
This is a repository copy of Normalized Deleted Residual Test for Identifying Interacting 
Bad Data in Power System State Estimation.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/182827/

Version: Accepted Version

Article:

Salehi Dobakhshari, A, Terzija, V and Azizi, S orcid.org/0000-0002-9274-1177 (2022) 
Normalized Deleted Residual Test for Identifying Interacting Bad Data in Power System 
State Estimation. IEEE Transactions on Power Systems, 37 (5). pp. 4006-4016. ISSN 
0885-8950 

https://doi.org/10.1109/TPWRS.2022.3144316

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting/republishing 
this material for advertising or promotional purposes, creating new collective works, for 
resale or redistribution to servers or lists, or reuse of any copyrighted component of this 
work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



1

Normalized Deleted Residual Test for Identifying

Interacting Bad Data in Power System State

Estimation
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Abstract—The Largest Normalized Residual Test (LNRT) has
been widely utilized in commercial Power System State Esti-
mation (PSSE) software for bad data identification. The LNRT
has proved effective in dealing with single bad data as well
as multiple non-interacting and multiple interacting but non-
conforming bad data. However, it is known for a long time that
when two bad data are both interacting and conforming, i.e. their
errors are in agreement, the LNRT may fail to identify either one.
Moreover, it has been shown recently that even two interacting
and non-conforming bad data can cause the failure of the LNRT.
Drawing on sensitivity analysis in linear regression, we develop
normalized deleted residuals for suspected measurements so that
the agreement in measurement errors are broken. Therefore, the
LNRT for normalized deleted residuals will be able to identify the
actual bad data point. Furthermore, in the case of AC PSSE, the
method does not require calculation of a new hat matrix when a
measurement is deleted from the data set. This makes the method
computationally cost-effective. Simulation results for identifying
different conforming and non-conforming interacting bad data
proves that the proposed method can enhance the effectiveness
of the LNRT.

Index Terms—Bad data, Largest Normalized Residual Test
(LNRT), Power system operation, SCADA, State estimation.

I. INTRODUCTION

POWER System State Estimation (PSSE) is the essen-

tial part of modern energy management systems. The

Supervisory Control And Data Acquisition (SCADA) system

gathers various measurements from substations across the grid

in real time. Using these measurements, PSSE software often

employs the weighted-least-squares (WLS) method to obtain

an estimate of the system state [1]. Moreover, one of the main

benefits of the PSSE in practice has been the identification of

bad data in telemetered measurements [2]. The Chi-square test

firstly determines if bad data is present in the measurement set

and if the test is positive, the Largest Normalized Residual Test

(LNRT) identifies the bad data in a sequential manner [1]. A

thorough review of various algorithms for handling corrupted

measurements in PSSE is provided in [3].

The LNRT is reported to be successful in identification of

a single bad data as well as multiple non-interacting bad data.

Two bad data are called interacting if their residuals are sig-

nificantly correlated. Quantitatively, the degree of significance

depends on the network and measurement topology as well as

the desired level of selectivity among measurements [1]. It is

shown mathematically that in the case of a single bad data, the

largest normalized residual (LNR) among the measurements

corresponds to the erroneous measurement [2]. Following the

same rationale, it is easy to show that if multiple bad data

are non-interacting, the LNR will always correspond to an

erroneous measurement. In practise, if two bad data belong to

different areas of the network, they can be analyzed separately.

This has been used in [4] in order to carry out the LNRT for

different sets of interacting suspected measurements, simulta-

neously. However, it has already been shown in [1] that the

LNRT fails in the case of multiple interacting and conforming

bad data, where measurement errors are in agreement so that

circuit equations such as KCL still holds. A three-bus network

in [1] exemplifies the case of two interacting and conforming

bad data, which satisfy the same KCL constraint as in the

case of good measurements. Therefore after executing the

LNRT, a good data is identified as bad data. The LNRT is

also shown to be vulnerable to multiple interacting and non-

conforming bad data [5]. The authors in [5] also show that

a pair of bad interacting leverage measurements can yield a

swamping effect such that good measurements are identified

as bad while leaving the true bad data unnoticed. In [6] the

authors determine the LNRT failure zone for two interacting

bad data k and l such that the LNR corresponds to another

measurement i 6= k, l. This analysis reveals that in 10% of

all possible measurement errors for two interacting bad data k
and l, another measurement i is incorrectly identified as bad

data by the LNRT. The problem concerned in this paper is

how to improve the LNRT so that two interacting bad data do

not cause failure of this test.

In [7] a combinatorial optimization algorithm is devised

to deal with multiple bad data identification. A geometric

approach is introduced in [8] where the residual vector is

projected onto two orthogonal subspaces defined by suspected

measurements. However, it is shown in [9] that both of these

methods fail to identify multiple bad data in certain cases.

Hypothesis testing identification (HTI) [10], [11] was pro-

posed to address the shortcomings of the LNRT by collective

analysis of all bad data simultaneously. In contrast to the

LNRT, the HTI uses a top-bottom approach by forming an

initial set of suspected bad data and then excluding good data

from this set. The method, however, is vulnerable if the initial

suspected set does not involve all bad data as it makes use of

the normalized residuals for this choice, and hence there is a

possibility of missing one or more bad data whose normalized

residuals are small [1]. Besides, compared to the LNRT, HTI

has not been adopted as widely in commercial PSSE software.

Robust methods based on non-quadratic objective functions

[9], [12]–[17] have also been suggested as alternatives to the

LNRT in PSSE. Compared to the residual-based methods such

as HTI and the LNRT, the advantage of the robust methods

is that they reject outliers automatically, and therefore do not

need a post-processing stage [1]. However, a universal non-
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quadratic objective function that works for different power

systems is hard to find [18] and in the presence of multiple

interacting bad data these functions may fall behind the LNRT

[6]. Recent advances on robust methods are making them

attractive for real-world applications [19].

Compared to HTI and robust estimators, the LNRT is

still the most popular method for bad data identification in

practice. This paper intends to extend the power of the LNRT

to identify two interacting bad data, whether conforming or

non-conforming. This is accomplished by the introduction

of normalized deleted residuals, a novel concept in PSSE.

Deleted residuals are defined in [20] to show how influential

a point is in a statistical regression. The deleted residual of

measurement i, ri(i), is defined as zi − ẑi(i), where zi is

the measurement and ẑi(i) is the prediction of measurement

i when measurement i is left out of the regression. Deleted

residuals appear for example in Cook’s distance [21] as a

measure for identifying influential measurements in a linear

regression model. In [22], the concept of deleted residuals

is articulated based on the residual sensitivity matrix of the

measurements. We will extend this concept in the context of

PSSE in order to overcome the difficulties faced by the LNRT.

