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Abstract 14 

Biomass can be utilised as a near carbon neutral fuel for power generation. Biomass may 15 

come in a variety of forms, such as woods or agricultural wastes, with highly variable 16 

compositions. It is well known that biomass ash content and composition can introduce 17 

severe operational challenges to power stations, such as slagging and corrosion. Machine 18 

learning approaches have been successfully applied in a variety of contexts to generate 19 

predictive models and identify relationships in large data sets. However, such approaches 20 

have not previously been applied to biomass trace element or ash content data, in part due to 21 

limited large data set availability. In this work, 5 years of fuel blend analysis data (3500+ 22 



Page 2 of 38 

 

data sets) was analysed from a 35MWe biomass power station burning a 60/40% blend of 23 

virgin wood and recycled (waste) wood. Variation to ash content and key trace elements (K, 24 

Na, Pb, Zn, Cl) was analysed and compared versus a literature average benchmark. 25 

Identification of underlying relationships between these key components and others was 26 

attempted with principal component analysis and random forest regression machine learning. 27 

Ash and chlorine exceeded the literature average benchmark over many time periods and 28 

would have a negative impact on boiler operation. Potassium and sodium were only above 29 

literature average levels intermittently. No significant underlying relationships for the key 30 

components could be identified with principal component analysis or random forest 31 

regression, nor could an accurate predictive model be created, though some minor trends 32 

were noted. This is likely due to the high degree of heterogeneity seen in the fuel data, as it is 33 

a blend of virgin and recycled wood. It is suggested that future studies applying machine 34 

learning methods in this context either use singular fuel data sets, or that additional 35 

information is recorded within the blended data set when analysis fuel composition (e.g. fuel 36 

sources, suppliers, blend ratio). Suggestions were also made regarding improvements to 37 

waste wood sampling approaches. 38 

Keywords 39 

Biomass, waste wood, ash, random forest 40 
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ANN Artificial neural network 42 

CHNS Carbon Hydrogen Nitrogen Sulphur 43 

GCV Gross calorific value 44 
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MAPE Mean absolute percentage error 46 

MSE Mean square error 47 

OOB Out-of-bag 48 

PC Principal component 49 

PCA Principal component analysis 50 

PVC Poly-vinyl chloride 51 

R2 Coefficient of determination 52 

RF Random Forest 53 

RMSE Root mean squared error 54 

UKAS United Kingdom Accreditation Service 55 

ŷ Predicted value (model error analysis) 56 

y Actual value (model error analysis) 57 

n Number of predicted points (model error analysis) 58 

s Score value (permutation importance)  59 
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1. Introduction 60 

Increasing awareness of the effects of anthropogenic climate change has led to the rapid 61 

uptake of low carbon options for power generation. One such near carbon-neutral fuel option 62 

is biomass, which encompasses materials such as wood or agricultural wastes [1]. Biomass 63 

fuels are known to bring many challenges for combustion due to their heterogeneous nature 64 

[2, 3], such as slagging, fouling, corrosion, and in fluidized bed boilers, bed agglomeration. 65 

Key fuel parameters for combustion, such as ash and moisture content, can vary substantially 66 

by fuel type, fuel harvesting location or season, or fuel pre-processing methods (e.g. washing 67 

[4]). Both experimental and theoretical studies of biomass fuel compositions and challenges 68 

have been performed, to better understand their fundamental characteristics. 69 

1.1 Biomass Experimental Studies 70 

Biomass power station operators frequently prefer virgin wood fuels which generally have 71 

more desirable and consistent compositions (e.g. lower ash contents). The higher cost of 72 

virgin wood fuels has led some operators to utilise these fuels in a blend with cheaper, lower 73 

quality, waste wood. As is well known in the literature, use of waste wood comes with many 74 

issues for boiler operation [5]. Unavoidable extraneous contaminants (e.g. plastics, paints, 75 

metals) contribute high levels of chlorine, zinc, and lead in the feedstock, which drive 76 

corrosion within the boiler [6, 7, 8]. These extraneous contaminants are frequently under-77 

reported in fuel composition analysis, with accurate sampling of recycled wood challenging 78 

due to its heterogeneity [9]. A further concern with recycled wood is higher levels of 79 

nitrogen, introduced in the manufacture and preparation of the wood for its original use (e.g. 80 

in glues) [10], which can contribute to higher NOx emissions. Having reliable predictive 81 

models for fuel quality would be of significant value to operators. At present, it often takes 82 

days for fuel blend analysis to be performed, despite sampling occurring at the point of fuel 83 
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entry into the boiler where it is immediately burned. Identifying reliable correlations between 84 

fuel contaminants may allow, for example, to monitor one trace element via a boiler 85 

measurement probe and use this to determine levels of correlating trace elements. 86 

1.2 Biomass Fuel Modelling 87 

Various modelling approaches have been applied in the study of biomass fuels. 88 

Thermochemical modelling software packages, such as FactSage [11], have been applied in 89 

the study of biomass ash melting behaviours, to determine if a given fuel is likely to cause 90 

ash related issues (e.g. slagging) during combustion. These approaches use fundamental 91 

thermochemical parameters for unary, binary, ternary, and quaternary chemical phase 92 

systems, in combination with Gibbs free energy minimization, to predict compound and 93 

phase formations at a specified set of conditions. The recent work of Lindberg, et al. [12] 94 

reviewed the current status of the thermochemical databases that underpin thermochemical 95 

modelling approaches, and found key ternary systems (e.g. K2O-CaO-SiO2) to lack 96 

fundamental experimental data, which would thus negatively impact the accuracy of 97 

thermochemical models using these databases.  98 

Other mathematical studies of biomass fuels have examined correlations between oxides 99 

within ash and differences between biomasses (e.g. woody fuels versus contaminated 100 

biomass wastes), as was performed by Vassilev, et al. [3]. This work highlighted for example 101 

the positive correlations in natural biomass with Cl, Ti, Si, S, Na and P that would arise in ash 102 

content. Further examples of mathematical modelling include the work of Edo, et al. [5] 103 

where a 9-year waste wood fuel data set from a Swedish power station was analysed, one of 104 

the few available works that has studied a large commercial biomass fuel data set. This study 105 

applied a handful of mathematical approaches, such as principal component analysis, to the 106 

fuel data set to attempt to identify underlying groupings or correlations. Edo, et al. [5] noted a 107 
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correlation between waste wood particle size and composition, e.g. sieving to reduce biomass 108 

fines had also reduced chlorine and lead content.  109 

In recent years, machine learning methods have rapidly captured interest as method to better 110 

understand large data sets. Random forest is an ensemble machine learning algorithm [13, 14, 111 

15] that has been widely applied across academia and industry. For example, a search for the 112 

term “random forest” in the citation database Scopus [16] returns over 48,000 results (as of 113 

2021), with the majority published since 2015. With random forest, many separate decision 114 

trees are created in model training, with each of these trees making a prediction. The 115 

aggregate result of these trees is then used to make the final prediction. In the context of a 116 

regression study, the prediction results of all decision trees are averaged to create the final 117 

prediction.  118 

Few prior works have applied random forest in the context of biomass fuel quality studies 119 

