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Abstract

This work offers a defect segmentation approach for the nondestructive test-
ing of tunnel lining internal defects using Ground Penetrating Radar (GPR)
data. Given GPR synthetic data, it maps the internal defect structure, using
a CNN named Segnet coupled with the Lovász softmax loss function, which
enhances the accuracy, automation, and efficiency of defect identification. Ex-
periments with both synthetic and actual data show that our innovative method
overcomes problems in standard GPR data interpretation. A physical test model
with a known defect was developed and manufactured, and GPR data was ac-
quired and analyzed to verify the approach.

Keywords: Convolutional Neural Networks (CNNs), Ground Penetrating
Radar (GPR), GPR Data Intelligent Recognition, Tunnel Lining Defect

1. Introduction1

Tunnels are vital components of traffic and water-conservation projects, and2

their safe operation has always been a concern for engineers[1]. A variety of de-3

fects in tunnel lining commonly appear over the service life due to age, geological4

circumstances, and natural weathering, which can lead to tunnel instability and5

jeopardize tunnel operation safety. Defects in tunnel lining can be categorized6
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into two types: external defects, such as external cracks and leakages, which can7

be directly observed and internal defects, observable by other means. Common8

types of tunnel lining internal defects include cracks, voids, lining-rock separa-9

tion, water seepage, and other structural defects, which affect the stress and10

erosion on the tunnel differently[2–4]. It is critical to accurately classify, locate,11

and shape any lining internal defects in order to maintain the tunnel’s safety.12

Common detection methods for tunnel lining internal defects include direct13

methods for extracting centroid detection and nondestructive testing (NDT)14

techniques such as infrared thermography, multispectral analysis, ultrasonic15

pulses, and Ground Penetrating Radar (GPR), et al[5–7]. Because of its fast16

detection speeds, excellent penetrating ability, convenience, and portability[8],17

GPR is preferred for defect detection in tunnel linings. Research on tunnel18

integrity detection using GPR dates back to 1994 [9], and numerousrous re-19

searchers have investigated the performance of GPR [10–12], which has evolved20

into a discipline.21

By producing electromagnetic waves and receiving reflected signals, GPR22

may identify tunnel lining interior structures based on variances in relative di-23

electric constants. These reflected signals are hyperbolic and frequently inter-24

laced, making data interpretation challenging. To derive the relative dielec-25

tric constant model, theoretical migration imaging and inversion are frequently26

utilized[13, 14]. Furthermore, much research has been conducted on the au-27

tomated detection of abnormal objects in GPR data using pattern recognition28

and machine learning. Pasolli et al.[15] used a genetic algorithm and a sup-29

port vector machine (SVM) to perform pattern recognition and classification on30

pre-processed GPR data and achieved relatively accurate identification. Xie et31

al.[16] used SVM to extract the void signal from synthetic GPR data and col-32

lected real data through model tests to apply to the method. Although 97.74%33

accuracy was obtained, it is difficult to use their method to accurately obtain34

the position and shape of the voids. Dou et al.[17] and Zhou et al.[18], respec-35

tively, proposed a C3 clustering algorithm and an optimized stable clustering36

algorithm (OSCA) to extract complex GPR reflection signal characteristics and37

afterward fitted them to GPR reflection hyperbola parameters.38

Deep learning methods based on convolutional neural networks (CNNs) have39

brought new solutions for GPR data processing and defect recognition as artifi-40

cial intelligence has advanced rapidly in recent years. Methods such as the fully41

convolutional network (FCN)[19], U-net[20], and Segnet[21] have continuously42

developed in the realm of image and computer vision, and are now being applied43

to autopilot systems and other applications. CNNs have also been used in the44

medical field to discover and identify defects[20, 22, 23]. In geophysics, several45

investigations have been conducted using CNNs and related methods to solve46

the inversion problem[24–26]. Li and Liu et al. developed SeisInvNet based47

on fully connected and convolutional network to successfully reconstruct spatial48

velocity model from timeseries data and get a more accurate result than that by49

traditional DNNs[24]. Based on this, Liu et al. further improved SeisInvNet by50

optimizing Encoder mode, increasing applicability of SeisInvNet on the realistic51

structural model[27]. This is the bright spot and excellent progress of seismic52
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intelligent inversion technology53

CNNs have been widely employed in the detection of external faults in build-54

ings to analyze huge quantities of structural surface pictures and to identify and55

classify the defects. Young-Jin Cha et al. conducted in-depth research on this56

aspect and successfully identified concrete cracks, steel corrosion, and other57

defects using a CNN network[28, 29]. They also created a semantic damage de-58

tection network (SDDNet)[30] that was especially intended for superficial cracks59

in buildings and produced excellent results while decreasing the number of net-60

work parameters and considerably boosting computational performance. Miao61

et al.[31] used the improved U-net with a Se-ResNet block to train tunnel de-62

fects images for a highway tunnel and alleviated the imbalance problem of crack63

results; tunnel sidewall defects were accurately identified. For GPR data recog-64

nition, Nuaimy et al.[32] effectively combined GPR data processing, pattern65

recognition, and neural networks to complete high-resolution labeling, imaging,66

and classification of GPR data as early as 2000, which provided a reference for67

the application of neural networks in solving the GPR data interpretation prob-68

lem. Xu et al.[33] used vehicle-borne GPR to detect railway subgrade defects69

and applied the Faster R-CNN method to identify defect signals in GPR data.70

Their research effectively obtained the position, classification, and probability71

of defects in GPR data image. In terms of GPR detection on asphalt pave-72

ments, Tong et al.[34] designed a recognition CNN, location CNN, and feature73

extraction CNN, for the automatic recognition, location, length measurement,74

and 3D reconstruction of cracks, respectively.75

The research methods reviewed above mainly identified defect signals in GPR76

data images, allowing for accurate classification and positioning. However, it77

is necessary to improve the accuracy, automation, and efficiency of GPR data78

interpretation for tunnel linings internal defects, and to obtain the classification79

and internal structures of linings.80

We have explored the potential of mapping the tunnel lining internal struc-81

ture, including the classification, position, and form of the defects, using GPR82

data, inspired by the advancement of semantic segmentation in computer vision[19–83

