments. Thus, surrogate 

model-based approaches are more suitable for 

expensive-to-evaluate problems. 

▪ With the exception of NSGA-II, all algorithms exhibit a 

comparable performance for test problems SNAr2 and PK1 

after 60 experiments. Convergence of the algorithms on the 

Pareto front in less than 60 experiments suggests that these 

test problems are solved more easily. In general, ParEGO and 

EIM-EGO plateau at the maximum hypervolume in a lower 

number of experiments. 

▪ The TSEMO and BS-TSEMO algorithms have a very similar 

performance based on the median and interquartile range of 

the hypervolume after 60 function evaluations. However, a 

notable difference occurs for the VdV1, SNAr2 and PK1 test 

problems, where the increase in hypervolume after the initial 

dataset is slower for BS-TSEMO. This can be attributed to the 

surrogate models been updated less frequently with new 

data when operating in batch sequential mode. It is observed 

from the results that this has a negative impact on algorithm 

performance in cases where the Pareto front is 

non-uniformly distributed. Therefore, although operating in 

batch sequential mode offers advantages in terms of 

reducing the overall self-optimisation time, this can lead to 

sub-optimal results.  
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▪ TSEMO was found to outperform ParEGO and NSGA-II in 5 

out of 6 test problems. This is in agreement with previous 

benchmarking studies using mathematical test functions, 

where it outperformed ParEGO and NSGA-II in 6 out of 8 

cases.28 

▪ ParEGO produces a large range of hypervolumes in 3 of the 

6 test problems (Lactose1, PK1, PK2), indicating that ParEGO 

is less robust compared to the other algorithms. ParEGO 

combines the objective functions linearly with random 

weightings. Therefore, this randomness could cause a spread 

in the results, which is emphasised in cases where the Pareto 

front is convex or discontinuous.  

▪ EIM-EGO outperforms the other algorithms on 4 of the 6 test 

problems (VdV1, Lactose1, PK1, PK2) based on the median of 

the hypervolume after 60 function evaluations. 

Furthermore, the increase in hypervolume is significantly 

faster after the initial dataset compared to TSEMO for the 

VdV1 and PK2 test problems. This is likely caused by an 

increased emphasis on exploitation when using an expected 

improvement matrix compared to Thompson sampling.  

▪ TSEMO outperforms EIM-EGO on test problems with 3 

objectives (SNAr1 and SNAr2). This difference suggests that 

using an acquisition function which maximises hypervolume 

improvement is more efficient than one which maximises the 

Euclidean distance for problems with 3 objectives.   

 

  

Figure 2. Plots showing the average change in hypervolume across 20 runs with 100 function evaluations each. 
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To validate the use of the MOOA reaction simulator for 

identifying the best algorithm to use for reaction optimisation, 

we compared the performance of TSEMO and EIM-EGO on a 

three-objective experimental optimisation, with the 

expectation that TSEMO would outperform EIM-EGO. 

Experimental Comparison 

Methyl phenyl sulfide can be oxidised by hydrogen peroxide to 

the sulfoxide and subsequently to the sulfone in continuous 

flow (Figure 4). Often the sulfone is an undesired side product 

of this reaction, for example, the oxidation of sulfur mustard 

forms the significantly less hazardous sulfoxide, but this can be 

further oxidised to form the highly toxic sulfone.34 Often the 

solution for selective oxidation is to use a catalyst, or to conduct 

the reaction in a polar protic solvent.35–37 Herein, we focus on 

the optimisation of methyl phenyl sulfide conversion, selectivity 

and space-time-yield (STY) using temperature, residence time 

and equivalents of H2O2 compared to the sulfide as reaction 

variables. 

The experimental study was performed on a flow platform using 

an inline UV detector for residence time studies and a GCMS 

fitted with an automated liquid samplier for determining 

conversion and selectivity. (Figure 4). In detail, reagents were 

pumped using JASCO PU2080 and PU2085 dual piston HPLC 

pumps and pump streams were mixed using Swagelok SS-100-3 

tee-pieces. A tubular reactor of desired volume was fitted to an 

aluminium cylinder heated by heating cartridges controlled by 

a Eurotherm 980. Sampling was achieved using a Shimadzu 

Flowcell, from which the AOC 6000 auto sampler extracts a 

volume of 0.5 μL. The reactor was maintained under the desired 

fixed back pressure using an Upchurch Scientific psi back 

pressure regulator. Polyflon PTFE tubing (1/16” OD, 1/32” ID) 
was used throughout the reactor. Quantitative analysis was 

performed on a Shimadzu GCMS-QP2010 SE instrument fitted 

with a SH-Rxi-5Sil MS column (30 m length, 2.5 mm ID and 2.5 

μm film thickness), α,α,α-trifluorotoluene (3FB) was included as 

an internal standard.   

Ideal plug flow could be assumed as characterisation via 

residence time distribution experiments found Bodenstein 

numbers to be above 100 (SI section 3.3).38 Additionally, a time 

equivalent of 1.5 reactor volumes was allowed to elapse before 

sampling.39 Flow rates, reaction temperature and sampling 

were monitored by the MATLAB interface, which used the 

calibrated mass spectrum peak areas for analysis, with either 

the TSEMO or EIM-EGO algorithm to calculate the next reaction 

setting. For EIM-EGO the Euclidean distance-based function was 

chosen as the acquisition function to conform to the prior 

simulations. More experimental details can be found in the SI.  