[17, 18]. Ge, et al. [17] trialled random forest and other decision tree approaches to identify 120 

fuel types based upon flame spectra data. Four different biomass fuels were used in testing. A 121 

total of 4000 data points were collected, with seven data features used for prediction in the 122 

tree models. After tuning of the random forest model, the average identification success rate 123 

after ten trials with the model was 98.7%. Elmaz, et al. [18] applied random forest 124 

classification to proximate fuel analysis data, to classify fuels into one of four types: coal, 125 

wood, agricultural residue, or manufactured biomass. Other models were used in addition to 126 

random forest, on close to 600 fuel data sets taken from the Phyllis2 [19] database. With 127 

random forest, a classification accuracy of about 90% was seen. No prior literature studies 128 

appear to have applied random forest for the prediction of key fuel compositional parameters 129 

or trace element contents. As can be imagined, a variety of other machine learning and 130 

artificial intelligence methods have been applied more broadly in the context of biomass fuel 131 

usage. For example, the recent work of Li, et al. [20] applied artificial neural networks for the 132 
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prediction of potassium content based on flame spectroscopy; potassium playing a key role in 133 

ash melting and corrosion phenomena. The best neural network applied, a deep recurrent 134 

neural network, had a low relative error of 6.34% which is a good endorsement of the 135 

viability of neural networks when using flame spectroscopy data. A further recent example of 136 

neural network application in the context of biomass fuel prediction is the work of Sakiewicz, 137 

et al. [21] who used this approach to predict ash fusion melting temperatures. The accuracy 138 

achieved was however relatively weak, with R2 values between 0.615-0.756. 139 

1.3 Study Background and Objectives 140 

In the present work, a 5-year fuel data set from a 35MWe biomass fired power station was 141 

analysed. The unit uses a bubbling fluidized bed boiler and burns a blend of virgin wood and 142 

recycled (waste) wood. The target fuel blend is 60% virgin wood and 40% recycled wood on 143 

a thermal basis, though recycled wood content may vary from 25-45% dependent fuel 144 

quality. All fuel is sourced from the UK. Virgin wood is comprised of a variety of sources 145 

(logs, chips, sawmill residues) from several suppliers. The recycled wood is also sourced 146 

from around the UK from several suppliers and is typically in the form of building/demolition 147 

waste wood. The fuel data under analysis was the “blend-to-boiler” analysis. This is the 148 

analysis of samples of the blended fuel mixture taken from the screw feeder, just prior to 149 

entry into the boiler. This therefore presents a challenging scenario for data analysis and 150 

machine learning approaches, as this is a highly heterogeneous data set with various factors 151 

changing simultaneously (e.g. blend ratio, fuel source/supplier, trace element levels, etc.). In 152 

general, very few studies of large industrial biomass fuel data sets exist in literature. As 153 

previously mentioned, the most notable example is that of Edo, et al. [5] where a 9-year 154 

waste wood fuel data set from a Swedish power station was analysed, however this did not 155 

apply machine learning methods. 156 

The objectives of the study were to: 157 
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 Analyse the levels of key components (ash, K, Na, Cl, Pb, Zn), including changes 158 

over time. 159 

 Perform random forest regression on the blended fuel data set, to see if this method 160 

can accurately predict the aforementioned key ash and trace element levels and 161 

identify previously unknown relationships. 162 

2. Methods 163 

2.1 Data Source 164 

The primary data source for this study was the fuel blend-to-boiler analysis data covering the 165 

period 2014-2019 for a 35MWe biomass fired power station burning a target blend of 60% 166 

virgin wood and 40% recycled (waste) wood on a thermal basis. This data consists of a full 167 

ultimate analysis and fuel trace element analysis of fuel blend samples, with the analysis 168 

performed by the UKAS accredited power station lab team. A full list of parameters that are 169 

captured in this analysis are listed in Table 1. Samples are taken twice a day from a sampling 170 

point just prior to the fuel entering the boiler. Samples are subject to the following analysis: 171 

 CHNS analysis. 172 

 Ash content (with muffle furnace). 173 

 Bomb calorimetry, with residues analysed for halide content with ion 174 

chromatography. 175 

 Metals content analysis via inductively coupled plasma mass spectrometry. 176 

Table 1: List of fuel analysis parameters subject to measurement. 177 

No. Feature Units 

1 Gross calorific value GJ/te 

2 Moisture % a.r. 

3 Carbon % (dry) 

4 Hydrogen % (dry) 

5 Nitrogen % (dry) 
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No. Feature Units 

6 Sulphur % (dry) 

7 Fluorine mg/kg dry (fuel mass) 

8 Ash % (dry) 

9 Chlorine mg/kg dry (fuel mass) 

10 Arsenic mg/kg dry (fuel mass) 

11 Cadmium mg/kg dry (fuel mass) 

12 Chromium mg/kg dry (fuel mass) 

13 Copper mg/kg dry (fuel mass) 

14 Mercury mg/kg dry (fuel mass) 

15 Nickel mg/kg dry (fuel mass) 

16 Lead mg/kg dry (fuel mass) 

17 Vanadium mg/kg dry (fuel mass) 

18 Zinc mg/kg dry (fuel mass) 

19 Antimony mg/kg dry (fuel mass) 

20 Cobalt mg/kg dry (fuel mass) 

21 Manganese mg/kg dry (fuel mass) 

22 Thallium mg/kg dry (fuel mass) 

23 Tin mg/kg dry (fuel mass) 

24 Aluminium mg/kg dry (fuel mass) 

25 Sodium mg/kg dry (fuel mass) 

26 Potassium mg/kg dry (fuel mass) 

27 Particle Size: >80mm mm 

28 Particle Size: 50-80mm mm 

29 Particle Size: 5-50mm mm 

30 Particle Size: <5mm mm 

   

2.2 Fuel Quality Variation Over Time 178 

Six key fuel components in the fuel blend data (Ash, Cl, Pb, Zn, K, Na) were analysed for 179 

variation over time, with percentile, mean, median, and standard deviation values tabulated. 180 

Outliers were removed for the creation of quarterly averages which were then graphed, and 181 

this outlier removal process is discussed in subsequent section 2.3. 182 

Quarterly average values were evaluated against calculated literature averages for the blend, 183 

shown in Table 2. For virgin wood, an average of softwood data (fire, spruce, and pine) was 184 

taken from the Phyllis2 database [19], which collates biomass fuel analysis data from lab and 185 

literature sources. For each of the six key components, between 12-105 samples were used to 186 

calculate the average depending on the available data for each in Phyllis2. For recycled wood, 187 



Page 10 of 38 

 

data from the work of Edo, et al. [5] was used, which analysed 500 waste wood samples over 188 

a 9 year period from a biomass power station. Averages for virgin and recycled wood were 189 

then weighted to create a literature average for the blend under analysis. The 60/40% (energy 190 

basis) virgin wood/recycled wood blend was calculated as a 72/28% blend on a mass basis, 191 

using representative target moisture values. 192 

Table 2: Literature average values for virgin wood, recycled wood, and the blend, that were used as an 193 

evaluation benchmark for the fuel blend data studied here. Recycled wood average from Edo, et al. [5]. Virgin 194 

wood average from softwood data in the Phyllis2 database [19]. 195 

Component Unit Recycled Wood Virgin Wood Blend Average 

(60/40% Virgin Wood/Recycled Wood 

Energy Basis; 72/28% Virgin Wood/ 

Recycled Wood Mass Basis) 

