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Meshfree analysis of functionally graded plates with a novel four-unknown 
arctangent exponential shear deformation theory

T-V. Vu, H. Nguyen-Van, C.H. Nguyen, T-P. Nguyen, J.L. Curiel-Sosa

ABSTRACT

A novel refined arctangent exponential shear deformation theory (RAESDT) 
is presented for analysis the mechanical behavior of both isotropic and 
sandwich FGM plates. Material properties are set to be isotropic at each 
point and varied across the thickness direction obeying to a power-law dis-
tribution of the volume fraction gradation with respect to FGM core or 
skins of the plate. Unlike high-order shear deformation plate theories 
based on five or more variables, the displacement field of the novel 
RAESDT using arctangent exponential variations in planed displacements 
were approximated by only four unknowns, satisfying naturally tangential 
stress-free conditions at the plate surfaces and leading to reduce computa-
tional efforts. In accordance with RAESDT and enhanced moving kriging 
interpolation (EMKI)-based meshfree method with a new quadrature correl-
ation function is introduced for the numerical modeling. Numerical valida-
tions with different plate configurations, geometries, length to thickness 
ratios and boundaries conditions are conducted. The obtained results are 
compared with the corresponding solutions available in the literature 
showing the accuracy and efficiency of the present approach.

1. Introduction

Functionally graded (FG) materials (FGMs) are advanced composite materials in which the com-

position smoothly changes over the thickness direction by mixing two different materials.

Nowadays, FGMs are being employed in many engineering fields due to their prominent features

such as smooth distribution of leftover stresses, enhanced thermal conductivity, high fracture

toughness, low residual and thermal stresses and an increase in strength-to-weight ratio when

compared to the other engineering materials. A wide range of applications of FGMs in various

industries forced researchers developing accurate analytical and numerical techniques for analysis

the mechanical behaviors of the FG plate.
In general, plate deformation theories can be classified into two types: displacement-based and

stress-based theories. Normally, the plate displacement-based theories can be divided into two
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categories: the classical plate theory (CPT) (Love 1888; Kirchhoff 1850), and shear deformation

plate theories involved the first-order shear deformation theory (FSDT) (Reissner 1945; Mindlin

1951), high-order shear deformation theory (HSDT) and refined plate theory (RPT)

(Senthilnathan et al. 1987). It is well known that the CPT and FSDT are not suitable for the ana-

lysis of thick plates, since the former does not consider shear effect, while the latter assumes that

the shear stress is a constant through the plate thickness. To overcome this limitation, the HSDT

is developed to simulate the distribution of transverse shear stresses across the plate thickness by

using either polynomial functions (e.g., the third-order shear deformation theory (TSDT) of

Reddy 1984 and of Shi 2007) or non-polynomial functions (e.g., the sinusoidal theory of

Touratier 1991; hyperbolic theory of Soldatos 1992; exponential theory of Karama, Afaq, and

Mistou 2003). The HSDT has a widely apply to analysis mechanical behavior of the difference

plate structures (Lim 2016; Cheshmeh et al. 2020; Dastjerdi, Rashahmadi, and Meguid 2020;

Garg, Chalak, and Chakrabarti 2020; Hachemi and Cherif 2020), but compared to the RPT, it is

computationally expensive. The RPT based on the assumption of the transverse displacement is

composed of the bending and shear components, and only the bending component of the trans-

verse deflection causes the rotations in the TSDT. Moreover, it conserves the advantages of TSDT

but reduces one unknown variable compared to the TSDT, that is important for enhancing the

computational efficiency. The works of some researchers (Vu, Curiel-Sosa, and Bui 2018b;

Farzad, Nouraei, and Dabbagh 2020) are interesting examples in this context. Recently, Rahmani

et al. (2020) and Menasria, Kaci, and Bousahla (2020) develop a new simple higher-order shear

deformation theory (SHSDT) with the four-variable unknown as the same as the CPT and RPT

for analyses of the bending and free vibration of FG-sandwich plates, but its displacement field

included the undetermined integral components that could be resolved by the Navier-type

method. The advantage of SHSDT compared to that of RPT is the reduction of numerical com-

putational time and alleviating engineering analysis for the plate structures solved by the analyt-

ical methods.
On the other hand, some researchers have also studied the mechanical behaviors of FGM

plates wherein the material gradient in the in-plane direction of the plate (Liu, Wang, and Chen

2010; Chu et al. 2016; Lieu et al. 2018). Recently, Amirpour et al. (2018, 2019) conduct the

numerical and experimental study for the free vibration and static bending of the simply sup-

ported 3D printed polymeric FG with a variation of material stiffness and density along their

length based on the HSDT and 3D-digital image correlation approach.
It is widely known that one of the main advantages of RPT is that it possesses naturally free

from shear locking for thin plate case and has fewer variables than HSDT. However, RPT

requires C1 continuity hindering the natural use from C0 finite element method (FEM). One of

the ways to overcome this drawback is to employ meshfree or meshless methods.
A detail review of the recent meshfree methods for laminated and functionally graded plates

and shells was presented by Liew, Zhao, and Ferreira (2011). According to the formulation pro-

cedure, they are classified into three categories: meshless weak form methods, meshless strong

form methods, meshless weak–strong form methods. Among the well-known methods based on

the weak forms, meshless method by using the moving kriging (MK) interpolation (MKI) pos-

sesses a notable feature is that its shape function inherited the Kronecker delta property.

Consequently, essential boundary conditions are imposed as straightforward as for the FEM with-

out any special techniques. Unfortunately, the quality of traditional MKI shape function affected

heavily from correlation parameter leading to instable solutions. Recently, Thai, Vuong, and

Nguyen-Xuan (2016) try to overcome this shortcoming by using a complicated quartic polyno-

mial form for the correlation function to construct the MKI shape function.
In our work, for the first time, the formulation of refined arctangent exponential shear

deformation theory (RAESDT) in accordance with meliorated moving kriging interpolation-based

(EMKI) meshfree method with a new quadrature correlation function for mechanical behavior



analysis of the FG plates. The novelty of this study is to propose a distributed function toward a
better representation of the transverse shear stress in the plate thickness and gives the mechanical
behavior of the FG plates as much close as possible to the three-dimensional elasticity approach.
The proposed correlation function is used to eliminate using correlation parameters of its conven-
tional form gaining accurate solutions. Several problems of static bending, free vibration and
compressive buckling of FG plates with different configurations, shape geometries, length to
thickness ratios or boundary conditions are then computed by the proposed approach. The
numerical validations are conducted to demonstrate the accuracy, stability and effectiveness of
the present method.

2. Theoretical formulations

2.1. FG plate types

Consider a typical rectangular plate with the total thickness h, the width a and the length b,
referred to the Cartesian coordinates ðx, y, zÞ as shown in Figure 1a. The top and bottom plate
faces locate at z ¼ 6h=2, and plate edges are parallel to axes x and y: The plate material proper-
ties depend on all material properties and volume fractions from its constituent materials. In this
study, three different types of FG plates are considered: isotropic FG plates, sandwich plates with
FG core and homogeneous skins and sandwich plates with FG skins and homogeneous core.
Both of them have no interfaces between core and skins.

2.1.1. Isotropic FG plates (IF)

An IF plate possesses material inhomogeneous assumed to be isotropic with a volume fraction
changing smoothly such that plate bottom and top skin are pure metal and ceramic, respectively.
Its effective material properties PeðzÞ such as the Young’s modulus EðzÞ, mass density qðzÞ, or
Poisson’s ratio �ðzÞ is defined according to the power-law distribution (Reddy 2000) as follows:

PeðzÞ ¼ PcVcðzÞ þ PmVmðzÞ, VcðzÞ ¼
1

2
þ z

h

� �g

, VmðzÞ ¼ 1� VcðzÞ, � h

2
� z � h

2

(1a, 1b, 1c, 1d)

wherein subscripts m, c are defined to the metal, ceramic constituents, respectively; g is the gradi-
ent index; Pc and Pm are denoted to the ceramic and metal constituent materials, respectively.
Figure 1b shows a ceramic volume fraction VcðzÞ distribution against the coordinate z=h by vary-
ing the gradient index g:

2.1.2. Sandwich plate with FG core and homogeneous skins (FCHS)

A sandwich FCHS plate consists of three layers (see Figure 2a). Its core material is made of
FGMs with effective properties varying smoothly by the power-law rule in the z direction.

Its two material skins are homogeneous material wherein skin top and bottom are respectively
fully-metallic and ceramic. Volume ceramic fraction of the FCHS plate given by Eq. (2) as fol-
lows:

V1
c ðzÞ ¼ 0, � h

2
¼ z1 � z � z2

V2
c ðzÞ ¼

z � z2

z3 � z2

� �g

, z2 � z � z3

V3
c ðzÞ ¼ 1, z3 � z � z4 ¼

h

2

(2a, 2b, 2c)



where V i
cði ¼ 1, 2, 3Þ represents the volume ceramic fraction of layer i, and the core thickness is

determines by ðz3 � z2Þ:

2.1.3. Sandwich plates with homogeneous core and FG skins (HCFS)

A sandwich HCFS plate is also made of three layers. Two plate FG skins are composed from a
mixture of metal and ceramic based on the power-law rule, while the plate core is pure ceramic
(see Figure 2b). Assuming that levels z ¼ �h=2, z ¼ h=2 are metal-rich, and levels z ¼ z2, z ¼ z3
are ceramic-rich, the volume ceramic fraction for each layer can be expressed as

Figure 1. Isotropic FG rectangular plate: (a) Geometric shape and Cartesian coordinates (b) Variations of VcðzÞ for h=R under
various gradient indices g:



V1
c ðzÞ ¼

z � z1

z2 � z1

� �g

, � h=2 ¼ z1 � z � z2

V2
c ðzÞ ¼ 1, z2 � z � z3

V3
c ðzÞ ¼

z4 � z

z4 � z3

� �g

, z3 � z � z4 ¼ h=2

(3a, 3b, 3c)

wherein thickness of the top and bottom skins are ðz4 � z3Þ and ðz2 � z1Þ, respectively. The
thickness of each layer may be varied. For the brevity, the thickness ratio of each layer from bot-
tom to top is defined by the combination of three numbers, i.e. ð1=1=1Þ, ð2=2=1Þ, and so on.