21]. As a result, this article presents a novel approach for completing GPR data84

processing and obtaining information on tunnel lining internal defects, which85

we term defect segmentation. A two-dimensional sideline is employed in actual86

detection, and we reduce the issue into two-dimensional data and model. In this87

method, precise information on the tunnel lining internal material structure may88

be acquired, which is more automated and understandable, after GPR data is89

routinely processed and utilized as input. The efficiency and usefulness of tun-90

nel fault detection may be substantially improved with our method. We focus91

on effective synthetic data preparation, CNN selection and analysis, as well as92

real-world data application. The remainder of the paper is laid out as follows:93

In Section 2, we describe the characteristics of our proposed method and provide94

designed dielectric constant models and corresponding synthetic GPR data for95

the training of CNNs. We then design CNNs based on the characteristics of96

GPR data and introduced the detailed parameters of the CNNs in Section 3.97

The performance of the proposed CNN is discussed, comparing different CNNs98
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and different defects. Section 4 reports on the results obtained from analyzing99

synthetic data, whereas Section 5 focuses on evaluating the performance of the100

method using real data derived from a test model. Finally, in the conclusion,101

we summarize the paper’s contributions.102

2. Method description and GPR data preparation103

2.1. Method description104

The working principle of GPR is as follows: the electromagnetic wave excited105

by the GPR encounters the dielectric difference present in the detected area and106

the signal is reflected and acquired, allowing the structure and anomalies of the107

detected area to be inferred. In complicated internal structures, the acquired108

data is stacked with similar shapes, making it very difficult to properly separate109

them and derive meaning.110

The defect segmentation we propose addresses problems that exist in such
complex detected areas that may include rebars, surrounding rocks, and multiple
defects. The relative dielectric constant model within a tunnel lining is denoted
M , and the resultant GPR data is denoted D. M may be segmented to produce
a classification, C, of the image data reflecting the model’s components. Thus
we may characterize the task as follows:

D = f(M), (1)

C = seg(D), (2)

where seg is the mapping from GPR data D to defect segmentation M , and111

f represents the process of collecting GPR data for the internal model of the112

lining, which is shown in Fig. 1.113

For classification problems, because the dielectric constant of the same ma-114

terial is within a specific range, it is a many-to-one problem; that is, for the115

same C, D is not fixed, which is different from the inversion problem[26].116

2.2. CNN theory117

CNNs have become one of the most significant application methods of deep
learning due to their wide use in image processing. They can extract features
from the input data and then perform tasks such as classification, recognition or
prediction. Especially for semantic segmentation, CNNs achieved superior re-
sults to traditional methods due to their pixel feature extraction, weight sharing
and powerful nonlinear mapping capabilities[35]. CNN parameters θ, such as
convolution kernel and bias, can be obtained by the features and relationships
extracted from a huge number of model-data pairs, and nonlinear functions f are
constructed. Then the mapping of input Din to output Dout will be achieved,
as shown

Dout = f(θ,Din). (3)
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Table 1: Relative dielectric constant and conductivity properties of different media

Media Relative dielectric constant Conductivity S/m
Air 1 0

Water 81 0.0005
Rebar 300 10ˆ8

Surrounding rock 6∼8 0.001
Concrete 8∼10 0.0001

In this process, Din is the input to the CNN, allowing prediction result D̄out118

to be obtained. The difference between the predicted D̄out and the real target119

Dout is calculated by the chosen loss function to get the gradient, which would120

be used to update the CNNs parameters θ. Based on a large number of Din121

-Dout pairs and multiple iterations, network parameters can finally be obtained.122

Susequently, only the real data D is required as an input to the trained CNNs,123

and the correct defect category, location, and shape can be quickly obtained.124

This makes the interpretation of GPR data simple, automatic and efficient. The125

workflow is shown in Fig.2.126

2.3. Tunnel lining interior materials and defects127

As previously stated, the CNN’s training method is based on a huge number128

of model-data pairings. It is difficult to collect structural information inside the129

tunnel lining to serve as a labeled model correlating to our GPR data, unlike130

the identification of apparent disease. This issue can also be seen in geophysical131

inversion. Li and Liu et al.[24–26] have successfully introduced transfer learning132

in deep learning based inversion of seismic data, electrical resistivity data and133

