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This paper describes a model for baby Skyrme crystal chunks with arbitrary potential by considering
energy contributions from the bulk and surface of a crystal chunk. We focus on two potentials which
yield distinct Skyrme lattices: the standard potential V ¼ m2ð1 − φ3Þ and the easy plane potential
V ¼ 1

2
m2ðφ1Þ2. In both models, the static energy functional is minimized over all two-dimensional period

lattices, yielding the minimal-energy crystal structure(s). For the standard potential, the Skyrmions form a
hexagonal crystal structure, whereas, for the easy plane potential, the minimal-energy crystal structure is a
square lattice of half-charge lumps. We find that square crystal chunks are the global minima in the easy
plane model for charges B > 6, with 2B being a perfect square (m2 ¼ 1). In contrast, we observe that
hexagonal crystal chunks in the standard model become the global minima for surprisingly large charges,
B > 954 (m2 ¼ 0.1).

DOI: 10.1103/PhysRevD.105.025010

I. INTRODUCTION

The Skyrme model [1] is a nonlinear field theory of pions
which possesses topological solitons that describe baryons.
It has been derived as a low-energy effective field theory of
quantum chromodynamics (QCD) in the large color limit
[2,3] and, more recently, from holographic QCD models
such as the Sakai-Sugimoto model [4]. One of the out-
standing problems in the Skyrme model is the correct
prediction of nuclear binding energies. One would like to
be able to predict correct binding energies using the Bethe-
Weizsäcker semiempirical mass formula, which is com-
posed of five terms: the volume term, the surface term, the
Coulomb term, the asymmetry term, and the pairing term.
The coefficients in each term are normally determined
empirically, and the problem at hand is whether the
coefficients can be estimated by using Skyrmions.
In the Skyrme model, the classical mass of a Skyrmion

roughly plays the same role as the volume and surface
terms [5]. To be able to address these first two terms, we
need to understand the phases of nuclear matter in the
Skyrme model. An important question arises when study-
ing phases of nuclear matter regarding the nature of high-
density and low-density phases, and the transition between
these phases. At high densities, the Skyrmions form a
crystal, whereas at low densities, the Skyrmions are

localized to their corresponding lattice points. As the
ground state of nuclear matter has a crystalline structure
in the classical approximation [6], understanding the
infinite crystalline structure is key.
The baby Skyrme model [7] is a (2þ 1)-dimensional

analogue of the (3þ 1)-dimensional Skyrme model, where
interest in the baby Skyrme model has peaked again with
the apparent prevalence of baby Skyrmions in condensed
matter systems [8], quantum hall systems [9,10], chiral
magnetic systems [11], and nematic liquid crystals [12].
In this paper, we investigate the crystalline structure for
baby Skyrmions and formulate our method in terms of an
arbitrary potential. The choice of potential is crucial for
baby Skyrmions, as it determines the behavior of the
solitons, and thus the underlying Skyrmion crystalline
structure. For the first time, we propose a method to
determine the surface energy contribution of a crystal
chunk once the minimal-energy infinite crystal structure
is determined. In order to predict the minimal energy of a
charge-B crystal chunk with a fixed area, we then study
isoperimetric problems for particular crystal symmetries.
For the standard baby Skyrme model [7], we find that the

solitons form a hexagonal crystal structure with D6 sym-
metry, which was first proposed by Hen and Karliner
[13,14]. This hexagonal crystal structure is not unique to
the baby Skyrme model; it also arises in quantum hall
systems [10], chiral magnetic Skyrmion systems [15,16],
Ginzburg-Landau vortices [17], and 3D Skyrmions in
analogy with fullerene shells in carbon chemistry [18].
However, in the easy plane model [19–21], the optimal
crystal structure is found to be a square lattice of half-
solitons, similar to that of the conjectured cubic crystal of
half-Skyrmions in the Skyrme model. This square crystal
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structure also arises in chiral magnets with easy plane
anisotropy [22].
This paper is laid out as follows. We begin by discussing

the general baby Skyrme model. From here, we introduce
our numerical minimization procedure and define the initial
configurations that we use to initialize our algorithm. Then,
static multisoliton solutions are considered on the plane,
and a discussion of the possible global minima is presented.
In Sec. IV, we investigate the lattice structure of baby
Skyrmions and formulate a method to determine the
optimal soliton crystal. Once these minimal-energy infinite
crystals are known, we construct a crystal slab model to
numerically determine the surface energy of a crystal
chunk. Finally, we study chunks of the infinite crystal in
a bid to predict the classical energies of baby Skyrmion
crystals.

II. BABY SKYRME MODEL

The general static baby Skyrme model consists of
a single scalar field φ∶Σ → S2, where ðΣ; gÞ is a two-
dimensional Riemannian manifold, and ðS2; h;ωÞ is the 2-
sphere embedded in R3 with the induced flat Euclidean
metric h and area 2-form ω. We will often write the baby
Skyrme field as the 3-vector φ ¼ ðφ1;φ2;φ3Þ. The static
energy functional of this model on Σ is given by

E½φ� ¼
Z
Σ

�
1

2
jdφj2 þ κ2

2
jφ�ωj2 þ VðφÞ

�
volg; ð1Þ

where V∶S2 → R is the potential of the baby Skyrme
model, j · j denotes the Hilbert-Schmidt norm, and volg is
the volume form on Σ associated with its metric g.
The parameter κ is a standard coupling constant for
which we will set κ ¼ 1 for our numerical analysis.
Note that the differential form dφ ∈ Ω1ðΣÞ is a linear
map dφx∶TxΣ → TφðxÞS2, and so the Hilbert-Schmidt norm
jdφxj depends on both the domain metric g and target
metric h. However, the pullback of the area form ω ∈
Ω2ðS2Þ is φ�ω ∈ Ω2ðΣÞ, and so its norm only depends on
the metric g.
We will follow the terminology of harmonic map theory

and refer to the first term in Eq. (1) as the Dirichlet energy.
The Dirichlet term is also commonly referred to as the
σ-model term. The second term is known as the Skyrme
energy. It is conventional to label the three terms in Eq. (1)
as E2, E4, and E0, respectively, where each term is thought
of as a polynomial in spatial derivatives with the subscript
denoting the degree.
Let us introduce oriented local coordinates ðx1; x2Þ on

the domain Σ, and let f∂1; ∂2g be a local orthonormal basis
for the tangent space TxΣ at x ∈ Σ. Then the Dirichlet
energy in local coordinates is given by [23]

E2 ¼
1

2

Z
Σ
jdφj2volg

¼ 1

2

Z
Σ
gμν∂μφ

α∂νφ
βhαβ

ffiffiffiffiffiffiffiffiffi
det g

p
dx1dx2; ð2Þ

where ∂i ≔ ∂
∂xi. The Skyrme energy in local coordinates is

E4 ¼
κ2

2

Z
Σ
jφ�ωj2volg

¼ κ2

4

Z
Σ
gαβgμνðφ�ωÞαμðφ�ωÞβν

ffiffiffiffiffiffiffiffiffi
det g

p
dx1dx2: ð3Þ

It is easy to show that the pullback of the area 2-form ω on
the 2-sphere to Σ is given by