Ash wt.% (dry) 4.39 0.83 1.83 

Chlorine (Cl) mg/kg (dry) 1,000.0 350.1 532 

Potassium (K) mg/kg (dry) 1,032.0 1,209.8 1160 

Sodium (Na) mg/kg (dry) 967.0 107.2 348 

Lead (Pb) mg/kg (dry) 81.0 1.8 24 

Zinc (Zn) mg/kg (dry) 450.0 38.7 154 

K + Na mg/kg (dry) 1,999.0 1,317.0 1508 

2.3 Principal Component Analysis 196 

Principal component analysis (PCA) is a widely used dimensional reduction technique that 197 

reduces a data set comprising of many variables to a handful of principal components (PCs) 198 

[22]. These PCs can then be used as a new set of variables for further analysis, or if 199 

meaningful, may be interpreted to describe a phenomenon or grouping in the data [22, pp. 63-200 

64]. For example, rainfall readings at meteorological stations A, B, and C that are all in city 201 

X can instead be reduced to “PC1” which describes rainfall in city X. 202 

PCA was applied to the six key fuel components (Ash, Cl, Pb, Zn, K, Na), plus fuel particle 203 

size, to determine if any underlying relationships existed between these parameters. This was 204 

performed via a custom script written in MATLAB R2019b [23]. The MATLAB script for 205 

PCA is presented in the Supplementary Data. 206 
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Table 3: Maximum and minimum values for the fuel data set subject to PCA analysis, before and after the 207 

removal of outliers. 208 

Variable Original data set Refined data set 

Minimum Maximum Minimum Maximum 

Ash (wt.%) 0.15 26.42 0.5 10 

Cl (mg/kg) 0.1 20839 100 2500 

Pb (mg/kg) 0.111 2473 10 300 

Zn (mg/kg) 1.434 8652 15 500 

Na (mg/kg) 0 3112.5 10 1300 

K (mg/kg) 7.754 14866 200 2500 

Particle size: >80mm (%) 0 82.83 0* 40.05* 

Particle size: 50-80mm 

(%) 

0 38.37 0* 38.37* 

Particle size: 5-50mm (%) 7.55 98.60 7.55* 97.97* 

Particle size: <5mm (%) 1.34 73.34 2.5* 73.45* 

     

* A maximum/minimum cut-off was not used for particle size. These were the respective maximum and minimum 209 
values remaining after refining data for the other six variables. 210 

Outliers were removed from this seven-variable group, leaving 2786 data sets from a starting 211 

amount of 3823. The reduction bounds used for outlier removal are shown in Table 3. Where 212 

a data point was removed for being an outlier, the entire data set for that time stamp was 213 

removed. Weighted average particle size was calculated by taking the mid-point of the 214 

particle size grades to calculate a weighted average. As part of the MATLAB script, data was 215 

normalized on a 0-1 scale due to the use of different units between the variables. This was to 216 

prevent unintentional component bias in PCA when working across units and scales. 217 

2.4 Random Forest Regression 218 

2.4.1 Model Configuration, Creation, and Validation 219 

Random forest regression was applied to predict values of the six key fuel components, Ash, 220 

Cl, Pb, Zn, K, Na. The aim was that if a successful predictive model were generated, it would 221 

in turn have revealed the necessary underlying correlations to make such a prediction. The 222 

script implementing random forest was written in Python 3.8.5, using the Anaconda Python 223 

distribution and the Spyder integrated development environment. The source code is 224 

available in the Supplementary Data. 225 
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The fuel data set had a total of 30 data features (i.e. measurement variables, shown in Table 226 

1) with 2786 data sets, after removal of empty rows and large outliers. This “cleaned” data set 227 

had the same data cleaning/outlier removal criteria applied as for the principal component 228 

analysis (cleaned data bounds shown in Table 3), with the difference being for the random 229 

forest data set all 30 data features remained in the data set as opposed to only seven 230 

parameters in the PCA analysis. Six different fuel parameters were selected as prediction 231 

targets (“y-values”): Ash content, Cl, K, Na, Pb, Zn. In each modelling case, the remaining 232 

29 data features were thus the input x-variables. 233 

The random forest regression model used near-default model hyperparameters, as tabulated in 234 

Table 4. Model hyperparameter tuning was attempted, however, this tuning process was not 235 

found to result in a tangible improvement to prediction accuracy, in addition to being 236 

computationally intensive. 237 

To ensure the correct function of the model, a synthetic fuel data set was created containing 238 

random and correlated data (‘y = mx’ correlation). The model accurately identified this 239 

correlation. With the entirely random data set, whilst the model could reasonably “fit” during 240 

training, it lost all accuracy when used with the unseen random testing data set, as would be 241 

expected. These exercises are described in the Supplementary Data. 242 

Table 4: Random Forest hyperparameters used, as well as the test/train split for the input data. 243 

Parameter Definition Setting 

n_estimators Number of trees in the forest. 100* 

max_features Number of features selected at each splitting node as 

basis on which to split data. 

10a 

max_depth Maximum levels of growth of each tree. None* 

min_samples_split Minimum number of samples required to split a node. 2* 

min_samples_leaf Minimum number of samples required at each leaf 

after a split. 

1* 

bootstrap Whether to bootstrap input data for each tree, i.e. 

sample with replacement. 

True* 

Test / Train Split Proportion of data assigned to model training and 

testing. 

70% training 

30% testingb 

* Denotes the value is the default value for the random forest regressor function. 244 
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a Was selected as this is near-equal to p/3, where p is the number of input data features (29 in this case) used for 245 

the prediction of the target feature. A ratio of p/3 is a common ‘rule of thumb’ for random forest regression 246 

models [15, p. 592]. 247 

b Initial exploratory tests with lower or higher allocations to model training did not give an appreciable 248 

improvement to predictions. 249 

 250 

2.4.2 Evaluation of Model Predictions 251 

For each prediction case, two different results plots were created. Predicted y-value versus 252 

the real y-value for the testing data set was plotted to visualise the overall prediction quality. 253 

Permutation importance was also plotted. Permutation importance is a common measure of 254 

the importance of a data feature (i.e. an input x-variable) for prediction accuracy. Permutation 255 

importance works as follows: a baseline accuracy score for the model, using either training or 256 

testing data, is first acquired. Then, using the testing data set, each feature (column) of input 257 

data is randomly shuffled, and the accuracy score then calculated when using this shuffled 258 

column. The difference between the baseline and randomly shuffled accuracy scores is then 259 

evaluated, to determine the permutation importance of each variable to the prediction. 260 

Shuffling a data feature that does correlate to the predicted output should naturally incur a 261 

substantial penalty to prediction accuracy, and hence have a high permutation importance. 262 

The formula for permutation importance in Scikit-Learn is shown in Equation 2.1 [24]. In 263 

this, ‘i’ is the importance value for the feature under evaluation (e.g. analysing the 264 

importance of chlorine data for the prediction of ash content), ‘s’ is the score, and ‘k’ is the 265 

number of times the feature is to be randomly shuffled. This would then be applied for all 266 

input data features used in the prediction model. The coefficient of determination, R2, was 267 

used as the scoring metric ‘s’. 268 
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𝑖𝑗 = 𝑠 − 1𝐾 ∑ 𝑠𝑘,𝑗𝐾
𝑘=1  269 