GPR data, and realized the effective application of deep learning network in field134

testing on the network trained with synthetic data, which is a great impetus to135

the application of deep learning in geophysics. Therefore, we also use synthetic136

data to provide a large number of model-data pairs and propose a transfer137

learning on real-world data to address the problem. The prediction result of138

CNNs depends on the model used to train it, making the practical analysis and139

selection of tunnel lining materials as well as the correct design of the tunnel140

lining models a focus of our study.141

Rebars, rock, voids, fractures, linear-rock separation, and water seepage are142

all common tunnel lining interior materials and defect kinds. They are divided143

into five categories: air, water, concrete, surrounding rock, and rebar. Table 1144

shows their respective dielectric constants and conductivity ranges, which have145

been adjusted based on [36]. Water and air are two faulty media that may be146

found in voids, cracks, and lining-rock separations. Rebars and rocks may be147

present within the tunnel lining, which influences and confuses GPR data. Due148

to differences in dielectric constants and electrical conductivity, various materi-149

als have varied impacts on GPR, which is the basis for our defect detection.150

The materials and defects in the designed model can be divided into nine151

types: rebar, concrete, rock, crack, water-bearing crack, void, water-bearing152
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void, lining-rock separation, and water-bearing separation. The lining-rock sep-153

aration is a defect that appears between the lining and the surrounding rock,154

and a void is inside the concrete. Separations and voids cause different hazards;155

thus despite their similar shapes, different types are used here[4, 37]. Cracks are156

small defects that arise from uneven forces in the tunnel. They are also present157

in the concrete and severely affect the tunnel lining bearing capacity[38]. These158

three types (i.e. separations, voids, and cracks) are further expanded into six159

types of defects according to whether they contain water or not. Combined160

with three types of tunnel lining materials (i.e. rebar, concrete, and rock), a161

total of nine types are obtained, which will be the target types for our defect162

segmentation.163

Through the arrangement and combination of the above nine types mate-164

rials and defects, we can get the models for training. In order to focus on the165

influence of the existence of rebars and whether the defect contains water on166

the segmentation results, they are divided into the following categories:167

(1) No defect in tunnel lining;168

(2) A water-free defect in tunnel lining without rebar;169

(3) A water-bearing defect in tunnel lining without rebar;170

(4) A water-free defect in tunnel lining with rebar;171

(5) A water-bearing defect in tunnel lining with rebar.172

For the purpose of generating training data, we split these categories further.173

(1) is split into four combinations depending on whether it contains rock, rebar,174

both or neither. Each of the categories (2-5) are split into 12 possible combina-175

tions. These result from whether there are one or two defects and whether the176

defects contain water or not. We use 2D models and data since the network re-177

quires a lot of training data and this simplifies the network’s parameters. Based178

on the above categories, we created 52 model combinations and 2,400 models for179

each combination, totaling 124,800 sets of tunnel lining relative dielectric con-180

stant models for deep learning algorithms, covering the majority of scenarios.181

In the designed model, symmetrical quasi circles are used as rebars; thin lines182

with a width of 1-3 grid cells are used as cracks; considering the randomness of183

the voids, randomly generated irregular shapes are used to fit cavities in differ-184

ent states. The randomly generated interface separates the concrete from the185

rock, and the lower part is rock. The lining-rock separation is a random shape186

attached to the interface. Finally, referring to Table 1, the relative dielectric187

constant is set, and realistic models can be obtained. The grid size of the model188

is 70 × 200, and the length and width of each cell is 0.01m, that is, the model189

has an actual width of 2.0m and depth of 0.7m.190

Due to the difference in electromagnetic characteristics of different materials191

(such as air and water), the propagation of the electromagnetic waves is affected,192

and reflected waves are generated. This reflected signal is then received by193

the GPR antenna. For CNN training, the closer the simulated data is to the194

real GPR data, the stronger the applicability of the network. To generate195

data in batch mode, referring to previous work[26], the finite difference time196
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domain (FDTD) method based on in-house MATLAB code used, combined197

with a 10-layer convolutional perfect matching layer[39], for modeling of GPR198

data. Combined with the electrical parameters mentioned in Table 1, the FDTD199

and CPML are robust, as demonstrated in previous work, and can be effective in200

subsequent real-data applications. For models of size 70×200, a Ricker wavelet201

with a main frequency of 600 MHz is used, and each model uses 99 sidelines.202

The sampling time interval is 2.3587×10−11, with a total sampling of 800 steps.203

So the size of the input GPR data is 800 × 99. As noted above there 124,800204

synthetic training data instances, which are given as input to the network.205

3. Convolutional Neural Networks for defect segmentation206

Many classical CNNs, such as Segnet[21], U-net[20], have achieved impressive207

results not only for semantic segmentation, but also in other tasks, such as208

medical recognition, geophysical data recognition, et al. In recent years, the209

DeepLab series[40–42], proposed between 2017 and 2018, has now become one of210

the most popular novel networks used for semantic segmentation. In view of the211

wide range of applications and applicability, these CNNs were chosen to compare212

their effectiveness on defect segmentation, with a novel loss function introduced.213

Network hyperparameters were set to update the parameters reasonably and214

effectively in the training process.215

The method of defect segmentation is similar to the semantic segmentation216

often performed in CNNs but more complicated. It has the following features:217

(1) First, GPR data and dielectric constant models differ in shape, value, and218

distribution. Our goal model is a spatial structure with a size of h × w,219

where h and w represent the depth and width of the model respectively,220

and GPR data is a time series measured at different positions in the hor-221

izontal direction with a size of nt × w, where nt represents the time step.222

There are differences in image processing of detection data between time223

series and space series. The hyperbolic shapes dominate the response to224

various internal structures in GPR signal, and their morphology is more225

similar and indistinguishable than ones in natural images. The shapes of226

voids and the separations are similar, but their locations are different. The227

location of the defects need to be considered, and their differences and fea-228

tures are extracted from similar and complex data. In addition, for defects229

and materials of the same shape, the location and polarity of the reflected230

signal is affected by different dielectric constants and whether they contain231

water. As shown in Fig. 3 (a) and (b), the dielectric constants of concrete232

in the two models are different, which leads to differences in their GPR233

data, as shown in the yellow box; however, the fault segmentation results234

are the same. Comparing Fig. 3 (b) and (c) shows how the water content235

of the defect affects the signal polarity, considering the shape information236

and amplitude of the signal. That is, the model is influenced by both shape237

and value. The CNN needs to consider both numerical information and238

shape characteristics. Given that our present problem is a classification239
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task, we suggest that a properly selected CNN is more suitable for defect240