φ�ω ¼ φ · ð∂1φ × ∂2φÞdx1 ∧ dx2 ∈ Ω2ðΣÞ: ð4Þ

If the domain Σ is compact, then the baby Skyrme map
φ∶Σ → S2 has an associated topological degree given by
the pullback of the normalized area 2-form of the target
space S2,

B½φ� ¼ −
1

4π

Z
Σ
φ�ω ∈ Z: ð5Þ

In terms of the local coordinates ðx1; x2Þ on Σ, the
topological degree is explicitly

B½φ� ¼ −
1

4π

Z
Σ
φ · ð∂1φ × ∂2φÞdx1dx2: ð6Þ

We refer to minimizers of the static energy functional E
for fixed degree B as baby Skyrmions. The topological
degree B is also referred to as the topological charge, or
just charge, which we adopt throughout. Finding baby
Skyrmions involves numerically solving partial differential
equations. We do this using an accelerated gradient descent
algorithm for second-order dynamics, detailed in Sec. II B.
In order for static (multi)soliton solutions to exist in the

baby Skyrme system, we must evade Derrick’s nonexist-
ence theorem. Consider a variation φλ∶Σ × R → S2 of
the baby Skyrme field φ, such that φλ¼0 ¼ φ. This has
the infinitesimal generator ∂λφλjλ¼0 ∈ Γðφ−1TS2Þ, where
φ−1TS2 is the vector bundle over Σ with the fiber TφðxÞS2

over x ∈ Σ. Explicitly, if we consider the spatial rescaling
x ↦ eλx, then we have a one-parameter family of maps
φλ ¼ φðeλxÞ such that φλ¼0 ¼ φ. The rescaled static energy
functional is then

Eλ ¼ E½φλ� ¼ E2 þ e2λE4 þ e−2λE0: ð7Þ

If the baby Skyrme field configuration φ is a minimizer of
the energy E, then we require
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d
dλ

����
λ¼0

E½φλ� ¼ E4 − E0 ¼ 0; ð8Þ

which yields the familiar virial constraint E4 ¼ E0. Unlike
the (3þ 1)-dimensional Skyrme model, the potential
E0 ¼

R
Σ VðφÞvolg is necessary in the baby Skyrme model;

otherwise, the energy E½φ� can be lowered by spatial
rescaling and thus cannot have minima. So, the baby
Skyrmions have a preferred size determined by the ratioffiffiffiffiffiffiffiffiffi
κ=m

p
. There also exists a lower topological Bogomol’nyi

bound on the (static) energy given by [24]

E ≥ �ð1þ κhViÞ
Z
Σ
φ�ω ¼ 4πjBjð1þ κhViÞ; ð9Þ

where hVi is the average value of V∶S2 → R on S2.
In comparison to the σ model, the addition of the Skyrme

term stabilizes the σ model to spatial rescalings. The
addition of any term that is cubic or more in spatial
derivatives would stabilize the model [for example, the
Oð3Þ σ model coupled to a massive vector meson [25]];
however, the Skyrme term is the lowest-order expression
that retains the second-order nature of the equations of
motion in terms of time derivatives.
Throughout this paper, there are three choices of the

physical space Σ that we will consider. The first physical
space we will consider is the plane Σ ¼ R2. For the solitons
to have finite energy, it is necessary to impose the boundary
conditions

lim
jxj→∞

φðxÞ≡ φ∞ ¼ constant ð10Þ

and select φ∞ from the vacuum manifold of the model,
i.e., such that V½φ∞� ¼ 0. Without loss of generality, we
choose the vacuum φ∞ ¼ ð0; 0; 1Þ throughout. This gives
us the one-point compactification of space R2 ∪ f∞g≅ S2.
The baby Skyrme field can then be viewed as the map
φ∶S2 → S2, which has a conserved topological charge
B ∈ π2ðS2Þ ¼ Z, characterized as the winding number of
the map and given explicitly by Eq. (6).
The second physical space we will consider is that of the

2-torus Σ ¼ R2=Λ, in which our field satisfies the doubly
periodic boundary conditions φðxÞ ¼ φðxþn1X1þn2X2Þ.
Here n1; n2 ∈ Z and X1; X2 ∈ R2 are a fundamental pair of
periods that generate the lattice Λ. The maps φ∶R2=Λ→S2

have an associated integer degree, and so they admit
topological solitons.
Finally, the third physical space we consider is the infinite

cylinder Σ ¼ S1 ×R. This corresponds to a Dirichlet
boundary condition in the x2 direction, limjx2j→∞ ¼ φ∞,
and a periodic boundary condition in the x1 direction,
φðxÞ ¼ φðxþ n1X1Þ, wheren1 ∈ Z andX1 ∈ R2 is a vector
in the x1 direction. The maps φ∶S1 ×R → S2 also have a

conserved integer topological degree and admit topological
solitons.

A. Initial configurations

To initialize the numerical minimization procedure, the
gradient descent algorithm requires an initial configuration
or approximation to the static soliton. Consider the axially
symmetric field configuration

φ ¼ ðsin fðrÞ cosBθ; sin fðrÞ sinBθ; cos fðrÞÞ; ð11Þ

with the monotonically decreasing radial profile function
fðrÞ satisfying fð0Þ ¼ π and fð∞Þ ¼ 0. Equivalently, the
profile function f vanishes at the boundary of the grid.
Here, r and θ are polar coordinates in the plane, and there
exists an internal phase that has been set to zero by applying
the global symmetry that rotates the φ1, φ2 field compo-
nents [26]. For our numerical minimization procedure, the
profile function is taken to be [27]

fðrÞ ¼ π expð−rÞ: ð12Þ

The initial field configuration is a linear superposition of
static solutions; typically, we use a setup of N charge-1
Skyrmions with a favorable relative phase shift between
each other (for maximal attraction). This is known as the
attractive channel and is dependent upon the choice of
potential. The superposition is justified because the profile
function decays exponentially. The superposition is done in
the complex field formalism—i.e., where W∶S2 → CP1 is
the stereographic projection of the φ field of S2. We use the
profile function of a static solution (typically of topological
charge 1) to obtain

W½φ� ¼ φ1 þ iφ2

1þ φ3
: ð13Þ

Using the radial ansatz in Eq. (11), this is

W ¼ tan

�
fðrÞ
2

�
eiBθ: ð14Þ

We can then assume that if the solitons are well separated in
relation to their size, we can approximate the resulting
solution as W ¼ P

N
i Wi, where N is the total number of

solitons in the system, and B ¼ P
N
i Bi is the total baryon

number of the system. In terms of the stereographic
coordinate W, the baby Skyrme field is

φ ¼
�
W þ W̄
1þ jWj2 ;−i

ðW − W̄Þ
1þ jWj2 ;

1 − jWj2
1þ jWj2

�
: ð15Þ
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B. Numerical minimization procedure

