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Abstract—This paper proposes a novel anomaly detection 

method for gas sensors using spiking neural network principles. 
The synapse models with excitatory/inhibitory responses and a 
single spiking neuron are employed to develop the bio-inspired 
anomaly detector for a single gas sensor. The approach can detect 

anomalies in the data, which is collected by the gas sensor by 
identifying rapid changes rather than a magnitude threshold. In 
particular, the false-positive detections due to drifts of low-cost 
sensors are minimised using the proposed bio-inspired approach. 

Using the chemicals of surgical spirits and isobutanol as test 
substances, experiments were carried out to evaluate the proposed 
method. Results demonstrate that gas anomalies can be detected 
when the chemical substances are presented to the sensor. In 

addition, results show that the approach can detect under the 
presence of sensor drift. The proposed bio-inspired detector was 
implemented on FPGA hardware, which demonstrates relatively 
low resources. Compact and energy efficient CMOS-based 

implementations of the synapse are also available which supports 
the low-cost potential applications of this approach, e.g. use in 
safety with drones and ground robots in hazardous scene detection.  

I. INTRODUCTION 

In security and safety applications the non-invasive 
detections of unusual substances are critical, such as baggage 
screening, illegal liquid detection, air quality analysis etc. A 
common non-invasive pathway for detection is via sensing 
the air. Such systems should have the capabilities to deal 
with different conditions including: a) distinguishing the 
normal (background) and abnormal (anomaly) substances 
which are released into the air, and b) making detection 
decisions taking account of the natural daily variations, and 
also the variations caused by the environments and the 
monitoring systems themselves. The drift caused by the 
environment, or the aging of the electronic components, is 
more prominent in lower cost sensors. Therefore, detector 
systems should be able to sense the anomalies while under 
the presence of such sensor drift. Anomalies occur over time 
where concentration of the gas are sensed by a sensor. 
Spiking neural networks (SNNs) are temporal based and use 
synapses and neurons to detect patterns/changes over time. 
SNNs demonstrated the capability in detecting abnormal 
conditions such as errors and also demonstrated a compact 
area/power requirements [1]. Therefore in this paper, 
inspired by the temporal behaviours of synapses and spiking 
neurons, we explore their application for the anomaly 
detection of gases, where sensors produce dynamic/pulsing 
outputs when a gas is sensed.  This task is compounded with 
the challenges of taking into account hardware sensor drift.  

II. BIO-INSPIRED ANOMALY DETECTOR  

The neurons are the fundamental component for 
information processing in SNNs and are connected through 

synapses. When the membrane potential of the presynaptic 
neuron is greater than a threshold value, it fires and a spike 
is output. Research has shown that the synapse has different 
dynamic effects on the neuron, such as the excitatory and 
inhibitory [2]. In this paper, we use the dynamic synapse 
model which is a phenomenological model of neocortical 
synapses [2]. The amount of generated postsynaptic current 
depends on the synaptic probability of release (PR) rate, as 
the approaches of [3], [4] demonstrated that the synaptic 
neurotransmitter is released based on a failure and success 
mechanism, i.e. it is transmitted based on a probability. For 
the neuron model, the leaky integrate and fire neuron (LIF) 
model [5] is used in this approach.  

Fig. 1 shows the anomaly detection method for the sensor 
data. It includes a data encoding component, one excitatory 
synapse (ES), one inhibitory synapse (IS), and one spiking 
neuron. The ES and IS are associated with different PRs 
where the PR of ES (𝑃𝑅𝐸) is always high, and the PR of IS 
(𝑃𝑅𝐼) depends on the input data states. Based on the circuit 
in Fig. 1 and different 𝑃𝑅𝐼  assignments, the anomaly 
detection method is proposed. A rate-based encoding 
scheme is used where the sensor data (𝑆𝑑) is mapped to the 
frequency of spiking train (𝑓 ) using 𝑀𝑎𝑝𝑝𝑖𝑛𝑔: 𝑓 ← 𝑆𝑑 . 
When the presynaptic spike train is presented to the synapses 
and its frequency variation is small, 𝑃𝑅𝐼  is set high. The 
spike train initiates the ES and IS to produce an excitatory 
and inhibitory responses, respectively. When the sum of the 
two synapses is below the neuron firing threshold (𝑣𝑡ℎ) the 
neuron does not fire, i.e. no anomaly is detected. However, 
this is not the case when the frequency of input spike train 
has a rapid change. In this scenario, 𝑃𝑅𝐼 is set to low (zero) 
which prevents the IS producing the inhibitory response. 
Then, under the stimulus of ES, the neuron membrane 
potential crosses the 𝑣𝑡ℎ, and the neuron fires indicating an 
anomaly is detected. The anomalies for the sensor data is 
divided into positive and negative anomalies in this 
approach. When the sensor data has a rapid increment 
beyond the normal range, it is defined as a positive anomaly. 
Similarly, if the sensor data has a rapid decrement beyond 
the normal range, a negative anomaly occurs. For the 
positive anomaly, the 𝑃𝑅𝐼 is calculated based on 