2.2. Refined arctangent shear deformation theory

Consider a domain } in space R2 located at the middle plane of the FG plate. Based on assump-
tions of the refined plate theory (Senthilnathan et al. 1987), the displacement field of the refined
arctangent exponential shear deformation theory (RAESDT) is assumed to be

uðx, y, z, tÞ ¼ u0ðx, y, tÞ � z
@wbðx, y, tÞ

@x
þ gðzÞ @wsðx, y, tÞ

@x

vðx, y, z, tÞ ¼ v0ðx, y, tÞ � z
@wbðx, y, tÞ

@y
þ gðzÞ @wsðx, y, tÞ

@y

wðx, y, z, tÞ ¼ wbðx, y, tÞ þ wsðx, y, tÞ

(4a, 4b, 4c)

where u0 and v0 are in-plane displacements of a point on the plate middle plane; u, v and w are
components of displacement vector along the x� , y� and z�axis, respectively; wb and ws are
bending and shear components of the transverse deflection; g is a shape function given by gðzÞ ¼
f ðzÞ � z with f ðzÞ ¼ tan �1ðze�2ðz=hÞ2Þ represents the effective shape function of transverse shear
strains and stresses along the thickness. It is equal to zero at z ¼ 6h=2 satisfying the condition of
shear stress sxz and syz at the free surfaces. Using the assumption of the infinitesimally small of

Lagrangian strains, the strain and displacement relationship can be described by:
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(5a, 5b, 5c, 5d, 5e)

or expressed in a shortened form:

Figure 2. Schematic diagram of sandwich FG plates: (a) FCHS type; (b) HCFS type.



e ¼
e0

0

( )

þ zjb þ gjs

f 0c

( )

(6a, 6b)

with

e0 ¼ @u0=@x @v0=@y @u0=@yþ @v0=@x
� �T

, jb ¼ � @2wb

@x2 � @2wb

@y2 �2 @2wb

@x@y

n oT

js ¼ @2ws=@x
2 @2ws=@y

2 2@2ws=@x@y
� �T

, c ¼ @ws=@x @ws=@y
� �T

(7a, 7b, 7c, 7d)

3. EMKI-based meshless method for analyzing the FG plate

3.1. Meliorated moving kriging shape function

According to the traditional MKI method (Bui, Nguyen, and Nguyen 2009), a function ~uhðxÞ can
be approximated by using a known discrete function ûðx̂Þ consisted of different nodal points
x̂iði 2 1, nr½ �Þ within a subdomain }x � }, and written by:

~uhðxÞ ¼ p̂Tðx̂ÞÂ þ r̂Tðx̂ÞB̂
� �

ûðx̂Þ or in short formality ~uh ¼
X

nr

I¼1

�hIûI (8a, 8b)

wherein �hI is MK shape function possessed the delta function property and can be expressed as:

�hI ¼
X

mp

j¼1

p̂jðx̂ÞÂjI þ
X

nr

k¼1

r̂kðx̂ÞB̂kI (9)

and matrices Â and B̂ can be derived by

Â ¼ P̂
T
R̂

�1
P̂

� 	�1

P̂
T
R̂

�1
, B̂ ¼ R̂

�1ðÎ � P̂ÂÞ (10a, 10b)

where Î denotes identity matrix, while p̂ðx̂Þ in Eq. (8) can be determined by using mp basis poly-

nomials as follow

p̂Tðx̂Þ ¼ p̂1ðx̂Þ, p̂2ðx̂Þ, p̂3ðx̂Þ, :::, p̂mp
ðx̂Þ

h i

(11)

In Eq. (10), matrix P̂nr�mp
comprises values of the basis polynomials at nr points in }x as fol-

lows

P̂ ¼

p̂1ðx̂1Þ p̂2ðx̂1Þ � � � p̂mp
ðx̂1Þ

p̂1ðx̂2Þ p̂2ðx̂2Þ � � � p̂mp
ðx̂2Þ

..

. ..
. . .

. ..
.

p̂1ðx̂nrÞ p̂2ðx̂nrÞ � � � p̂mp
ðx̂nrÞ

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

(12)

In Eq. (9), vector r̂ðx̂Þ is defined as follows:

r̂Tðx̂Þ ¼ R̂ðx̂1, x̂Þ, R̂ x̂2, x̂ð Þ, :::, R̂ x̂nr , x̂ð Þ
� �

(13)

wherein R̂ðx̂i, x̂jÞ represents a correlation function between each arbitrary pair of the nodes

located at x̂i and x̂j: Normally, Gaussian function widely used in the traditional MKI method

(Bui, Nguyen, and Nguyen 2009) and expressed by the following equations:



R̂ðx̂i, x̂jÞ ¼ e�hr2ij (14)

where r ij ¼ kx̂ i � x̂jk, and h > 0 is a correlation parameter dependent coordinates in support

domain. It is worth noting that the quality of MK shape functions depends heavily on the correl-
ation parameter h caused the instability in the numerical analysis (Bui, Nguyen, and Nguyen
2009). To surmount this obstacle, we propose a new quadrature function in depending on the
correlation parameter, only depending on the distance between any pairs of the nodes within }x

given by Eq. (15):

R̂ðx̂i, x̂ jÞ ¼ 1�
ffiffiffi

2
p

� r ij

lc
þ

r2ij

2l2c
(15)

wherein lc denotes the arithmetic mean distance between nodes. The correlation matrix

R R̂ðx̂i , x̂ jÞ
h i

nr�nr
is expressed as:

R R̂ðx̂i, x̂ jÞ
h i

¼

1 R̂ðx̂1, x̂2Þ � � � R̂ðx̂1, x̂nrÞ
R̂ðx̂2, x̂1Þ 1 � � � R̂ðx̂2, x̂nrÞ

..

. ..
. . .

. ..
.

R̂ðx̂nr , x̂1Þ R̂ðx̂nr , x̂2Þ � � � 1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

(16)

The first derivatives and second derivatives of the MMK shape function can be illustrated as
follows:

�hI:i ¼
X

mp

j¼1

p̂j, iðx̂ÞÂjI þ
X

nr

k¼1

r̂k, iðx̂ÞB̂kI

�hI, ii ¼
X

mp

j¼1

p̂j, iiðx̂ÞÂjI þ
X

nr

k¼1

r̂k, iiðx̂ÞB̂kI

(17a, 17b)

In traditional meshless methods, the rectangular or circle support can be used to gather scat-
tered nodes for constructing the shape function. Normally, the size of the support domain deter-
mined by a circular region determined by the point of interest and a radius calculated by:

dm ¼ adc (18)

wherein dc is denoted as the distance between adjacent nodes, which are the vicinity of the inter-
est point, and a denotes a scale factor controlling the support domain size. The scale factor
should be selected so that the size of influence domain comprised a certain number of nodes in
order to create the MK shape function. The accuracy of the method deeply relies on the node
number in the support domain; hence, an optimal value scale factor can be chosen by referring
to the numerical investigations.

3.2. Emki-based meshless discretization of the FG plates

Based on the RAESDT, the field variables can be expressed in terms of the MKI meshless method
as follows:

~uh ¼ ~uh ~vh ~whb ~whs

� �T
and ûI ¼ ûI v̂I ŵbI ŵsI

� �T
(19a,19b)

Substituting Eqs. (8) into (7) and then using some mathematical manipulations, one gets
Eq. (20) which shows the relationship between strain and displacement of the FG plate.



e0 ¼
X

nr

I¼1

B
m

I ûI , jb ¼
X

nr

I¼1

B
b1

I ûI , js ¼
X

nr

I¼1

B
b2

I ûI , c ¼
X

nr

I¼1

B
s

IûI (20a, 20b, 20c, 20d)

in which

B
m

I ¼
�hI, x 0 0 0

0 �hI, y 0 0

�hI, y �hI, x 0 0

2

6

4

3

7

5
, B

b1

I ¼
0 0 ��hI, xx 0

0 0 ��hI, yy 0

0 0 �2�hI, xy 0

2

6

4

3

7

5

B
b2

I ¼
0 0 0 �hI, xx

0 0 0 �hI, yy

0 0 0 2�hI, xy

2

6

4

3

7

5
, B

s

I ¼
0 0 0 �hI, x

0 0 0 �hI, y

" #

(21a, 21b, 21c, 21d)

Static bending analysis of the FG plate under the action of a distributed force q0 per unit area
can be shown in the weak form as follows:

ð

}

deTD
e
ed}þ

ð

}

dcTD
s
cd} ¼

ð

X

d ~whb þ ~whsð Þq0d} (22)

where

e ¼
e0

jb

js

8

>

<

>

:

9

>

=

>

;

, D
e ¼

~A ~B ~E

~B ~C ~K
e

~E ~K
e ~H

2

6

6

4

3

7

7

5

, D
s ¼

ð

h=2

�h=2

~Dsdz (23a, 23b, 23c)

the sub-matrices A,B,C,E,Ke,H and matrix ~D
s
are given in Appendix A

Natural vibration analysis of the FG plate in the weak form can be written by:
ð

}

deTD
e
ed}þ

ð

}

dcTD
s
cd} ¼

ð

}

dûTm€̂ud} (24)

the coefficients of the mass matrix m are given in Appendix B. The displacement fields ~u0, ~ub, ~us

can be expressed as:

~u ¼
~u0

~ub

~us

8

>

<

>

:

9

>

=

>

;

, ~u0 ¼
ûh

v̂h

ŵhb þ ŵhs

8

>

<

>

:

9

>

=

>

;

¼
X

nr

I¼1

N1
I ûI

~ub ¼
�@ŵhb=@x

�@ŵhb=@y

0

8

>

<

>

:

9

>

=

>

;

¼
X

nr

I¼1

N2
I ûI , ~us ¼

@ŵhs=@x

@ŵhs=@y

0

8

>

<

>

:

9

>

=

>

;

¼
X

nr

I¼1

N3
I ûI

(25a, 25b, 25c, 25d)

and

N1
I ¼

�hI 0 0 0
0 �hI 0 0
0 0 �hI �hI

2

4

3

5, N2
I ¼

0 0 ��hI, x 0
0 0 ��hI, y 0
0 0 0 0

2

4

3

5, N3
I ¼

0 0 0 �hI, x
0 0 0 �hI, y
0 0 0 0

2

4

3

5 (26a, 26b, 26c)

Finally, the compressive buckling of the FG plate can be stated in the weak form as follows:
ð

}

deTD
e
ed}þ

ð

}

dcTD
s
cd}þ

ð

}

rTd ~whb þ ~whsð Þr̂0r ~whb þ ~whsð Þd} ¼0 (27)



where rT ¼ ð @=@x @=@y Þ and r̂0 ¼
r0x s0xy
s0xy r0y

" #

denotes the initial stress matrix due to in-

plane compressive forces. Substituting Eq. (19) into Eqs. (22) (24) and (27), one can obtain
canonical formulations of the static bending, natural vibration and bucking problems, respect-
ively, as follows:

K̂û ¼ F̂, K̂ � x2M̂ð Þû ¼ 0, K̂ � kcrK̂g

� �

û ¼ 0 (28a, 28b, 28c)

wherein the stiffness matrix K̂ is given by:

K̂ ¼
ð

}

B
m

I

B
b1

I

B
b2

I

8

>

>

<

>

>

:

9

>

>

=

>

>

;

T
~A ~B ~E

~B ~C ~K
e

~E ~K
e ~H

2

6

6

4

3

7

7

5

B
m

I

B
b1

I

B
b2

I

8

>

>

<

>

>

:

9

>

>

=

>

>

;

d}þ
ð

X

B
sð ÞTDs

B
s
d} (29)

the force vector F̂ can be calculated by:

F̂ ¼
ð

}

q0Nd} where NI ¼ 0 0 �hI �hI
� �T

(30)

and the mass matrix M̂ has the following appearance:

M̂ ¼
ð

}

N1

N2

N3

8

>

<

>

:

9

>

=

>

;

T ~I0 ~I1 ~I3
~I1 ~I2 ~I4
~I3 ~I4 ~I5

2

6

6

4

3

7

7

5

N1

N2

N3

8

>

<

>

:

9

>

=

>

;

d} (31)

the geometric stiffness matrix Kg can be presented by:

K̂g ¼
ð

}

B
gð ÞTr̂0B

g
d} where B

g

I ¼
0 0 �hI, x �hI, x
0 0 �hI, y �hI, y

 �

(32a, 32b)

It is worth noting that matrices B
b1

I and B
b2

I are comprised of second order derivatives of the

approximated displacement field, so the MK shape function have to C1-continuity. Hence, the
basis polynomials given by Eq. (11) having the second order polynomials in two-variable forms
as follows:

Figure 3. Node redistribution to enforce clamped boundary condition: (a) Square plate, (b) circle plate.



pðxÞ ¼ 1 x y x2 xy y2
� 	T

(33)

Furthermore, the 4� 4 Gaussian integration is employed for the mechanical behavior analysis
of FG plates in this study.

Table 1. Normalized displacement w cð10�3Þ of the Kirchhoff’s homogeneous plate using different meshes and scaling factors.