In order to find local minima of the static energy, we
must numerically relax the baby Skyrme field. The
numerical methods are carried out on a N1 × N2 grid with
lattice spacings Δx1, Δx2. The baby Skyrme energy is then
discretized using a fourth-order central finite difference
scheme. This yields a discrete approximation Edis½φ� to the
static energy functional E½φ�, which we can regard as a
function Edis∶C → R, where the discretized configuration
space is the manifold C ¼ ðS2ÞN1N2 ⊂ R3N1N2 [28,29].
To compute the minima of the discretized static energy,

initially a gradient descent method was chosen. However,
gradient descent can be a particularly slow method when
the Hessian is of poor condition. A more efficient way is to
simulate the time development using an accelerated gra-
dient descent algorithm known as arrested Newton flow
[30]. The essence of the algorithm is as follows: We solve
Newton’s equations of motion for a particle on the
discretized configuration space C with potential energy
Edis. Explicitly, we are solving the system of second-order
ODEs

φ̈ ¼ −
δEdis

δφ
½φ�; φð0Þ ¼ φ0; ð16Þ

with initial velocity _φð0Þ ¼ 0. Setting ψ ≔ _φ as the velocity
with ψð0Þ ¼ _φð0Þ ¼ 0 reduces the problem to a coupled
system of first-order ODEs. We implement a fourth-order
Runge-Kutta method to solve this coupled system.
The main advantage in implementing the arrested

Newton flow algorithm is that the field will naturally
relax to a local minimum. After each time step
t ↦ tþ δt, we check to see if the energy is increasing.
If Edisðtþ δtÞ > EdisðtÞ, we take out all the kinetic energy
in the system by setting ψðtþ δtÞ ¼ 0 and restart the flow.
The flow then terminates when every component of the
energy gradient δEdis

δφ is zero to within a given tolerance (we

have used 10−4). Unless stated otherwise, the plots shown
throughout were simulated on a grid with 0.05 lattice
spacings and grid sizes of 1000 × 1000.
It is essential that we enforce the constraint φ · φ ¼ 1.

This is normally done by including a Lagrange multiplier
term into the Lagrangian, and the form for the Lagrange
multiplier can be found taking the dot product of the field
with the resulting Euler-Lagrange equations. However, to
do this numerically, we have to pull our target space back
onto S2. This is done by normalizing the Skyrme field φ
each loop:

φa →
φaffiffiffiffiffiffiffiffiffiffi
φ · φ

p : ð17Þ

We also need to project out the component of the energy
gradient and velocity in the direction of the Skyrme field—
that is,

δE
δφa →

δE
δφa −

�
δE
δφ

· φ

�
φaffiffiffiffiffiffiffiffiffiffi
φ · φ

p ð18Þ

and

ψa → ψa − ðψ · φÞ φaffiffiffiffiffiffiffiffiffiffi
φ · φ

p : ð19Þ

III. BABY SKYRMIONS ON R2

Consider the plane R2 with the usual flat Euclidean
metric gij ¼ δij. The static energy functional of the baby
Skyrme model on R2 takes the familiar form

E½φ� ¼
Z
R2

�
1

2
ð∂iφÞ2 þ

κ2

4
ð∂iφ × ∂jφÞ2 þ VðφÞ

�
d2x:

ð20Þ

For numerical analysis, it proves convenient to express the
static energy functional using Einstein’s summation nota-
tion—that is,

E½φ� ¼
Z
R2

�
1

2
ð∂iφ

aÞ2 þ κ2

4
ðð∂iφ

a∂jφ
bÞ2

− ∂iφ
a∂jφ

a∂jφ
b∂iφ

bÞ þ VðφÞ
�
d2x; ð21Þ

where i; j ∈ f1; 2g and a; b ∈ f1; 2; 3g. The energy func-
tional has a continuous Oð3Þ symmetry before the sym-
metry is broken by the choice of potential term VðφÞ. To
carry out arrested Newton flow or a numerical relaxation
method using the gradient of the energy, we need to
calculate the energy gradient explicitly. We will do this
in index notation for numerical convenience. The variation
of the energy density with respect to the field φa is

δE
δφa ¼

δV
δφa−f∂iiφ

aþ κ2½∂iiφ
að∂jφ

bÞ2

þ∂iφ
að∂ijφ

b∂jφ
b−∂jjφ

b∂iφ
bÞ−∂ijφ

að∂iφ
b∂jφ

bÞ�g:

A. Standard baby Skyrmions

Numerous potentials have been proposed [7,19,26,31–35]
and studied extensively in the literature. However, there are
two choices of potential that we are particularly interested in:
the standard potential and the easy plane potential. These
two theories are quite distinct and, as we will describe below,
we should expect different phenomena. In the standard baby
Skyrme model [7], the standard potential is an analogue of
the pion mass term in the Skyrme model, and it takes the
form

V ¼ m2ð1 − φ3Þ: ð22Þ
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If we consider excitations around our unique choice of
vacuum φ∞ ¼ ð0; 0; 1Þ, then the fields φ1 and φ2 acquire a
mass m. The standard potential [Eq. (22)] spontaneously
breaks the Oð3Þ symmetry into an Oð2Þ symmetry that acts
on the field components φ1, φ2. For this potential, the
charge-1 baby Skyrmion is axially symmetric and exponen-
tially localized; see Fig. 1(a). Piette et al. [7] studied the
asymptotic interactions of standard baby Skyrmions and
found that two well-separated charge-1 solitons have an
interaction energy that can be calculated using a dipole
approximation, such that

Estandard ∝ cosðχ1 − χ2Þ; ð23Þ

where χ1 − χ2 is the relative phase. The attraction between
these two well-separated baby Skyrmions is greatest when
χ1 − χ2 ¼ π. This is known as the attractive channel.
There is a rather nice way to graphically represent the

phase of a baby Skyrmion [36] using a HSV color model,
which is almost analogous to the Runge color sphere
coloring in the Skyrme model. We begin by plotting the
energy density and coloring it using the stereographic
coordinate W, given in Eq. (13). The phase of W,
argðϕ1 þ iϕ2Þ, gives the hue of the color and is defined
such that argðϕ1 þ iϕ2Þ ¼ 0 is red, argðϕ1 þ iϕ2Þ ¼ 2π=3
is green, and argðϕ1 þ iϕ2Þ ¼ 4π=3 is blue. We use the
value of ϕ3 to determine the lightness, such that ϕ3 ¼ þ1 is
white and ϕ3 ¼ −1 is black [37]. The coloring scheme
detailed above is shown in Fig. 2.
For both potentials, multicharged baby Skyrmion sol-

utions have an underlying modular structure. One such
structure of interest for the standard potential [Eq. (22)] is
that of chains of solitons. This was first investigated by
Harland [38] in the context of baby Skyrmions, and then
later by Foster [39] and also Shnir [40]. Each chain has its
ends capped by charge-2 solutions, and the chain links are
built from either charge-1 baby Skyrmions, with a relative
phase of π with each neighbor, or charge-2 solitons. Shnir
[40] showed that a chain with charge-1 links has a lower

energy than a chain with charge-2 links within each
homotopy class. For low-charge solutions, chains appear
to be good candidates for the global minima. A typical
chain configuration for the standard potential [Eq. (22)] is
displayed in Fig. 3(a).