The concept, however, is different from the innovation analysis

in forecasting-aided state estimation (FASE) [23]–[25]. The

problem concerned in the present paper is not how to deal

with smearing effect; rather, we are presenting a method

for resolving swamping effect where the largest normalized

residual belongs to a healthy measurement. In FASE, however,

this is not the case as the largest normalized residual is

assumed to belong to an erroneous measurement. The strength

of FASE in contrast to LNRT, which deals with gross errors

one by one, is resolving the smearing effect and removing bad

data altogether.

The main idea of this paper is to use normalized deleted

residuals in order to break the interaction between bad data,

which can be conforming or non-conforming. After a sus-

pected bad data is deleted, the other bad data will no longer be

masked and the LNRT is guaranteed to identify the latter bad

data similar to the case of single or multiple non-interacting

bad data. In the next step, the other bad data is correctly

identified by the LNRT. The proposed method does not alter

the LNRT function in PSSE software; rather, it can be adopted

as an add-on to PSSE software in order to counteract the

impact of interacting bad data on the LNRT.

The contributions of the paper can be summarized as

follows.

• Developing the concept of normalized deleted residuals

in order to find the normalized residual when a certain

measurement is removed, without the need to re-run the

PSSE and recalculate the hat matrix.

• Introducing two theorems to limit the search space for

interacting bad data and therefore to reduce the compu-

tation time of bad data identification.

• Proposing a novel algorithm as an extension of the LNRT

in order to address the swamping effect faced by the

LNRT.

The rest of this paper is organized as follows. In Section II, a

background of interacting bad data in linear regression analysis

and incapability of the LNRT to reject them are presented. Sec-

tion III introduces normalized deleted residuals in the context

of AC PSSE. Section IV presents the proposed modification

to the LNRT in order to enable the identification of interacting

bad data. Case studies demonstrate the application of the

proposed method in Section V, followed by conclusions in

Section VI.

II. BACKGROUND

In this section, the concept of bad data and its identification

by the LNRT are first reviewed since the proposed method

in this paper is built on residual covariance matrix employed

in the LNRT. Next, interacting bad data are examined in

the context of linear regression. Finally, the difficulties of

interacting and conforming bad data in the DC PSSE, i.e.

the PSSE based on the dc power flow model, are examined.

The problems that arise in linear regression and DC PSSE are

shown later to be also of relevance to the AC PSSE, i.e. when

exact AC power flow model is considered.

A. State Estimation and Bad Data Identification

Consider m measurements provided by SCADA system.

They are related to the system state by a nonlinear function:

z = h(x) + e (1)

where zm×1 is the measurement vector, including active and

reactive power flows through transmission lines and trans-

formers as well as bus voltage magnitudes. In this equation,

xn×1 is the system state, including bus voltage magnitudes and

phase angles. em×1 is the measurement error vector, usually

modeled as Gaussian noise, i.e. e ∼ N (0,R). Equation (1)

can be linearized as:

∆z = H∆x+ e (2)

which can be solved in an iterative manner by the WLS

estimator as:

∆xt = (HTR−1H)−1HTR−1∆z (3)

where H = ∂h
∂x |xt and ∆z = z − h(xt) at iteration t.

The vector x is iteratively updated as xt+1 = xt + ∆xt

until ‖∆xt‖ < ǫ, at which point the estimated linearized

measurements are defined as:

∆ẑ = H∆x̂ (4)

where ∆x̂ is the converged linearized state. Substituting (3)

into (4) leads to:

∆ẑ = K∆z (5)

where K is called hat matrix for putting a hat on ∆z and

defined as:

K = H(HTR−1H)−1HTR−1 (6)

The measurement residual vector is defined as:

r = z− h(x̂) = ∆z−∆ẑ = S∆z (7)
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where S = I − K is called the residual sensitivity matrix

whose properties lead to [1]:

r = Se (8)

From (8) and properties of S it can be shown that r ∼
N (0,SR) [1]. Therefore, normalized residuals can be defined

as:

rNi =
|ri|√
Ωii

(9)

where Ω = SR is the residual covariance matrix. Equation

(9) can also be written as

rNi =
|ri|

σi

√
Sii

(10)

It is assumed in (10) that measurements are not correlated and

Rii = σ2
i where σ2

i is the variance of measurement i. From

(9) it can be seen that
ri√
Ωii

∼ N (0, 1). The LNRT identifies

measurement i as erroneous if max
l

rNl =rNi > 3 based on the

following theorem [2]:

Theorem 1. When measurement i is the only bad data point

in the measurement set, rNk ≤ rNi for k = 1, ...,m.

B. Interacting Bad Data

The concept of interacting bad data [1] can be illustrated

by a graphical display of one-dimensional data. Fig. 1 shows

7 data points (xi, zi), i = 1, ..., 7 . It is intended to estimate

the parameters a and b of a straight line z = ax + b, which

best fits the data points. The true regression line as well as

the estimated regression line are reflected in this figure. It can

be seen that due to the presence of bad data points 6 and

7, the estimated regression line inclines toward these points.

Moreover, data point 5 has the largest residual. This causes

data point 5, which is good, to have the largest residual.

In this example, the coefficient matrix is as follows:

H =

[
0.5 1 1.5 2 2.5 3 3.5
1 1 1 1 1 1 1

]T
(11)

The hat matrix is obtained by (6) and the residual vector is

calculated as:

r = z−Hx̂ = (I−K)z = Sz (12)

where x̂ contains the estimated slope and intercept of the re-

gression line and I is the identity matrix. Normalized residuals

are obtained by (10).

Fig. 2 demonstrates the concept of deleted residuals. In this

figure, data point 7 is omitted and a new regression line is

estimated based on the remaining 6 data points. Let use define

rj(i) as the residual of measurement j when measurement i is

deleted. Now, it can be seen that the residual of data point

6 when data point 7 is deleted, i.e. r6(7), has the largest

value among ri(7), i = 1, ..., 6. This comes as no surprise

since it is well known that in the presence of a single bad

data, the LNR corresponds to the actual bad data. Table I

summarizes the results, where normalized residuals has been

calculated considering a standard deviation of σ = 0.1 for zi
measurements.
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Fig. 1. Linear regression in presence of two interacting bad data.
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Fig. 2. Linear regression after deleting data point 7.