segmentation than GPRInvNet, which focuses on inversion.241

(2) The size of normal data and data representing defects is unbalanced. As242

shown in Fig. 3(b), the size of the rebars and cracks are small, yet they have243

a great impact on the GPR data. This size imbalance creates a particular244

problem for the prediction task, that is, defect segmentation. An effective245

loss function must be constructed and used in order to produce fine-grained246

resolution prediction results.247

(3) To include all possibilities and avoid overfitting, a large amount of data and248

measurements are required for training, and the computational efficiency of249

the network needs to be taken into account.250

We compared Segnet, U-net and DeepLab V3+ based on the aforemen-251

tioned analysis. We found that Segnet has the advantages of a simple network252

structure, fewer parameters, and superior quality results. In addition, Segnet253

uses max location in upsampling to provide useful information during decod-254

ing, which improves the provision of structural information and improved high-255

frequency data correspondence.256

3.1. Segnet257

Segnet uses high-dimensional compression data, through convolution and258

pooling, to obtain high-dimensional features of an image and afterwards up-259

sampling to complete the regression and segmentation of the image. In the260

network, the size of the convolution kernel is 3 × 3. To prevent gradient anoma-261

lies, batch normalization(BN) is employed and a rectified linear unit (ReLU)262

is used as the activation function in other layers, with the exception of the last263

layer. As a semantic segmentation problem, softmax is utilized as the activation264

function of the last layer to obtain the probability under each classification to265

complete the segmentation. The innovation of Segnet is that the low-resolution266

feature maps are converted to a high-resolution feature map using the upsam-267

pling method during the decoder process, which differs from FCN and U-net268

deconvolution. Specifically, features are compressed by pooling in the encoder269

section, and the index of each pooling is saved, that is, the original maximum270

position is saved. Then the corresponding pooling index is used in the decoder271

for nonlinear upsampling. In this way, sparse upsampling feature maps can272

be obtained without learning the weights used in the deconvolution. Badri-273

narayanan et al.[21] compared Segnet with common CNNs and proved that274

Segnet is superior to other methods for region classification. Because Segnet275

is used for image semantic segmentation with fewer parameters and better re-276

sults, our main objective was to study the defect segmentation of GPR data by277

Segnet. Its specific structure is as shown in Fig. 4. Segnet has few parameters,278

maintains high-frequency information integrity, and achieves improved results279

compared to competing methods. In Section 4.2, a comparison between Segnet,280

U-net and DeepLab V3+ proves that Segnet is more suitable for the problem281

of defect segmentation.282
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3.2. Loss function283

The cross-entropy loss function is the most often utilized loss function in
semantic segmentation. The activation function of the classification problem is
softmax, and the use of the L2 norm loss would severely affect gradient calcu-
lations and network updates. Using the logarithm, the cross-entropy loss func-
tion can alleviate the problem of gradient disappearance. The cross-entropy loss
function is

LCE = −
1

p

p∑

i=1

log y∗i , (4)

where i is the corresponding position of each grid cell, and y∗i is the predicted284

probability of the corresponding position and label.285

However, although the effect of the cross-entropy loss function has been
proven in semantic segmentation, the results of the prediction need to be im-
proved. This improvement is especially necessary for smaller objects because
CNNs using the cross-entropy loss function often have difficulty predicting them.
This makes it difficult to meet the requirement of detecting rebars and cracks
using our method. Although rebars and cracks are noticeably reflected in the
input data, rebars and cracks are usually very small and require high-resolution
processing to be effectively classified in the segmentation. To solve this problem,
we applied the Lovász softmax loss function in our CNN. The Lovász softmax
loss function, as shown in Equation (5), was proposed by Berman in 2018 [43]
to optimize mean intersection over union (MIoU), and its superiority on small
objects is proven.

LLZS =
1

|N |

N∑

c=1

∆Jc(m(c)), (5)

where ∆Jc is the Lovász extension to ∆Jc,the approximation to the Jaccard286

index of class c, N is the number of material and defect classes–nine in this287

paper, and m(c) is a vector of grid cell errors for class c.288

Eerapu et al.[44] combined the cross-entropy and the Lovász softmax loss
function to achieve better a MIoU. In this study, we also use the composite loss
function:

Lsum = LCE + LLZS . (6)