FIG. 1. Plots of the energy density of (a) the axially symmetric
charge-1 baby Skyrmion for the standard potential VðφÞ ¼
m2ð1 − φ3Þ, and (b) the charge-1 baby Skyrmion for the easy
plane potential VðφÞ ¼ 1

2
m2ðφ1Þ2.

FIG. 2. Plots of the coloring scheme detailed in the text for
(a) the axially symmetric charge-1 baby Skyrmion for the
standard potential, and (b) the charge-1 baby Skyrmion for the
easy plane potential.

FIG. 3. Energy-density plots of (a),(b) the charge-10 chain
solution, (c),(d) the charge-30 ring solution, and (e),(f) the infinite
chain. On the right-hand side are the corresponding plots using
the color scheme detailed in the text.
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Foster [39] also investigated baby Skyrmions on a
cylinder R × S1 and calculated the minimum energy
per charge of an infinite chain to be Echain ¼ 1.4549. We
have carried out the same calculation using the lattice
variation method detailed in Sec. IV. This is done by
imposing a Dirichlet boundary condition in the x2 direction,
limjx2j→∞ ¼ φ∞, and a periodic boundary condition in the
x1 direction, φðx1; x2Þ ¼ φðx1 þ n1L; x2Þ, where n1 ∈ Z.
The periodic cell length L is then varied to minimize
the energy, and a minimum energy of Echain ¼ 1.4548 was
found for a periodic cell length of L ¼ 8.53. Thus, our
results provide excellent fidelity and are displayed in
Fig. 3(e).
Later, it was realized by Winyard [41] that the energy

density peaks at the ends of the chains could be reduced by
joining the two ends into a ringlike solution with an added
energy correction for the curvature of the ring. Using a
least-squares fitting, they were able to obtain values for the
energy contributions from the chain caps and the ring
curvature. They showed that ring solutions are a better
candidate for the global minima for B > Bring ∈ Z. For
the mass m2 ¼ 0.1, this transition from chains to rings is
numerically found to occur at Bring ¼ 15. A typical ring
configuration is displayed in Fig. 3(c).
Soliton crystals in the standard baby Skyrme model, with

the standard potential [Eq. (22)], were studied by Hen and
Karliner [13,14]. Through their work, they observed that
the minimal-energy soliton crystal was almost hexagonal
by use of simulated annealing. So one would expect chunks
of the infinite hexagonal crystal to be global minima for
some B > Bcrystal ∈ Z. This prompts the basis of this paper:
At what charge do chunks of the infinite soliton crystal
become the global minima?

B. Easy plane baby Skyrmions

The second potential of particular interest is the easy
plane potential,

VðφÞ ¼ 1

2
m2ðφ1Þ2; ð24Þ

proposed by Jäykkä and Speight [19]. As with the standard
potential, the easy plane potential leaves an unbrokenOð2Þ
symmetry. However, the canonical choice of vacuum φ∞ ¼
ð0; 0; 1Þ distinguishes a point on the Oð2Þ orbit and breaks
the symmetry further into a discrete D2 symmetry. Unlike
the standard model, the charge-1 baby Skyrmion is not
axially symmetric, but rather is composed of two charge-
1=2 baby Skyrmions. This is shown in Fig. 1(b). As we did
before, let us consider elementary excitations around our
canonical choice of vacuum φ∞ ¼ ð0; 0; 1Þ; then, the field
φ1 acquires a mass m, and the φ2 field is massless.
Adapting the dipole approximation proposed by Piette
et al. [7], and assuming that φ2 mediates the dominant

interaction asymptotically [19], gives us an interaction
energy

Eeasy-plane ∝ cosðχ1 þ χ2Þ: ð25Þ
This shows that the interaction energy depends only on the
average phase of the dipoles, which is exactly the opposite
of the situation in the standard model.

FIG. 4. φ1 density plots of various local and global (*) energy
minimizers.

PAUL LEASK PHYS. REV. D 105, 025010 (2022)

025010-6



While the phase coloring is particularly useful for the
standard potential, it is actually more instructive to use the
field structure of the field component φ1 for the easy plane
model. The red peaks and blue peaks are attracted to one
another, but peaks of the same color are repelled by each
other. As each individual peak in the energy density
resembles a CP1 model lump, we refer to each lump as
a half-charge lump. These half lumps are located at the red
and blue peaks of φ1 and come in pairs. So, more
information can be gained by studying plots of the φ1

density than from the energy density itself.
In contrast to the standard model, chains do not appear to

be the global minima for low charges in the easy plane
model. For charges B ≤ 6 with mass m2 ¼ 1, the global
minima are 2B-gons or ringlike solutions. Chunks of an
infinite crystal with a square/rectangular crystalline struc-
ture seem to be the global minima for almost all charges
B > 6. An example of such a global minimum for B ¼ 8
can be seen in Fig. 4(c). The easy plane model also exhibits
a modular structure with some more exotic local minima
consisting of square and polygonal building blocks. One
such solution is the B ¼ 10 easy plane baby Skyrmion built
from square and hexagonal units in Fig. 4(e).
Although chunks of the assumed infinite crystal are

prevalent, ringlike solutions and chain solutions do exist as
other local minima. Jäykkä and Speight [19] showed that
2B-gon rings are the global minima for low charges—that
is, a single ring of 2B half lumps. For higher charges, it is
energetically favorable for the ring solutions to form a
double-ring structure with some discrete symmetry.
Example solutions for the easy plane model are shown
in Fig. 4. The charge-5 chain in Fig. 4(a) is coincidentally a
chunk of the assumed infinite soliton crystal and is only a
local minimizer for B ¼ 5; rather, a 10-gon of half lumps is
the global minimizer. The particularly interesting aspect of
the charge-5 chain is that its shape is closer to that of a
square soliton crystal chain than that of a double hexagon.
This suggests that the square soliton crystal is a lower-
energy crystalline structure than the hexagonal soliton
crystal.

IV. LATTICE STRUCTURE OF BABY SKYRMIONS

In a series of papers by Hen and Karliner [13,14], they
determined the minimal-energy soliton crystal for the
standard model to be hexagonal. They scanned the paral-
lelogram parameter space at a constant Skyrmion density to
find the parallelogram that minimizes the static energy.
Once they found the optimal parallelogram, they then
varied the Skyrmion density to find the minimal-energy
Skyrmion structure. In what follows, we refer to the shape
of the lattice Λ as the lattice structure and the energy-
minimizing Skyrmion as the soliton/Skyrmion crystal. Note
that for an energy minimizer φ to be a soliton crystal, it
has to satisfy the extended virial constraints detailed below.