TABLE I
DATA POINTS AND RESIDUALS FOR LINEAR REGRESSION EXAMPLE

i xi zi ri Sii |rNi | ri(7) Sii(7) |rN
i(7)

|

1 0.5 1 -1.21 0.54 16.6 -0.85 0.48 12.4

2 1 2 -0.35 0.72 4.2 -0.21 0.71 2.6

3 1.5 3 0.50 0.82 5.5 0.43 0.82 4.7

4 2 4 1.35 0.86 14.7 1.07 0.82 11.8

5 2.5 5 2.21 0.82 24.4 1.71 0.71 20.4

6 3 1.5 -1.42 0.72 16.9 -2 0.47 31.0

7 3.5 2 -1.07 0.54 14.6 – – –

In Table I, ri(7), Sii(7) and rNi(7) are obtained after deleting

the last row of H in (11). As can be seen, data point 5 is

identified as bad data by the LNRT. Nonetheless, if data point 7

is removed from the measurement set, the LNRT successfully

identifies data point 6 as bad data.

C. Conforming Bad Data

A simple three-bus network shown in Fig. 4 is used to

demonstrate the concept of conforming bad data detailed in

[1]. Normalized deleted residuals are calculated for this case

in order to identify bad data. It is assumed that bus voltage

amplitudes are known and active power measurements are used

to estimate the phase angles of bus voltages. All lines are

identical and each line has an impedance of j0.1 pu. Table II

provides the true as well as the actual SCADA measurements.
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Power Measurement 

 

Fig. 3. Single-line diagram of three-bus network [1].

TABLE II
MEASUREMENTS AND DC STATE ESTIMATION RESULTS FOR THREE-BUS

EXAMPLE

i Meas. ztruei zi |rNi |
1 P13 0.634 0.634 3.247

2 P21 -0.666 -0.666 2.711

3 P23 -0.034 -0.034 5.807

4 P32 0.034 0.134 5.558

5 P1 1.3 1.3 1.027

6 P3 -0.6 -0.5 2.755

TABLE III
NORMALIZED DELETED RESIDUALS FOR THREE-BUS EXAMPLE

i Meas. |rN
1(i)

| |rN
2(i)

| |rN
3(i)

| |rN
4(i)

| |rN
5(i)

| |rN
6(i)

|

1 P13 – 2.58 6.23 5.54 2.83 2.16

2 P21 2.71 – 6.68 5.55 0.15 2.93

3 P23 3.87 4.02 – 4.71 0.6 1.08

4 P32 3.16 2.11 5.03 – 2.18 5.82

5 P1 5.59 4.22 6.53 6.43 – 3.76

6 P3 3.57 3.19 6.54 7.70 1.46 –

The difference is in measurements of P3 and P32, which are

bad data. It should be noted that bad data still satisfy KCL at

bus 3 and therefore P13 will not be useful in determining bad

data. Measurements P3 and P32 are called conforming bad

data. Normalized residuals are calculated for this example as

shown in Table II. As P23 has the largest normalized residual,

the LNRT fails to identify either P3 or P32 as bad data; it

incorrectly identifies good measurement P23 as an erroneous

measurement.

Table III presents normalized deleted residuals for each

measurement, i.e. the normalized residuals obtained after

removing each single measurement. We define rNj(i) as the

normalized residual of measurement j when measurement i is

removed from the measurement set. If we examine rows 4 and

6, which correspond to bad data, we will find that measurement

4 has the LNR if measurement 6 is removed. In other words

rN4(6) = 7.70. This is greater than all the figures in column 3 for

rN3(i). This shows that measurement 4 is the actual erroneous

measurement not 3. This can be a basis for identifying actual

bad data 4 and 6.

III. NORMALIZED DELETED RESIDUALS IN AC PSSE

The two examples given in Section II demonstrate how

useful deleted residuals can be in identifying interacting bad

data. However, they focused on linear regression and DC

PSSE, while in practice the AC PSSE is applied, where

accuracy of different meters should be taken into account using

a separate variance (σ2
k) for each measurement k. Normalized

deleted residuals in AC state estimation can be calculated in

the same way as Section II. To this end, for each measurement

i, the PSSE can be run without this measurement. Accordingly,

deleted residuals for the remaining measurements j, i.e. rj(i),
as well as the residual sensitivity matrix excluding measure-

ment i, i.e S(i), are obtained. Finally, normalized deleted

residuals rNj(i) are calculated.

The following theorem states that the original measurement

residuals as well as the original residual covariance matrix (Ω)

are sufficient for finding the normalized deleted residual for

each measurement.

Theorem 2. The normalized residual of measurement j,

when measurement i (i 6= j) is deleted from the measurement

set, can be directly obtained from:

rNj(i) =
rj −

Ωijri
Ωii√

Ωjj −
Ω2

ij

Ωii

(13)

Proof. See Appendix A.

We call rNj(i) the normalized deleted residual of measure-

ment j when measurement i is omitted from the measurement

set. To the best of the authors’ knowledge, the above concept

of normalized deleted residual expressed through (13) is new

in the field of regression analysis and power system state

estimation.

Corollary 1. If measurement i is deleted from the measure-

ment set, it will not be necessary to calculate a new residual

sensitivity matrix, i.e. S(i), in order to obtain normalized

deleted residuals rNj(i) for j=1,...,m.

According to (13), rNj(i) includes two other elements of the

residual covariance matrix in addition to Ωjj , which is the only

element of this matrix that is used for the LNRT. It is worth

noting that when i and j are not interacting, i.e. Ωij = 0 , the

normalized deleted residual rNj(i) reduces to the normalized

residual rNj .

An important result regarding the normalized deleted resid-

ual is reflected in Corollary 1. The most computational effort

in the LNRT is devoted to calculating the residual sensitivity

matrix [1]. Corollary 1 ensures that the primary residual

covariance matrix related to the original measurement set is

sufficient for calculating normalized deleted residuals.

IV. PROPOSED ALGORITHM

In this section, a new algorithm for identifying two inter-

acting bad data is proposed. The LNRT successfully identifies

gross error in measurements unless two bad data p and q cause

good measurement i to have the LNR. This was demonstrated

in the two examples studied in Section II. Building upon the

two theorems presented, the proposed algorithm overcomes

this shortcoming of the LNRT. Our assumption is that although

the measurement set may contain many erroneous measure-

ments, the interaction between them is confined to pairs of

them and it is unlikely that three of them are interacting. Form

Theorem 1, if p or q are deleted from the measurement set,

the other one is identified as a bad data. In this condition,
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measurement i is no longer affected by the swamping effect

[26].

Now let us assume the LNR corresponds to measurement

i. The first step of the proposed algorithm is that for the

identified measurement with the LNR, all possible p, q pairs

which may swamp i are identified. The following theorem

provides a necessary condition for identifying at least one of

the measurements in this pair.

Theorem 3. If two bad data p and q swamp a good data i
such that rNmax = rNi , then the following holds:

Max{|Sip|, |Siq|} >
rNi
√
Siiσi

2emax
(14)

where emax is the maximum error that measurements p or q
may experience.