The results in Section 4.2 show that the addition of the Lovász softmax loss289

improved the quality of the results, especially for cracks.290

3.3. Network hyperparameters291

Suitable network hyperparameters improved the training results of the net-292

work. We used PyTorch to implement both the CNN and the Adam optimizer293

in this study. The batch size of the Adam optimizer was set to 24, and the294

initial learning rate was 5 × 10−5. The network was trained for a total of 100295

epochs to obtain sufficient parameter updates.296

Considering the similarity of GPR data for different materials and defects,297

it is easy to overfit the network which severely affects the generalization ability298
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of the network and even causes unreasonable network parameters. Therefore,299

avoiding the overfitting problem is an important task. For this, we applied300

both dropout and weight decay. Dropout was proposed by Hinton[45] in 2012301

and is proven to effectively reduce overfitting to a specific feature by randomly302

discarding a few percentage points of the features. The weight decay[46] is303

used to add a L2 regularization after the loss function, thereby reducing the304

complexity of the network coefficients, and improving the effectiveness of data305

fitting. In this paper, by comparison, the dropout probability was set to 20 %306

and the weight decay coefficient was 1 × 10−4, which can effectively alleviate307

overfitting of the CNN.308

4. Results and discussion309

To effectively train the network, we divided 128,400 sets of model-data pairs310

in Section 2.3 into the training, validation, and test set with a ratio of 10:1:1,311

which were used to train CNNs, verify the ability of the CNNs to determine the312

optimal network parameters, and test the impact of the final network, respec-313

tively. Considering the different sizes of input GPR data and output model, we314

used bicubic interpolation to reshape the input data of 800× 99 into 256× 128.315

The size of the output is 128 × 256 and is cropped to 90 × 220 to reduce the316

impact of the CNN on the boundary. We trained four CNN-based networks:317

Segnet using the cross-entry loss function, Segnet using the cross-entropy and318

the Lovász maxsoft loss functions, and U-net and DeepLab V3+ using the cross-319

entropy and the Lovász maxsoft loss functions to compare their effects in the320

defect segmentation task. For reference, they are named Segnet (1 loss), Seg-321

net(2 loss), U-net, and DeepLab V3+, respectively. An Intel Xeon (R) gold322

6148 CPU with GTX Titan RTX GPU workstation was used for training the323

four networks. Because there are more than one hundred thousand groups of324

data, the training process takes more than 20 h, but after the training of the325

network, the defects segmentation of a group of data can be calculated in 0.01326

s on average.327

The loss function curve in the training and validation set is shown in Fig. 5.328

The result of Segnet(2 loss) is far superior to the comparative methods. As329

shown in Fig. 5(d), U-net and DeepLab V3+ have an overfitting on the val-330

idation set, whereas Segnet(2 loss) does not. To quantitatively evaluate the331

performance of the results of different CNNs and the results of dissimilar ma-332

terials, a series of indicators were used, such as MPA, MIoU, Precision, and333

Recall.334

4.1. Metrics335

For a large amount of test data, it is inconvenient to show each result.336

Effective evaluation parameters should be used for the statistics of all results,337

so that the results of different methods and the impact of dissimilar materials338

can be analyzed.339

Since they are already extensively used in semantic segmentation, mean340

pixel accuracy (MPA), MIoU, and frequency weighted intersection over union341

10



(FWIoU) were chosen to evaluate the similarity of each prediction result and342

ground truth in this study for the comparison of different CNNs and different343

models. In MPA, the proportion of correctly classified pixels in each classifi-344

cation is separately calculated, and the mean of all categories is used to verify345

the correctness of the classification. MIoU is the most widely used classification346

and semantic segmentation standard. It represents the average of the ratio of347

the intersection and concatenation of each category’s true and predicted values.348

FWIoU is an improvement on MIoU, which assigns weights to each class de-349

pending on how frequently they appear. Their equations can be found in [47].350

In addtional, the predicted effect of each defects categories is evaluated using351

precision, recall, and F-measure. Precision refers to the percentage of properly352

predicted pixels in all prediction, and it may be thought of as a preference for353

correct predictions rather than complete prediction. The ratio of properly pre-354

dicted pixels to all pixels in the actual category is known as recall, and it can be355

viewed as preferring complete prediction to correct predictions. In other words,356

the former is more applicable to analyzing the prediction effect of background,357

concrete, and rebars, which do not affect the category of defects discrimination;358

whereas the latter is more applicable to defects prediction because it must ensure359

the complete prediction of the target, even if there are redundant predictions.360

The F-measure, on the other hand, is a hybrid metric which is the harmonic361

mean of precision and recall[48].362

4.2. Comparison of results with different loss functions, U-net and DeepLab363

V3+364

The above comparison of the loss functions has shown the effectiveness of365

Segnet(2 loss) in tunnel lining defect segmentation. We also compare the perfor-366

mance of the three methods on the test set in Table 2, which also demonstrates367

the performance of Segnet(2 loss). Specifically, we selected four typical model-368

data pairs, as shown in Fig. 6. In conjunction with Table 3, the effects of each369

material and defect under each method were analyzed. In the Tables, optimal370

values are emboldened.371

First, Segnet(1 loss) achieved acceptable results and had very accurate pre-372

dictions for rebars, voids, and separations. However, it performed poorly for373

cracks and had the lowest precision. The recognition of cracks requires high res-374

olution, which is more difficult for segmentation problems. As shown in Fig.6375

(b) and (d), this method had a lower prediction accuracy for thinner defects376

such as cracks. The cross-entropy loss function focuses on the probability of377

each pixel but is limited to the overall effect, which results in a lower resolution378

of the result, making it difficult to identify small defects.379

Second, Segnet(2 loss) performed optimally in all materials and defects. It380

accurately predicted the location and classification of cracks, voids, and sepa-381

rations, and was good for complex data. Good results are obtained for smaller382

defects, such as cracks and rebars. In general, most of the prediction results383

are accurate. The presence of reinforcing bars may cause some results to be384

incorrect, but the probability of errors is very low. This result proves the ef-385

fectiveness of the Lovász Softmax loss and our method. In addtion, although386

11



Table 2: Results of different methods
Metrics Segnet(1 loss) Segnet(2 loss) U-net DeepLab V3+
MPA 0.91 0.93 0.79 0.90
MIoU 0.83 0.90 0.75 0.84
FWIoU 0.98 0.98 0.96 0.98