Equation 2.1 270 

Several error measures were used to evaluate prediction performance of the model: mean 271 

absolute percentage error (MAPE), mean absolute error (MAE), mean square error (MSE), 272 

root mean squared error (RMSE), coefficient of determination (R2), and the out-of-bag 273 

(OOB) error. 274 

MAPE is defined in Equation 2.2, where ‘n’ is the number of points predicted by the model, 275 

‘y’ is the actual value and ‘ŷ’ is the predicted value. A lower value of MAPE is better. 276 

𝑀𝐴𝑃𝐸 =  100%𝑛 ∑ |𝑦𝑖 − �̂�𝑖𝑦𝑖 |𝑛
𝑖=1  277 

Equation 2.2 278 

MAE is defined in Equation 2.3, where ‘n’ is the number of predicted points, ‘ŷ’ is the 279 

predicted value and ‘y’ is the actual value. A lower value of MAE is better. 280 

𝑀𝐴𝐸 =  1𝑛 ∑|�̂�𝑖 − 𝑦𝑖|𝑛
𝑖=1  281 

Equation 2.3 282 

MSE is defined in Equation 2.4 [25]. Again, ‘n’ is the number of predicted points, ‘y’ is the 283 

actual value, and ‘ŷ’ is the predicted value. The RMSE is the square root of the result of the 284 

MSE therefore is not explicitly shown here. Lower values of MSE and RMSE are better. 285 
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𝑀𝑆𝐸 =  1𝑛 ∑(𝑦𝑖 − ŷ𝑖)2𝑛−1
𝑖=0  286 

Equation 2.4 287 

The coefficient of determination, R2, is defined in Equation 2.5 [25]. In this equation, ‘y’ is 288 

the real value, ‘ŷ’ is the predicted value, and ‘y̅’ is the mean of the actual data. Values of R2 289 

closer to 1 indicate a better fit of the predicted versus actual values. 290 

𝑅2(𝑦, ŷ) = 1 − ∑ (𝑦𝑖 − �̂�𝑖)2𝑛𝑖=1∑ (𝑦𝑖 − y̅)2𝑛𝑖=1  291 

Equation 2.5 292 

The out-of-bag (OOB) error is further measure of accuracy. Random forest uses 293 

bootstrapping of sample data for each decision tree. This means that not all training data is 294 

used for training each tree. The OOB score is an evaluation of the prediction error when 295 

using data samples that did not form part of the bootstrapped data sample as the inputs to the 296 

model. The OOB error is simply (Equation 2.6): 297 

𝑂𝑂𝐵𝑒𝑟𝑟𝑜𝑟 = 1 − 𝑂𝑂𝐵𝑠𝑐𝑜𝑟𝑒 298 

Equation 2.6 299 

The OOB score can be evaluated on many different metrics (e.g. MSE, RMSE, R2, etc.). 300 

3. Results and Discussion 301 

3.1 Analysis of Blend-to-Boiler Composition 302 

An analysis of key trace elements and ash content in the fuel data is given in Figure 1, 303 

presented on a quarterly average basis. Significant outliers have been removed from the data 304 

set, as discussed in sections 2.2 and 2.3. Also shown on Figure 1 are the average literature 305 

benchmark values as calculated in section 2.2, which are labelled “Lit. Avg.”. The percentile 306 
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values of these six key components are tabulated in Table 5 to provide further detail, with 307 

outliers included in this tabulated data. The mean, median and standard deviation for each of 308 

the six key components, with and without outliers, are listed in Table 6. 309 

There are a few trends evident in Figure 1. There is a reduced amount of K+Na and ash in the 310 

2016-Q2 to 2017-Q4 period, possibly in part due to a change in the fuel source or fuel blend 311 

make-up. For example, the quantity of brash wood or bark in the virgin wood blend may have 312 

been reduced, with these seen in literature to have higher amounts of ash and K+Na than stem 313 

wood [26, 3]. However, given the 2wt.% decline in ash content, it is also possible that these 314 

ash and K+Na behaviours are coincidental, given that waste wood typically has significantly 315 

more ash content than virgin wood [3], and there was a near halving of ash content over the 316 

2016-Q2 to 2017-Q4 period. 317 

On ash content in Figure 1, it can be seen clearly that ash content is almost always above the 318 

literature average value of 1.83wt.%, through in some time periods, e.g. 2016-Q4 to 2017-Q4, 319 

it is close to this average. This is likewise evident in Table 5, where the top 80% of samples 320 

all exceed the literature average of 1.83wt.%. It should be noted that this is an evaluation 321 

against average literature values. In other words, the maximum allowable value, or boiler 322 

limit, is likely to be higher than this literature average. However, it does show that there is 323 

clear room for reduction in ash content, and this was achieved in the 2016-Q4 to 2017-Q4 324 

period. Whilst detailed and reliable analysis data for virgin wood and recycled wood batches 325 

was not available, it is likely that the ash predominantly came from the recycled wood 326 

fraction, with ash levels in waste/recycled wood shown to be over four times higher than 327 

those in virgin wood as per the literature averages calculated in section 2.2. A reduction in 328 

fuel ash content would provide many benefits, as it would reduce quantities of problematic 329 

ash components, reduce wear on ash handling equipment, and minimise corrosion, slagging, 330 

and agglomeration issues [27]. An important factor when discussing ash content is that some 331 



Page 17 of 38 

 

extraneous contaminants from the recycled wood fraction (e.g. nails, plastics, etc.) that may 332 

bypass screening measures to some extent are not subject to analysis and would not be 333 

included in this ash content figure. It is difficult to estimate the potential increase in total ash 334 

content arising from these components. Others have found these to account for 1.1wt.% of 335 

waste wood by weight [5]. It would be recommended to begin accounting for these 336 

extraneous contaminants by mass as an additional data set, as they can contribute to 337 

quantities of other components, e.g. zinc from galvanised metals [28], or chlorine from 338 

plastics [9]. Similar studies have been performed on industrial boiler fuel sources by others 339 

and were seen to provide useful insight into fuel quality [5]. 340 

With regards to the combined K+Na content in Figure 1, this value was mostly below the 341 

literature benchmark average of 1508mg/kg (dry). A few quarters over the five-year period 342 

showed averages of around 1700-1900mg/kg. In Table 5, whilst potassium and sodium are 343 

presented on an individual basis, it is clear that outside of the 100th percentile, sodium is 344 

always below 350mg/kg, whereas for potassium upwards of the 80th percentile of samples is 345 

in excess of the combined K+Na literature average of 1508mg/kg. This is integral to avoiding 346 

unplanned outages because both alkali metals drive slagging, agglomeration, and corrosion 347 

mechanisms [27]. There is little that could be done to further reduce or control quantities of 348 

potassium, as it is a nutrient for forest growth [29]. The only options available would be to 349 

switch to a lower potassium wood source, or to water wash the biomass [4], both of which 350 

would incur additional cost and are only applicable to the virgin wood fraction. 351 
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 352 

Figure 1: Quarterly average of key fuel components in the fuel blend with 95% confidence intervals shown. 353 

