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The recent publication by Gilda, et al (2021) (1) is yet another example of a semi-automated 18 

pipeline to analyse muscle fibre cross-sectional area (FCSA), a topic that has seen 13 19 

methodology papers published in the last three years (2-16). While the experimental data used 20 

to validate their methodological approach is of high quality there are several points worth 21 

comment. 22 

Firstly, there is a lack of discussion comparing their approach to other available options; 23 

regrettably, only four of the recently published data pipelines do so either (2, 3, 5, 15). The 24 

major benefit suggested by Gilda, et al. is that their approach is more user-friendly compared 25 

to other programs, and was more efficient compared with manual analysis (using the same 26 

software); both statements are subjective. Where one might argue that the use of confocal 27 

microscopy (as in this paper) provides an unnecessary level of detail for simply calculating 28 

FCSA, it requires a degree of training, which they highlight as inconvenient when assessing 29 

other semi-automated software packages. Additionally, Imaris is a commercial image analysis 30 

software, a point not made by the authors, a potentially unnecessary expense compared to 31 

recent methods that are freely available (2-16).  32 

Moreover, the authors reason that it is necessary to measure all available fibres in a muscle 33 

biopsy to accurately reflect FCSA, while simultaneously arguing that areas of tissue may be 34 

rejected from analysis if necessary. This dichotomy is equally baffling and inaccurate. While 35 

a large sample size may be required to detect small changes or infrequent events, it is 36 

statistically inefficient to count all fibres within a muscle cross section; with an appropriate 37 

unbiased, random sampling regime it is possible to provide statistically robust estimates of both 38 

average muscle FCSA and fibre size distributions (17). Additionally, any whole tissue 39 

approach risks overlooking important structural heterogeneities, where phenotypically/ 40 

anatomically defined compartments within muscles may be more appropriate (18, 19). 41 

Importantly, measuring FCSA alone is not novel (2-16, 20). The free software packages are 42 

not only able to semi-automatedly segment muscle fibre boundaries, but in some instances 43 

semi-automatically assign muscle fibre phenotype (13 of 16), incorporate colocalization of 44 

nuclei and capillaries (10 of 16), and in one case includes the option to model oxygen transport 45 

kinetics (13). Where the authors have differentially identified calpain-1 shRNA transfected 46 

fibres for FCSA analysis, this process is like identification of muscle fibre types based on 47 

immunoreactivity, and again this process is not discussed in the wider context of the field of 48 

semi-automated processing.  49 

Skewness is not a new statistic in this field, as fibre size increases in a geometric manner; a 50 

statement about needing different statistical tests depending on its value requires justification 51 

and examples.  52 

We bring these points to your attention in the hope that future semi-/fully-automated software 53 

packages are appropriately verified against competing options in order to substantiate claims 54 

of superiority. We suggest new methodological studies should focus on speed of processing, 55 

the biological imperative to identify and integrate histologic primitives (e.g. nuclei and 56 



capillaries) with quantitative outputs, and development of sequential pipelines like those of 57 

FEA modelling approaches (13) in order to substantially advance the field.  58 
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