Table 3: Results of different methods and different categories

Metrics Methods
Lining Materials Defects Water-bearing Defects

Rebar Concrete Rock Crack Void Separation Crack Void Separation

Precision

Segnet(2 loss) 0.9664 0.9968 0.9765 0.8157 0.9008 0.9111 0.8833 0.8278 0.8798

Segnet(1 loss) 0.9312 0.9961 0.9698 0.3108 0.8674 0.9019 0.8754 0.4164 0.8441
U-net 0.9543 0.9875 0.9242 0.6324 0.8109 0.2918 0.2619 0.9956 0.7807

DeepLab V3+ 0.9163 0.9959 0.9732 0.5776 0.8386 0.9026 0.8680 0.6056 0.8163

Recall

Segnet(2 loss) 0.9541 0.9969 0.9777 0.8039 0.8869 0.8960 0.8740 0.8303 0.8715

Segnet(1 loss) 0.9201 0.9928 0.9747 0.7889 0.8635 0.8923 0.8703 0.6922 0.8379
U-net 0.9449 0.9861 0.9121 0.6495 0.8001 0.1930 0.1729 0.7064 0.7629

DeepLab V3+ 0.8751 0.9954 0.9757 0.6844 0.8422 0.9076 0.8774 0.7356 0.8156

F-measure

Segnet(2 loss) 0.9602 0.9968 0.9771 0.8098 0.8938 0.9035 0.8786 0.8290 0.8756

Segnet(1 loss) 0.9256 0.9945 0.9723 0.4459 0.8654 0.8971 0.8728 0.5200 0.8410
U-net 0.9495 0.9868 0.9181 0.6408 0.8054 0.2324 0.2083 0.6860 0.7717

DeepLab V3+ 0.8952 0.9956 0.9745 0.6265 0.8404 0.9051 0.8727 0.6643 0.8160

the importance of precision and recall for background and defect was discussed387

in Section 4.1, the precision and recall of the prediction results achieved using388

Segnet (2loss) are quite similar. When compared to the other methods, Segnet389

(2 loss) was the most stable approach with better metric values, which is critical390

for defect segmentation.391

U-net performance was poorer than that of Segnet(1 loss). When multiple392

defects occurred at different depths in the same location, GPR data was more393

complicated. U-net made it difficult to effectively classify the defects, especially394

separations and cracks with water, as shown in Fig.6. The lack of accurate395

defect prediction seriously affects the judgment of the integrity of the tunnel396

lining. Through analysis, we believe that the network structure of U-net led to397

poor results. U-net saves the features of the encoded segments and uses them398

as feature maps when decoding, which is effective for the task of one-to-one399

correspondence in image semantic segmentation. However, for our task, GPR400

data and defect segmentation did not completely correspond, which caused U-401

net to introduce incorrect information and obtain poor results.402

As a more advanced method in the field of semantic image segmentation,403

the overall effect of DeepLab V3+ is better than U-net, but slightly inferior to404

Segnet(2 loss). DeepLab V3+ further increases the eftectiveness of a decoder405

perhaps in the process of predicting the model on the basis of DeepLab V3,406

to recover the detailed object boundaries[49]. Although the spatial pyramid407

pooling module can further improve the receptive field and information in many408

aspects, like U-net, DeepLab V3+ does not apply well to the defect segmentation409

problem. For the given task, this decoder for boundaries is not suitable for the410

identification of defects with small size, which is why the performance on cracks411

and rebars in Table 3 is poor.412
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Table 4: Results of defect detection without rebars in different types of models
Class Defects Crack Void Separation Crack&Void Crack&Separation Void&Separation

Water-free
MPA 0.96 0.98 0.97 0.91 0.95 0.95
MIoU 0.93 0.96 0.95 0.86 0.91 0.92
FWIoU 0.99 0.99 0.99 0.99 0.99 0.99

Water-bearing
MPA 0.96 0.97 0.97 0.90 0.93 0.94
MIoU 0.93 0.96 0.95 0.84 0.88 0.91
FWIoU 0.99 0.99 0.99 0.98 0.98 0.99

4.3. Results of different types of models413

Through the above analysis, we demonstrated the effectiveness of Segnet and414

the Lovász softmax loss on defect segmentation and explained the unsuitability415

of U-net. Segnet also has different performance effects for different types of416

materials and defects. We divided the defect models into three categories and417

analyzed them in turn.418

(1) Water-free defects in the tunnel lining without rebars419

For defects in the tunnel lining without rebars, because the model is simple,420

our method produced accurate classification, location, and morphology in421

various defects, as shown in Fig. 7 and Table 4. Correct predictions are422

achieved on all models.423

(2) Water-bearing defects in the tunnel lining without rebars424

Similarly, the water-bearing defect was relatively simple, and the overall425

effect was satisfactory. It can be seen in Table 4 that crack detection per-426

formed less well than detection of other defects especially the model of427

cracks and voids, which shows that water-bearing defects had an impact on428

the results. As shown in Fig. 8 (c), especially when the void and crack are429

in the same horizontal position, the upper defect affects the data below,430

making it difficult to obtain an accurate shape, but the classification of the431

defects was accurate.432

(3) Defect in the tunnel lining with rebars433

The most challenging aspect of this method was that the rebars in the434

lining would seriously affect the internal defect signals acquisition. A row of435