Proof. See Appendix B.

In practice, gross errors with very large magnitudes (>
100σ) are easily filtered out in the pre-processing stage, and

are unlikely to enter the state estimator [4]. Some literature

consider 15% of the meter range as the threshold for gross

errors identified during pre-filtering of state estimation [27].

These criteria can be used for quantifying emax.

According to Theorem 3, it is sufficient to gather all the

measurements whose residual sensitivity with respect to i
is greater than the right-hand side of (14), where i is the

measurement with the LNR. For every measurement satisfying

this inequality (e.g. p), the other member of the pair (e.g. q)

can be found by the following theorem.

Theorem 4. If two bad data p and q swamp a good data

i such that rNmax = rNi , then one obtains (15), which is

presented at the bottom of this page.

Proof. See Appendix C.

The proposed algorithm is carried out in following steps.

Step 1- Set I = ∅, where I is the identified bad data set.

Step 2- After removing I from the measurement set, run SE

and find measurement residuals (rj) and residual sensitivity

matrix (S).

Step 3- Find max
l/∈I

rNl =rNi . If rNi < 3 then end the algorithm,

otherwise continue.

Step 4- Define set Si1, including at least one of the mea-

surements (p) that are interacting with measurement i and may

cause healthy i to have the LNR:

Si1 = {j /∈ i | |Sij | > ǫi1} (16)

where ǫi1 is defined by the right-hand side of (14).

Step 5- Calculate rNj(i) for all j ∈ Si1 using (13).

Step 6- Find max
j∈Si

rNj(i) = rNs(i). If rNs(i) > 3 go to Step 7.

If rNs(i) < 3 then we will know that i is actually an erroneous

measurement and it has not been swamped by other bad data

(p and another q); otherwise we would have had rNp(i) > 3.

Remove i from the measurement set, I ← I ∪ {i}, and go to

Step 2.

Step 7- Update Si1 as follows:

Si2 = Si1 ∪


 ⋃

p∈Si1

Sp


 (17)

where

Sp = {q /∈ I ∪ {i, p} | |Spq| > ǫp2} (18)

where ǫp2 is defined by the right-hand side of (15). By

(17),(18) we ensure that the pair of bad data (p, q) are included

in Si2.

7-1) If there is a pair of interacting bad data {p, q} ∈ Si2

such that max
j∈Si2∪i

rNj(q) = rNp(q) > 3 and max
j∈Si2∪i

rNj(p) = rNq(p) >

3 then include p and q into bad data set by I ← I ∪ {p, q}
and go to Step 2. If more than such a pair is found, pick the

pair with the largest normalized deleted residual. It can be

concluded that i is swamped by p and q, i.e. i is healthy but

bad data p and q caused rNi to have the LNR.

7-2) If there is k ∈ Si2 such that max
j∈Si2∪i

rNj(k) = rNi(k) > 3

and max
j∈Si2∪i

rNj(i) = rNk(i) > 3, then include i into bad data set

by I ← I ∪ {i} and go to Step 2. k is either bad or swamped

by other interacting bad data. Either way, it will be dealt with

in next cycles.

The proposed algorithm can therefore be considered as an

extension of the LNRT in order to handle the swamping effect.

A value of 300σ has been adopted for emax in a conservative

manner compared to [4], [27]. On the one hand, a larger

value for emax ensures that the proposed algorithm is able

to counteract interacting bad data and on the other hand leads

to a smaller threshold for picking the elements of Si1 and

Si2. Based on the system-specific pre-filtering process and

engineering judgment a sound value for emax can be selected.

Similar to the case of PSSE, handling multiple outliers by

using deleted residuals is known to be complicated in the

regression literature. In this regard, there are three inherent

problems [22]. The first is how do we determine the size of the

subset of jointly influential observations? The second problem

is computational. Should m outliers be examined among n
data points in search of outliers, for each subset of size m,

there will be
(
n
m

)
possible subsets. The third problem with the

multiple observations case is graphical. In contrast to the case

of single outlier identification, the multiple observations case

is not well suited to graphical representations, especially for

large n and m.

V. CASE STUDIES

Two power networks studied in previous literature are

investigated. A three-bus network similar to Section II is

|Spq|>

√√√√
(
|Sip|

√
Ωqq

Ωii
−|Siq|

√
Ωpp

Ωii

)2

+4

(
Spp − |Sip|

√
Ωpp

Ωii

)(
Sqq−|Siq|

√
Ωqq

Ωii

)

2
−
|Sip|

√
Ωqq

Ωii
+|Siq|

√
Ωpp

Ωii

2
(15)
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Fig. 4. Flowchart of the proposed algorithm.
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Fig. 5. Single-line diagram of 3-bus network in [7].

adopted to demonstrate the algorithm feasibility, especially in

the presence of two bad leverage measurements. The IEEE

30-bus network allows for investigating the case of multiple

interacting and non-interacting data as is the case in practice.

A. Three-bus Network Testing

The proposed algorithm is applied to the three-bus network

studied in [7], [9]. The single-line diagram and measurements

of this network are shown in Fig. 5.

TABLE IV
NORMALIZED DELETED RESIDUALS FOR CASE STUDY IN [7]

i |rN
1(i)

| |rN
2(i)

| |rN
3(i)

| |rN
4(i)

| |rN
5(i)

| |rN
6(i)

|

1 - 39.606 39.606 36.515 0 0

2 44.557 - 14.852 27.386 61.237 20.412

3 65.744 50.572 - 28.702 25.148 9.325

4 61.394 52.623 22.496 - 17.739 27.735

5 51.64 77.46 23.355 23.355 - 0

6 57.735 57.735 25.82 40.825 25.82 -

1) Case Study in [7]: DC PSSE is considered by means

of injection and flow measurements reflected in Fig. 5.

All lines are assumed to be lossless and have 0.1 pu

reactance. The true flow and injection measurement val-

ues are zero and standard deviation of all measurement

is 0.01 pu. Measurements #2 and #5 in Fig. 3 are bad

with a value of 1.0 pu. The normalized residual vector is

rN = [58.66, 54.99, 26.21, 31.7, 27.82, 10.37]T and therefore

the LNRT identifies measurement #1 as bad data at first, and

next rejects measurements #2, #3 and #4, successively.

In the proposed algorithm, since rNmax = rN1 we enter Step

4 (i=1). With emax = 300σ, i.e. any measurement error that is

larger than 300 times its standard deviation can be identified

in the pre-processing stage [4], ǫi1 is calculated as 0.09. Based

on (14), Si1 includes all measurements except #1 and #4.

