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ABSTRACT

Third order time and frequency analysis has exhib-

ited great potential for correlation analysis of multi-sensor

datasets, but is usually presented as separate time domain

and frequency domain approaches. A combined framework

of both frequency domain and time domain has rarely been

used. This paper proposes a non-parametric third order time

and frequency domain framework which used two dimen-

sional Fourier transforms to bridge the gap between time

domain and frequency domain. A unified framework offers

flexibility and efficiency to apply to data. In this paper we

study neural spike train data treated as stochastic point pro-

cesses. In time domain direct analysis, third order cumulant

densities of spike trains are applied, which need all first-,

second- and third order product densities to be calculated

before constructing the third order cumulant density, which

brings additional challenges. The novelty in this study is that

a new framework is proposed which can offer an alternative

approach without calculating lower order quantities and can

reveal nonlinear relationship between neural recordings. The

results show that the present framework provides a novel

non-parametric method to estimate both time and frequency

domain measurements which is applicable to spike train data.

Index Terms— time domain, frequency domain, higher

order spectrum, spike trains

1. INTRODUCTION

Time and frequency domain analysis paves a way for quan-

titatively studying neural spike trains, trying to uncover the

principles of the nervous system and advance our understand-

ing of the brain. A particular scientific area is the detec-

tion of interaction between neurons, which is also known

as functional connectivity[1]. This paper uses third order

statistical signal processing methods (Third order time and

frequency analysis) to study functional connectivities among

spike trains, The motivation for this work is:

1. Recently, correlations higher than second order have

been reported to play a role in brain function. Nonlinear fir-

ing depends on third order correlations between presynaptic

spikes [2]. This higher order correlation might be an inher-

ent property of cortical dynamics existing widely in differ-

ent species[3][4]. Hence, analysis tools which can reveal the

interaction of higher order phenomenon are worthy of being

investigated.

2. The interactions between neurons are diverse and com-

plex. For example, interactions can be linear or nonlinear.

The classical and widespread techniques are second order,

for instance, cross-correlation[5] coherence[6] and Granger

Causality [7]. Less work has been done in addressing the

detection of nonlinear interactions. Third order time and fre-

quency analysis is a potential approach which can shed light

on nonlinearity study.

3. Third order statistical analysis can be undertaken either

in time or frequency domain. For the second order analysis,

a unified framework has been developed and applied to study

linear relationships[8]. This inspires the possibility that in the

third order case, a time and frequency combined framework

can be developed.

4. A combined framework can provide flexibility and effi-

ciency. For the third order point process in time domain, sec-

ond order quantities need to be calculated, but in frequency

domain, there is no need to calculate lower order measures.

For point process data, a combined framework can also give

a straightforward way to calculate confidence limits.

Higher order statistical measurements have a long his-

tory in signal processing community. Godfrey[9] used it to

analyse economic data. Brillinger and Rosenblatt [10][11]

contributed to this area by using third order cumulant den-

sity and its frequency domain spectrum. Mendel and Nikias

summarised different estimators and applications, and em-

phasised the high signal-noise ratio(SNR) of bispectra com-

pared with second order measurements[12][13]. Recently,

higher order statistics have been combined with graphic the-

ory to explore network analysis problems[14].

Most high order related approaches have been done in

either time domain[15][16] or frequency domain [17][18].

Few attempts have been made to build a combined frame-

work to bring time and frequency domain estimates together.

The reason might be lack of an efficient algorithm of multi-



dimensional Fourier transform. Since the computational

ability increases dramatically and a number of numerical cal-

culation tools have been developed, high dimensional Fourier

transfer can now be effectively computed. This paper pro-

vides a novel framework to integrate time and frequency do-

main by two dimensional Fourier transform and demonstrates

its application to point process(spike trains) data. Section 2
illustrates the mathematical detail of the proposed framework

and the estimating algorithm. Section 3 briefly introduces the

dataset under investigation and the results obtained from the

proposed framework. Section 4 concludes this methods and

discusses some potential extensions.