 𝑃𝑅𝐼(𝑡) = {  
  1, 𝐼𝑆𝐼(𝑡)𝐼𝑆𝐼(𝑡 − 1) ≥ 𝑇ℎ𝑐0, 𝐼𝑆𝐼(𝑡)𝐼𝑆𝐼(𝑡 − 1) < 𝑇ℎ𝑐 (1) 

where the 𝐼𝑆𝐼 is the value of inter-spike interval, 𝑇ℎ𝑐 is the 𝐼𝑆𝐼 changing threshold which is a constant value. For the 
negative anomaly detection, the 𝑃𝑅𝐼  can be calculated 
similarly after changing the comparison with 𝑇ℎ𝑐.  



The hardware architecture of the proposed method is 
shown in Fig. 2. The encoding component converts the 
sensor data to the spike train, and the 𝑃𝑅𝐼  calculation 
component outputs the real-time 𝑃𝑅𝐼  values according to 
equation (1). The IS and ES inject the current into the 
neuron, which outputs spikes if an anomaly is detected. One 
of the key applications of this research is to apply the 
proposed method to mobile robotics which work in critical 
task applications. The modular blocks allow the tuning of the 
IS and ES synapses for different gas sensors. This hardware 
detection mechanism permits the integration to a full 
hardware SNNs in areas such as robotics [6], [7] where the 
classification of the gas anomaly can be performed. 

III. RESULTS 

Simulation results of ES, IS and neurons. In this 
experiment, the input spike train is fixed, but 𝑃𝑅𝐼 is set to be 
both low and high to observe the behaviours of the synapses 
and spiking neurons. Fig. 3 shows the ES and IS responses, 
and neuron membrane potential when 𝑃𝑅𝐼 = 1. It can be 
seen that under the stimuli of input spikes, the ES and IS 
produces the positive and negative responses, respectively, 
which negate each other when summed at the neuron side. 
Therefore, the membrane potential is very low (zero) and 
below the threshold for firing, 𝑣𝑡ℎ, and as a result the neuron 
does not fire. However, if the 𝑃𝑅𝐼 = 0, the IS does not have 
the negative response due to the low PR. The neuron 
receives the positive current from ES leading to the build-
up of the postsynaptic potential. The results in Fig. 4 show 
that when the membrane potential is greater than the 𝑣𝑡ℎ, the 
neuron fires and outputs the spikes which indicate that an 
anomaly has been detected.  

Anomaly detection of chemical gases. The proposed 
method is applied to the anomaly detection for chemical gas 
sensors where a gas sensor board is used containing six low-
cost gas sensors and a combined temperature/humidity 
sensor. The outputs of the gas sensors are all connected via 
a low-pass filter to a 12-bit ADC device which connects to 
I2C bus of a microcontroller. Each gas sensor is sensitive to 
specific substance(s). The chemical substances used in the 
experiment are surgical spirit and isobutanol. The substances 
are exposed to the gas sensors for a time period and then 
were moved away. This procedure was repeated over 10 
times for each chemical substance. The data was collected 
between across periods of 400-600 seconds by the embedded 
hardware system and was transmitted to the computer for 
data analysis. When the chemical substances are presented 
to the sensors, the output values of the sensors increases from 
its baseline value. Thus they are positive anomaly detections 
for these experiments.  

Fig. 5(a) shows the experimental results for the chemical 
substance of surgical spirit. The time points when the 
surgical spirit is close to the gas sensor were recorded 
manually which are shown by the top vertical red. It can be 
seen that when the surgical spirit is present, the sensor output 
data has a rapid change, as shown by the peaks. This rapid 
change makes the 𝑃𝑅𝐼  low and the neuron output spikes 
which indicate anomalies are detected. The time at which 
the anomaly was detection by the bio-inspired detector is 
marked by the top vertical blue squares. Fig. 5(a) 
demonstrates that the proposed method can detect the 
anomalies successfully. The advantage of the proposed 
method lies in its detection capability when the sensor 
experiences drift. This is analysed in the experiments of Fig. 