Following Step 6, we have max
j∈Si1

rNj(1) = rN2(i) = rN3(i) = 39.6.

Therefore, we enter Step 7 and calculate Si2. For example,

when p = 2 and q = 5 are considered in (15), we have ǫp2 =
0.11 and Spq = −0.29 so that #2 and #5 are included in

Si2. The other pair satisfying (15) is (#4,#5). Theses two pairs

are suspected to swamp measurement #1. Now to investigate

these two pairs according to in Step 7-1, normalized deleted

residuals are calculated as shown in Table IV. r2(5) and r5(2)
satisfy the conditions in Step 7-1 and therefore are identified

as bad data. After measurements #2 and #5 are removed, all

residuals will be zero and therefore the algorithm stops.

2) Case Study in [9]: The network in this case study is the

same as the previous case, except that line 1-3 is shortened and

has a reactance of 0.2 pu. This makes measurements #3 and

#6 leverage points [9]. Now consider these two measurements

have a value of -1 and 1 pu, respectively. It should be noted

that this pair of bad data are conforming as the KCL at

bus #6 remains the same. The normalized residual vector is

rN = [9.2, 9.2, 9.1, 10.9, 2.4, 5.43]T and therefore the LNRT

identifies measurement #4 as bad data at first, and next rejects

measurement #5. The two bad leverage points make also [7],

[8] identify measurements #4 and #5 as bad data points.

The proposed algorithm starts with the normalized residuals

and proceeds with the normalized deleted residuals as shown

in Table V. A closer look at this table shows how the situation

is much more complicated than the previous case in Table IV.

Two pairs of bad data (#1,#2) and (#3,#6) qualify as the

pair of bad data in Step 7-1. However, the largest normalized

deleted residuals belongs to pair (#3,#6) as r3(6) = 16.67
and r6(3) = 14.97, while r1(2) = r2(1) = 11.01. Therefore,

according to Step 7-1, pair (#3,#6) are the bad data points. It

can be seen that the proposed algorithm identifies the correct

pair of bad data even if both of them are leverage points.
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TABLE V
NORMALIZED DELETED RESIDUALS FOR CASE STUDY IN [9]

i |rN
1(i)

| |rN
2(i)

| |rN
3(i)

| |rN
4(i)

| |rN
5(i)

| |rN
6(i)

|

1 - 11.01 7.7498 9.61 1.8011 5.1131

2 11.01 - 7.7498 9.61 1.8011 5.1131

3 7.8774 7.8774 - 11.03 4.7112 14.974

4 7.7019 7.7019 9.3073 - 7.2894 7.5901

5 9.0846 9.0846 9.9743 12.863 - 6.4628

6 9.0388 9.0388 16.667 12.091 4.2471 - 367

Step 34: 3.1 CCP is not fetsible
3.2 Go to Step 4 .

Step 44: 4.1 cost(CCP) = 1 = UB -1, and so CCP is
disgarded. Go to

Step 2

Step 25: 2.1 Stack is empty
2.2 Stop

The incumbent U = (u1,O,u3,U4,0,u6) is the
optimal solution.

C&s-3 C (Multiple conforming bad data at measurements
#2 and #5)

This case has the same basic steps as the previous
ones. The only difference is that here the first feasible solu-
tion Sound is not the optimal solution. Fig. 7 shows all the
nodes of the decision tree that have been visited.

Fig. 8. IEEE 30-bus system.

0

feosible
SoIutiCn
cost- 4

Fig. 7. Decision tree for Case C.

VII. T RESULTS

The branch-and-bound method for bad data
identification has been tested using the IEEE 30-bus system
studied by Mili, Van Cutsem, and Ribbens-Pavella [4]. The
network and the measurements are shown in Fig. 8. The
true state of the system is given in Table 1. The bad data
are liLed in Table 2. Both interacting and noninteracting
bad data are present. Indeed, it will be found in our

method, the flow measurements on 1-2 and the injection
measurement at bus 1 are interacting conforming bad data,
and the flow measurements on 24-25 and the injection meas-

urement at bus 29, though geographically close, are nonin-
teracting bad data.

The LNR method fails in this case. It first removed
incorrectly the flow measurement P2-1. This is because the
conforming bad data Pl-2 and P1 make P2-1 look bad.
After that the LNR method makes a sequence of wrong
removals around the neighborhood, further worsening the
situation.

The branch-and-bound method first attempts the same

sequence of removals as in the LNR method and then back-
tracks to reach the correct solution. It should be noted that

in the process the method identifies the noninteracting bad
data (the flow measurements 24-25, the injection measure-

ments 29) using the largest normalized residual and without
further work, but it picks out the interacting conforming
bad data (the flow measurements 1-2, and the injection
measurement 1) and starts backtracking locally to identify
the true bad data. The bad data problem for the subnet-
work connecting buses 1, 2, and 4 is precisely the same as

that of Case C. The same decision tree of Fig. 7 is falluwed
locally here. This example illustrates an important point of
the proposed algorithm, namely, the techniques of Sec. V5
and V6 transform the problem into a series of smaller and
simpler ones.

Table 1. True State

Measurement True Value z.

p1-2 177.3 0.0

QI-2 -25.7 22.0
P1 261.2 0.0

Q1 -27.1 22.0

p24-25 -0.5 20.0

Q24-25 -2.4 -12.0

p29 -0.9 -12.0

Q29 -0.9 -12.0

Table 2. Bad Data (MW/MVAIi)

VIII. CONCLUSION

The largest normalized residual (LNR) method for bad
data identification works well for a large number of cases.

In this paper the situation when the LNR method fails is
analyzed. Bad data are primarily the result of equipmen
failure which involves its reliability. A new formulation foz-
bad data identification taking into account measuremen

reliability is proposed. It borrows from the framework o'
decision theory. The problem is to decide which data are

bad. A solution is feasible if the state estimation results

bus V 0 bus V 0

1 1.0600 0.00 16 0.9984 -16.22
2 1.0450 -5.51 17 0.9953 -16.58
3 1.0330 -8.14 18 0.9804 -17.31
4 1.0268 -9.82 19 0.9790 -17.51
5 1.0100 -14.31 20 0.9839 -17.30
6 1.0172 -11.41 21 0.9870 -16.87
7 1.0065 -13.12 22 0.9869 -16.84
8 1.0100 -12.04 23 0.9752 -16.97

1.0198 -14.64 24 0.9665 -17.07
10 1.0020 -16.41 25 0.9591 -16.69
11 1.0820 -14.64 26 0.9403 -17.16
12 1.0088 -15.56 27 0.9630 -16.10
13 1.0710 -15.56 28 1.0125 -11.99
14 0.9931 -16.53 29 0.9424 -17.55
15 0.9883 -16.62 30 0.9301 -18.56

Fig. 6. Single-line diagram of 30-bus network [6], [7], [10].