Function Mesh

Scaling factor a

2.0 2.10 2.20 2.30 2.40 2.50 3.00 3.50

Quadric
correlation

5� 5 0.7216 0.9846 1.1195 1.1251 1.9784 2.6035 2.0607 1.9887
7� 7 1.0218 1.0287 1.0373 2.4398 2.4611 2.5214 2.1597 2.1350
9� 9 1.0669 1.0705 1.3708 2.3667 2.3844 2.3103 2.2248 2.1678
11� 11 1.5296 1.5351 2.3124 2.3221 2.3085 2.2336 2.2486 2.2092
17� 17 1.9370 2.2557 2.2583 2.2570 2.2487 2.2368 2.2426 2.2220

Analytical (Timoshenko and Woinowsky-Kriger 1959) 2.2528

Table 2. Material properties used in the FG plates (Neves et al. 2012; Lee, Zhao, and Liew 2009; Li, Ding, et al. 2008).

Mechanical properties

Metals Ceramics

Titanium
ðTiÞ

Aluminum
ðAlÞ

Alumina
ðAl2O3Þ

Zirconia#

ðZrO2Þ
Zirconia$

ðZrO$
2Þ

Zirconia�
ðZrO�

2Þ
E 110.25 70 380 200 278.41 151
� 0.288 0.3 0.3 0.3 0.288 0.3
q – 2707 3800 5700 – 3000

Table 3. Comparison of the deflection w c of IF square plate Al=ZrO2 under the uniform loading.

Boundary conditions a=h Methods g ¼ 0 g ¼ 0:5 g ¼ 1 g ¼ 2

SSSS 5 MK-S-FSDT (Vu et al. 2017) 0.1723 0.2331 0.2723 0.3116
MK-R-STSDT (Vu et al. 2018a) 0.1721 0.2325 0.2725 0.3142
Ritz-kp-FSDT (Lee, Zhao, and Liew 2009) 0.1722 0.2403 0.2811 0.3221
MK-R-ISSDT (Vu et al. 2018c) 0.1749 0.2363 0.2769 0.3193
MK-N-RSHSDT (Vu, Curiel-Sosa, and Bui 2018b) 0.1773 0.2395 0.2806 0.3238
Present 0.1728 0.2336 0.2738 0.3159

100 IGA-S-FSDT (Yin, Yu, and Liu 2013) 0.1423 0.1949 0.2284 0.2597
MK-R-STSDT (Vu et al. 2018a) 0.1427 0.1954 0.2290 0.2603
R-SSDT-MK (Vu and Phan 2017) 0.1483 0.2031 0.2379 0.2705
MK-N-RSHSDT (Vu, Curiel-Sosa, and Bui 2018b) 0.1457 0.1996 0.2339 0.2659
Present 0.1435 0.1966 0.2304 0.2619

SFSS 5 IGA-S-FSDT (Yin, Yu, and Liu 2013) 0.3164 0.4299 0.5032 0.5752
MK-R-STSDT (Vu et al. 2018a) 0.3153 0.4278 0.5013 0.5757
MK-R-ISSDT (Vu et al. 2018c) 0.3181 0.4315 0.5056 0.5808
MK-N-RSHSDT (Vu, Curiel-Sosa, and Bui 2018b) 0.3233 0.4384 0.5138 0.5902
Present 0.3162 0.4290 0.5027 0.5775

100 MK-S-FSDT (Vu et al. 2017) 0.2777 0.3805 0.4458 0.5069
MK-R-STSDT (Vu et al. 2018a) 0.2766 0.3790 0.4440 0.5047
MK-N-RSHSDT (Vu, Curiel-Sosa, and Bui 2018b) 0.2816 0.3858 0.4519 0.5138
Present 0.2776 0.3803 0.4455 0.5064

SFSF 5 IGA-S-FSDT (Yin, Yu, and Liu 2013) 0.5083 0.6918 0.8099 0.9247
MK-R-STSDT (Vu et al. 2018a) 0.5061 0.6879 0.8061 0.9239
Ritz-kp-FSDT (Lee, Zhao, and Liew 2009) 0.5061 0.7029 0.8214 0.9423
MK-R-ISSDT (Vu et al. 2018c) 0.5054 0.6869 0.8048 0.9226
MK-N-RSHSDT (Vu, Curiel-Sosa, and Bui 2018b) 0.5162 0.7014 0.8219 0.9423
Present 0.5054 0.6869 0.8048 0.9225

100 IGA-S-FSDT (Yin, Yu, and Liu 2013) 0.4584 0.6281 0.7360 0.8367
MK-R-STSDT (Vu et al. 2018a) 0.4564 0.6252 0.7325 0.8327
R-SSDT-MK (Vu and Phan 2017) 0.4627 0.6339 0.7427 0.8443
MK-N-RSHSDT (Vu, Curiel-Sosa, and Bui 2018b) 0.4623 0.6333 0.7419 0.8434
Present 0.4558 0.6243 0.7313 0.8312



4. Numerical results and discussions

In this section, we present our solutions of the static bending, natural frequencies and compres-
sive buckling of FG plates using the rectangular and circular shapes. The boundaries of the plates
are defined as the completely free (F), and two Dirichlet types are described below:

Figure 4. Static bending analysis of IF square plate Al=ZrO2 by using g ¼ 1 and a=h ¼ 100 under the uniform loading: (a) Nodal
distribution, (b) SSSS deformation shape, (c) SFSS deformation shape, (d) SFSF deformation shape.

Figure 5. Static bending analysis of the roller supportedAl=ZrO2 circular plate IF with g ¼ 4 and h=R ¼ 0:1 : (a) Uniform nodal
distribution, (b) Deformation shape.



(i) Simply-supported boundary condition (S):

wb x, yð Þ ¼ ws x, yð Þ ¼ 0 at x ¼ 0, a and y ¼ 0, b (34)

(ii) Clamped boundary condition (C):

wb x, yð Þ ¼ ws x, yð Þ ¼ 0

@wb x, yð Þ=@n ¼ @ws x, yð Þ=@n ¼ 0 at x ¼ 0, a and y ¼ 0, b
(35a, 35b)

Due to the MKI shape functions possessed Kronecker delta property, the boundary conditions

of wbðx, yÞ,wsðx, yÞ can be enforced as the FEM. The normal slope @wbðx, yÞ=@n, @wsðx, yÞ=@n can

be imposed as the bending strip method (Kiendl et al. 2010) wherein the transverse displacements

of both the adjacent and boundary nodes were assigned by zero values as shown in Figure 3.

Table 4. Comparison of the deflection ~w c of IF circular plate Ti=ZrO$
2 under uniform loading.

h=R Methods g ¼ 0 g ¼ 2 g ¼ 4 g ¼ 8 g ¼ 10

(a) Roller boundary
0.05 Analytical method (Li, Iu, et al. 2008) 10.3910 5.7090 5.2190 4.8090 4.7000

Semi-analytical method (Reddy, Wang,
and Kitipornchai 1999)

10.3960 5.7140 5.2230 4.8120 4.7040

IGA-HSDT (Tran, Ferreira, and Nguyen-Xuan 2013) 10.2203 5.6100 5.1299 4.7299 4.6239
IGA-FSDT (Yin et al. 2014) 10.3963 5.7137 5.2227 4.8124 4.7036
IGA-S-FSDT (Yin et al. 2014) 10.3411 5.4851 5.0966 4.7513 4.6542
Present 10.3744 5.6213 5.1721 4.7879 4.6839

0.10 Analytical method (Li, Ding, et al. 2008) 10.4600 5.7380 5.2450 4.8350 4.7270
Semi-analytical method (Reddy, Wang,

and Kitipornchai 1999)
10.4810 5.7560 5.2610 4.8480 4.7390

IGA-HSDT (Tran, Ferreira, and Nguyen-Xuan 2013) 10.3440 5.6742 5.1879 4.7838 4.6769
IGA-FSDT (Yin et al. 2014) 10.4817 5.7561 5.2612 4.8487 4.7394
IGA-S-FSDT (Yin et al. 2014) 10.4262 5.5273 5.1349 4.7874 4.6899
Present 10.4591 5.6622 5.2089 4.8230 4.7186

0.20 Analytical method (Li, Ding, et al. 2008) 10.7360 5.8530 5.3510 4.9410 4.8330
Semi-analytical method (Reddy, Wang,

and Kitipornchai 1999)
10.8220 5.9250 5.4140 4.9930 4.8820

IGA-HSDT (Tran, Ferreira, and Nguyen-Xuan 2013) 10.6973 5.8475 5.3439 4.9315 4.8230
IGA-FSDT (Yin et al. 2014) 10.8223 5.9250 5.4147 4.9932 4.8821
IGA-S-FSDT (Yin et al. 2014) 10.7667 5.6961 5.2883 4.9319 4.8326
Present 10.8000 5.8273 5.3573 4.9640 4.8585

(b) Clamped boundary
0.05 Analytical method (Li, Ding, et al. 2008) 2.5610 1.4050 1.2840 1.1840 1.1570

Semi-analytical method (Reddy, Wang,
and Kitipornchai 1999)

2.5540 1.4020 1.2820 1.1810 1.1550

IGA-HSDT (Tran, Ferreira, and Nguyen-Xuan 2013) 2.5480 1.3990 1.2786 1.1785 1.1520
IGA-FSDT (Yin et al. 2014) 2.5539 1.4024 1.2819 1.1814 1.1547
IGA-S-FSDT (Yin et al. 2014) 2.5535 1.4023 1.2817 1.1812 1.1546
Present 2.5562 1.3965 1.2792 1.1809 1.1547

0.10 Analytical method (Li, Ding, et al. 2008) 2.6670 1.4560 1.3290 1.2270 1.2010
Semi-analytical method (Reddy, Wang,

and Kitipornchai 1999)
2.6390 1.4440 1.3200 1.2170 1.1900

IGA-HSDT (Tran, Ferreira, and Nguyen-Xuan 2013) 2.6297 1.4386 1.3143 1.2123 1.1855
IGA-FSDT (Yin et al. 2014) 2.6393 1.4448 1.3203 1.2176 1.1905
IGA-S-FSDT (Yin et al. 2014) 2.6353 1.4428 1.3186 1.2159 1.1889
Present 2.6410 1.4375 1.3160 1.2160 1.1895

0.20 Analytical method (Li, Ding, et al. 2008) 3.0930 1.6580 1.5110 1.4020 1.3750
Semi-analytical method (Reddy, Wang,

and Kitipornchai 1999)
2.9790 1.6130 1.4730 1.3620 1.3330

IGA-HSDT (Tran, Ferreira, and Nguyen-Xuan 2013) 2.9541 1.5958 1.4557 1.3467 1.3187
IGA-FSDT (Yin et al. 2014) 2.9799 1.6137 1.4738 1.3622 1.3332
IGA-S-FSDT (Yin et al. 2014) 2.9625 1.6051 1.4659 1.3548 1.3260
Present 2.9814 1.6023 1.4642 1.3568 1.3291



Table 5. Comparison of the deflection w
_

c of FCHS square plate Al=Al2O3 with the layer ratio of ð2=1=2Þ under bi-sinus-
oidal loading.

a=h Methods g ¼ 0 g ¼ 1 g ¼ 4 g ¼ 7 g ¼ 10

4 CLT (Carrera et al. 2011) – 0.6070 0.7792 – 0.8070
FSDT (Carrera et al. 2011) – 0.7738 1.0285 – 1.1109
CUF (Carrera et al. 2011) – 0.7735 1.0977 – 1.2240
HSDT (Neves et al. 2013) – 0.7746 1.0826 – 1.2183
MK-R-ISSDT (Vu et al. 2018c) 0.4647 0.7751 1.0897 1.1826 1.2259
MK-N-RSHSDT (Vu, Curiel-Sosa, and Bui 2018b) 0.4639 0.7725 1.0934 1.1896 1.2320
Present 0.4659 0.7771 1.0965 1.1917 1.2353

10 CLT (Carrera et al. 2011) – 0.6070 0.7792 – 0.8070
FSDT (Carrera et al. 2011) – 0.6337 0.8191 – 0.8556
CUF (Carrera et al. 2011) – 0.6337 0.8308 – 0.8743
HSDT (Neves et al. 2013) – 0.6357 0.8272 – 0.8712
MK-R-ISSDT (Vu et al. 2018c) 0.3764 0.6359 0.8311 0.8624 0.8767
MK-N-RSHSDT (Vu, Curiel-Sosa, and Bui 2018b) 0.3763 0.6355 0.8318 0.8637 0.8779
Present 0.3776 0.6383 0.8352 0.8669 0.8813

100 CLT (Carrera et al. 2011) – 0.6070 0.7792 – 0.8070
FSDT (Carrera et al. 2011) – 0.6073 0.7796 – 0.8075
CUF (Carrera et al. 2011) – 0.6072 0.7797 – 0.8077
HSDT (Neves et al. 2013) – 0.6092 0.7785 – 0.8050
MK-R-ISSDT (Vu et al. 2018c) 0.3597 0.6095 0.7819 0.8015 0.8103
MK-N-RSHSDT (Vu, Curiel-Sosa, and Bui 2018b) 0.3597 0.6095 0.7819 0.8015 0.8103
Present 0.3609 0.6120 0.7855 0.8050 0.8138

Table 6. Comparison of the deflection w
^

c of HCFS square plate Al=ZrO2 � 3 with all SSSS edges and a=h ¼ 10 under bi-
sinusoidal loading.