rebars with a small diameter are reflected in GPR data as multiple parallel436

hyperbolae. They intersect each other, distorting the information below.437

In our results, the effect of rebars on the defect, especially cracks, was438

severe. As shown in Table 5, the models of “cracks and voids” under439

rebars, whether they contain water, have a MIoU value below 0.8, which440

was otherwise rare in our results. As shown in Fig. 9(c), the length of the441

crack was also incorrectly predicted, and the interface of the rock was also442

inaccurate in Fig. 9 (d). However, since correct classification and accurate443

positioning can meet most of our requirements, so the above problems have444

little effect in practice.445

Our Segnet with two loss functions performed significantly better than Seg-446

net with one loss function, U-net, and DeepLab V3+, both with two loss func-447

tions in terms of defect segmentation. Accurate classification and placement448

could be achieved in linings including cracks and rebars, demonstrating the449
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Table 5: Results of defect detection with rebars in different types of model
Class Defects Crack Void Separation Crack&Void Crack&Separation Void&Separation

Water-free
MPA 0.91 0.95 0.96 0.84 0.89 0.91
MIoU 0.86 0.91 0.94 0.78 0.84 0.87
FWIoU 0.99 0.98 0.99 0.98 0.98 0.98

Water-bearing
MPA 0.91 0.94 0.96 0.83 0.89 0.90
MIoU 0.86 0.90 0.94 0.76 0.83 0.85
FWIoU 0.98 0.98 0.99 0.97 0.97 0.98

method’s great precision. Despite significant difficulties with fault identification450

beneath rebars, most models were able to get the proper classification, which451

serves as a useful reference for post-processing. We believe that certain mistakes452

will inevitably occur due to the data’s complexity.453

5. Experiment on model testing454

As a result of our network design and training, we obtained a CNN model455

which achieved excellent results on synthetic test data. Real data is more com-456

plicated than synthetic data, and noise and other disturbances seriously affect457

the quality of the collected data. In geophysics, because the detection area is458

usually unknown, many studies use physical model tests to verify the viability459

and applicability of theoretical methods[16, 50, 51]. To obtain GPR data from460

a known internal structure and verify the effect in a real environment, we built461

a test model to simulate the internal defects of a real tunnel lining. Real GPR462

data was collected, analyzed, and processed. At the same time, the CNN was463

fine-tuned to fit the real data. Finally, we used the CNN to segment the defects464

inside the tunnel lining with real data.465

5.1. Model test building466

We designed a test model using a rectangular concrete testbed with a size467

of 4.4m × 2m × 0.7m to simulate the internal structure of a tunnel lining, as468

shown in Fig. 10. Despite the fact that the GPR data were gathered on a469

rectangular testbed, the shape of the testbed had no major influence on the470

acquired data because a two-dimensional sideline was used. In the model, we471

used the materials employed in the lining of an actual tunnel. To simulate a472

water-bearing void, we used a PVC pipe with a length of 400mm and a diameter473

of 120 mm to construct the separation. PVC pipes were filled with water, sealed474

at both ends and placed in the concrete to simulate a water-bearing void in the475

lining. As a result of this construction method, we knew the exact materials476

used and their shape within the model. On the model, we set two sidelines477

with a distance of 0.5m and a length of 4.4m to obtain reflection information478

of the embedded defects below the model, of which there was no defect below479

the X2 sideline. Through the X2 sideline, we could get enough background data480

under the current model for further experimental analysis and processing. The481

real GPR data was collected by Impulse Radar 600MHz equipment, with 512482

sampling points. The mode of the GPR was set to ‘Wheel’, and the distance of483
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the traces was chosen as 0.02m. The GPR data was collected and transmitted484

to the computer via Wi-Fi.485

5.2. Data processing486

For the actual measured data, referring to previous research[26], we prepro-487

cessed the real GPR data, including time-zero correction, and removed the di-488

rect component, background signal, and bandpass filtering. In this way, clearer489

GPR data GPR data could be acquired, which improved the effectiveness of490

our method. To be more suitable for the real data, we used actual data from491

measurements of the plain concrete without defects, and randomly added it to492

the synthetic data as background noise. Because the size of the measured data493

and the synthesized data were different, we adjusted the measured data by the494

bicubic difference method and obtained hundreds of sets of background noise.495

These actual noise data sets were normalized, fixed to a reasonable range, and496

randomly added to the synthesized data. The updated synthetic data was used497

to train and fine-tune the CNN parameters for 40 epochs. In this way, the498

non-uniformity of the actual medium and the interference noise collected were499

considered, and the applicability of the CNN was further improved. This also500

provided a useful reference for real data processing under different operating501

conditions and environments in the CNNs method.502

5.3. Result on real data503

On the X1 sidelines, we tested the retrained CNN with real-world data. The504

internal structural information may be acquired instantly after the retrained505

CNN and data processing is completed, which increases the automation and506

efficiency of GPR data interpretation. Our method correctly predicted the cat-507

egorization and location of water-bearing voids, as shown in Fig. 11, but the508

shape of the defect was poorly delineated. The data collected from the acqui-509

sition seems biased to the right (as shown in Fig. 11a) as a result of the real510

acquisition error and data processing, which impacts the recognition effect of511

our network. In the case of a single defect, our method achieves excellent re-512

sults, demonstrating its viability. The potential of our method for real-world513

data was demonstrated through model building and effective data processing.514

It was useful to fine-tune the network based on the addition of real background515

and synthetic data, which may be necessary for the process of applying the516

CNNs method to real data.517

6. Conclusion and future directions518

In this paper, we used a CNN to build a new approach called defect seg-519

mentation to resolve the problem of GPR data interpretation and tunnel lining520

defects detection. The conclusions of this study are as follows:521

• There are numerous differences between the defect segmentation of GPR522

data and semantic segmentation of natural images, including signal dis-523

similarity, morphological differences between the input and output, and524
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the impact of the values on the results, making it difficult to directly apply525