B. IEEE 30-bus Network Testing

The IEEE 30-bus test system is investigated in two scenarios

already studied in the literature and two scenarios introduced

in this paper to demonstrate strengths and limitations of the

proposed algorithm. The network single-line diagram and

measurement configuration is shown in Fig. 6. It should be

noted that LNRT fails in all of the scenarios studied below.

1) Case Study in [7], [10]: The IEEE 30-bus test system

is investigated in presence of multiple bad data reflected in

Table VI. Compared to the three-bus network studied above,

both active and reactive interacting bad data are present in

the vicinity of bus 1. The first 8 largest normalized residuals

are presented in Table VII where it can be seen that healthy

measurement P2−1 is swamped and identified as bad data

in the LNRT. The LNRT proceeds with removing healthy

measurements P2 and P1−3, leading to a completely distorted

system state in the vicinity of bus 1.

The proposed algorithm, in contrast, checks for interacting

bad data which may have swamped P2−1. It forms Si1 =
{P1−2, P1, P2} and next calculates rNj(i) for j ∈ Si1. To

validate (13), Table VIII compares rNj(i) calculated by (13)

and rNj(i) calculated by non-linear state estimation. It can be

seen that the every linearized rNj(i) calculated by (13) is in good

agreement with its non-linear counterpart. According to Step 6

of the algorithm, we arrive in Step 7, where Si2 is calculated

as Si2 = {P1−2, P4−3, P1, P2}. At Step 7-1, the algorithm

successfully identifies P1 and P1−2 as the pair of bad data

and subsequently removes them. At the next cycle, Q1−2

is identified as bad measurement and the result of checking

TABLE VI
BAD DATA IN THE IEEE 30 BUS NETWORK [10]

Measurement Actual Value Measured Value
(MW/MVAR) (MW/MVAR)

P1−2 177.3 0

Q1−2 -25.7 22

P1 261.2 0

Q1 -27.1 22

P24−25 -0.5 20

Q24−25 2.5 20

P29 -2.4 -12

Q29 -0.9 -12

TABLE VII
LARGEST NORMALIZED RESIDUAL FOR THE STUDIED CASE IN [10]

Measurement Actual Value

P2−1 79.2

P1 75.5

P1−3 51.5

P1−2 45.6

P2 39.8

Q2−1 24.1

Q1 21.9

... ....

TABLE VIII
COMPARISON BETWEEN THE OUTPUT OF (13) AND rN

j(i)
CALCULATED BY

NON-LINEAR STATE ESTIMATION FOR THE CASE STUDY IN [7], [10]

j rN
j(i)

by (13) rN
j(i)

by non-linear state estimation

P1−2 25.033 24.827

P1 42.928 42.496

P2 70.512 70.905

TABLE IX
BAD DATA IDENTIFICATION BY THE PROPOSED ALGORITHM IN THE

SCENARIO OF [7], [10]

Cycle No. Removed Measurement

1 P1,P1−2

2 Q1−2

3 P24−25

4 Q24−25

5 Q1

6 Q29

7 P29

on the swamping effect reveals that this measurement has

not been swamped by other bad data, and therefore Q1−2

is removed, next. The next cycles are carried out similarly,

resembling the LNRT. Table IX reflects the bad data identified

and removed at each cycle of the proposed algorithm.

The proposed algorithm takes 33.1 seconds compared to

12.6 seconds for the LNRT. It is also worth noting that the

computation time of the proposed method increases linearly

with the system size in the same way as the LNRT. This is due

to the fact that interaction between measurements is confined

to the neighborhood of the bad data.

2) Case Studies in [6]: The first case in [6] is similar

to Table VI but only with the first 4 measurements. The

performance of the proposed algorithm in this case is similar

to Table IX but only including first, second and fifth rows. The

second case of multiple bad data in [6] is reflected in Table

X. In this case, P2−5, Q2−5 swamp healthy measurement P5

and the LNRT identifies it as bad data. It should be noted that
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TABLE X
BAD DATA IN THE IEEE 30 BUS NETWORK [6]

Measurement Actual Value Measured Value
(MW/MVAR) (MW/MVAR)

P2−5 82.6 186.4

Q2−5 2.8 101.7

P12−15 17.6 69.2

Q12−15 7.0 56.1

P24−25 -0.5 19.0

Q24−25 2.5 22.4

P29 -2.4 -12.1

Q29 -0.9 -10.2

TABLE XI
BAD DATA IDENTIFICATION BY THE PROPOSED ALGORITHM IN THE

SCENARIO OF [6]

Cycle No. Removed Measurement

1 P2−5, Q2−5

2 P12−15

3 Q12−15

4 Q24−25

5 P24−25

6 P29

7 Q29

active and reactive power measurements have conventionally

been treated as non-interacting measurements. Quantitatively,

SP2−5,Q2−5
=-0.02. Although these measurements are hardly

interacting, let alone conforming, in this case the wrong

measured current through line 2 − 5 causes P5 to have the

largest normalized residual. The proposed algorithm, however,

enters Step 7 and identifies pair of P2−5, Q2−5 as bad data.

The next cycles of the proposed algorithm is reflected in Table

XI, where the proposed algorithm reduces to the LNRT.

3) Multiple Interacting Bad Data Including

Leverage Measurements: Four interacting bad data

{P27−30, Q27−30, P30, Q30} are studied to investigate a

case of bad leverage measurements, i.e. P30 and Q30. The

active and reactive power measurements have been increased

by 20 MW and 20 MVAR, respectively, thereby creating

a case of interacting bad data due to leaving KCL at bus

30 intact. Looking at Fig. 6 one can confirm the limited

redundancy for estimating voltage phasor at bus 30. Table

XII presents the results obtained by the proposed method as

well as the LNRT for this case. While the LNRT incorrectly

identifies healthy measurement Q29 as bad data due to

the swamping effect, the proposed algorithm identifies

{Q29−30, Q30}, simultaneously. The proposed method, at

the second and third cycles identifies P27−30 and P30,

respectively. The LNRT, however, identifies Q29 at its first

cycle due to measurement Q30 being a leverage measurement,

and at the next cycles removes 5 other healthy measurements,

aggravating the state estimate.