Schemes
of HCFS Methods g ¼ 0 g ¼ 0:5 g ¼ 1 g ¼ 2 g ¼ 5 g ¼ 10

ð2=1=2Þ CLT (Neves et al. 2012) 0.1856 – 0.2942 0.3394 0.3779 0.3894
FSDT (Neves et al. 2012) 0.1961 – 0.3075 0.3541 0.3942 0.4066
HSDT (Bessaim et al. 2013) 0.1949 0.2614 0.3043 0.3500 0.3893 0.4015
ZZF (Neves et al. 2012) 0.1961 0.2667 0.3090 0.3542 0.3930 0.4051
MK-N-RSHSDT (Vu, Curiel-Sosa, and Bui 2018b) 0.1970 0.2644 0.3078 0.3539 0.3935 0.4058
Present 0.1976 0.2652 0.3087 0.3549 0.3946 0.4068

ð2=1=1Þ CLT (Neves et al. 2012) – – – – – –

FSDT (Neves et al. 2012) – – – – – –

HSDT (Bessaim et al. 2013) 0.1949 0.2560 0.2945 0.3350 0.3698 0.3811
ZZF (Neves et al. 2012) 0.1961 0.2614 0.2995 0.3399 0.3746 0.3861
MK-N-RSHSDT (Vu, Curiel-Sosa, and Bui 2018b) 0.1970 0.2590 0.2982 0.3394 0.3748 0.3862
Present 0.1976 0.2598 0.2991 0.3404 0.3759 0.3873

ð1=1=1Þ CLT (Neves et al. 2012) 0.1856 – 0.2803 0.3207 0.3587 0.3724
FSDT (Neves et al. 2012) 0.1961 – 0.2930 0.3344 0.3736 0.3879
HSDT (Bessaim et al. 2013) 0.1949 0.2530 0.2901 0.3307 0.3690 0.3830
ZZF (Neves et al. 2012) 0.1961 0.2583 0.2949 0.3351 0.3729 0.3868
MK-N-RSHSDT (Vu, Curiel-Sosa, and Bui 2018b) 0.1970 0.2559 0.2934 0.3345 0.3731 0.3872
Present 0.1976 0.2566 0.2943 0.3354 0.3742 0.3883

ð2=2=1Þ CLT (Neves et al. 2012) 0.1856 – 0.2692 0.3041 0.3369 0.3492
FSDT (Neves et al. 2012) 0.1961 – 0.2817 0.3174 0.3512 0.3640
HSDT (Bessaim et al. 2013) 0.1949 0.2466 0.2787 0.3136 0.3465 0.3589
ZZF (Neves et al. 2012) 0.1961 0.2519 0.2838 0.3186 0.3514 0.3637
MK-N-RSHSDT (Vu, Curiel-Sosa, and Bui 2018b) 0.1970 0.2495 0.2822 0.3177 0.3512 0.3638
Present 0.1976 0.2502 0.2831 0.3186 0.3523 0.3648
CLT (Neves et al. 2012) 0.1856 – 0.2596 0.2910 0.3228 0.3361
FSDT (Neves et al. 2012) 0.1961 – 0.2717 0.3037 0.3363 0.3500
HSDT (Bessaim et al. 2013) 0.1949 0.2407 0.2692 0.3006 0.3326 0.3459

ð1=2=1Þ ZZF (Neves et al. 2012) 0.1961 0.2460 0.2740 0.3053 0.3370 0.3503
MK-N-RSHSDT (Vu, Curiel-Sosa, and Bui 2018b) 0.1970 0.2435 0.2723 0.3041 0.3364 0.3499
Present 0.1976 0.2443 0.2731 0.3051 0.3374 0.3509



4.1. Convergence study and effect of the scaling factor on solution accuracy

Consider a full-simply supported homogeneous square plate with the length to thickness ratio

a=h ¼ 100 and the length of side a ¼ 1:0m, subjected to the uniform traction q0 ¼ 1:0N=m2:

Plate material properties are given as follows: Young’s modulus Em ¼ 2:0GPa, Poisson’s ratio

� ¼ 0:3 The analytical solution for bending of this Kirchhoff’s plate is provided by Timoshenko

and Woinowsky-Kriger (1959).

w x, yð Þ ¼
16q0
Dp6

X

1

m¼1

X

1

n¼1

sin mpx=að Þ sin mpy=a
� 	

mn m=að Þ2 þ n=að Þ2
� 	2 (36)

where m, n are odd numbers, and D ¼ Eh3

12ð1��2Þ : The convergence of the analytical solution is so

fast, thus the central deflection can be estimated with m ¼ n ¼ 5 by wc ¼ 2:2528� 10�3m: To
investigate the influence of scaling factor to numerical solution accuracy, different node patterns

of 5� 5, 7� 7, 9� 9, 11� 11 and 17� 17 combined with varying scaling factors, the obtained

results are given in Table 1. For the value of scaling factor greater than 2, it can be seen that all

Table 7. Comparison of the first five normalized frequencies x of IF square Al=Al2O3 plate with a=h ¼ 100:

g Methods x1 x2 x3 x4 x5

(a) SFSF
1 IGA-neu-CPT (Yin, Yu, and Liu 2013) 43.1596 72.2984 164.5401 174.5012 209.4085

MK-S-FSDT (Vu et al. 2017) 43.2374 71.2856 161.2857 175.8363 206.5470
Exact (Baferani, Saidi, and Jomehzadeh 2011) 43.0872 72.2001 164.3911 – –

MK-N-RSHSDT(Vu, Curiel-Sosa, and Bui 2018b) 42.9806 71.7756 162.0638 171.5960 204.8737
Present 43.3645 72.5290 164.2374 176.9646 211.7085

2 IGA-neu-CPT (Yin, Yu, and Liu 2013) 39.2395 65.7314 149.5922 158.6496 190.3849
MK-S-FSDT (Vu et al. 2017) 39.3354 64.9015 146.9400 160.1133 188.3231
Exact (Baferani, Saidi, and Jomehzadeh 2011) 39.1666 65.6400 149.0583 – –

MK-N-RSHSDT(Vu, Curiel-Sosa, and Bui 2018b) 39.0828 65.2660 147.3546 156.0896 186.3556
Present 39.4466 65.9652 149.3606 161.1708 192.7461

(b) SSSS
1 IGA-neu-CPT (Yin, Yu, and Liu 2013) 88.4501 221.1011 221.1011 353.7127 442.1697

MK-S-FSDT (Vu et al. 2017) 88.4983 223.1878 223.1878 359.3324 448.5040
Exact (Baferani, Saidi, and Jomehzadeh 2011) 88.3093 221.0643 – 353.6252 –

MK-N-RSHSDT(Vu, Curiel-Sosa, and Bui 2018b) 87.4004 215.2458 215.2458 337.5635 421.0957
Present 88.0741 220.6463 220.6463 348.1155 445.8387

2 IGA-neu-CPT (Yin, Yu, and Liu 2013) 80.4160 201.0155 201.0155 321.5761 401.9929
MK-S-FSDT (Vu et al. 2017) 80.6550 204.0120 204.0120 330.2422 411.6235
Exact (Baferani, Saidi, and Jomehzadeh 2011) 80.3517 200.8793 – 321.4069 –

MK-N-RSHSDT(Vu, Curiel-Sosa, and Bui 2018b) 79.4630 195.7338 195.7338 306.9145 383.1018
Present 80.0823 200.7826 200.7826 316.6364 406.4149

(c) SCSC
1 IGA-neu-CPT (Yin, Yu, and Liu 2013) 129.7269 245.2758 310.6242 423.7400 457.9482

MK-S-FSDT (Vu et al. 2017) 129.9227 246.0544 311.5795 429.6741 456.0445
Exact (Baferani, Saidi, and Jomehzadeh 2011) 129.6496 245.1310 – 423.6904 –

MK-N-RSHSDT(Vu, Curiel-Sosa, and Bui 2018b) 129.2264 239.9096 305.1543 408.8027 438.4519
Present 129.5006 242.8763 304.7069 415.8221 447.8102

2 IGA-neu-CPT (Yin, Yu, and Liu 2013) 117.9435 222.9939 282.4052 385.2402 416.3375
MK-S-FSDT (Vu et al. 2017) 117.9340 223.2098 279.5867 389.7883 412.6522
Exact (Baferani, Saidi, and Jomehzadeh 2011) 117.8104 222.8111 – 385.0672 –

MK-N-RSHSDT(Vu, Curiel-Sosa, and Bui 2018b) 117.5411 218.2121 277.5496 371.8758 398.9104
Present 117.8349 220.9597 277.4365 378.5907 407.4546

(d) CCCC
1 IGA-neu-CPT (Yin, Yu, and Liu 2013) 161.2484 328.8502 328.8502 484.8293 589.5860

MK-S-FSDT (Vu et al. 2017) 161.0227 328.6780 328.6780 488.7393 591.5320
MK-N-RSHSDT(Vu, Curiel-Sosa, and Bui 2018b) 160.8461 322.9511 322.9511 467.6309 564.5060
Present 160.8862 322.6883 322.6883 474.1163 566.4382

2 IGA-neu-CPT (Yin, Yu, and Liu 2013) 146.6016 298.9753 298.9753 440.7781 536.0119
MK-S-FSDT (Vu et al. 2017) 146.9611 297.6900 297.6900 441.7803 531.8659
MK-N-RSHSDT(Vu, Curiel-Sosa, and Bui 2018b) 146.3175 293.7530 293.7530 425.4270 513.5280
Present 146.4105 293.7948 293.7948 431.7738 516.0873



the results converged to the exact solution as number of discrete nodes increases showing that
the quadric correlation function can ensure the stable numerical solution. Furthermore, the
deflection is convergent to the exact deflection as scaling factor 2 < a � 3:5: As a > 3:5, the
good result could not be obtained due to the density of distribution nodes inside the influence

domains may be too dense. However, when a < 2, the matrix Â in Eq. (10a) is closely singular
or badly scaled, as a result that problem could not be solved or hardly reaches a good solution.
Thus, we consider that a value of a ¼ 2:10 for numerical analysis in the following computations.