2. METHODS

2.1. An introduction to spike train data

Spike trains can be regarded as a realisation of stochastic

point process, essentially a recording of spikes’ occurrence

time in order, denoted by N . For this process N , the counts

of events occurring within time interval (0, t] is represented

as N(t). The differential increment is defined as dN(t) =
N(t, t+dt], which is the counts of events in a duration (t, t+
dt]. In case of spike train, the value of each time point is either

1 or 0 depending on the occurrence of a spike or not. In the

following text, different spike trains are represented by differ-

ent subscripts, for instance, the three spike trains are usually

subscripted as N0(t), N1(t) and N2(t). In this paper, spike

trains N1(t) and N2(t) are used to represent the reference

spikes and spike train N0(t) is used to represent the response

spike.

In order to apply the third order time and frequency do-

main analysis to the spike train datasets, there are two nec-

essary assumptions which must be made. Firstly, the pro-

cesses taken into account should be stationary up to order

three moment, which means the processes taken into account

have constant means and the covariances beneath order three

between them depend only on the time difference between

events. Secondly, the mixing condition of time series must

hold [19]. That is to say the processes have a short span of

dependence, which indicates that N0(t), N1(t) and N2(t) are

becoming unrelated to each other as the time differences be-

tween spike times are growing.

2.2. Unified third order time and frequency analysis

framework

This paper aims at proposing a combined time and frequency

domain framework. It is important that measurements in both

domains can be estimated independently. In this paper, the

terms forward transform and backward transform are in pref-

erence, which represent transform from time domain to fre-

quency domain and the reverse transform respectively.

In the forward transform phase, the disjoint Fourier

transform[6][8] will be used to estimate the basic frequency

domain spectral parameter dTN0
(λ),dTN1

(µ) and dTN2
(λ+ µ).

The cross-bispectrum, f012(λ, µ) among three different

spike trains N0, N1 and N2 is defined as[20]:

f012(λ, µ) = lim
T→∞

1

(2π)
2
T
E{dTN0

(λ)dTN1
(µ)dTN2

(λ+ µ)}

(1)

This definition considers averaging the product of triplets

of finite Fourier transforms at each frequency. Based on this

consideration, the disjoint section method can be taken into

account using a average over all segments. Hence, a estimate

of cross bispectrum is calculated as:

f̂012(λ, µ) =
1

(2π)
2
LT

L∑
l=1

dTN0
(λ, l)dTN1

(µ, l)dTN2
(λ+ µ, l)

(2)

where T denotes the length of each disjoint segment, L de-

notes the number of segments, l indicates the index of seg-

ment, and overbar represents complex conjugate.

The equation(2) above gives a direct way to interpret the

sense of bispectrum. The third order cross spectrum quan-

tifies the dependency among spike train N0 at λ frequency,

spike train N1 at µ frequency and spike train N2 at (λ + µ)
frequency.

Suppose point processes N0, N1 and N2 have mean rates

P0, P1 and P2 respectively. The third-order cumulant density

is analytically defined as[15]:

q012(u, v)dudvdt = E{(dN0(t+ u)− P0du)

(dN1(t+ v)− P1dv)(dN2(t)− P2dt)}
(3)

where the lag variables u and v are associated with the

timing convention used to represent the time intervals be-

tween three arbitrarily selected spikes, each recorded from a

different spike train, N0,N1,N2. In this paper, v represents

the time lag between a event in spike train N1 and a reference

event in spike train N2, u represents the time lag between a

event in spike train N0 and a reference event in spike train N2

and therefore u− v represents the time lag between a event in

spike train N0 and a reference event in spike train N1.

By simultaneously applying the expectation operator ex-

panding the second- and third- order product densities[6] on

equation(3) gives:

q012(u, v) = P012(u, v)− P01(u− v)P2 − P02(u)P1

− P12(v)P0 + 2P0P1P2

(4)

where P012 denotes the third order cross product density

and P01,P02 and P12 denote the pairwise second order cross

product densities.