4) Impact of critical measurement sets: Consider the first

case in [6], where there are 4 bad data listed in the first

4 rows of Table VI. Also, assume that P1−3 and Q1−3 in

Fig. 6 are absent from the measurement set. In this situation,

bad data constitute half of the power flow measurements

in the area, since {Flow1−2, F low2−1, Inj1, Inj2} form a

critical measurement set; i.e., removal of them makes the

system unobservable. Table XIII presents the outcomes of the

TABLE XII
PROPOSED ALGORITHM VERSUS THE LNRT FOR ACTUAL BAD DATA

{P27−30, Q27−30, P30, Q30}

Proposed Algorithm LNRT

Cycle No. Removed Measurement Removed Measurement

1 Q27−30, Q30 Q29

2 P27−30 P29

3 P30 P27−30

4 – Q26

5 – P27

6 – Q24−25

proposed algorithm as well as the LNRT. It can be seen that

limited measurement redundancy has led to the failure of the

proposed algorithm. It is worth noting that the LNRT also

fails in this condition. There are similar cases in Fig. 6 where

two bad data cannot be identified due to the limited redun-

dancy. This includes {Flow12−16, F low20−17, Inj16, Inj17},
{Flow12−16, F low27−30, Inj27, Inj29, Inj30}, etc.

This comes as no surprise as the situation can be exemplified

by a simple regression problem. Consider the problem of

fitting a regression line, where the goal is to find α and β in the

model y = αx+β, using 4 points (xi,yi), i=1,..,4. Assume that

two of these measurements are erroneous. Fig. 7 depicts why it

is impossible to identify the pair of bad data in this case. One

can dismiss any two points as bad data and have a regression

line using the remaining 2 points. For example, if we consider

measurements {1, 2} as bad data, regression line is fitted by

points {3, 4}. Conversely, if we consider measurements {3, 4}
as bad data, regression line is fitted by points {1, 2}. Another

measurement point is therefore required to decide which pair

is actual bad data. A similar situation can arise in PSSE.

When there is a critical set of at most 4 measurements, 2

bad data cannot be identified. It should be noted that this is

not the limitation of the proposed method per se; rather, any

other method would fail to identify a pair of bad data in this

condition due to the lack of redundancy. A pair of active and

reactive power flow, however, can be identified by either the

LNRT or the proposed method. For example, pair of bad data

{P16, Q16} in the former set above or {P29, Q29} in the latter

set (See Tables VI, X) are identifiable as they are not a member

of 4-tuple critical set.

Another condition for the success of the proposed algorithm

is the one also needed for the success of the LNRT. The

condition is that none of two interacting bad data should

belong to a critical pair, i.e. pair of measurements whose

removal will make the system unobservable [1]. Assume that

measurements (a, b) form a critical pair and actual bad data

are measurements (b, c). As rNa = rNb [1], and this equality

also holds after removing c, i.e. rNa (c)=rNb (c), the proposed

algorithm cannot distinguish between a and b in identify-

ing bad data. Examples of critical pairs in Fig. 6 include

{Flow12−14, Inj14}, {Flow15−23, F low24−23}, etc. It should

be pointed out that this is also the limitation of the LNRT as

well as any other method due to the limited redundancy in the

measurement set.

In cases where bad data appear in critical sets, it will

be useful if critical sets are already identified as discussed

in [28]–[31]. It should be noted that as long as the removed
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TABLE XIII
FAILURE OF BOTH LNRT AND THE PROPOSED ALGORITHM WHEN BAD

DATA ARE PART OF A CRITICAL SET.

Proposed Algorithm LNRT

Cycle No. Removed Measurement Removed Measurement

1 P2−1 P2−1

2 P1−2,P2 P2

3 Q2−1 P5

4 Q2 Q2−1

5 Q1 Q2

6 – P3−4

7 – P1

-1 -0.5 0 0.5 1 1.5 2 2.5 3
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Fig. 7. Fitting a regression line using 4 measurement points of which two
are bad data.

measurements are bad data, and this is possible with enough

redundancy [1], [8], there is no concern over redundancy

reduction. However, similar to the LNRT, it is useful to identify

critical sets and modify the algorithm so that when bad data

belong to a critical set of measurements, identifiability of bad

data had already been taken care of.

VI. CONCLUSION

This paper presents a novel bad data identification algo-

rithm. The concept of normalized deleted residuals is in-

troduced to make the proposed algorithm computationally

effective using the same residual sensitivity matrix employed

by the largest normalized residual test (LNRT). When the

measurement with the largest normalized residual is identified,

two possible measurements that are interacting with that

measurement are identified and examined for swamping effect.

Two theorems are introduced to limit the search space for iden-

tifying these two measurements. Different cases in which the

LNRT fails to identify interacting bad data are collected from

the literature. The proposed algorithm successfully identifies

interacting bad data in these cases, while in the case of non-

interacting bad data the proposed algorithm reduces to the

LNRT. Therefore, the proposed algorithm can be used as an

add-on to the existing power system state estimation software

for identifying interacting bad data.

APPENDIX A

PROOF OF THEOREM 2

Let us rewrite (2) as y = Xβββ+ẽ where y = R− 1

2∆z, X =
R− 1

2H, βββ = ∆x and ẽ = R− 1

2 e. It can easily be seen that (3)

can be written as β̂ββ = (XTX)−1XTy at the final iteration and

the hat matrix defined in (4) can be related to the transformed

hat matrix as K̃ = X(XTX)−1XT = R− 1

2KR
1

2 , given that

R is diagonal. It can be shown that with S̃ = I− K̃, we have

Sii = S̃ii but S̃ij =

√

Rjj√
Rii

Sij .

Lemma A1. If X(i) denotes X excluding the ith row and

Xi denotes the ith row of X then

(XT
(i)X(i))

−1=(XTX)−1+
(XTX)−1XT

i Xi(X
TX)−1

Sii

(A.1)

where S = I−K has already been defined in (7).

Proof. See [22].

If measurement i is removed, the estimated state in (3)

changes to:

β̂ββ(i) = (XT
(i)X(i))

−1XT
(i)y(i) (A.2)

where the subscript (i) denotes the removal of ith measure-

ment, that is X(i) and y(i) are obtained after removing the ith
row of X and y, respectively. Substituting (A.1) into (A.2)

leads to:

β̂ββ(i)=

(
(XTX)−1+

(XTX)
−1

Xi
TXi(X

TX)−1

Sii

)
(XTy−XT

i yi) (A.3)

which can be simplified as

β̂ββ(i)=β̂ββ − (XTX)−1XT
i r̃i

Sii
(A.4)

where r̃i =
ri
σi

since r̃ = S̃y = R− 1

2SR
1

2R− 1

2∆z = R− 1

2 r.