We use a more robust method based on the work done by
Speight [42] and propose an analytic method to determine
the optimal lattice structure for an arbitrary potential. We
then apply this method to study Skyrmion crystals in the
standard model and in the easy plane model.
The physical space of interest is the 2-torusR2=Λ, where

Λ is the set of all two-dimensional period lattices

Λ ¼
�X2

i¼1

niðαXiÞjni ∈ Z; α ∈ R�
�
; ð26Þ

α is a scaling parameter, and fX1; X2g is a basis for R2.
We have written the fundamental pair of periods in the
form Yi ¼ αXi ∈ R2 for later convenience, where we will
introduce a constraint such that the area of the period lattice
is α2. The crystallographic restriction theorem states that
there are five Bravais lattice types in two dimensions [43].
In each of these lattice types, the fundamental unit cell is a
certain type of parallelogram. To find the Skyrmion crystal,
we minimize the static energy functional over all period
lattices. Equivalently, we fix our domain of φ to be the unit
2-torus R2=Z2 and identify every other torus R2=Λ with
R2=Z2, but with a nonstandard Riemannian metric g. This
metric g on R2=Z2 is the pullback of the flat Euclidean
metric ḡ onR2=Λ via the diffeomorphismR2=Z2 → R2=Λ.
As we vary the period lattice Λ, the metric g varies [42].
Now, let F∶T 2 → R2=Λ be a diffeomorphism with F ∈

GLþð2;RÞ and T2 ¼ R2=Z2, as shown in Fig. 5. Using
the identification GLþð2;RÞ ¼ SLð2;RÞ×R�=Z2, let A ¼
½X1X2� ∈ SLð2;RÞ and α ∈ R� such that F ¼ αA ∈
GLþð2;RÞ. We will now identify the domain of φ as
Σ ¼ T2, so that the Skyrme field is a map φ∶T2 → S2. The
metric on T 2 is the pullback g ¼ F�ḡ of the flat Euclidean
metric ḡ on R2=Λ. Explicitly, this is

g ¼ α2
�
X1 · X1 X1 · X2

X1 · X2 X2 · X2

	
; ð27Þ

with inverse

FIG. 5. The (a) domain 2-torus T 2 and (b) target 2-torus R2=Λ
for the diffeomorphism F∶T 2 → R2=Λ.
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g−1 ¼ 1

α2

�
X2 · X2 −X1 · X2

−X1 · X2 X1 · X1

	
: ð28Þ

The Riemannian volume form is simply volg ¼ffiffiffiffiffiffiffiffiffi
det g

p
dx1 ∧ dx2 ¼ α2dx1 ∧ dx2. Then, using the local

form for the Dirichlet term [Eq. (2)] and the inverse metric
[Eq. (28)], we can compute the Dirichlet energy on T2 to be
given by

E2 ¼
1

2

Z
T2

fðX2 · X2Þð∂1φÞ2 − 2ðX2 · X1Þð∂1φ · ∂2φÞ

þðX1 · X1Þð∂2φÞ2gdx1dx2: ð29Þ
Since the Dirichlet energy is conformally invariant, it
does not have a dependence on the scaling parameter α.
Likewise, using the local form for the Skyrme term
[Eq. (3)], the inverse metric [Eq. (28)], and the pullback
of the area 2-form [Eq. (4)], the Skyrme energy on T 2 is

E4 ¼
κ2

2α2

Z
T2

ð∂1φ × ∂2φÞ · ð∂1φ × ∂2φÞdx1dx2; ð30Þ

and the potential energy is simply

E0 ¼ α2
Z
T2

VðφÞdx1dx2: ð31Þ

Putting this together, we see that the static energy func-
tional for baby Skyrmions on the unit area 2-torus T 2 with
the nonstandard Riemannian metric g is

E ¼ 1

2

Z
T2

fX2
2ð∂1φÞ2 − 2ðX2 · X1Þð∂1φ · ∂2φÞ

þ X2
1ð∂2φÞ2gdx1dx2

þ κ2

2α2

Z
T2

ð∂1φ × ∂2φÞ2dx1dx2 þ α2
Z
T2

VðφÞdx1dx2:

ð32Þ

As before, we need an explicit description of the energy
gradient for our numerical analysis. The variation of the
energy density with respect to field φa can be obtained from
the Euler-Lagrange field equations—that is,

δE
δφa ¼ α2

δV
δφa−

�
α2gij∂ijφ

aþ κ2

α2
½∂iiφ

að∂jφ
bÞ2

þ∂iφ
að∂ijφ

b∂jφ
b−∂jjφ

b∂iφ
bÞ−∂ijφ

að∂iφ
b∂jφ

bÞ�
�
;

where i; j ∈ f1; 2g and a; b ∈ f1; 2; 3g.
To find the optimal lattice structure, we must vary the

static energy functional [Eq. (32)] with respect to the period
lattice parameters X1, X2, and α. First, taking the variation
of the static energy functional [Eq. (32)] with respect to the
scaling parameter α,

∂E
∂α ¼

Z
T2

�
−
κ2

α3
ð∂1φ × ∂2φÞ2 þ 2αVðφÞ

�
dx1dx2 ¼ 0;

yields the following relation for the scaling parameter:

α2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2

2

R
T2 ð∂1φ × ∂2φÞ2dx1dx2R

T2 VðφÞdx1dx2

s
: ð33Þ

Thus, the area of the period lattice is determined by the ratio
of the flat Skyrme term to the flat potential term.
Determining the fundamental pair of periods X1, X2 which
minimize the Dirichlet energy E2 is a constrained quadratic
optimization problem with the nonlinear constraint
detð½X1X2�Þ ¼ 1. For notational convenience, let us write

Eij ¼
Z
T2

ð∂iφ · ∂jφÞdx1dx2: ð34Þ

Then the Dirichlet energy [Eq. (29)] can be expressed in the
quadratic form

E2 ¼
1

2
xTQx; Q ¼

2
6664

E22 0 −E12 0

0 E22 0 −E12

−E12 0 E11 0

0 −E12 0 E11

3
7775;

ð35Þ

where x ¼ ½X1

X2
� is a 4-vector and Q is a 4 × 4 sym-

metric matrix. This constrained quadratic optimization
problem can be solved by including the Lagrange term
γðdetð½X1X2�Þ − 1Þ in Eq. (35), where γ ∈ R� is a Lagrange
multiplier. This reduces the problem to an eigenvalue
problem:

Bx ¼ γx; B ¼

2
6664

0 E12 0 −E11

−E12 0 E11 0

0 E22 0 −E12

−E22 0 E12 0

3
7775: ð36Þ

By definition, for an energy minimizer φ∶R2=Λ → S2 to
be a soliton lattice, its stress tensor S½φ� must be L2

orthogonal to the space of parallel symmetric bilinear
forms E (a three-dimensional subspace of the space of
sections of the rank-3 vector bundle T�R2=Λ ⊙ T�R2=Λ).
Furthermore, if the Hessian of the soliton lattice is positive
definite, then it is a soliton crystal. In fact, Speight [42]
showed that every baby Skyrme lattice is a soliton crystal.
The stress tensor of φ is given by [32]

S½φ� ¼
�
1

2
jdφj2ḡ −

1

2
jφ�ωj2ḡ þ VðφÞ

�
ḡ − φ�h: ð37Þ
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Let E0 be the two-dimensional space of traceless parallel
symmetric bilinear forms. Then the Skyrme field φ is a
soliton lattice if and only if φ is L2 orthogonal to ḡ and E0,
where we recall that ḡ is the metric on R2=Λ and not T 2.
This gives us the familiar virial constraint