Figure 6. Natural frequency analysis of the SCSC Al=Al2O3 square plate IF with g ¼ 1 and a=h ¼ 100 : (a) Mode shape 1, (b)
Mode shape 2, (c) Mode shape 3, (d) Mode shape 4, (e) Mode shape 5, (f) Mode shape 6.



4.2. Static bending of the FG plates

Firstly, we consider an IF square Al=ZrO2 plate with the different boundaries of SSSS, SFSS, SFSF

and having side-to-thickness ratios a=h of 5, 100 and subjected to the uniform loading.
Its constituent materials shown in Table 2, and material properties continuously

change according to Eq. (1). Table 3 shows the non-dimensional central deflection

wc ¼ 100Emh
3

12ð1�t2mÞq0a4
w a

2
, b
2
, 0

� �

by using the gradient indices g by 0, 0:5, 1 and 2 with a fine mesh of

21� 21 nodes as shown in Figure 4a. In studying Table 3, it is clear that the present results are
in good agreement with solutions obtained by many available methods such as the refined plate
theory combined with the MKI method such as: MK-S-FSDT (Vu et al. 2017); R-SSDT-MK (Vu
and Phan 2017); MK-R-STSDT (Vu et al. 2018a); MK-N-RSHSDT (Vu, Curiel-Sosa, and Bui
2018b); MK-R-ISSDT (Vu et al. 2018c) and IGA-S-FSDT (Yin, Yu, and Liu 2013), Ritz-kp-FSDT
(Lee, Zhao, and Liew 2009) method.

Due to the FG plate stiffness, increasing when its boundary conditions vary from SFSF, SFSS
to SSSS or the ratio a=h increase from 5 to 100, it leads to a reduction of the plate central deflec-
tion. In contrast, increasing the value of gradient index g gains, an increase in the deflection mag-
nitudes since the plate material properties approximated to those of metal component.

It should be noted that the effect of the transverse shear deformation in the plate-bending
behavior of the thin plates is smaller than those from thick plates. As the result, the deflections
for the thinner plate (e.g., a=h ¼ 100) are smaller than those of the thicker plate (e.g., a=h ¼ 5).
Figure 4b–d depict the plate deformed shapes by using the various boundary conditions under

the uniformly distributed load. Next, we analysis the static bending of an IF circular Ti=ZrO$
2

plate subjected the uniformly distributed load with considering the roller and clamped boundaries
along its periphery. Circle plate material properties are determined by the mixture rule by
Eq. (37) as follows:

Pe ¼ PcVcðzÞ þ PmVmðzÞ where VmðzÞ ¼ 1=2� z=hð Þg, VcðzÞ ¼ 1� VmðzÞ (37a, 37b, 37c)

Table 8. Comparison of the first six normalized frequencies ~x of IF circular plate Al=Al2O3 with clamped periphery and gradi-
ent index g ¼ 1:

h=R Methods ~w1 ~w2 ~w3 ~w4 ~w5 ~w6

0.01 Semi-analytical-FSDT (Hosseini-Hashemi,
Fadaee, and Es’haghi 2010)

0.0236 0.0491 0.0805 0.0918 0.1178 0.1404

FEM-UM (Ebrahimi, Rastgoo, and Atai 2009) 0.0234 0.0486 0.0798 0.0909 0.1167 0.1391
UM-FSDT (Ebrahimi, Rastgoo, and Atai 2009) 0.0257 0.0535 0.0877 0.1000 0.1283 0.1529
IGA-HSDT (Tran, Ferreira, and Nguyen-Xuan 2013) 0.0236 0.0492 0.0807 0.0924 0.1191 0.1431
IGA-FSDT (Yin et al. 2014) 0.0237 0.0511 0.0855 0.0997 0.1101 0.1451
IGA-S-FSDT (Yin et al. 2014) 0.0236 0.0491 0.0805 0.0919 0.1180 0.1408
Present 0.0238 0.0499 0.0808 0.0914 0.1176 0.1400

0.10 Semi-analytical-FSDT(Hosseini-Hashemi, Fadaee,
and Es’haghi 2010)

2.3053 4.6934 7.5146 8.5181 10.7128 12.6197

FEM-UM (Ebrahimi, Rastgoo, and Atai 2009) 2.2888 4.6661 7.4808 8.4829 10.6776 12.5877
UM-FSDT (Ebrahimi, Rastgoo, and Atai 2009) 2.5038 5.0831 8.1156 9.1931 11.5376 13.5743
IGA-HSDT (Tran, Ferreira, and Nguyen-Xuan 2013) 2.3076 4.7005 7.5318 8.5380 10.7483 12.6636
IGA-FSDT (Yin et al. 2014) 2.3042 4.6936 7.5190 8.5472 10.7923 12.8097
IGA-S-FSDT (Yin et al. 2014) 2.3040 4.7137 7.5773 8.5244 10.8524 12.7017
Present 2.3200 4.7800 7.5916 8.4462 10.7941 12.5870

0.20 Semi-analytical-FSDT (Hosseini-Hashemi,
Fadaee, and Es’haghi 2010)

8.6535 16.7666 25.6486 28.7574 34.0756 35.0981

FEM-UM (Ebrahimi, Rastgoo, and Atai 2009) 8.6403 16.7890 25.7661 28.9152 34.1893 35.3618
UM-FSDT (Ebrahimi, Rastgoo, and Atai 2009) 9.3162 17.9164 27.2480 30.4998 – 37.1197
IGA-HSDT (Tran, Ferreira, and Nguyen-Xuan 2013) 8.6787 16.8595 25.8479 29.0092 34.0581 35.4875
IGA-FSDT (Yin et al. 2014) 8.6490 16.7604 25.6426 28.7732 34.0571 35.1592
IGA-S-FSDT (Yin et al. 2014) 8.6486 17.0016 26.2512 28.7691 34.1216 36.1557
Present 8.7053 17.2065 26.2941 28.4795 33.1921 35.9974



Figure 7. Natural frequency analysis of the clamped Al=Al2O3 circular plate (IF) with g ¼ 1 and a=h ¼ 100 : (a) Mode shape 1,
(b) Mode shape 2, (c) Mode shape 3, (d) Mode shape 4, (e) Mode shape 5, (f) Mode shape 6.



The normalized deflection ~wc ¼ 64Dc

q0R4 wð0, 0, 0Þ with Dc ¼ Ech
3=12ð1� �2c Þ in the center of the

plate is calculated using a set of 145 points (see Figure 5a) with respect to the thickness-to-radius

ratios h=R ¼ 0:05, 0:1 and 0:2, are gathered in Table 4.
From the table results, it can be concluded that present solutions are in good agreement with

those obtained by IGA-S-FSDT, IGA-FSDT (Yin et al. 2014) and IGA-HSDT (Tran, Ferreira, and

Nguyen-Xuan 2013), analytical- (Li, Ding, et al. 2008) and semi-analytical method (Reddy, Wang,

and Kitipornchai 1999). The deflection shape of the plate is also plotted in Figure 5b. It can be

observed that its deflection pattern is similar to the above square plate. We further consider a

FCHS square plate with the ratio a=h ¼ 10 and SSSS at all edges. Its bottom skin of the plate is

aluminum and top skin is alumina, both skins have the same thickness 0:1h: Material properties

of the core changing from aluminum to alumina are determined by Eq. (1). The plate material

properties vary across the thickness direction are calculated by Eq. (2). The top surface of the

plate is subjected by a bi-sinusoidal transverse load q0 ¼ q0 sin ðpx=aÞ sin ðpy=bÞ: The computed

normalized central displacement w
_

c ¼ 10Ech
3

q0a
4 w a

2
, b
2
, 0

� �

is compared with the numerical solutions

based on the CPT (Carrera et al. 2011), FSDT (Carrera et al. 2011), HSDT (Neves et al. 2013)

and CUF (Carrera et al. 2011) methods and listed in Table 5.
Well agreement is evident with those based on the different plate theories with and without

using the shear correction factor. It is noteworthy that increasing the value of gradient index g

gains the flexural rigidity of the plate is increasing due to the effective material of the FCHS

plates come close to those of ceramic component, as the result, the deflection magnitudes

are decrease.
Finally, in order to validate our proposed method based on RAESDT for FG sandwich under

different layer ratios, on all SSSS edges Al=ZrO�
2 square plate with type HCFS and the ratio

Table 9. Comparison of the first frequency ~w1 of IF circular plate Al=Al2O3 with h=R ¼ 0:01:

Boundary
conditions Methods g ¼ 0 g ¼ 1 g ¼ 2 g ¼ 5 g ¼ 10

Free IGA-FSDT (Yin et al. 2014) 0.0162 0.0124 0.0113 0.0107 0.0103
IGA-S-FSDT (Yin et al. 2014) 0.0162 0.0123 0.0112 0.0106 0.0103
Present 0.0162 0.0124 0.0113 0.0107 0.0103

Roller IGA-FSDT (Yin et al. 2014) 0.0150 0.0114 0.0104 0.0098 0.0095
IGA-S-FSDT (Yin et al. 2014) 0.0150 0.0121 0.0114 0.0107 0.0100
Present 0.0150 0.0122 0.0115 0.0108 0.0101

Clamped IGA-FSDT (Yin et al. 2014) 0.0311 0.0237 0.0216 0.0204 0.0198
IGA-S-FSDT (Yin et al. 2014) 0.0309 0.0236 0.0214 0.0203 0.0197
Present 0.0309 0.0236 0.0215 0.0204 0.0196

Table 10. Comparison of the first five frequencies ~x of FCHS square plates Al=Al2O3 with a layer ratio of 1=8=1 using g ¼ 1
and ða=h ¼ 100, 10Þ:
a=h Methods ~x1 ~x2 ~x3 ~x4 ~x5

(a) SSSS
100 Ritz-3D (Li, Iu, et al. 2008) 1.5760 3.9379 3.9379 6.2972 7.8686

MK-N-RSHSDT (Vu, Curiel-Sosa, and Bui 2018b) 1.5649 3.9048 3.9048 6.2115 7.7989
Present 1.5625 3.9092 3.9092 6.1711 7.8760

10 Ritz-3D (Li, Iu, et al. 2008) 1.5221 3.6295 3.6295 5.5679 6.7829
MK-N-RSHSDT (Vu, Curiel-Sosa, and Bui 2018b) 1.5123 3.6037 3.6037 5.5046 6.7337
Present 1.5102 3.6075 3.6075 5.4736 6.7861

(b) CCCC
100 Ritz-3D (Li, Iu, et al. 2008) 2.8830 5.8720 5.8720 8.6495 10.5180

MK-N-RSHSDT (Vu, Curiel-Sosa, and Bui 2018b) 2.7942 5.6682 5.6682 8.2370 10.1953
Present 2.8498 5.7108 5.7108 8.3863 10.0113

10 Ritz-3D (Li, Iu, et al. 2008) 2.6050 4.9630 4.9630 6.9516 8.1872
MK-N-RSHSDT (Vu, Curiel-Sosa, and Bui 2018b) 2.5673 4.9431 4.9431 6.9022 8.1657
Present 2.6101 4.9683 4.9683 6.9852 8.1459



a=h ¼ 10 subjected to the bi-sinusoidal force. Mechanical properties of each constituent are

shown in Table 2. The plate core skin is a fully ceramic. The variation of the material properties

across the plate thickness are determined by Eq. (3). Table 6 shows the central deflection normal-

ized by w
^

c ¼ 10Eoh
q0a

2 w
a
2
, b
2
, 0

� �

, where q0 ¼ 1 and E0 ¼ 1 with different values of gradient index g

and layer ratios.
Present RAESDT results are compared with the CLT analytical solutions, FSDT analytical solu-

tions (Neves et al. 2012), HSDT analytical solutions (Bessaim et al. 2013) and ZZF (Neves et al.