Multiplying both sides of (A.4) by Xj, that is the jth row of

X, yields:

ŷj − ŷj(i) =
−S̃jir̃i
Sii

(A.5)

which can lead to the following by adding yj − yj to the

left-hand side of (A.5):

r̃j(i) = r̃j −
S̃jir̃i
Sii

(A.6)

which can be written as

rj(i) = rj −
√
Rjj

S̃ji
ri√
Rii

Sii

= rj − Sjiri
Sii

(A.7)

Now, it is sufficient to obtain Sjj(i) for normalizing r̃j(i)
in (A.6). Sjj(i) = 1 − Kjj(i) where Kjj(i) is expressed by

definition as:

Kjj(i) = Xj(X
T
(i)X(i))

−1XT
j (A.8)
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which can be written based on (A.1) as

Kjj(i)=Xj

[
(XTX)−1+

(XTX)−1XT
i Xi(X

TX)−1

Sii

]
XT

j

= Kjj +
K̃jiK̃ij

Sii
(A.9)

which leads to:

Sjj(i) = Sjj −
S̃2
ij

Sii
=

Rjj

Rii
S2
ij

Sii
= Sjj −

Ωij

Ωii
Sij (A.10)

Now rNj can be obtained by using (A.6) and (A.10) as:

rNj(i) =
rj(i)

√

Rjj

√

Sjj(i)

=
rj −

Sjiri
Sii

√

Rjj

√

√

√

√Sjj −
Ωij

Ωii
Sij

=
rj −

Ωjiri
Ωii

√

√

√

√

√Ωjj −
Ω2

ij

Ωii

(A.11)

which proves Theorem 2 given the symmetry of Ω.

APPENDIX B

PROOF OF THEOREM 3

Assume that p and q are the only two bad data in the

measurement set and rNmax = rNi .

rNi ≈
|Sipep + Siqeq|

σi

√
Sii

<
|Sipep|
σi

√
Sii

+
|Siqeq|
σi

√
Sii

<
2Max{|Sip|, |Siq|}emax

σi

√
Sii

(B.1)

where emax = Max{|ep|, |eq|}. Now, (B.1) can be rearranged

as:

Max{|Sip|, |Siq|} >
rNi
√
Siiσi

2emax
(B.2)

which proves (14).

As the first line of (B.1) is an approximation, let us inves-

tigate the impact of the neglected terms. The exact expression

for rNi in (B.1) is as follows.

rNi =

∣∣∣∣∣
∑
j

Sijej

∣∣∣∣∣
σi

√
Sii

=

∣∣∣∣∣
∑

k∈{Good Data}

Sikek + Sipep + Siqeq

∣∣∣∣∣
σi

√
Sii

(B.3)

Given the independence of measurement errors in good data,

we have
∑

k∈{Good Data}

Sikek ∼ N (0,
∑

k∈{Good Data}

S2
ikσ

2
k) (B.4)

Given the fact that the residual sensitivity matrix S is

idempotent [1], we have
∑
j

S2
ij = Sii and therefore (B.4) can

be approximated as follows:
∑

k∈{Good Data}

Sikek ∼ N (0, [Sii − S2
ip − S2

iq]σ̄
2) (B.5)

where σ̄2 is the root mean square of variances of measure-

ments. By using (B.5), (B.1) can be rewritten as follows:

rNi <
2Max{|Sip|, |Siq|}emax

σi

√
Sii

+

∣∣∣∣∣
∑

k∈{Good Data}

Sikek

∣∣∣∣∣
σi

√
Sii

<
2Max{|Sip|, |Siq|}emax

σi

√
Sii

+
3
√

[Sii−S2
ip−S2

iq]σ̄

σi

√
Sii

<
2Max{|Sip|, |Siq|}emax

σi

√
Sii

+
3σ̄

σi
(B.6)

Accordingly, (B.2) is rewritten as follows:

Max{|Sip|, |Siq|} >
rNi
√
Siiσi

2emax
− 3σ̄

2emax

√
Sii (B.7)

A comparison between (B.2) and (B.7) reveals that neglect-

ing the second term in the right-hand side of (B.7) is a good

approximation given that emax is set to 300 times the standard

deviation and Sii < 1 [1].

APPENDIX C

PROOF OF THEOREM 4

Assume that p and q are the only two bad data in the

measurement set such that rNp <rNi and rNq <rNi . The former

inequality can be extended as:

|
√
Sppep +

Spqeq√
Spp

| < |Sipep + Siqeq|√
Sii

σpp

σii
(C.1)

On the one hand we always have the following inequality:

√
Spp|ep| −

|Spq||eq|√
Spp

≤ |
√
Sppep +

Spqeq√
Spp

| (C.2)

On the other hand the following inequality always holds,

similarly:

|Sipep + Siqeq|√
Sii

≤ |Sip||ep|√
Sii

+
|Siq||eq|√

Sii

(C.3)

From (C.1), (C.2) and (C.3) we have:

√
Spp|ep| −

|Spq||eq|√
Spp

<

( |Sip||ep|√
Sii

+
|Siq||eq|√

Sii

)
σpp

σii
(C.4)

which can be rewritten as:

|Spq| > (Spp − |Sip|
√

Ωpp

Ωii
)|ep
eq
| − |Siq|

√
Ωpp

Ωii
(C.5)

where Ω = SR is the residual covariance matrix. A similar

equation to (C.5) can be written based on rNq <rNi as:

|Spq| > (Sqq − |Siq|
√

Ωqq

Ωii
)|eq
ep
| − |Sip|

√
Ωqq

Ωii
(C.6)

Given that Spp − |Sip|
√

Ωpp

Ωii
> 0 and Sqq − |Siq|

√
Ωqq

Ωii
> 0

[1], the minimum value for |Spq| will be the intersection of
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two diagrams as functions of | epeq | in (C.5) and (C.6):

(Spp − |Sip|
√

Ωpp

Ωii
)|ep
eq
| − |Siq|

√
Ωpp

Ωii
=

(Sqq − |Siq|
√

Ωqq

Ωii
)|eq
ep
| − |Sip|

√
Ωqq

Ωii

(C.7)

which can be written as the following quadratic equation:

A|ep
eq
|2 +B|ep

eq
|+ C = 0

A = Spp − |Sip|
√

Ωpp

Ωii

B = |Sip|
√

Ωqq

Ωii
− |Siq|

√
Ωpp

Ωii

C = −(Sqq − |Siq|
√

Ωqq

Ωii
)

(C.8)

The feasible root of (C.8) is:

x =

√
B2 − 4AC −B

2A
(C.9)

which should be put into (C.7) to give the minimum of |Spq|
as follows:

|Spq| > Ax− |Siq|
√

Ωpp

Ωii

=

√
B2 − 4AC −B

2
− |Siq|

√
Ωpp

Ωii

(C.10)

Substituting (C.8) in (C.10) yields (15).
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