The form of equation(4) above indicates an interpretation

for the third order cumulant density. Under a situation of spe-

cific distances u and v between three spikes, the first term on

the right side of equation(4) is the third order product den-

sity. Contributions provided by pairwise linear interaction



between two spike trains and a third independent one, which

are represented by the second, third and forth terms on the

right side, are subtracted. There is one scenario that this con-

tribution could possibly result from three independent spike

trains. From the equation(4), this contribution has been re-

moved three times, so a two times of this contribution, repre-

sented by the last term on the right, should be compensated

back to the third order cumulant density.

The estimation can be obtain based on equation(4). Let

a set {ri} represent the spike times of spike train N0, where

i = 1, 2, ..., N0(R). Similarly, sets {sj} and {tk} are defined

for spike trains N1 and N2, for j = 1, 2, ..., N1(R) and k =
1, 2, ..., N2(R), respectively.

The third order cross-correlation histogram of three spike

trains, N0, N1 and N2 may be expressed as:

JR
012(u, v) = counts{(ri, sj , tk), u−

b

2
< ri − tk < u+

b

2
,

v −
b

2
< sj − tk < v +

b

2
}

(5)

Successively, the unbiased third order product density is esti-

mated as:

P̂012(u, v) =
JR
012(u, v)

b2R
(6)

where counts{S} is the number of events in set S, b is

the width of a bin centralised at lag v and R is the duration of

the spike trains.

This procedure can also be applied to the second order

scenario. The second order histogram and product density

are achieved in a similar way.

Finally, the mean rate of a spike train, for example, for N0

can be estimated straightforwardly as:

P̂0 = N0(R)/R (7)

.

Throughout this procedure, all the terms on the right side

of equation(4) is estimated, then the third order cumulant den-

sity estimator can be achieved by substituting these terms into

equation(4) respectively.

Based on the assumption that all three signals considered

here are Poisson spike trains, a 95% confidence interval has

been derived accordingly as[21]:

ˆV ar[q̂012] = P̂0P̂1P̂2/Rb2 (8)

where b is the bin width parameter and T is the recording

length of time.

Then under the null hypothesis of independence, an ap-

proximate 95% confident interval can be constructed as[21]:

[0−1.96(P̂0P̂1P̂2/Rb2)1/2, 0+1.96(P̂0P̂1P̂2/Rb2)1/2] (9)

The term forward transform refers to transform from tem-

poral cumulant density q012 to cross-bispectrum f012 and

the term Backward transform refers to transform from cross-

bispectrum f012 to temporal cumulant density q012. These

transforms need two dimensional Fourier transform and In-

verse Fourier transform. The Forward-Backward transform is

summarised here :

2π2f012(λ, µ) =

∫ ∫
e−i(λu+µv)q012(u, v)dudv (10)

q012(u, v) =

∫ ∫
ei(uλ+vµ)f012(λ, µ)dλdµ (11)

Equations (10) and (11) can be combined with frequency

and time domain estimates described by equations (2) and (4)

respectively to construct the whole framework proposed to-

gether.

By contrasting equation(11) to equation(4) and all equa-

tions associated to (4), e.g. equations (5)-(7), The simplic-

ity and conciseness of this combined framework have been

achieved, which is what we highlighted in this paper. All cal-

culation requirement of the lower order terms can be avoided

due to the flexibility provided by this framework.

3. APPLICATIONS AND RESULTS

3.1. Application to simulated network

This section will illustrate applications of the framework pro-

posed in this paper by using a simulated network of 3 con-

nected neurons. Single neurons were modelled using a bio-

physical point neurone conductance model[21]. In this spe-

cific configuration, spiking activity of neurons 1 and 2 induce

inputs for neuron 0 convergently.
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Fig. 1. (a) and (b) are section of this peak along the vertical

and horizontal direction, along with the confidence limit(two

dashed horizontal lines) and null value(solid horizontal line)

based on the assumption of uncorrlated spike trains.