Z
R2=Λ

�
−
1

2
jφ�ωj2ḡ þ VðφÞ

�
volḡ ¼ E0 − E4 ¼ 0: ð38Þ

Let ðy1; y2Þ be local orthonormal coordinates on R2=Λ and
ε ∈ E0. Then, for S to be L2 orthogonal to E0, we require

hS; εiL2 ¼ −
1

2
hφ�h; εiL2 ¼ 0:

As E0 is spanned by ε1 ¼ ðdy1Þ2 − ðdy2Þ2 and ε2 ¼
2dy1dy2, we get the following additional virial constraints:

Z
R2=Λ

����� ∂φ∂y1
����2 −

���� ∂φ∂y2
����2
�
dy1dy2 ¼ 0 ð39Þ

and Z
R2=Λ

∂φ
∂y1 ·

∂φ
∂y2 dy

1dy2 ¼ 0: ð40Þ

These additional virial constraints state that the Skyrme
map φ must be conformal on average. We have shown
above that for the soliton lattice φ to be critical with respect
to variations of the period lattice Λ, it must satisfy the
extended virial constraints in each lattice cell.
The extended Derrick virial constraints in Eqs. (38)–(40)

can be imposed as a consistency check when implementing
the lattice optimization method detailed above. For
numerics, the domain manifold of interest is the 2-torus
T2 ¼ R2=Z2 with metric g ¼ F�ḡ, where we previously
introduced the diffeomorphism F∶T2 → R2=Λ. Recall that
we used the identification F¼αA∈GLþð2;RÞ for α ∈ R�
and A ¼ ½X1X2� ∈ SLð2;RÞ. Thus, using the compact
notation of Eq. (34), the generalized virial constraints
[Eqs. (39) and (40)] on T2 are given, respectively, by

ðA2
22 −A2

12ÞE11 þ ðA2
21 −A2

11ÞE22

þ 2ðA11A12 −A21A22ÞE12 ¼ 0 ð41Þ

and

−A12A22E11 −A11A21E22

þ ðA11A22 þA12A21ÞE12 ¼ 0; ð42Þ

where Aij ¼ ðXjÞi, the ith component of Xj, and
ðAijÞ ¼ A.
In this section, we have shown that the problem of

determining the optimal lattice structure that minimizes

the baby Skyrme energy [Eq. (32)] amounts to solving an
eigenvalue problem [Eq. (36)]. During each iteration of our
numerical minimization algorithm, we perform an accel-
erated gradient descent, and then we compute the scaling
parameter α via Eq. (33) and solve the eigenvalue problem
[Eq. (36)] to give us the pair of periods X1, X2. We also
check that the generalized virial constraints of Eqs. (38),
(41), and (42) are satisfied in each iteration, showing that
the energy minimizer φ∶R2=Λ → S2 is indeed a soliton
lattice and thus a soliton crystal. This determines the lattice
Λ, and the algorithm in turn determines the Skyrmion
crystal. The numerics detailed throughout this section
were carried out initially on a 200 × 200 grid with lattice
spacing Δx ¼ 0.005, with a final higher-accuracy simu-
lation carried out on a 500 × 500 grid with lattice spacing
Δx ¼ 0.002. Finer meshes were tried, but there were no
considerable changes in the final energy. Note that the
coarser 200 × 200 grid would be sufficient, as this gives
approximately the same accuracy as the numerics for the
baby Skyrmions on R2. It is also worth noting that the
lattice spacings are fixed sizes on the discretized unit area
2-torus T 2, whereas the equivalent lattice spacings on the
discretized 2-torus R2=Λ vary as the lattice Λ varies.

A. Standard baby Skyrmion crystals

Employing the lattice optimization method detailed in
Sec. IV for the standard potential [Eq. (22)] with m2 ¼ 0.1
(and κ2 ¼ 1), the optimal lattice is found to be an
equianharmonic lattice with the baby Skyrmions forming
a hexagonal Skyrmion crystal with D6 symmetry. This is
found for almost all B ¼ 2 initial configurations on random
initial lattice geometry (with the exception of relaxing to
the infinite chain solution occasionally). Each unit cell
contains a charge of B ¼ 2 and has sides of equal length
Lcrystal ¼ 9.60 with the angle between the two periods X1,
X2 being θ ¼ 2π

3
, giving a unit cell area of A ¼ 79.84.

We find that the Skyrmion crystal has energy Ecrystal ¼
1.4543, which is lower than the infinite chain energy
Echain ¼ 1.4548. Note that when we refer to energy values,
we have normalized them by the Bogomolny bound—i.e.,
E ≔ E=ð4πBÞ. The hexagonal Skyrmion crystal can be
seen in Fig. 6. As a fidelity check with Hen and Karliner’s
work, we also determined the optimal lattice to be equi-
anharmonic with a hexagonal Skyrmion crystal for m2 ¼
0.1 and κ2 ¼ 0.03. The energy for this crystal is found to be
Ecrystal ¼ 1.0799, which is in excellent agreement with their
numerically determined value of Ecrystal ¼ 1.08.
Other soliton crystals were searched for at numerous

topological charges for various initial configurations and
initial lattice geometry. However, they all had a tendency to
relax into a chain or rows of separate chains with the
infinite chain energy Echain ¼ 1.4548. A slightly lower-
energy configuration was found for rows of adjacent chains
with all the charge-1 links rotated by π in one chain relative
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to the other. This attractive chains configuration has an
energy of E2-chains ¼ 1.4545 and is shown in Fig. 7.

B. Easy plane baby Skyrmion crystals

As previously proposed in Sec. III B, it seems likely that
there may possibly be a few soliton crystals for the easy
plane model. This prompts the search for Skyrmion crystals
for a range of charges with various initial configurations.
The lowest-energy Skyrmion crystal is a square of half
lumps withD4 symmetry in a square lattice for B ¼ 2, with
energy EB¼2 ¼ 1.5152. The square lattice has sides of equal
length Lcrystal ¼ 8.20, giving a unit cell area of A ¼ 67.24.
Two other Skyrmion crystals were found with slightly
higher energies: a hexagonal Skyrmion crystal in an
equianharmonic lattice for B ¼ 3 with D6 symmetry and
energy EB¼3 ¼ 1.5207, and an octagonal Skyrmion crystal
in a square lattice with D4 symmetry and energy

EB¼4 ¼ 1.5228. These three Skyrmion crystals are shown
in Fig. 8.

V. BABY SKYRMION CRYSTAL CHUNKS

The soliton crystal is the lowest-energy solution, so one
would expect chunks of the soliton crystal to be the global
minima for charges past a critical charge Bcrystal. A starting
point would be to split the crystal chunk energy into a
bulk-volume, or area, term and a surface term. For a given
charge B, we know the minimal-energy soliton crystal, the
corresponding lattice Λ, and the lattice area. So, the bulk-
area term is easy to calculate. However, the problem lies in
minimizing the surface energy contribution for a fixed area,
which corresponds to minimizing the crystal perimeter for a
fixed area. This is known as an isoperimetric problem. Even
once the minimal-energy crystal chunk shape has been
found, we still require an estimate of the surface energy
(per unit length) to determine the surface energy of the
crystal chunk.