2012) meshless solutions (Bessaim et al. 2013), and MK-RSHSDT (Vu, Curiel-Sosa, and Bui

Figure 8. Natural frequency analysis of the CCCC sandwich square plate FCHS with ð1=8=1Þ, g ¼ 1 and a=h ¼ 10 : (a) Mode
shape 1, (b) Mode shape 2, (c) Mode shape 3, (d) Mode shape 4, (e) Mode shape 5, (f) Mode shape 6.



2018b) meshless solutions. From Table 6, it is evident that the present results agree well with

those indicated in the literature (Neves et al. 2012; Bessaim et al. 2013; Vu, Curiel-Sosa, and Bui

2018b) for all plate layer ratios with different gradient indices. It can be concluded that the pre-

sent RAESDT with meliorated MKI meshless method can accurately solve the static bending

problems of FG plates with the different plate shapes and boundary conditions under various

loads. It should be mentioned that increasing the core thickness of the HCFS plate gains the flex-

ural rigidity of the plate is increasing, as the result, the deflection amplitudes of the plate are

decrease. Conversely, increasing the skin thickness of the HCFS acquires the flexural rigidity of

the plate is decreasing, as expected, the plate deflections are increasing.

4.3. Natural frequency analysis

Firstly, we consider an IF square Al=Al2O3 thin plate with the ratio a=h ¼ 100: The fundamental

frequency normalized by x ¼ xp2ða2=hÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qm=Em
p

. The first five natural frequencies of the IF

square with different boundary conditions and gradient index are given in Table 7. From the

table results, it is observed that the present results are in favorable agreement with those reference

solutions such as the exact method (Baferani, Saidi, and Jomehzadeh 2011), IGA-neu-CPT (Yin,

Yu, and Liu 2013), MK-S-FSDT (Vu et al. 2017) and MK-N-RSHSDT (Vu, Curiel-Sosa, and

Bui 2018b).
It is worth noting that by increasing the gradient indices, the magnitudes of natural frequency

are decreasing. The plate boundary condition is a significant factor that affects its natural

frequencies.
When the plate boundary condition changing from SFSF, SSSS, SCSC to CCCC leads to

increasing the structural plate stiffnesses. As expected, the plate natural frequency magnitudes are

increasing. The first six of mode shapes of the square plate with the boundary condition of the

SCSC and using the gradient index g ¼ 1 are illustrated in Figure 6.
Next, we investigate a clamped Al=Al2O3 IF circular plate using the different thickness-radius

ratio of h=R: The normalized natural frequency ~x ¼ 100xh
ffiffiffiffiffiffiffiffiffiffiffi

qc=Ec
p

is calculated by the proposed

RAESDT method and gathered in Table 8. It can be concluded the obtained results are close to

Table 11. Comparison of the first frequencies ~x1 of HCFS square plates Al=Al2O3 with the SSSS boundary condition and
a=h ¼ 10 using different layer ratios and gradient indices.

g Methods

Layer ratios of plate HCFS

ð1=0=1Þ ð2=1=2Þ ð2=1=1Þ ð1=1=1Þ ð2=2=1Þ ð1=2=1Þ
0.5 Ritz-3D (Li, Iu, et al. 2008) 1.4461 1.4861 1.5084 1.5213 1.5493 1.5766

SSDT (Zenkour 2005) 1.4443 1.4842 1.5126 1.5193 1.5520 1.5745
TSDT (Zenkour 2005) 1.4442 1.4842 1.5125 1.5192 1.5520 1.5745
MK-N-RSHSDT(Vu, Curiel-Sosa, and Bui 2018b) 1.4406 1.5027 1.5026 1.5153 1.5432 1.5704
Present 1.4386 1.4782 1.5004 1.5131 1.5409 1.5680

1 Ritz-3D (Li, Iu, et al. 2008) 1.2447 1.3018 1.3351 1.3552 1.3976 1.4413
SSDT (Zenkour 2005) 1.2433 1.3002 1.3489 1.3534 1.4079 1.4393
TSDT (Zenkour 2005) 1.2432 1.3001 1.3489 1.3533 1.4079 1.4393
MK-N-RSHSDT(Vu, Curiel-Sosa, and Bui 2018b) 1.2402 1.2969 1.3301 1.3499 1.3921 1.4355
Present 1.2384 1.2950 1.3281 1.3479 1.3900 1.4334

5 Ritz-3D (Li, Iu, et al. 2008) 0.9448 0.9810 1.0294 1.0453 1.1098 1.1757
SSDT (Zenkour 2005) 0.9463 0.9820 1.0744 1.0448 1.1474 1.1740
TSDT (Zenkour 2005) 0.9460 0.9818 1.0743 1.0447 1.1473 1.1740
MK-N-RSHSDT(Vu, Curiel-Sosa, and Bui 2018b) 0.9439 0.9796 1.0283 1.0421 1.1064 1.1709
Present 0.9427 0.9783 1.0267 1.0406 1.1047 1.1692

10 Ritz-3D (Li, Iu, et al. 2008) 0.9273 0.9418 0.9893 0.9952 1.0610 1.1247
SSDT (Zenkour 2005) 0.9288 0.9433 1.0455 0.9952 1.0415 1.1346
TSDT (Zenkour 2005) 0.9284 0.9430 1.0386 0.9955 1.1053 1.1231
MK-N-RSHSDT(Vu, Curiel-Sosa, and Bui 2018b) 0.9265 0.9409 0.9900 0.9932 1.0587 1.1203
Present 0.9253 0.9396 0.9884 0.9918 1.0570 1.1186



the IGA-S-FSDT, IGA-FSDT (Yin et al. 2014) and IGA-HSDT (Tran, Ferreira, and Nguyen-Xuan

2013), Semi-analytical-FSDT (Hosseini-Hashemi, Fadaee, and Es’haghi 2010) and UM with FSDT

(Ebrahimi, Rastgoo, and Atai 2009) solutions.
It is also worth pointing out that by increasing the thickness-radius ratios of the circular plate,

the magnitudes of natural frequency are increasing. This is attributed to the increase in the plate

thickness thereby increasing the overall stiffness of the plate. Figure 7 plots the first six mode

shapes of the circular plate with clamped periphery and gradient index g ¼ 1: We further investi-

gate the influences of the boundary condition and gradient index on the fundamental frequency

of the IF clamped circular plate. The first plate natural frequencies ~w1 are presented in Table 9.

As observed from this table, present results are in good agreement with the solutions obtained by

IGA-FSDT and IGA-S-FSDT methods given by Yin et al. (2014). It should be noted that plate

natural frequencies with clamped boundary are higher than those of both free and roller bounda-

ries along the plate’s periphery since the overall stiffness of the plate with clamped boundary is

highest. However, increasing the gradient index value leads to reduction of magnitudes of the

plate natural frequency due to lower the stiffness of the plate. Let us consider a sandwich FCHS

ð1=8=1Þ square plate with the gradient index is fixed at g ¼ 1 and two sides-thickness ratios

a=h ¼ 10 and 100: Its top and bottom faces are alumina and aluminum, respectively.

The normalized natural frequency ~x ¼ xða2=hÞ
ffiffiffiffiffiffiffiffiffiffiffiffi

q0=E0
p

with q0 ¼ 1:0 and E0 ¼ 1:0 is com-

puted by the present method for different types of plate boundary conditions of SSSS, CCCC and

Figure 9. Compressive in-plane forces applied to plates: (a) along the x axis ðf1 ¼ �1, f2 ¼ 0Þ; (b) along the y axis ðf1 ¼
0, f2 ¼ �1Þ; (c) biaxial axes ðf1 ¼ �1, f2 ¼ �1Þ; (d) radial direction.



tabulated in Table 10. It can be seen that the present results match excellently with Ritz-3D (Li, 
Iu, et al. 2008) solutions and are very close to the MK-N-RSHSDT (Vu, Curiel-Sosa, and Bui 
2018b) solutions in cases of thin and thick plate. Furthermore, the increasing ratio a=h gains an 
increase with respect to the plate natural frequency because of increasing the material rigidity. As 
the plate boundary condition changes from CCCC to SSSS leading to the structure stiffness 
decrease, and the plate fundamental frequency decreases, as expected. Moreover, the thin plates 
are slightly more sensitive than the thick plate to material rigidity, this effect is a little lesser for 
CCCC plates as compared with SSSS plates. Figure 8 illustrates the first six mode shapes of the 
plate with fully clamped at all edges.

Another comparative verification of evaluating free vibration for sandwich Al=Al2O3 HCFS 
square plate with the SSSS boundary condition and the ratio a=h ¼ 10 using different layer ratios 
and gradient indices is considered. Table 11 presents a comparison of the first mode of the plate, 
non-dimensional natural frequency x~ 1 for six layer ratios and the gradient index g ¼ 0:5, 1, 5 
and 10 among the present approach and the other available methods such as the Ritz-3D (Li, Iu, 
et al. 2008), SSDT and TSDT (Zenkour 2005) and MK-N-RSHSDT (Vu, Curiel-Sosa, and Bui 
2018b). Again, the obtained results are almost identical with those calculated by the 
Ritz-3D method.

It is also worth-mentioning that the frequencies increase with the decreasing amount of metal in 
the HCFS plate, and the effect of gradient index g on 1 � 0 � 1 HCFS plate which is without

Table 12. Comparison of the buckling loadNcr of IF rectangular platesAl=Al2O3 using the ratio a=h ¼ 100:

g Methods

a=b ¼ 1:5 a=b ¼ 1:0

ðf1, f2Þ f1, f2Þð
–1,0 0,–1 –1,–1 –1,0 0,–1 –1,–1

(a) SFSF 
1 0.0714 0.1305 0.0702 0.1630 0.3497 0.1596

0.0714 0.1305 0.0702 0.1630 0.3497 0.1712
0.0716 0.1329 0.0705 0.1632 0.3535 0.1602
0.0708 0.1268 0.0695 0.1619 0.3397 0.1582
0.0721 0.1315 0.0710 0.1641 0.3532 0.1608

2 0.0557 0.1018 0.0548 0.1272 0.2729 0.1245
0.0557 0.1019 0.0548 0.1272 0.2729 0.1245
0.0552 0.0989 0.0542 0.1264 0.2651 0.1235

IGA-S-FSDT (Yin et al. 2014)
Levy (Mohammadi, Saidi, and Jomehzadeh 2010) 
MK-R-STSDT(Vu et al. 2018a)
MK-N-RSHSDT(Vu, Curiel-Sosa, and Bui 2018b) 
Present
IGA-S-FSDT (Yin et al. 2014)
Levy (Mohammadi, Saidi, and Jomehzadeh 2010) 
MK-N-RSHSDT(Vu, Curiel-Sosa, and Bui 2018b) 
Present 0.0562 0.1034 0.0553 0.1288 0.2764 0.1262

(b) SSSS 
1 0.7429 0.3571 0.2472 0.6846 0.6846 0.3423

0.7430 0.3572 0.2473 0.6848 0.6848 0.3424
0.7478 0.3577 0.2477 0.6850 0.6850 0.3425
0.7398 0.3412 0.2361 0.6695 0.6695 0.3347
0.7500 0.3587 0.2486 0.6840 0.6840 0.3420

2 0.5797 0.2787 0.1929 0.5342 0.5342 0.2671
0.5798 0.2787 0.1930 0.5343 0.5343 0.2672
0.5838 0.2791 0.1933 0.5346 0.5346 0.2673
0.5325 0.2663 0.1843 0.5225 0.5225 0.2613