Also shown are the literature average benchmark values (labelled “Lit. Avg.”) for each component, as 354 

calculated in section 2.2. 355 

Both lead and zinc content are primarily derived from the recycled wood fraction of the fuel 356 

blend. These components cause corrosion through the formation of lead and zinc chlorides 357 

[27, 28], which can condense onto superheater surfaces, or can worsen ash melting issues in 358 

the bed. It can be seen from Figure 1 that zinc is generally substantially below the 154mg/kg 359 

literature average value, and that levels of zinc have decline significantly since the 2014-Q1 360 

to 2015-Q2 period. There is however some substantial variance to zinc content exhibited, as 361 

shown by the large 95% confidence intervals in many quarters. This variance is also evident 362 

when comparing the mean and median values for either the original or refined data sets in 363 

Table 6, where the median is around 55-60mg/kg in either case, versus a mean upwards of 364 

100mg/kg in the original data set with outliers. Around 20 outlier data points were removed 365 
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from the zinc data set for Figure 1 as they had values upwards of 800mg/kg, into the 366 

thousands, which were removed to prevent distortion of the averages. Table 5 has the outliers 367 

included for Zinc, and it is evident that the top 10% of samples have zinc levels higher than 368 

the 154mg/kg literature average. Samples with very high zinc contents were likely the result 369 

of a high level of extraneous metals (e.g. galvanised coatings) in a sample. This highlights 370 

again the both the importance and difficulty of accurate sampling, particularly with waste 371 

wood, and the need for some form of accounting of extraneous contaminants that might not 372 

be subject to analysis but may find their way into the boiler at some level. With regards to 373 

lead content, similar to ash content it is apparent that levels are almost always in excess of the 374 

literature average of 24mg/kg. Once again, it must be noted that this is an average rather than 375 

a maximum, but it does suggest that these levels could be reduced. From Table 5, there were 376 

some outlier samples excluded in Figure 1 for lead, with the 100th percentile being 377 

1274.7mg/kg, likely due to high extraneous lead contents in the sample. 378 

Table 5: Values of key fuel components at different percentiles of the normal distribution for the fuel data set. 379 

For reference, literature average values as calculated in section 2.2: Cl 532mg/kg, Pb 24mg/kg, Zn 154mg/kg, 380 

K+Na 1508mg/kg, Ash 1.83wt.%. 381 

Percentile 

of Normal 

Distribution 

Chlorine 

(mg/kg dry) 

Lead 

(mg/kg dry) 

Zinc  

(mg/kg dry) 

Sodium 

(mg/kg dry) 

Potassium 

(mg/kg dry) 

Ash 

(wt.%) 

10% 297.2 27.3 32.0 111.1 801.5 1.7 

20% 369.3 35.9 37.9 136.3 930.3 2.2 

30% 428.8 43.2 43.5 153.2 1017.0 2.6 

40% 484.1 51.5 49.6 175.5 1102.1 3.0 

50% 545.3 59.9 58.2 194.3 1186.5 3.4 

60% 621.4 68.3 68.2 214.2 1273.5 3.7 

70% 707.6 79.4 83.3 233.1 1381.1 4.2 

80% 846.6 95.6 108.1 257.4 1512.9 4.8 

85% 974.0 107.3 127.0 277.7 1612.5 5.1 

90% 1120.0 120.4 157.5 302.0 1743.5 5.7 

95% 1404.0 154.3 218.8 334.0 1924.5 6.6 

99% 1561.5 172.6 298.5 347.1 2052.0 7.0 

100% 14165.5 1274.7 6879.5 1670.4 8124.9 16.0 
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Table 6: Table summarizing the mean, median and standard deviation for the refined data set without outliers 382 

(shown in Figure 1), and the original data set (with outliers) used for the percentile data in Table 1. Maximum 383 

and minimum values for these data sets are listed in Table 3 for reference. 384 

Component Original Data (with outliers) Refined Data (without outliers) 

Mean Median Standard Deviation Mean Median Standard Deviation 

Ash (wt.% dry) 3.60 3.30 1.89 3.52 3.29 1.63 

Cl (mg/kg dry) 664.2 534.3 632.5 625.2 534.0 357.6 

Pb (mg/kg dry) 72.7 57.2 85.8 65.8 57.1 40.1 

Zn (mg/kg dry) 112.8 56.9 353.6 74.8 56.2 59.3 

Na (mg/kg dry) 202.4 192.8 107.0 202.8 193.4 92.7 

K (mg/kg dry) 1234.3 1181.2 405.2 1226.5 1182.9 370.3 

       

Chlorine is one of the most problematic components within biomass fuels due to its reaction 385 

with potassium to form KCl, driving alkali chloride induced corrosion [27, 30]. It can be seen 386 

clearly in Figure 1 for more than half of the quarters over the five year period, the average 387 

chlorine content exceeds the 532mg/kg literature average benchmark for this blend. This is 388 

also evident in Table 5, where the 50th percentile value is 545.3mg/kg, which is in excess of 389 

the literature average. In some quarters, e.g. 2016-Q1, the chlorine content is almost 390 

900mg/kg, or around 70% above the literature average chlorine content. This chlorine content 391 

is likely to be primarily derived from the recycled wood fraction and its contaminants such as 392 

plastics. It is also worth noting that the real chlorine content entering the boiler may be higher 393 

still, due to the presence of plastics (e.g. poly-vinyl chloride, PVC) that are not fully 394 

accounted for during fuel blend sampling and analysis, but may still pass material screening 395 

to some extent and are fed into the boiler [9]. One way to gauge the real levels of chlorine 396 

inside the boiler environment, and equate them to those seen in fuel blend sampling, would 397 

be to use an in-situ alkali chloride monitor (IACM) or similar to measure alkali chloride 398 

levels in the boiler freeboard or back-pass [31], but such equipment was not installed on the 399 

boiler. 400 

Studies of recycled wood fuels in the literature have reported high chlorine contents. For 401 

example, a nine-year study of a Swedish recycled wood combustion plant by Edo, et al. [5] 402 
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reported chlorine contents between 0.07-0.13wt.%, with a mean of about 0.1wt.% as noted in 403 

Table 2. Huron, et al. [9] tested a variety of types of waste wood (e.g. pallets, particle board, 404 

mixed sources). Four out of six of their representative waste wood blends had a chlorine 405 

content below 0.06wt.%, with the remaining two at 0.075wt.% and 0.12wt.% respectively. 406 

They observed that coated particle board was by far the most problematic waste wood 407 

component, with a chlorine content of 0.16wt.%. The higher chlorine content of waste wood 408 

should be offset by the virgin wood in the blend, and the fuel data under analysis here is only 409 

40% recycled wood on an energy basis with the remainder being virgin wood. As seen from 410 

the literature average in section 2.2, virgin softwood as was used in this power station 411 

typically has an average chlorine content of 350.1mg/kg. Ad-hoc sample data for batches of 412 

virgin wood used in the power station were in the 200-400mg/kg range, which is in line with 413 

the literature average for virgin wood of 350.1mg/kg. This would suggest that the recycled 414 

wood used here has a particularly high chlorine content, hence the overall chlorine levels 415 

being higher than the calculated literature average for the blend of 532mg/kg. This may be 416 

due to higher-than-average levels of certain types of chlorine-rich materials in the recycled 417 

wood fraction, e.g. coated particleboard, plastics. 418 

Fuel nitrogen content is the primary source of NOx emissions in fluidized bed boilers, due to 419 

their lower operating temperatures versus traditional pulverized fuel boilers [32, 33]. It is 420 

known that different types of wood releasing different proportions of nitrogen content as NOx 421 