 

Figure 4. Reaction and experimental scheme for methyl phenyl sulfide, 1, automated 

oxidation to methyl phenyl sulfoxide, 2, and successively methyl phenyl sulfone, 3. The 

dilution is added allowing direct sampling to the GCMS.  Samples are taken by an 

automated liquid sampler (Shimadzu AOC-6000).  

Both algorithms were initialised by a test set of 15 experiments 

created by the MATLAB LHC function with 1000 iterations for an 

optimal distribution of experiments. Additionally, 

reproducibility was tested by repeating one experimental 

condition six times during the optimisation. Two of those 

Figure 3. Boxplots of the optimisation results after 60 function evaluations using hypervolume as a performance indicator (20 runs per algorithm). The NSGA-II results were omitted

for clarity. + = outlier (more than 1.5× the interquartile range away from the upper or lower quartile). 
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experiments were added to the initial test set. Conversion, 

selectivity and STY could be reproduced with less than 5% 

deviation (Figure S10 SI). 

TSEMO and EIM-EGO both ran 35 single experiment iterations.  

The optimisation experimental results are shown in Figure 5.  

Figure 5. Overview of TSEMO and EIMEGO optimisations. Results show dependence of 

STY, of the formation of methyl phenyl sulfoxide and the conversion of methyl phenyl 

sulfide on temperature, residence time and hydrogen peroxide equiv.  

 

The optimisations found an optimal region at temperatures 

above 115 °C, residence times around 6.5 minutes and H2O2 

equivalents of around 2.5.  Not plotted is the selectivity because 

in 2/3 of the optimisation experiments selectivities of over 90 % 

were observed. A full overview of all parameter and objective 

relations can be found in the SI. Our results agree with literature 

showing equivalent ratios of 2.5 as optimal for highly selective 

formation of sulfoxide at medium temperatures.37,40 An 

explanation can be potentially found in mechanistic studies 

describing the O-O bond breaking as rate limiting and often 

stabilized by water.41,42  

 

Figure 6. Approximated Pareto front and experimental data near it. Conversion, 

Selectivity and STY of 2 were optimised against each other.  

 

Hence, the equivalence could be a summation of water and 

hydrogen peroxide molarity in the solution (0.8 M H2O2 and the 

usually neglected ~0.3 M water).  

Based on both algorithms a Pareto front for the 2-dimensional 

correlation between conversion and selectivity can be easily 

visually depicted (Figure 6). For the approximation in 

3-dimensional space compare with Figure S14 in the SI. 

The results detail correlation between all three optimisation 

goals and optimisation trade-offs. Therefore, reducing 

experimental load and speculation compared to traditional 

experimental approaches. Both algorithms found similar results 

regarding optima, but their speed and approach in covering the 

most hypervolume varied. 

TSEMO optimised for the maximum hypervolume faster and 

more effectively (Figure 7). Looking at the iteration steps 

following the initial test set, (SI, section 4) a more risk-taking 

approach can be distinguished. While EIMEGO initially stayed 

close to already found optima at average conditions, TSEMO 

tested more extreme points closer to the boundaries faster.  

Figure 7. Change of hypervolume for TSEMO and EIMEGO throughout the optimisations.  

 

These experimental results support the theoretically found 

results of TSEMO being superior to EIMEGO for a 3-objective 

problem.  

Conclusions 

The efficiency of self-optimisation can be directly related to the 

choice of optimisation algorithm. Therefore, it is important to 

keep self-optimising systems up to date with the latest 

advances in computer science. A method to compare the 

performance of multi-objective optimisation algorithms for the 

self-optimisation of chemical reactions was developed using a 

kinetic-based reaction simulator. The simulator included six 

chemistry-inspired test problems, each representing different 

types of reactions and possessing Pareto fronts with different 

properties. This approach was used to compare five different 

MOOAs, and identify which algorithm was best for each type of 

test problem. All Bayesian optimisation algorithms succeeded in 

finding an optimum quickly compared to NSGA-II, which can be 

considered less favourable for expensive to evaluate problems. 

EIM-EGO was in all cases the fastest, apart from for 3 objective 
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optimisations, for which TSEMO was better. The oxidation of 

methyl phenyl sulfide by hydrogen peroxide was therefore 

optimised for conversion, selectivity and space time yield of 

meythl phenyl sulfoxide using the two different algorithms. 

Both algorithms deepened the understanding of this reaction, 

revealing correlations and limitations of the reaction 

parameters with respect to the optimisation goals. The 

simulations and experimental case study both favoured TSEMO 

over EIM-EGO in succeeding in finding an optima in the shortest 

time. We propose this is due to a small difference in the 

optimization of exploration over exploitation. The outcome was 

in agreement with predictions made from prior simulations, 

thus demonstrating the usefulness of the multi-objective 

reaction simulator. Future work will focus on expanding the 

capabilities of the reaction simulator to encompass a wider 

range of more complex chemical examples (catalytic cycles etc.) 

The question, which algorithm to choose cannot be answered 

universally, the presented approach can however predetermine 

in silico the most suitable one for a specific challenge. Thus 

increasing the efficiency of subsequent experimental 

optimisations.  
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