CNNs to the task of GPR defect segmentation.526

• The characteristics of Segnet make it a better fit for our method than U-527

net and DeepLab V3+, and we have demonstrated that it achieved more528

accurate results. Almost all models in a synthetic dataset were correctly529

classified, and an MPA of 93% and MIoU of 90% have been achieved with530

the cross-entropy and Lovász softmax loss functions.531

• The Lovász softmax loss function is worth mentioning, especially for crack532

detection, because the approach substantially improves segmentation ac-533

curacy. A Segnet combining the cross-entropy and the Lovász softmax534

loss function improved 7% the MIoU as compared with a Segnet using535

cross-entropy.536

• In the CNN method, the accuracy of the prediction findings was likewise537

strongly related to the complexity of the GPR data. Both water-bearing538

defects and rebars had an impact on the segmentation problem. The539

existence of rebars, as well as the GPR signal’s reaction to them, had a540

significant impact on the signals of underlying defects, making prediction541

difficult.542

• When applying our proposed CNN on actual data, we recommend collect-543

ing background signals from the related environment, combining existing544

synthetic data sets, and fine-tuning the network to improve outcomes.545

Of course, there are still some deficiencies in this study, which will be taken546

as future research directions. It is worth noting that there are some deficiencies547

in the synthetic data generated by FDTD used in this study, such as not con-548

sidering the dispersion of water, using 2D model and data, which will be the549

main research focuses in future. It is also important to improve our GPR data550

to be closer to real data, which is conducive to the promotion of the network551

in real data. The independent design of the network is also our key research552

in future. According to the characteristics of GPR data and cracks, adopting a553

more appropriate network structure will improve our results, such as SDDNet554

specially designed for cracks detection by Choi and Cha[30] and GPRInvNet555

designed for radar data inversion by Liu et al[26]. In particular, the former is556

much more computationally efficient than the method proposed in this paper.557

In addition, we will investigate also refer to the research of Ali and Cha[5],558

and use the CNN method to realize the long-term monitoring and detection of559

tunnel lining defects.560
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Figure 1: Defect segmentation method. The numerical model M was designed, and the GPR
data D was obtained by modeling. Then, using the model M , the defect segmentation model
C was obtained and used as a label for training the CNN. Our defect segmentation method
trains the CNN to get the mapping relationship seg and complete the calculation of C from
D.

Figure 2: Workflow of the CNN based segmentation method. Prepared GPR data is input
into the CNN, and the predicted result, based on current CNN parameters, is obtained. The
difference between the prediction result and the actual model is calculated by the loss function,
and the CNN parameters are updated by the gradient. The CNN is trained after multiple
iterations. After inputting the GPR data, the CNN parameters can be used to obtain the
fault segmentation directly.
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Figure 3: Models with the same structure and different dielectric constants, as well as the GPR
data that goes with them. Both (a) and (b) represent the dielectric constant model of a water-
free crack, corresponding defect segmentation model and GPR data; the difference between
(a) and (b) lies in the fact that the dielectric constant values of their surrounding rocks are
different, which leads to differences in GPR data; (c) represents the dielectric constant model
of a water-bearing crack, corresponding defect segmentation model, and GPR data.

Figure 4: Segnet structure.
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Figure 5: Loss curves of the three CNN methods. (a) and (b) are the curves of the cross-
entropy loss function (Loss 1) and the Lovász softmax loss function (Loss 2) on the training
set with epoch, respectively. (c) and (d) are the curves of the cross-entropy loss function (Loss
1) and the Lovász softmax loss function (Loss 2) on the validation set with epoch, respectively.
In these graphs the red, black, blue, and green lines represent Segnet (1 loss), Segnet(2 loss),
U-net, and DeepLab V3+ respectively.
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Figure 6: Prediction results of three methods on test data. There are four sets of data, ground
truth, and prediction results of Segnet(1 loss), Segnet(2 loss), U-net, and DeepLab V3+.
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Figure 7: Water-free defects in the tunnel lining without rebar model prediction results. (a)
represents the water-free crack and void model without surrounding rock. (b) represents
the water-free crack model. (c) represents the water-free crack and separation model. (d)
represents the water-free void and separation model. Each color represents the same material
as in Fig. 6.

Figure 8: Prediction results on a non reinforced model with water-bearing defects in tunnel
lining. (a) represents the water-bearing crack and void model without surrounding rock.
(b) represents the water-bearing crack model. (c) represents the water-bearing crack and
separation model. (d) represents the water-bearing void and separation model. Each color
represents the same material as in Fig. 6.

26



Figure 9: Water-bearing defects in the tunnel lining without rebar model prediction results.
(a) represents the water-free crack and void model with rebars. (b) represents the water-
bearing crack and void model with rebars. (c) represents the water-free crack and separation
model with rebars. (d) represents the water-bearing void and separation model with rebars.
Each color represents the same material as in Fig. 6.

Figure 10: The model we built and GPR for detection.
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Figure 11: Results of the real GPR data. (a), (b), and (c) represent measured GPR data,
corresponding model, and the model prediction respectively.
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