[34, 10], and NOx emissions are an integral part of the industrial emissions directive [35]. 422 

Fuel nitrogen content was separately analysed along with boiler emissions data, and it was 423 

found NOx emissions were not at levels of concern with the current fuel blend. 424 

3.2 Principal Component Analysis 425 

The variance and cumulative variance for each of the seven PCs is presented in the form of a 426 

pareto chart in Figure 2 (the seven input variables being ash, K, Na, Cl, Pb, Zn, weighted 427 
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average particle size). As can be seen, four of the seven PCs are required to account for 75% 428 

of the total variance. For a data set that is relatively small in dimensionality with only seven 429 

variables, this is quite poor. If two or three PCs accounted for most of the data set variance, 430 

this would suggest some underlying correlation(s). This suggests that either the data is too 431 

heterogeneous, or that there are no underlying trends between the seven input variables. 432 

 433 

Figure 2: Data set variance explained by each of the principal components, on both an individual principal 434 

component variance basis (bar) and cumulative variance basis (line). 435 

The coefficients for each principal component are listed in Table 7, with the data in Table 7 436 

also represented graphically in Figure 3. The determination as to whether a principal 437 

component correlates strongly to a variable is largely subjective. Here, a value greater than 438 

0.35, or less than -0.35, was assumed to be a notable correlation to a PC. These values have 439 

been highlighted in bold in Table 7. PC1 correlates moderately with ash content, and slightly 440 

less so with all other fuel measurement data except for chlorine and particle size. PC2-4 are 441 

moderately to strongly correlated to both Cl and particle size, in addition to 1-2 other fuel 442 

components. Aside from this non-correlation between ash content and Cl/particle size, there 443 

does not appear to be any major patterns across PC1-4, despite accounting for 75% of the 444 
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total data set variance. The lack of correlation between ash, Cl and particle size may be due to 445 

fuel sampling. As discussed, a significant proportion of Cl content is likely to be extraneous, 446 

arising from plastics, therefore may not always be subject to analysis. Particle size is 447 

measured across large bounds (<5mm, 5-50mm, 50-80mm, 80mm+), and this lack of 448 

granularity may hide some trends. As noted in section 1.2, the closest comparable study of a 449 

large industrial biomass fuel set was by Edo, et al. [5], which examined a waste wood fuel 450 

only. Edo, et al. [5] applied PCA and observed a correlation between finer particle size of 451 

waste wood, and increases to chlorine and lead content, hence PCA is an appropriate and 452 

established method in a fuel data analysis context. The inability to identify distinct 453 

correlations in the present study may be due to the poor fuel particle size granularity, or lack 454 

of inclusion of extraneous materials in analysis, as previously mentioned. Alternatively, it 455 

may be because a blended wood fuel data set has been examined, instead of just a waste 456 

wood data set as was the case in the work of Edo, et al. [5]. 457 

It is also of interest that zinc is moderately well correlated within PC1 and PC2, as it has 458 

previously been noted (section 3.1) that most zinc is likely to arise from extraneous 459 

components (e.g. galvanised metals). This may suggest that more of these galvanised 460 

coatings end up within fuel samples for analysis than might otherwise be expected. However, 461 

given the generally weak correlations seen in this analysis, it is not possible to reach a 462 

definitive conclusion. 463 

Table 7: Coefficients for each principal component/variable pair. 464 

Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 

Ash 0.51 0.27 -0.25 -0.01 -0.26 0.06 0.74 

Cl 0.19 0.54 0.59 -0.48 0.09 -0.27 -0.09 

Pb 0.41 -0.32 0.39 -0.11 -0.10 0.73 -0.13 

Zn 0.38 -0.42 0.23 0.23 -0.48 -0.57 -0.15 

Na 0.39 -0.11 0.12 0.40 0.79 -0.15 0.10 

K 0.42 0.44 -0.43 0.17 -0.08 0.09 -0.63 

Weighted average particle size -0.24 0.40 0.42 0.72 -0.23 0.18 0.08 
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 465 

Figure 3: Graphical representation of the coefficients for each principal component/variable pair. 466 

3.3 Random Forest Regression 467 

Random forest regression was performed using all 30 data features (sample analysis 468 

measurement variables), to attempt to create predictive models for each of the six key 469 

components (Ash, Cl, Pb, Zn, K, Na). Error data for each of the six prediction cases is 470 

presented in Table 8. Scatter graphs showing predicted versus real values, using the testing 471 

data set, as well as the permutation importance for the prediction of each fuel component, are 472 

shown across Figure 4a-f and Figure 5a-f respectively. 473 

Broadly speaking, whilst the model was able to find a good fit against the training data, it had 474 

a poor predictive accuracy when used on the testing data set. This was common across all the 475 

prediction targets, with only the prediction of ash having a moderate accuracy when using the 476 

testing data set with a MAPE of 19.05% as per Table 8. Across all other prediction targets, 477 

MAPE and MAE were around 3x worse with the testing data set versus the training data set.  478 

RMSE was similarly around 3x worse for the testing data versus the training data. To further 479 
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contextualise how poor prediction accuracy was for most prediction targets, chlorine had a 480 

significant MAPE of 44.77% for the testing data set, indicating that the results were generally 481 

highly inaccurate. For the chlorine training data set however, MAPE was only 15.96%, which 482 

whilst not a small error, indicates that the model was able to create a reasonable “fit” during 483 

training. The coefficient of determination (R2) values between training and testing data sets 484 

further shows the high degree of inaccuracy in the testing data cases. For ash prediction, R2 485 

was very high during training at 0.970, and moderate in the testing data case at 0.787. For all 486 

other prediction targets however, R2 values whilst reasonably high during model training 487 

(typically around 0.9), were very low for the testing data sets, ranging from 0.173-0.545. This 488 

is again in line with what the other error measures indicated and implies a very poor 489 

correlation between the model prediction and real data when using the testing data set. 490 

As a whole, the error data in Table 8 shows that the random forest algorithm was not able to 491 

find a generalised model to represent fuel chemistry that could be applied to “unseen” data, 492 

i.e. the testing data set. This is a different finding to the few other available studies that 493 

applied random forest to other biomass prediction challenges. For example, the work of 494 

Elmaz, et al. [18] displayed a 90% classification accuracy when predicting the overall fuel 495 

type (e.g. coal, wood, agricultural biomass). However, the prediction of ash and trace element 496 

contents is a fundamentally different problem to classifying fuel type, where there are well 497 

known differences between coals and biomass compositions such as volatiles or fixed carbon 498 

contents [2]. The lack of prediction accuracy here may be the result of the more 499 

heterogeneous data used here: instead of distinct data sets from different fuel types as in the 500 

work of Elmaz, et al. [18], a blended mixture of woods from various sources over a large 501 

timescale was analysed. More broadly, it is known that machine learning and artificial 502 

intelligence methods can achieve a higher degree of accuracy than that attained here when 503 

studying biomass fuels. For example, as highlighted in section 1.2, Li, et al. [20] predicted 504 
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potassium content from flame spectroscopy data using a neural network approach and had an 505 

error of 6.34% with their best method. 506 

The lack of accuracy or ability to construct a generalised model, is also evident across Figure 507 