IGA-S-FSDT (Yin et al. 2014)
Levy (Mohammadi, Saidi, and Jomehzadeh 2010) 
MK-R-STSDT (Vu et al. 2018a)
MK-N-RSHSDT (Vu, Curiel-Sosa, and Bui 2018b) 
Present
IGA-S-FSDT (Yin et al. 2014)
Levy (Mohammadi, Saidi, and Jomehzadeh 2010) 
MK-R-STSDT (Vu et al. 2018a)
MK-N-RSHSDT (Vu, Curiel-Sosa, and Bui 2018b) 
Present 0.5995 0.2826 0.1957 0.5429 0.5429 0.2715

(c) SCSC 
1 1.2177 0.8622 0.6448 1.3161 1.1542 0.6554

1.2181 0.8622 0.6450 1.3167 1.1544 0.6556
1.2167 0.8649 0.6455 1.3224 1.1694 0.6579
1.2200 0.8684 0.6467 1.3048 1.1538 0.6489
1.2239 0.8788 0.6517 1.3417 1.1850 0.6709

2 0.9502 0.6728 0.5031 1.0270 0.9006 0.5114
0.9506 0.6728 0.5033 1.0274 0.9008 0.5116
0.9511 0.6758 0.5045 1.0342 0.9145 0.5142
0.9541 0.6783 0.5050 1.0200 0.9010 0.5070

IGA-S-FSDT (Yin et al. 2014)
Levy (Mohammadi, Saidi, and Jomehzadeh 2010) 
MK-R-STSDT (Vu et al. 2018a)
MK-N-RSHSDT (Vu, Curiel-Sosa, and Bui 2018b) 
Present
IGA-S-FSDT (Yin et al. 2014)
Levy (Mohammadi, Saidi, and Jomehzadeh 2010) 
MK-R-STSDT (Vu et al. 2018a)
MK-N-RSHSDT (Vu, Curiel-Sosa, and Bui 2018b) 
Present 0.9550 0.6850 0.5077 1.0352 0.9192 0.5217



the homogeneous core layer is greater than that of 1� 2� 1 HCFS plate with homogeneous
hardcore. Thus, it can be concluded that the developed RAESDT with meliorated MKI meshless
method produce the results with good accuracies for the FG plate free vibration problems.

4.4. Buckling analysis

In this section, numerical examples in predicting the buckling loads of FG plates are presented
and compared with results obtained by various methods available in the literature. The in-plane
compression loads applied to the plate are depicted as Figure 9a–c for the rectangular plate. By
imposing the equilibrium requirements, pre-buckling forces are expressed as follows:

Figure 10. Buckling modes of the SFSFAl=Al2O3 IF rectangular plate with g ¼ 1, a=b ¼ 0:5, a=h ¼ 100 and ðf1 ¼ �1, f2 ¼ 0Þ :
(a) Mode shape 1, (c) Mode shape 2, (d) Mode shape 3, (e) Mode shape 4, (f) Mode shape 5, (h) Mode shape 6.



r0x ¼ f1p , r0y ¼ f2p , s0xy ¼ 0 (38a, 38b, 38c)

where p denotes the in-plane loading; f1, f2 are state factors, i.e., these values are negative or posi-

tive determining that compression or tension states, respectively.
Firstly, a thin IF rectangular Al=Al2O3 plate having a=h ¼ 100 with the different gradient

indices, boundary conditions and ratios of aspect ratios a=b under the biaxial or uniform com-

pressive loading. Table 12 presents the normalized buckling load N cr ¼ Ncra
2=Dm, where Dm ¼

Emh
3=12ð1� t2Þ given by the present RAESDT and reference methods.
From the table results. It is clear that present results agree well with those obtained by the

numerical method IGA using S-FSDT theory (Yin et al. 2014), and MK-based meshless method

using R-STSDT (Vu et al. 2018a) and N-RSHSDT (Vu, Curiel-Sosa, and Bui 2018b) theories and

the analytical solutions published in the literature (Mohammadi, Saidi, and Jomehzadeh 2010).
As the plate boundary types from SCSC, SSSS to SFSF, the structural stiffness of the plates is

decreased, as a result, the buckling load values are decreased.
However, by decreasing gradient indices, the magnitudes of the buckling load are increasing. It

is worth noting that the magnitudes of buckling load obtained from the biaxial compressive state

are lower than those obtained from the uniform compressive loading state. The first six buckling

mode shapes with the plate aspect ratio a=b ¼ 1:5 and gradient index g ¼ 1 under the uniform

compression along the y-axis are shown in Figure 10.
Next, an Al=ZrO�

2 thick IF circular plate subjected to the radial compressive load p(see Figure

9d) is considered to validate the accuracy of the proposed theory with meliorated MKI based

meshless method. Material properties of the circular plate are also calculated by the mixture rule

given by Eq. (39). In Table 13, a comparison of the normalized critical buckling loads ~N cr ¼
NcrR

2p=Dm for the circular plate with the different gradient indices, thickness-to-radius ratios,

and boundary conditions are realized, with the analytical methods of TSDT (Ma and Wang 2004)

and unstrained TSDT (Saidi, Rasouli, and Sahraee 2009). From the results, it can be seen that the

results of proposed RAESDT agree well with those obtained by the analytical methods for all

Table 13. Comparison of the buckling load ~Ncr of thick IF circular plateAl=ZrO�
2:

h=R Methods g ¼ 0 g ¼ 0:5 g ¼ 2 g ¼ 5 g ¼ 10

(a) Roller supported boundary
0.10 TSDT (Ma and Wang 2004) 4.1502 5.7196 6.7780 7.4701 7.9733

Unstrained TSDT (Saidi, Rasouli, and Sahraee 2009) 4.1503 5.7198 6.7783 7.4697 7.9730
Present 4.2357 5.8986 6.9932 7.6589 8.1510

0.20 TSDT (Ma and Wang 2004) 4.0077 5.5213 6.5671 7.2408 7.7213
Unstrained TSDT (Saidi, Rasouli, and Sahraee 2009) 4.0079 5.5217 6.5672 7.2407 7.7211
Present 4.0914 5.6938 6.7757 7.4254 7.8944

0.25 TSDT (Ma and Wang 2004) 3.9072 5.3819 6.4176 7.0783 7.5424
Unstrained TSDT (Saidi, Rasouli, and Sahraee 2009) 3.9072 5.3819 6.4179 7.0779 7.5425
Present 3.9925 5.5534 6.6259 7.2642 7.7172

0.30 TSDT (Ma and Wang 2004) 3.7911 5.2206 6.2437 6.8893 7.3353
Unstrained TSDT (Saidi, Rasouli, and Sahraee 2009) 3.7911 5.2208 6.2441 6.8892 7.3348
Present 3.8812 5.3957 6.4567 7.0820 7.5169

(b) Clamped boundary
0.10 TSDT (Ma and Wang 2004) 14.0890 19.4110 23.0740 25.4390 27.1330

Unstrained TSDT (Saidi, Rasouli, and Sahraee 2009) 14.0890 19.4130 23.0750 25.4420 27.1310
Present 14.4787 20.0042 23.7855 26.1792 27.8947

0.20 TSDT (Ma and Wang 2004) 12.5740 17.3110 20.8030 22.9710 24.4230
Unstrained TSDT (Saidi, Rasouli, and Sahraee 2009) 12.5750 17.3100 20.8050 22.9690 24.4220
Present 12.9268 17.8365 21.4519 23.6457 25.1096

0.25 TSDT (Ma and Wang 2004) 11.6380 16.0130 19.3770 21.4140 22.7250
Unstrained TSDT (Saidi, Rasouli, and Sahraee 2009) 11.6390 16.0120 19.3780 21.4120 22.7250
Present 11.9962 16.5395 20.0303 22.0973 23.4140

0.30 TSDT (Ma and Wang 2004) 10.6700 14.6720 17.8820 19.7800 20.9480
Unstrained TSDT (Saidi, Rasouli, and Sahraee 2009) 10.6700 14.6720 17.8810 19.7780 20.9490
Present 11.0591 15.2356 18.5808 20.5146 21.6868



gradient indices, thickness-to-radius ratios, and boundary conditions. It is relevant to conclude
that increasing the thickness-to-radius ratio and decreasing gradient index g result in a reduction
in the plate stiffness which is leading to decreasing buckling loads. The first ten buckling mode

Figure 11. Buckling modes of clampedAl=ZrO�
2 IF circular plate (g ¼ 5, h=R ¼ 0:1).



shapes for the circle plate with h=R ¼ 0:1 and g ¼ 5 are shown in Figure 11. Last, an HCFS
square plate with all edges SSSS and the ratio a=h ¼ 10: Plate core is a pure ceramic, while top
and bottom skins are metal-rich surfaces. Young modulus of the metal and ceramic constituents
is expressed as Ec ¼ 380E0 and Em ¼ 70E0 with E0 ¼ 1, respectively. The critical load is normal-

ized by N
_

cr ¼ Ncra
2=100E0h

3: For checking the present method accuracy, numerical solutions for
different plate layer ratios and graded indices in the case of the uniaxial and biaxial compressive
forces are compared with those generated by TSDT (Reddy 2000), quasi-3D-HSDT (Baferani,
Saidi, and Jomehzadeh 2011), SSDT (Zenkour 2005), and MK-N-RSHSDT (Vu, Curiel-Sosa, and

Table 14. Comparison of the buckling load N
_

cr of SSSS square plates HCFS Al=Al2O3 with a=h ¼ 10 under uni-axial
compression.

g
Methods

Layer ratios of plate HCFS

ð1=0=1Þ ð2=1=2Þ ð2=1=1Þ ð1=1=1Þ ð2=2=1Þ ð1=2=1Þ
0 SSDT (Zenkour 2005) 13.0061 13.0061 13.0061 13.0061 13.0061 13.0061

TSDT (Reddy 2000) 13.0050 13.0050 13.0050 13.0050 13.0050 13.0050
Quasi-3D-HSDT (Baferani, Saidi, and Jomehzadeh 2011) 12.9529 12.9529 12.9529 12.9529 12.9529 12.9529
MK-N-RSHSDT (Vu, Curiel-Sosa, and Bui 2018b) 13.0031 13.0031 13.0031 13.0031 13.0031 13.0031
Present 13.0923 13.0923 13.0923 13.0923 13.0923 13.0923

1 SSDT (Zenkour 2005) 5.1685 5.8412 6.1946 6.4654 6.9498 7.5063
TSDT (Reddy 2000) 5.1671 5.8401 6.1939 6.4647 6.9494 7.5066
Quasi-3D-HSDT (Baferani, Saidi, and Jomehzadeh 2011) 5.0614 5.7114 6.0547 6.3150 6.7841 7.3200
MK-N-RSHSDT (Vu, Curiel-Sosa, and Bui 2018b) 5.1676 5.8401 6.1941 6.4640 6.9489 7.5043
Present 5.2043 5.8810 6.2369 6.5083 6.9963 7.5544

5 SSDT (Zenkour 2005) 2.6601 3.0441 3.4045 3.5806 4.1129 4.7349
TSDT (Reddy 2000) 2.6582 3.0426 3.4035 3.5796 4.1121 4.7347
Quasi-3D-HSDT (Baferani, Saidi, and Jomehzadeh 2011) 2.6365 3.0079 3.3626 3.5301 4.0507 4.6470
MK-N-RSHSDT (Vu, Curiel-Sosa, and Bui 2018b) 2.6600 3.0438 3.4055 3.5800 4.1136 4.7336
Present 2.6805 3.0663 3.4302 3.6056 4.1429 4.7657