A. Surface energy of a baby Skyrmion crystal chunk

The surface energy per unit length of a Skyrmion crystal
chunk can be predicted by using a crystal slab model.
Skyrmion crystals are layered on an infinite cylinder Σ ¼
R × S1 of width L ¼ Lcrystal, and the number of layers
n ∈ N are increased to estimate the surface energy con-
tribution. As stated in Sec. II, this corresponds to a Dirichlet
boundary condition in the x2 direction, limjx2j→∞ ¼ φ∞,
and a periodic boundary condition in the x1 direction,
φðxÞ ¼ φðxþ n1X1Þ. Each layer contributes a charge of 2
in this model, giving an n-layer crystal slab a total charge of
B ¼ 2n. The crystal slab layering can be seen in Fig. 9.

FIG. 6. Hexagonal crystalline structure of the infinite crystal in
the standard model.

FIG. 7. Plots of the adjacent infinite chains in the attractive
channel, yielding an energy lower than the infinite chain but
higher than the hexagonal infinite crystal.

FIG. 8. φ1 density plots of the optimal crystalline structures and
their corresponding lattices. The lowest-energy crystal structure
is the B ¼ 2, and the highest is B ¼ 4.
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For the standard potential, each hexagonal baby
Skyrmion has six bonding sides (or nearest neighbors),
and each crystal slab edge has two unbonded sides.
Similarly, for easy plane crystal chunks, each baby
Skyrmion has four bonding sides, and each crystal slab
edge has two unbonded sides. We can express the crystal
slab energy as

Eslab ¼ Ecrystal þ NfreeEbond; ð43Þ

whereNfree is the number of free bonds (or unbonded sides)
and Ebond is the energy of each free bond. For the standard
and easy plane crystal slabs in Fig. 9, we have Nfree ¼ 4.
We can approximate the surface energy contribution by
applying a least-squares fitting to the crystal slab energy
normalized by the Bogomolny bound,

Eslab ¼ Ecrystal þ
Nfree

2n
Ebond; ð44Þ

where Ebond is the normalized free bond energy such that
Ebond ¼ 4πEbond. For approximating the surface energy,
we compute the energies of various n-layer crystal slabs
with n ∈ f3;…; 11g. Using a trust region reflective algo-
rithm, and the crystal slab approximation [Eq. (44)], we
find that for the standard potential Ebond ¼ 0.0031 (with
m2 ¼ 0.1), and for the easy plane potential Ebond ¼ 0.0103
(with m2 ¼ 1).

B. Standard crystal chunks

To model a Skyrmion crystal chunk, we split the crystal
chunk energy into a bulk-volume term and a surface term,

Echunk ¼ Ebulk þ Esurface. The surface energy contribution
of a baby Skyrme crystal is determined by the number of
unbonded sides. As stated before, for the standard potential,
each hexagonal baby Skyrmion has six bonding sides (or
nearest neighbors), which means there are many possible
arrangements for crystal chunks for a given charge B. For
easy plane crystal chunks, the square lattice is the minimal-
energy crystal configuration, so we only consider each easy
plane baby Skyrmion to have four bonding sides. Our aim
is to determine the shape of an equilibrium crystal by
minimizing the total surface energy associated with the
crystal-vacuum interface. In crystallography, one normally
employs the Wulff construction method to determine the
equilibrium shape of a crystal chunk. However, we take a
simpler approach and only consider the perimeter of the
crystal chunk boundary, not its shape. Equivalently, we are
considering the number of free bonds in a given crystal
chunk. This enables us to write the energy in the form

Echunk ¼ Ebulk þ NfreeEbond: ð45Þ

Therefore, we want to find the crystal chunk that minimizes
the number of free bonds, and hence its surface energy
contribution, for a fixed charge B and crystal area A.
The infinite standard crystal has a discreteD6 symmetry,

so we propose that minimal-energy chunks of the infinite
crystal take the form of layered hexagonal solitons, as can
be seen in Fig. 11. The number of charge-2 units in each
layer is precisely 6n. As we consider each charge-2 baby
Skyrme unit to have six bonding sides, we can determine
the number of free bonds in an n-layer crystal chunk to be
Nfree ¼ ð12nþ 6Þ. This accounts for the two free bonds on
each outer charge-2 soliton plus the additional free bond at
each vertex of the crystal chunk. The total charge of a
crystal chunk is B ¼ 2ð3ðnþ 1Þnþ 1Þ, such that

n ¼ 1

6
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6B − 3

p
− 3Þ: ð46Þ

Thus, we can approximate the normalized energy of a
hexagonal standard baby Skyrmion crystal chunk to be
given by

Echunk ¼ Ecrystal þ
Nfree

B
Ebond

¼ Ecrystal þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6B − 3

p

B
Ebond: ð47Þ

To determine the transition charge Bcrystal where chunks
of the infinite soliton crystal become the global minima, we
need to compare the crystal chunk model in Eq. (47) to
chain and ring models. Using the models proposed by
Winyard [41] and our numerically determined value for the
infinite chain, we are able to approximate ring and chain
solutions. The results are plotted in Fig. 10, which includes

FIG. 9. Energy density and φ1 density plots showing (a) a
seven-layer standard hexagonal crystal slab and (b) a five-layer
easy plane square crystal slab.
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data points from crystal chunk solutions for numerous
charges B up to B ¼ 2054. It can be observed that the
crystal chunk approximation [Eq. (47)] fits the data very
well. We find that crystal chunk solutions become global
minima for charges B > Bcrystal ¼ 954. Energy density
plots of the Skyrmion crystal chunk solutions are shown
in Fig. 11. All of these crystal chunks were found numeri-
cally on grids with lattice spacing 0.05, with grid sizes
ranging from 800 × 800 to 2400 × 2400. Crystal chunk
solutions for B ¼ 1262 and B ¼ 2054 are not shown but
were obtained on grids with lattice spacing 0.1 and grid
sizes 3000 × 3000 and 3800 × 3800, respectively.

C. Easy plane crystal chunks

To predict the energy of an easy plane crystal chunk is
somewhat more challenging. There exist three soliton
crystals, all relatively close in energy with one other. For
charges B such that

ffiffiffiffiffiffi
2B

p
∈ Z, the minimal-energy crystal

chunk is the minimal perimeter
ffiffiffiffiffiffi
2B

p
×

ffiffiffiffiffiffi
2B

p
square of half

lumps. For nonsquare 2B, it becomes exceedingly difficult
to predict the global minima. This is because there exists a
smorgasbord of local minima for a given charge, which
increases with the charge number.
Nevertheless, some progress can be made if we consider

rectangular crystal chunks built from the square Skyrmion
crystal. In the first instance, if 2B has factors other than 2
and B—say a ∈ Z and 2B=a ∈ Z—then the (local) min-
imal-energy crystal chunk will be an a × 2B=a rectangle of
half lumps such that the sum aþ 2B=a is minimal with
respect to the other pairs of possible factors. We ignore the
trivial factors 2B and 1, as the 2B × 1 chain is most likely
not a local minimizer for the easy plane model. Random
initial configurations do not relax to a single linear chain,
unlike the standard model. Even starting with a single-
chain initial configuration in attractive channel orientations
does not result in a relaxed final state of a single chain; it
normally relaxes to the double chain. To find the pair of

factors with minimum sum, one would find the factor
a ∈ Z of 2B that minimizes the perimeter function
fðaÞ ¼ 2ðaþ 2B=aÞ.
Using the above information, we are able to estimate the

energy of a crystal chunk for a given charge B. Similar to
the standard model, we split the crystal chunk energy into a
bulk term and a surface term. For charges B, we need to
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FIG. 10. Comparison of ring, chain, and crystal chunk approx-
imations in the standard model.