4a-f. The scatter plots of predicted values versus real values from the testing data set show 508 

the poor predictive power of the model across the cases. Again, only the prediction of ash 509 

content (Figure 4a) offers a moderately accurate prediction. If the trained model had a better 510 

understanding of the fuel fundamentals based on the data, then predictions with the testing 511 

data set would be better across the board. Therefore, this suggests that more data features (i.e. 512 

input measurement variables) are required to understand the data set. 513 

Table 8: Error data, for both the training and testing data sets, for each of the six model prediction targets. 514 

Prediction Target Error 

Evaluation 

Basis 

MAE MAPE 

(%) 

MSE RMSE R2 OOB 

Error 

Ash (wt.% dry) Training Data 0.20 6.88 0.08 0.29 0.970 0.218 

Ash (wt.% dry) Testing Data 0.54 19.05 0.55 0.74 0.787 N/A 

Chlorine (mg/kg dry) Training Data 82.84 15.96 13521.75 116.28 0.895 0.774 

Chlorine (mg/kg dry) Testing Data 228.26 44.77 95198.09 308.54 0.245 N/A 

Lead (mg/kg dry) Training Data 7.71 14.67 135.77 11.65 0.916 0.3612 

Lead (mg/kg dry) Testing Data 20.14 39.17 888.60 29.81 0.437 N/A 

Potassium (mg/kg dry) Training Data 70.46 6.36 8707.18 93.31 0.936 0.471 

Potassium (mg/kg dry) Testing Data 195.19 17.24 63423.67 251.84 0.545 N/A 

Sodium (mg/kg dry) Training Data 16.54 10.54 685.27 26.18 0.911 0.631 

Sodium (mg/kg dry) Testing Data 50.52 30.57 8876.47 94.21 0.173 N/A 

Zinc (mg/kg dry) Training Data 8.68 13.23 238.96 15.46 0.925 0.540 

Zinc (mg/kg dry) Testing Data 27.12 38.23 2815.42 53.06 0.331 N/A 
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 515 

Figure 4: Predicted values versus real data using the testing data set. a) Ash content. b) Chlorine. c) Potassium. 516 

d) Sodium. e) Lead. f) Zinc. 517 
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 518 

Figure 5: Permutation importance of input data features, when using the testing data set. a) Ash content. b) 519 

Chlorine. c) Potassium. d) Sodium. e) Lead. f) Zinc. 520 

From analysing the permutation importance charts (Figure 5), only a handful of components 521 

were identified as important to the model prediction of each prediction target, and these were 522 

only identified as moderately important (permutation importance ~0.15-0.25). As general 523 
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prediction accuracy was weak, this is to be expected. It should be noted that permutation 524 

importance does not mean that a definitive correlation exists between two components, but 525 

that the component is important to the model and the accurate prediction of the target. It 526 

should also be considered that only ash showed a reasonable R2 of 0.787 with the testing data 527 

set with the other prediction targets having R2 <0.55. Therefore, for the other prediction 528 

targets, components with high permutation importance are likely far less important than they 529 

are for ash. 530 

For the prediction of ash content (Figure 5a), GCV and vanadium had a moderate 531 

permutation importance of 0.16. For GCV, this would be expected, as GCV naturally has a 532 

degree of correlation with ash content (increased ash content means less potential for 533 

combustible components, hence lower GCV). In the case of vanadium, the underlying reason 534 

for this importance is less self-evident. Whilst it is derived mostly from inorganic sources, i.e. 535 

from waste wood ash as an extraneous contaminant [36], it is a very minor component with 536 

an average of 1.28mg/kg vanadium across 2786 samples of the fuel blend composition. 537 

Clearly, it was found to be a greater indicator of ash content than other components. This may 538 

be because out of all the trace elements present in the fuel, it is the most consistent indicator 539 

of overall ash content, as it is mostly derived from waste wood which typically has higher ash 540 

content and thus contributes more of the ash to the fuel blend [2]. 541 

For chlorine (Figure 5b), the only component to show a moderate permutation importance 542 

was tin with a value of 0.2. Tributyltin oxide is a commonly used wood preservative [37]. 543 

Therefore, tin could be a general indicator as to the presence of waste wood which would 544 

likely contain this preservative, with waste wood containing more chlorine than virgin wood 545 

(e.g. as plastic wastes and coatings) [2, 5]. 546 
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For potassium (Figure 5c), ash content was seen to have a moderate permutation importance 547 

of around 0.25. This is broadly something that would be expected, as potassium is present 548 

within the ash content of all woods; being essential to wood growth [2]. It is notable that 549 

despite ash being important to the prediction of potassium, the reverse was not true (Figure 550 

5a); i.e., potassium was not an important component for the prediction of ash content. This 551 

would suggest that for ash prediction, potassium had a far lower relative permutation 552 

importance than those components that were moderately important for ash prediction (GCV 553 

and vanadium). 554 

For lead (Figure 5e), the only component with a moderate permutation importance was 555 

antimony with a value of 0.17. Antinomy is often blended in lead-based alloys. Therefore, 556 

this relationship is likely from the waste wood fraction of the fuel in combination with lead, 557 

with lead up to 10x more abundant in recycled wood than in virgin wood [36]. 558 

For sodium (Figure 5d) and zinc (Figure 5f), no component was identified as having even a 559 

moderate permutation importance, with the highest permutation importance seen in either 560 

case being ~0.08, versus upwards of 0.17 for the prediction of the other four key fuel 561 

components. 562 

It is worth noting that prior studies, such as that of Vassilev, et al. [3] noted in section 1.2, 563 

which did not apply machine learning, have observed associations between certain elements 564 

in biomass ash. For example, Vassilev, et al. [3] identified woody biomass were commonly 565 

had higher levels of Ca, Mg, Mn and S versus other biomasses. Such associations were not 566 

identified by the random forest model here. The most likely reason for this is due to the 567 

model using large, heterogeneous data for a fuel blend, as opposed to small singular fuel data 568 

sets as were analysed and compared by Vassilev, et al. [3]. 569 
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As mentioned previously, whilst the model was able to achieve a good fit with the training 570 

data for all prediction targets, it could not translate this accuracy to the unseen testing data 571 

set, with a large decline in accuracy in all cases. This suggests that the model was not 572 

sufficiently generalised and lacked sufficient data to identify the real trends present in the 573 

data. As previously mentioned, the work of Elmaz, et al. [18] shows that given sufficient fuel 574 

data, with data features that do have a strong correlation to the prediction target (proximate 575 

analysis data in the case of Elmaz, et al. [18]), random forest models can identify and classify 576 

fuels with good (~90%) prediction accuracy. Therefore, it stands to reason that with sufficient 577 

additional input information (i.e. data features) the model improve in predictive accuracy.  578 

A further illustration of this is in the synthetic fuel exercise used to validate the model used in 579 

this study, discussed in detail in the Supplementary Data. In the first case, the model was 580 

used with a data set containing several random data features and two that have a ‘y = mx’ 581 

linear correlation with the prediction target. With no hyperparameter tuning, the model was 582 

able to predict ash content very accurately (R2 = 0.95). The correlated data features were 583 

clearly evident in the permutation importance values. When the model was given entirely 584 

random data, the model achieved a “moderate” accuracy of R2 = 0.767 during training. 585 