10 SSDT (Zenkour 2005) 2.4893 2.7484 3.1344 3.1946 3.1457 4.3818
TSDT (Reddy 2000) 2.4873 2.7463 3.0919 3.1947 3.7075 4.2799
Quasi-3D-HSDT (Baferani, Saidi, and Jomehzadeh 2011) 2.4722 2.7205 3.0607 3.1576 3.6617 4.2055
MK-N-RSHSDT (Vu, Curiel-Sosa, and Bui 2018b) 2.4894 2.7479 3.0940 3.1955 3.7095 4.2793
Present 2.5090 2.7687 3.1168 3.2187 3.7363 4.3086

Table 15. Comparison of the buckling load N
_

cr of SSSS square plates HCFS Al=Al2O3 using a=h ¼ 10 under bi-axial
compression.

g Methods

Layer ratios of plate HCFS

ð1=0=1Þ ð2=1=2Þ ð2=1=1Þ ð1=1=1Þ ð2=2=1Þ ð1=2=1Þ
0 SSDT (Zenkour 2005) 6.5030 6.5030 6.5030 6.5030 6.5030 6.5030

TSDT (Reddy 2000) 6.5025 6.5025 6.5025 6.5025 6.5025 6.5025
HSDT (Baferani, Saidi, and Jomehzadeh 2011) 6.4764 6.4764 6.4764 6.4764 6.4764 6.4764
MK-N-RSHSDT(Vu, Curiel-Sosa, and Bui 2018b) 6.5022 6.5022 6.5022 6.5022 6.5022 6.5022
Present 6.5470 6.5470 6.5470 6.5470 6.5470 6.5470

1 SSDT (Zenkour 2005) 2.5842 2.9206 3.0973 3.2327 3.4749 3.7531
TSDT (Reddy 2000) 2.5836 2.9200 3.0970 3.2324 3.4747 3.7533
HSDT (Baferani, Saidi, and Jomehzadeh 2011) 2.5307 2.8557 3.0273 3.1575 3.3920 3.6600
MK-N-RSHSDT(Vu, Curiel-Sosa, and Bui 2018b) 2.5840 2.9203 3.0973 3.2322 3.4747 3.7524
Present 2.6024 2.9407 3.1187 3.2545 3.4985 3.7776

5 SSDT (Zenkour 2005) 1.3300 1.5220 1.7022 1.7903 2.0564 2.3674
TSDT (Reddy 2000) 1.3291 1.5213 1.7018 1.7898 2.0561 2.3673
HSDT (Baferani, Saidi, and Jomehzadeh 2011) 1.3183 1.5040 1.6813 1.7650 2.0254 2.3235
MK-N-RSHSDT(Vu, Curiel-Sosa, and Bui 2018b) 1.3301 1.5220 1.7028 1.7901 2.0569 2.3670
Present 1.3403 1.5333 1.7152 1.8029 2.0716 2.3830

10 SSDT (Zenkour 2005) 1.2448 1.3742 1.5672 1.5973 1.5729 2.1909
TSDT (Reddy 2000) 1.2436 1.3732 1.5460 1.5974 1.8538 2.1400
HSDT (Baferani, Saidi, and Jomehzadeh 2011) 1.2361 1.3602 1.5303 1.5788 1.8308 2.1028
MK-N-RSHSDT(Vu, Curiel-Sosa, and Bui 2018b) 1.2448 1.3740 1.5471 1.5979 1.8549 2.1398
Present 1.2546 1.3844 1.5585 1.6095 1.8683 2.1544



Figure 12. First eight buckling modes of the SSSSAl=Al2O3 square plate HCFS ð1=2=1Þ with g ¼ 5, a=h ¼ 10 and ðf1 ¼
�1, f2 ¼ 0Þ : (a) Mode 1, (b) Mode 2, (c) Mode 3, (d) Mode 4, (e) Mode 5, (f) Mode 6, (g) Mode 7, (h) Mode 8.



Figure 13. First eight buckling modes of the SSSSAl=Al2O3 square plate HCFS ð1=2=1Þ with g ¼ 5, a=h ¼ 10 and ðf1 ¼
�1, f2 ¼ �1Þ : (a) Buckling mode 1, (b) Buckling mode 2, (c) Buckling mode 3, (d) Buckling mode 4, (e) Buckling mode 5, (f)
Buckling mode 6, (g) Buckling mode 7, (h) Buckling mode 8.



Bui 2018b) and shown in Tables 14 and 15. A good agreement for all types of scheme of plates,

graded indices and the case of compressive load is achieved. As seen from the tables that lowest

critical load values are obtained in the case of homogeneous isotropic metal plate (last rows of

Tables 14 and 15).
It is worth noting that the buckling load increases by the decrease of gradient index g, how-

ever, it decreases with decreasing the core-to-thickness ratio ðz3 � z2Þ=h . It is shown that for

both uni-axial and bi-axial compression, the buckling load decrease with the decrease of the

material rigidity, which is due to the increase of gradient index g and the decrease of the core

thickness for square plates HCFS. On the other hand, buckling loads in case of the biaxial com-

pression are a half of those obtained in the case of uniform compression for the sandwich plate.
Figures 12 and 13 plot the first eight buckling modes for the plate with the layer thickness

ratio ð1=2=1Þ and graded index g ¼ 5 in case of the uniaxial and biaxial compression,

respectively.
It can be concluded that the proposed RAESDT incorporating the MKI meshless with the new

quadrature correlation function can predict very accurately the plate critical load with different

plate geometries and layer ratios under different compression states.

5. Conclusions

A new four-unknown arctangent shear deformation theory integrated with meliorated moving

kriging interpolation-based meshless method is developed for bending, free vibration and com-

pressive buckling analyses of sandwich FG plates. The present approach describes the shear stress

distribution model across the plate thickness respecting the zero traction boundary conditions on

the top and bottom surfaces without using the external shear correction factor by an arctangent-

exponential function which is the combination of the elementary functions having many odd

powers in its series expansion, hence the proposed function is richer than third-order functions

getting the better representation of the transverse shear stress used in the plate analysis. By sepa-

rating the transverse deflection into bending and shear parts, the present theory has only four

unknowns as against five or more unknowns in the traditional HSDT, therefore, it reduces sub-

stantially the computational cost. A new quadrature correlation function is also proposed to sta-

bilize numerical solutions of the traditional moving kriging interpolation-based meshless

approach obtaining accurate solutions. The accuracy of this method is ascertained by comparing

the obtained solutions with those generated by available methods, and excellent agreement was

observed for all study cases. The proposed formulations in this paper are general and it could be

applied for the plate analysis with complicated geometries and arbitrary boundary conditions.
It is expected that the present plate theory could be applied to FG plates and shells for both

geometric linear and nonlinear analyses using both numerical and analytical methods.

Furthermore, the proposed arctangent distributed function can be combined with quasi-3D theo-

ries with considering stretching and shear deformation effects to get a better computa-

tional efficiency.
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Appendix A

The coefficients appeared in Eq. (23b) are as follows:

~A11 ¼
ð

h=2

�h=2

~Q11dz, ~A12 ¼
ð

h=2

�h=2

~Q12dz, ~A13 ¼ 0, ~A21 ¼
ð

h=2

�h=2

~Q21dz, ~A22 ¼
ð

h=2

�h=2

~Q22dz, ~A23 ¼ 0, ~A31 ¼ 0,

~A32 ¼ 0, ~A33 ¼
ð

h=2

�h=2

~Q33dz:

~B11 ¼
ð

h=2

�h=2

z~Q11dz, ~B12 ¼
ð

h=2

�h=2

z~Q12dz, ~B13 ¼ 0, ~B21 ¼
ð

h=2

�h=2

z~Q21dz, ~B22 ¼
ð

h=2

�h=2

z~Q22dz, ~B23 ¼ 0,

~B31 ¼ 0, ~B32 ¼ 0, ~B33 ¼
ð

h=2

�h=2

z~Q33dz:



~C11 ¼
ð

h=2

�h=2

z2 ~Q11dz, ~C12 ¼
ð

h=2

�h=2

z2 ~Q12dz, ~C13 ¼ 0, ~C21 ¼
ð

h=2

�h=2

z2 ~Q21dz, ~C22 ¼
ð

h=2

�h=2

z2 ~Q22dz, ~C23 ¼ 0,

~C31 ¼ 0, ~C32 ¼ 0, ~C33 ¼
ð

h=2

�h=2

z2 ~Q33dz

~E11 ¼
ð

h=2

�h=2

gðzÞ~Q11dz, ~E12 ¼
ð

h=2

�h=2

gðzÞ~Q12dz, ~E13 ¼ 0, ~E21 ¼
ð

h=2

�h=2

gðzÞ~Q21dz, ~E22 ¼
ð

h=2

�h=2

gðzÞ~Q22dz, ~E23 ¼ 0,

~E31 ¼ 0, ~E32 ¼ 0, ~E33 ¼
ð

h=2

�h=2

gðzÞ~Q33dz

~K
e

11 ¼
ð

h=2

�h=2

zgðzÞ~Q11dz, ~K
e

12 ¼
ð

h=2

�h=2

zgðzÞ~Q12dz, ~K
e

13 ¼ 0, ~K
e

21 ¼
ð

h=2

�h=2

zgðzÞ~Q21dz, ~K
e

22 ¼
ð

h=2

�h=2

zgðzÞ~Q22dz,

~K
e

23 ¼ 0, ~K
e

31 ¼
ð

h=2

�h=2

zgðzÞ~Q31dz, ~K
e

32 ¼ 0, ~K
e

33 ¼
ð

h=2

�h=2

zgðzÞ~Q33dz

~H11 ¼
ð

h=2

�h=2

g2ðzÞ~Q11dz, ~H12 ¼
ð

h=2

�h=2

g2ðzÞ~Q12dz, ~H13 ¼ 0, ~H21 ¼
ð

h=2

�h=2

g2ðzÞ~Q21dz, ~H22 ¼
ð

h=2

�h=2

g2ðzÞ~Q22dz,

~H23 ¼ 0, ~H31 ¼
ð

h=2

�h=2

g2ðzÞ~Q31dz, ~H32 ¼ 0, ~H33 ¼
ð

h=2

�h=2

g2ðzÞ~Q33dz

~D
s

11 ¼
ð

h=2

�h=2

@f ðzÞ
@z

 �2

~G11dz, ~D
s

12 ¼ 0, ~D
s

21 ¼ 0, ~D
s

22 ¼
ð

h=2

�h=2

@f ðzÞ
@z

 �2

~G22dz

the coefficients ~Q ij, ~G ij can be calculated by

~Q11 ¼ ~Q22 ¼
EðzÞ

1� �2ðzÞ ,
~Q12 ¼ ~Q21 ¼

�ðzÞEðzÞ
1� �2ðzÞ ,

~Q13 ¼ ~Q31 ¼ ~Q23 ¼ ~Q32 ¼ 0, ~Q33 ¼
1� �ðzÞ½ �EðzÞ
2 1� �2ðzÞ½ � ,

~G11 ¼ ~G22 ¼
EðzÞ

2 1þ �ðzÞ½ � ,
~G12 ¼ ~G21 ¼ 0

Appendix B

The mass matrix m ¼
~I0 ~I1 ~I3
~I1 ~I2 ~I4
~I3 ~I4 ~I5

2

6

4

3

7

5
with coefficients are as follows:

~I0 ¼
ð

h=2

�h=2

qðzÞdz, ~I1 ¼
ð

h=2

�h=2

zqðzÞdz, ~I2 ¼
ð

h=2

�h=2

z2qðzÞdz, ~I3 ¼
ð

h=2

�h=2

gqðzÞdz, ~I4 ¼
ð

h=2

�h=2

zgqðzÞdz, ~I5 ¼
ð

h=2

�h=2

g2qðzÞdz
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