Figure 1 shows the estimated cumulant density obtained

using the proposed framework. The results shows significant

values near the origin and a peak can be identified at the point

(u, u−v) = (2, 2) in figure 1. Based on the timing convention

set out in equation(3), the short duration peak indicates that

the presence of a significant third order interaction at these



latencies which results in an increased output rate. To illus-

trate the cumulant density over a time lag pair plane (u, u−v)
needs a simple matrix manipulation to map the estimated re-

sult using equation(11) which is represented as a function of

time lag pairs (u, v).

3.2. Application to experimental dataset
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(e) Log-spec of one CA3 spike

Fig. 2. Contour figure of Estimated cumulant density. Peaks

can be seen around origin which indicates very short delays,

and can be seen in the interval where the value u-v ranges

between [35, 45]ms.(d) and (e) are the log-spectral of the CA1

spike train and one of the CA3 spike trains

In this dataset, single unit spike trains signals simultane-

ously recorded from four different hippocampal regions (left

and right CA1 and CA3) in isoflurane-anaesthetized Lister-

hooded rats were analysed[22]. The hippocampus is a widely

studied brain region that is important in learning and mem-

ory. The data used in this analysis is from the neuronal spike

trains during the basal recording period before evoking drug-

induced epileptiform activity. The analysis was conducted on

a 300 seconds duration epoch.

Figure 2 shows the estimated cumulant density q012(u, u−
v), using equation(11). The timing convention is that lags u

and (u-v) in ms represent the time to previous input spikes

from two CA3 neurons onto one CA1 neuron. Two regions

where there are significant features can be identified. These

are highlighted in the two sections at fixed u lags of 6 ms and

7 ms shown in figures 2(b) and 2(c). These sections indicate

that significant third order interactions can occur when the

third spike is between 5-10 ms or between 35-45 ms prior to

the CA1 spike. The lags in figure 2(a) indicate that the two

inputs spikes have a time difference of less than 5 ms. Figure

2(d) and (e) show auto-spectral estimates for the CA1 spike

and one of the two CA3 spikes. The dominant feature in each

spectrum is a peak around 25 Hz, representing corresponding

mean rate of each spike. The advantage of the estimate from

Frequency domain is that it does not require calculation of

1st 2nd and 3rd order product densities.

4. CONCLUSION

In this paper, an approach of third order time and frequency

analysis was presented. This approach contains forward and

backward transforms using two dimensional Fourier trans-

form to bridge them. The aim of presenting this approach is to

achieve a unified framework to integrate higher order statis-

tics separated in time domain and frequency domain. It offers

flexibility and simplicity to start from direct frequency do-

main estimate to construct the indirect time domain estimate

by avoiding calculating the second order product densities,

which represents a considerable computationally efficiency.

Analysis of a simulated dataset and an experimental

dataset showed that the third order time frequency analy-

sis can identify higher order interactions between neurons.

The results achieved by adopting this framework help to re-

veal the higher order pattern which is beyond the scope of

linear analysis.

Further investigation should be applied to different fre-

quency domain measurements, for example, bicoherence and

phase information.Phase information implies time lag, a fur-

ther validation of phase estimates comparing with time lags

can be integrated in this framework in the future. This frame-

work may not be limited only to point process, there is a

potential to extend its application to hybrid dataset including

both point process signals and continuous datatype like EEG

signals.



5. REFERENCES

[1] Mikail Rubinov and Olaf Sporns, “Complex network

measures of brain connectivity: uses and interpreta-

tions,” Neuroimage, vol. 52, no. 3, pp. 1059–1069,

2010.

[2] Alexandre Kuhn, Ad Aertsen, and Stefan Rotter,

“Higher-order statistics of input ensembles and the re-

sponse of simple model neurons,” Neural Computation,

vol. 15, no. 1, pp. 67–101, 2003.

[3] Shan Yu, Hongdian Yang, Hiroyuki Nakahara, Gus-

tavo S Santos, Danko Nikolić, and Dietmar Plenz,
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