However, the model had very poor accuracy with near zero R2 when applied to the unseen 586 

testing data set, which was also random. As was noted in this exercise, this showed that the 587 

model can fit to random data during training, but the decline in accuracy between training and 588 

testing is effectively a measure of how many correlating features are actually present in the 589 

data set, with the extreme case of no correlating features (all random data) resulting in very 590 

poor accuracy (near-zero R2). Therefore, as can be seen from the results when predicting real 591 

fuel data across Table 8, Figure 4a-f and Figure 5a-f, the substantial decline in accuracy when 592 

moving from training to testing suggests that there are not a sufficient number of correlating 593 
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data features present with the data set, hence an accurate and generalisable model cannot be 594 

constructed. 595 

A further possible contributing factor, aside from a lack of correlating data features, is the 596 

heterogeneity of the fuel blend and data. It is a mixture of both virgin wood and recycled 597 

wood, with both sourced from several suppliers and mixed at point of use. This means that 598 

several different fuel sources are blended into one and then sampled/analysed, which may 599 

minimise or obscure correlations. In works where random forest has been successfully 600 

applied to fuels, such as that of Elmaz, et al. [18] as previously discussed, distinct fuel data 601 

sets were used as inputs rather than blends. Further to this, the fuel data was collected over 602 

long timescale (5 years). Previous studies such as that of Edo, et al. [5], have shown large 603 

changes in waste wood composition over such time scales. Variations in key component 604 

levels over time were also evident here in section 3.1, therefore this is also likely contributing 605 

to the difficulty in creating an accurate predictive model and discerning trends. 606 

There are of course some general limitations to random forest regression that should be 607 

noted. One well known challenge is interpretability of how the model was created and how it 608 

functions, as without such understanding the model is essentially a “black box” [38]. This is a 609 

common critique and limitation applicable to most other alternative machine learning or 610 

artificial intelligence options, such as artificial neural networks. Here, the permutation 611 

importance of data features was evaluated in Figure 5 to better understand the important of 612 

each data feature to model creation and accuracy. Of course, interpretation of feature 613 

importance also requires a significant degree of domain expertise with regards to biomass 614 

fuels, to ensure that the relationships identified make sense in context. Other limitations, such 615 

as computational power requirements, were not a limiting factor. Rapid results were not 616 

required in this context, as the model was not to be implemented on a live process, but 617 

instead was to be used to retrospectively find relationships within the fuel data.  618 
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3.4 Recommendations 619 

One of the largest sources of uncertainty in this study is the fuel data itself. As discussed, the 620 

recycled wood used by the power station is a highly heterogeneous fuel, frequently 621 

containing high levels of extraneous, non-wood contaminants, such as screws/nails, plastics, 622 

and other building/demolition waste which are not fully screened and removed prior to 623 

sampling and entry to the boiler. This makes fuel sampling challenging. An improvement to 624 

sampling, accounting for both the quantity and type of extraneous (non-wood) contaminants 625 

that are not currently analysed, would improve understanding of the overall fuel composition. 626 

The work of Edo, et al. [5] presents an example of hand sorting 1 tonne batches of waste 627 

wood to understanding the relative presence of different non-wood contaminants, such as 628 

stone or metals. Data from such an approach could be used in addition to the normal fuel 629 

analysis, to estimate the amount and composition of non-woody contaminants entering the 630 

boiler, that are not otherwise analysed during fuel analysis. This could be extended to also 631 

consider the breakdown of the types of waste wood in the stream (e.g. painted wood, coated 632 

particleboard), to then enable better selection of suppliers and sources. 633 

As an additional point on the topic of fuel sampling, PAS 111 [39] is currently used in the 634 

UK as a specification for the sampling and grading of waste wood. Waste woods are 635 

classified from Grades A-D, where “A” is “clean” recycled wood through to “D” which is 636 

hazardous waste. However, waste wood grading is not uniform within Europe, with different 637 

countries using subtly different classifications [40, p. 43]. This is an area where a European 638 

standard may be of use. Moreover, the PAS 111 [39] grading system is largely qualitative, 639 

providing only approximate guidance to the types of wood and contaminants (e.g. 640 

particleboard, metals) that may arise. Improvements to fuel grading and improving sampling 641 

guidance such as by using the more detailed sampling guidance in BS EN 18135:2017 [41], 642 

would be a positive improvement for waste wood users. 643 
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With regards to the application of machine learning approaches such as random forest 644 

regression for biomass fuel quality prediction, it would be suggested that a focus is placed on 645 

narrower, clearly defined fuel quality data. The blended data set analysed here appeared to be 646 

too heterogeneous for the creation of an accurate predictive model. Creation of an accurate 647 

model would require the addition of more data features, such as the blend ratio, supplier, fuel 648 

source, breakdown of recycled wood types, etc. This would provide a better opportunity for 649 

the real underlying relationships to be identified. Identifying and recording all such important 650 

measurement data, which must be performed alongside the fuel analysis, is difficult to 651 

perform retrospectively. It is of course even more difficult to do so over such a long period (5 652 

years), which limited the ability to further extend the model here. Moreover, increasing the 653 

amount of data recorded alongside fuel analysis will increase time and resource pressure on 654 

those collecting the data in the first instance. Once an accurate machine learning model is 655 

created however, mathematical equations to represent the underlying relationships can also be 656 

created. As strong relationships did not arise in the current study, the formation of 657 

mathematical equations was not attempted, as there would be little subsequent use for weakly 658 

correlated equations. If such equations can be formed in future works, it would be of 659 

significant value to researchers and industrial operators alike in using and understanding their 660 

fuels and blends.  661 

4. Conclusion 662 

From the analysis of the five-year fuel composition data set, there have been many quarters 663 

where key trace elements and ash content have been above the expected benchmark literature 664 

average levels. Ash content has exceeded literature average values for the blend in almost 665 

every quarter, whilst chlorine has exceeded average literature values for more than half of the 666 

quarters and would lead to exacerbated corrosion issues. This is likely due to the waste wood 667 
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types and sources. Lead content was also seen to exceed literature average levels in almost 668 

every quarter to varying degrees, whilst older data showed high levels of zinc that have 669 

reduced over time. Likewise, ash levels have reduced during certain periods, indicating that 670 

ash and trace element levels can be better controlled. 671 

Principal component analysis and random forest regression did not reveal any significant 672 

underlying relationships that could be used for composition prediction. Some minor, though 673 

expected, relationships were noted such as the decrease of GCV with increased ash content. 674 

The most likely reason for the inability to identify significant new relationships is the high 675 

heterogeneity of the fuel data, arising from the multiple fuel sources and suppliers used over a 676 

long (5 year) period at different plant operating points. A further contributing issue is the lack 677 

of other key data features within the data set, e.g. blend ratio. Applying these analytical 678 

techniques to narrower fuel data sets, e.g. only recycled wood from a specific supplier over a 679 

short time period, may give a better insight. 680 

It is also recommended that fuel sampling and accounting for extraneous contaminants is 681 

improved. This is something that the industry in general may look to improve, as current UK 682 

guidance, e.g. PAS 111, does show areas for improvement. 683 
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