FIG. 11. Energy density plots of crystal chunk solutions in the
standard model and their corresponding coloring on the right-
hand side.
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determine the pair ða; 2B=aÞ of minimal sum factors of 2B.
Then we can calculate the surface energy, and determining
the bulk energy is straightforward. Explicitly, the normal-
ized energy for a charge-B crystal chunk is given by

Echunk ¼ EB¼2 þ
Nfree

B
Ebond

¼ EB¼2 þ 2

�
aþ 2B

a

�
Ebond

B
: ð48Þ

This approximation for square crystal chunks (2B ¼ a2) is
plotted in Fig. 12, alongside the corresponding true numeri-
cally determined (normalized) energies.
Clearly, the further a deviates from

ffiffiffiffiffiffi
2B

p
, the higher the

surface energy contribution. So one would expect there to
be normalized energy bands at high charges for this
rectangular approximation. These bands can be determined
in the limit B → ∞, and for such highly rectangular pairs
ða; 2B=aÞ, the bands in the limit B → ∞ are given by

Ebands ¼ EB¼2 þ
4

a
Ebond: ð49Þ

Since there are three soliton crystals, there are obviously
better crystal chunk solutions for highly rectangular factors
ða; bÞ. As an example, let us consider local minima for the
charge-13 easy plane soliton. There are three solutions that
one might expect to be contenders for the crystal chunk for
this charge. First, the natural choice is the minimal
perimeter rectangle, which will be a double chain, or
simply a 2 × 13 rectangle of half lumps. This is depicted
in Fig. 13(a). The next idea is to consider the minimal
perimeter rectangle of half lumps for a B − 1 ¼ 12 crystal
chunk, then add a half-lump pair to one of its corners to
create a defect. This results in a 6 × 4 rectangular crystal
chunk with one distorted hexagonal corner, as shown in
Fig. 13(b). The third contender is akin to the corner-cutting
method used in the Skyrme model [44,45], in which we try

to remove half lumps (one blue and one red) from two
corners of the minimal-perimeter 7 × 4 rectangular B ¼ 14
crystal chunk. This does not have the intended effect of
missing half lumps on corners; rather, it pulls the rest of the
row, and the adjacent row, away from the chunk to form an
arc with two half lumps more than the half-lump height of
the rectangular chunk. This can be seen in Fig. 13(c). Out of
these three most likely crystal chunk candidates for a
charge-13 soliton, the rectangular crystal chunk with one
distorted hexagonal corner is the minimal-energy solution.
So, for a charge-13 baby Skyrmion, the minimal-

perimeter rectangle model fails as a candidate for the
global minimal-energy crystal chunk in the easy plane
model. So even at charge-13, we have already found a
lower-energy crystal arrangement than the rectangular
crystal chunk. One would expect that adding hexagonal/
octagonal defects to nearly square crystal chunks would
result in lower-energy solutions than rectangular crystal
chunks. However, for square crystal chunks, such that
B ∈

ffiffiffiffiffiffi
2B

p
, the rectangular crystal chunk model [Eq. (48)] is

an excellent approximation.
In brief, we conjecture that the prevalent minimal-energy

crystal chunks for the easy plane model are squares of half
lumps if

ffiffiffiffiffiffi
2B

p
∈ Z; otherwise, they are minimal-perimeter

rectangles of half lumps, with some crystal chunks having
distorted hexagonal defects. We have also proposed an
empirical model to determine the energy for a given square/
rectangular crystal chunk.

VI. CONCLUDING REMARKS

In this paper, we have presented a method to determine
soliton crystals on an optimized lattice for arbitrary
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FIG. 12. Comparison of approximate and true square crystal
chunks in the easy plane model.

FIG. 13. φ1 density plots of the three candidates for the crystal
chunk solution for a B ¼ 13 easy plane baby Skyrmion. The
asterisk (*) indicates the global minimum.
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potentials in the baby Skyrme model. Once the minimal-
energy soliton crystal is known, the solitons can be layered
by the use of a crystal slab model, and the surface energy
per unit length can be obtained numerically. Using insight
obtained from the soliton crystal and the surface energy,
chunks of the Skyrmion crystal can be constructed and their
corresponding energies determined.
For the standard potential, we have demonstrated that the

global minimum-energy Skyrmion crystal exhibits a clear
hexagonal D6 symmetry. This hexagonal soliton crystal
has a lower normalized energy than the infinite chain
solution proposed by Foster [39]. We propose that the
global minima are layered hexagonal crystals for B > 954

with m2 ¼ 0.1.
We determined that rows of adjacent infinite chains in

attractive orientations have normalized energies close
to that of the infinite hexagonal crystal. So, it is quite
possible that concentric ring solutions in attractive orien-
tations could be the global minima for charges B with
Bring < B < Bcrystal; this would need to be investigated.
Likewise, Winyward [41] showed that chain solutions
could also intersect to form junctions and proposed that
networks of standard baby Skyrmions could be the global
minima between rings and crystal chunks. This, too, would
need to be studied.
Solitons in the easy plane model take the form of

configurations of half lumps. This model has three soliton
crystals all relatively close in energy: square, hexagonal,
and octagonal. Of these, the square Skyrmion crystal of half
lumps is the global minimum. This is more reminiscent of
the three-dimensional Skyrme system and, in a manner of
respect, is a better analogue. The easy plane model exhibits
a plethora of local minima with various different types of
symmetries. We conjecture that, when 2B is a perfect
square, square crystal chunks are the global minima. For
rectangular 2B, the minimal-energy crystal chunks are
rectangular (as close to square as possible) crystal chunks
of half lumps, with some chunks having hexagonal surface
defects. The study of internal anomalies has not been
carried out, so it is possible that the inclusion of a defect

into the bulk is more energetically favorable over a surface
defect.
The obvious extension of the work detailed in this paper

is to the three-dimensional Skyrme model. The crystal
structure has been studied extensively in the literature
[6,18,45–50]. All the lattice variations that have been
studied were for a cubic lattice of side length L, in which
only L is varied. In this case, the “optimal” soliton crystal is
the cubic arrangement of half-Skyrmions [6], as shown in
Fig. 14. It is believed that the simple cubic arrangement of
half-Skyrmions is the lowest-energy Skyrmion crystal.
However, if the Skyrme model and the baby Skyrme model
truly are analogous, it is possible that a hexagonal
Skyrmion configuration could prevail (or even an entirely
different crystalline structure).
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