5(b) and (c). In order to evaluate the detection performance 
under the conditions of sensor drifts, a synthetic dataset was 
created based on the original dataset and a sensor drift 
parameter. For example, if the drift parameter is 50%, i.e. 
then the sensor data has an increment of zero to 50% 
proportionally from the first to the last sample. Fig. 5(b) 
shows the sensor data with a fixed 50% drift, and its anomaly 
detection results. It can be seen that even when the sensor 
has a drift, the proposed method can successfully detect the 
anomalies. The proposed method is also evaluated by a 
various drift parameter. In Fig. 5(c), the sensor value 
increases based on a 50% drift, then decreases based on 50% 
drift, as shown by dashed brown in Fig. 5(c). The top blue 
with square markers show that the proposed method is able 
to detect the anomalies under the varied drifts. Fig. 5(a-c) 
demonstrate the proposed method can detect the anomalies 
under different conditions, such as the normal, fixed and 
varied drift conditions. This capability is due to the proposed 
method using the rate of change in (1) for the detection, 
which minimises the effects of sensor drift. The proposed 
method is further evaluated for another chemical substance 
of isobutanol. Fig. 5(d-e) show the experimental results for 
regular data, and again with fixed and varied drifts. It can be 
seen that the anomalies of isobutanol are detected correctly 
under all three different conditions. In summary, Fig. 5 
demonstrates the anomaly detection capabilities of the 
proposed method, which can be used for the 
platforms/devices using the hardware chemical gas sensors.  

Hardware resource utilizations. The proposed anomaly 
detector method was implemented on the Xilinx Virtex-7 
XC7VX485TFFG1761-2 FPGA device. It uses 30 
DSP48Es, 3,504 Flip Flops and 5,035 LUTs. As the DSP48E 
is a limited resource for the FPGA devices, the usage of 
different components of the proposed method is also 
analysed. The synapse and neuron components use 22 and 5 
DSP48Es, respectively. As the top design includes some 
mathematical operations, it also uses 3 DSP48Es. It can be 
seen that the synapse component occupied the largest 
DSP48Es than others due to its complex model. However, 
this can be minimised using the CMOS implementations [1] 
or approximations [8], e.g. the authors have prototyped a 
highly optimised CMOS-based hardware dynamic synapse, 
shown to consume only 2.4 × 10−7𝑚𝑚2 in area [1]. This 
demonstrates the advantages of low cost hardware 
implementations over conventional approaches (e.g. [9]). 
Therefore, the proposed anomaly detector method make it 
possible to be used in embedded hardware systems (which is 
one main aim of this research and future work), such as the 
robotic mobile car [10]. 

IV. CONCLUSION 

In this paper, a novel bio-inspired anomaly detection 
method was proposed. It uses the excitatory/inhibitory 
synapses and spiking neuron to detect the anomalies for the 
chemical gas sensor data. Experimental results showed that 
the proposed method can minimise the false-positive 
detections due to the sensor drift problems. The hardware 
implementation results demonstrate the potential for 
efficient use in embedded systems such as robots with a 
range of possible applications (e.g. security, hazardous scene 
assessment).   
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Fig. 1. Bio-inspired anomaly detector including an encoding component, 

one ES and IS, and one neuron. The ES and IS are associated with 𝑃𝑅𝐸 and 𝑃𝑅𝐼 , respectively. 
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Fig. 2. Hardware architecture of the proposed method. 

 

 

Fig. 3. Simulation results when 𝑃𝑅𝐼 = 1. If this case, the ES and IS 

produce the positve and negtive responses, respectively, which negate each 

other when summed at the neuron side and thus the membrance potential of 

the neuron is very low (zero). 

 

Fig. 4. Simulation results when 𝑃𝑅𝐼 = 0. In this case, the ES produces the 

positve responses and the IS does not have a negtive response due to low 𝑃𝑅𝐼 . This enables the builds up of the membrance potential. When it is 

greater than the threshold, the neuron fires. 
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Fig. 5. Anomaly detection results for the surgical spirit (shown by (a-c)) and isobutanol (shown by (d-f)). (a, d). Regular sensor data without drift. (b, e). Fixed 

drift of 50%. (c, f). Varied drifts. The black bottom represents the sensor data. The top vertical red with star marker represents the manually recorded time point 

when the gas is presented to gas sensor. The top vertical blue with square marker represents the time point when the anomaly is detected using the proposed 

method. 

 

 

 

 

 

 


